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Abstract. Seismic source inversion, a central task in seis-
mology, is concerned with the estimation of earthquake
source parameters and their uncertainties. Estimating uncer-
tainties is particularly challenging because source inversion
is a non-linear problem. In a companion paper, Stähler and
Sigloch (2014) developed a method of fully Bayesian in-
ference for source parameters, based on measurements of
waveform cross-correlation between broadband, teleseismic
body-wave observations and their modelled counterparts.
This approach yields not only depth and moment tensor esti-
mates but also source time functions.

A prerequisite for Bayesian inference is the proper charac-
terisation of the noise afflicting the measurements, a problem
we address here. We show that, for realistic broadband body-
wave seismograms, the systematic error due to an incom-
plete physical model affects waveform misfits more strongly
than random, ambient background noise. In this situation,
the waveform cross-correlation coefficient CC, or rather its
decorrelation D = 1−CC, performs more robustly as a mis-
fit criterion than `p norms, more commonly used as sample-
by-sample measures of misfit based on distances between in-
dividual time samples.

From a set of over 900 user-supervised, deterministic
earthquake source solutions treated as a quality-controlled
reference, we derive the noise distribution on signal decor-
relation D = 1−CC of the broadband seismogram fits be-
tween observed and modelled waveforms. The noise on D
is found to approximately follow a log-normal distribution,
a fortunate fact that readily accommodates the formulation

of an empirical likelihood function for D for our multivari-
ate problem. The first and second moments of this multivari-
ate distribution are shown to depend mostly on the signal-to-
noise ratio (SNR) of the CC measurements and on the back-
azimuthal distances of seismic stations. By identifying and
quantifying this likelihood function, we make D and thus
waveform cross-correlation measurements usable for fully
probabilistic sampling strategies, in source inversion and re-
lated applications such as seismic tomography.

1 Introduction

The quantitative estimation of seismic source characteristics
is one of the most important inverse problems in geophysics,
from both scientific and societal points of views. Source pa-
rameters not only can be used to locate earthquakes and to
understand earthquake mechanisms and their implications
for tectonic settings and seismic hazard, but they are also
important in seismic tomography, where accurate source in-
formation is a prerequisite for achieving optimal fits between
observed and modelled (waveform) data.

Estimation of seismic source parameters includes an earth-
quake’s location, depth, fault plane and temporal rupture
evolution. The inverse problem is non-linear, and parame-
ter correlations result in trade-offs and non-uniqueness, e.g.
the correlation between dip and scalar moment that was dis-
covered by Kanamori and Given (1981). Source depth is
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Table 1. Symbols frequently used in this paper

m Model vector of earthquake source parameters (M-dimensional) as defined in
Stähler and Sigloch (2014): earthquake depth, moment tensor and source time
function

d Geophysical data vector (N -dimensional)
M Number of model parameters
N Number of data
g(m) Forward operator acting on a model parameter vector m
L(m|d) Likelihood of a model m given the data d
L∗(m|d) Likelihood-equivalent function of a modelm given the data d, constructed from

the distribution of misfit values. Termed “empirical likelihood” in this article.
SD Data covariance matrix
8 Total misfit of one model m and data d , 8 = − lnL
8W Misfit between one recorded and predicted seismogram
uj,i,i = {1,...,nj } Time-discrete seismogram j in a time window around a phase of interest.
uc
j,i,i = {1,...,nj }

Synthetic seismogram j predicted by a model m and a forward operator g(m)

j Index of seismogram time window
i Index of sample in seismogram time window
nj Number of samples in a time window j

nS Number of time windows. nS ≡N if the decorrelation misfit is used.
ntot =

∑nS
j=1nj Total number of samples in all time windows. ntot ≡N if a `p misfit is used.

CC
ui ,u

c
i

k
(Normalised) cross-correlation function between time series u and uc using a

window function wi : CC
ui ,u

c
i

k
=

∑n
i=1

(
wiu

c
i−k ·ui

)√∑n
i=1(wiu

c
i−k)

2·
∑n
i (wiui )

2

CCui ,u
c
i Maximum of CC

ui ,u
c
i

k
over k; the “correlation between ui and uc

i
”

Dui ,u
c
i Decorrelation, Dui ,u

c
i = 1−maxk{CC

ui ,u
c
i

k
}

α Coefficient for the level of waveform perturbation in the synthetic tests
described in Sect. 2.4

β Coefficient for the level of background noise in said test

a particularly challenging parameter; for example Sigloch
and Nolet (2006) often find multiple local minima in wave-
form data misfits as a function of depth, even when source
time functions (STFs) are explicitly estimated. This makes
global search methods and ensemble sampling particularly
attractive if the associated computational hurdles can be
surmounted. For finite-fault inversion of large earthquakes,
Bayesian methods have been developed in recent years (Du-
putel et al., 2012, 2014; Dettmer et al., 2014), as they also
have been for non-kinematic inversions of regional events
(Mustać and Tkalčić, 2016), but we focus on the inversion of
source time functions of intermediate-sized events (mb 5.5 to
7.5) from broadband, teleseismic waveforms.

In a companion paper (Stähler and Sigloch, 2014), we
developed the PRobabilistic Interference of Source Mech-
anisms (PRISM) algorithm, a fully probabilistic inversion
for source depth, moment tensor and STF, via sampling by
both stages of the neighbourhood algorithm (NA; Sambridge,
1999). Figure 1 sums up the procedure and its results.

The need for PRISM arose from our work in global-
scale waveform tomography, which fits broadband body-
wave seismograms of moderate to large earthquakes to mod-
elled synthetics, up to the highest occurring frequencies

(≈ 1 Hz). This can only be achieved with good a priori es-
timates of source depth, which strongly shapes the synthetic
Green’s functions, and of source time functions, which con-
volve the Green’s functions. At the time, no data centre de-
livered routine estimates of broadband STFs (by now, efforts
other than ours are underway; Vallée et al., 2011; Vallée and
Douet, 2016). Hence Sigloch and Nolet (2006) developed
a linearised, iterative approach that semi-automatically de-
convolved broadband source time functions, source depths
and moments tensors of more than 2000 earthquakes, which
were subsequently used in several waveform tomographies
(Sigloch et al., 2008; Sigloch, 2011; Sigloch and Mihalynuk,
2013; Hosseini and Sigloch, 2015).

The required human supervision time called for full au-
tomatisation, preferably in a Bayesian setting that would cir-
cumvent the occasional divergence of the non-linear optimi-
sation and would automatically diagnose parameter trade-
offs of the kind described. PRISM (Stähler and Sigloch,
2014) solved this problem, but we left the justification of its
misfit criterion and the derivation of its noise model and like-
lihood function to the present study.

To render ensemble sampling with the NA computation-
ally feasible, the dimensionality of the model parameter
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Figure 1. Visual summary of the fully probabilistic source inversion algorithm PRISM presented in the companion paper (Stähler and
Sigloch, 2014), on the example of a magnitude-5.7 earthquake in the US state of Virginia on 23 August 2011. (a) Candidate source so-
lutions are evaluated according to the cross-correlation fit they produce between observed broadband, teleseismic P waveforms (black) or
SH waveforms (blue), and their modelled counterparts (red). The present study is concerned with quantifying the noise distribution on these
cross-correlation measurements CC – one scalar per source–receiver pair, 48 in total for this earthquake. (b) To reduce the dimensionality
of the model space to a number accessible to Bayesian sampling, the source time function (STF) is parameterised as a linear combination
of 15 empirical orthogonal functions found to best span the space of a large set of 900 reference STFs (Sigloch and Nolet, 2006; Stähler
and Sigloch, 2014). (c) The “Bayesian beach ball”, a visual average of the posterior ensemble of well-fitting solutions, conveys not only the
nature of the moment tensor but also the magnitude and nature of its uncertainties. (d) The marginal probability of the hypocentre depth.
(e) Weighted average of STFs from the posterior ensemble of good solutions permits assessment of the uncertainties in STF shape. This
STF is clearly unimodal and of less than 5 s duration. (f) As a secondary benefit, this procedure yields the uncertainties (standard deviations)
of cross-correlation travel time measurements at all stations, and their inter-station correlations. Travel times are the primary input data for
seismic tomography, and these insights into their uncertainties are not readily available from other methods.

space has to be as small as possible, preferably less than 20.
Depth is one parameter, and a normalised description of the
moment tensor requires five more (a more rigorous and uni-
form parameterisation of the moment tensor has been derived
by Tape and Tape, 2015, 2016). Although latitude and longi-
tude could easily be added to this list, we do not consider
them here, because the lateral location problem is adequately
addressed by existing data centres (National Earthquake In-
formation Center (NEIC) or Bondár and Storchak, 2011), and
in any case we would re-estimate all hypocentres at the time
of tomographic inversion. The STF is a high-dimensional pa-
rameter vector, which Sigloch and Nolet (2006) and Stäh-
ler et al. (2012) parameterised simply as a time series of
256 unknowns (10 Hz sampling rate, 25.6 s length). To re-
duce its dimensionality for Bayesian sampling, Stähler and
Sigloch (2014) made use of a dataset of > 2000 determin-
istic earthquake source solutions (depth, moment tensor and

STF) obtained by Sigloch and Nolet (2006). We selected the
900 best-constrained STFs and composed this set into empir-
ical orthogonal functions (EOFs), denoted sl(t). Any broad-
band STF s(t) of events up to magnitudes of about 7.5 is
well described by a linear combination of the first L EOFs,
where L≈ 15 delivers sufficient accuracy for our purpose:
s(t)=

∑15
l=1alsl(t). These EOFs sl(t), shown in Fig. 1b, are

the primary means by which we feed a priori expert knowl-
edge into the Bayesian sampling problem. PRISM’s STF pa-
rameterisation consists of the first L EOF weights al, bring-
ing the total dimensionality of the parameter space to ≈ 20.

This space is sampled by both stages of the neighbour-
hood algorithm, resulting in an ensemble of source solutions
m (cf. Table 1). From this ensemble, marginal probabilities
for any model parameter can be estimated, e.g. for the depth
(Fig. 1d) or the STF (Fig. 1e). As a visual means of conveying
uncertainties in the moment tensor, we invented “Bayesian
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beach ball” plots (Fig. 1c), a superposition of many beach
ball representations in the a posteriori ensemble. A valuable
side benefit is full uncertainties on travel time measurements
1Tj at stations j . These travel time delays are incidental in
the context of source inversion (as the time shifts between ob-
served and synthetic seismograms that maximise the cross-
correlation coefficients CCj , Fig. 1f), but they represent the
primary input data for our seismic waveform tomographies.

The primary measure of fit (or “input data”) for PRISM’s
source inversions is the CCj . When parameter estimation is
performed as a deterministic optimisation problem, (only) a
relative measure of fit or misfit is required: the optimal solu-
tion is the one that yields the smallest misfit between obser-
vations and model predictions, in our case the largest possi-
ble values of cross-correlation coefficients CCj . By contrast,
Bayesian parameter estimation requires not just a measure
of misfit but also a likelihood function for it, which is de-
rived from the probability distribution on the data (the “noise
model”). In the absence of a noise model, the likelihood of
a randomly drawn candidate solution cannot be evaluated.
Obtaining a noise model for a misfit requires much more in-
formation about the measurement process and its statistics
than the mere adoption of a misfit measure. This is the big
challenge of Bayesian “inversion”, which will be covered in
this paper.

Section 2 argues for the adoption of the signal decorrela-
tion D = 1−CC as a robust measure of misfit, where CC is
the normalised cross-correlation coefficient (Table 1). To our
knowledge, the decorrelation D of seismological waveforms
has not been used as a misfit criterion in Bayesian inference
(other than by Stähler and Sigloch, 2014) because its noise
model and likelihood function were unknown – a shortcom-
ing D shared with other deterministic misfit choices, such
as the instantaneous phase coherence (Schimmel, 1999),
time phase misfits (Kristekova et al., 2006) or multi-tapers
(Tape et al., 2009).

Section 2.2 shows that the popular `2 and `1 norms (Maha-
lanobis, 1936) would be sub-optimal misfit criteria because
noise in seismic signals is not simply additive Gaussian or
Laplacian but rather partly signal-generated, i.e. highly cor-
related across time samples and stations, and better described
by a transfer function. Figure 2 shows an example of this
systematic noise “coda”. Section 2.3 defines the general re-
quirements of a good misfit criterion, and Sect. 2.4 demon-
strates that the signal decorrelation D performs more ro-
bustly than sample-by-sample (`p) norms on realistic seis-
mological waveform data.

To identify a likelihood function L(m|d) of misfit D in
Sect. 3, we draw once more on the prior knowledge con-
tained in our set of deterministic source solutions for 900
earthquakes and on the 200 000 measurements of CC= 1−D
made to obtain them. From this large, representative and
highly quality-controlled dataset of confident source solu-
tions, we obtain the statistics of the residual misfitsD, which
we use to construct an empirical likelihood L∗(m|d). Thus

High SNR, good fit

High SNR, poor fit

Low SNR

Figure 2. Three noise cases for compressional (P ) waves in source
inversion; the waveforms were produced by the M 5.7 earthquake
in Virginia (23 August 2011). Station BFO has a high signal-to-
noise ratio (no wiggles preceding the P pulse), and the waveform
is fit well by a WKBJ synthetic using our best source solution for
this earthquake. Station LPAZ has a high signal-to-noise ratio, but
3-D structure produces a strong coda following the P pulse, i.e.
signal-generated, systematic “noise” not fit by the synthetic wave-
form. Station LCO has a low signal-to-noise ratio and a coda. Since
the coda cannot be modelled, it must be considered noise, albeit of
a systematic nature and correlated across time samples and across
stations. By contrast, ambient noise is random and not correlated
across stations, only across time samples (since the signal is band-
limited).

we can instruct the probabilistic inversion to explore sub-
spaces of solutionsm that yield similarly low levels of misfit
D as these best-fitting deterministic solutions.

Section 3.6 presents a worked example for the construction
of a likelihood function L(m|d) from data of a typical earth-
quake, the 2011 Virginia event used throughout this paper
and its companion Stähler and Sigloch (2014). We conclude
with a discussion in Sect. 4.

2 Noise and misfit criteria

2.1 Bayesian inference

Bayesian inference estimates the posterior distribution π(m)
of the parameters m given d, using the prior distribution
p(m) of the model parameters m and the likelihood L(m|d)
of the data d , given the model m, by applying Bayes’ rule:

π(m|d)=
1

p(d)
L(m|d)p(m). (1)

p(d) is the prior distribution of the data d and does not de-
pend on the experiment. A likelihood function L(m|d) is
equivalent to the probability distribution p(d|m) of data d
given the model parameters m (Gilks et al., 1996). It de-
pends on the difference between measured data d and pre-

Solid Earth, 7, 1521–1536, 2016 www.solid-earth.net/7/1521/2016/
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dicted data g(m). This difference or misfit is defined, follow-
ing convention, as

8(d,g(m))=− ln(L(m|d)), (2)

so that a model with a high likelihood has a diminishing mis-
fit. Since the likelihood of a model can vary by orders of
magnitude, the logarithm brings the misfit back to natural
scaling.

The exact formula for L(m|d) depends on the assumed
noise model and potential error sources in the forward model.
Equation (2) requires that the misfit criterion take those into
account as well. Next, we will show that this is straightfor-
ward only for specific assumptions about the noise, which
are usually not realistic.

2.2 Metric-based misfit criteria

“Good” solutions m are associated with small misfits 8,
where the exact definition of 8 depends on the nature of
the data d, which may be hand-picked arrival times; disper-
sion curves; or, in our case, seismic displacement time series
(“waveforms”). A waveform misfit is generally a functional
8W : RN ×RN 7−→ [0,∞) on d,g(m) ∈ RN .

The misfit functional has similar properties to a metric on
RN , but it should be noted that there is no natural choice;
rather, its choice implies a strong assumption of prior knowl-
edge about the statistical properties of the noise on d . In the
case of seismic waveform data, the data vector d is the mea-
sured time-sampled seismogram ui and the separate data are
the samples ui, i = {1, . . .,n} of this time series. The vector
g(m) is the synthetic seismogram uc

i , i = {1, . . .,n} predicted
by the forward operator g for the model m.

When the method of least squares is used to calculate the
`2 misfit,

8W
`2 (m|d)= k

′

(
1
2
(d −g(m))T S−1

D (d −g(m))

)
, (3)

the assumption is that the noise ε is additive and Gaussian-
distributed:

d = g(m)+ ε, ε ∼N (0,SD). (4)

The size [N ×N ] data covariance matrix SD ∈ SymN de-
scribes the correlation between the error of individual mea-
surements di . k′ is a normalisation constant.

In the case of a seismic waveform ui , 8W is

8W
`2 (m|d)= k

′

n∑
i=1

n∑
i′=1

(ui − u
c
i )
T (S−1

D )i,i′(ui′ − u
c
i′), (5)

and SD describes mainly the band-limited spectrum of en-
vironmental noise. Since a simple time shifting of ui or uc

i

will violate the assumption of Eq. (4), the ui or uc
i need to

be aligned first. Because we assume this noise to be time-
invariant, we can build SD from the autocorrelation function

Rεε of the (discrete) noise time series εi . SD is a Toeplitz
matrix, where the rows are shifted instances of the autocor-
relation function Rεε .

SD,k,k+l = Rεε(l)=
n∑
i

εiεi−l (6)

See Bodin et al. (2012) for an example of how to construct
SD under the assumption of an autoregressive (AR) noise
model.

For the estimation of the parameters m of one earthquake
source, we would normally use seismograms measured at
different stations, cut into a total of nS time windows ui ,
counted with index j . The overall misfit 8(m) for a source
solution will be comprised of the misfits of the single wave-
forms8W

`2,j
(m). If the noise on each waveform j is assumed

to be uncorrelated with the noise on all others, then it is le-
gitimate to define the overall misfit as being simply additive:

8(m)=

nS∑
j=1

8W
`2,j

(m). (7)

If the noise on the waveforms is correlated, then Eq. (3) has
to be extended, such that d, m and SD contain all time sam-
ples of all waveforms recorded at different stations. This ef-
fort has – to our best knowledge – not been made in seismic
inverse problems.

If each measurement i is considered to be uncorrelated
with the others and has a variance σi , then SD is a diagonal
matrix with diagonal elements σ 2

i and Eq. (3) reduces to

8W
`2 (m|d)=

k′

2

N∑
i=1

(di − gi(m))
2

σ 2
i

(8)

or, in the case of waveforms,

8W
`2 (m|d)=

k′

2

N∑
i=1

(ui − u
c
i )

2

σ 2
i

. (9)

With a set of nS waveforms ui,j , the total misfit defined in
Eq. (7) becomes

8=
k′

2

nS∑
j=1

nj∑
i=1

(ui,j − u
c
i,j )

2

σ 2
i

, (10)

the weighted least-squares criterion.
If the noise can be described well by the normal distribu-

tion, the `2 norm can be successfully applied. It is, however
very sensitive to data di deviating strongly from the predic-
tion gi(m). Outlier samples can dominate the whole inver-
sion process, while the residual misfit of almost-fitting parts
of the waveform has no influence. Experience shows that re-
alistic noise on seismic waveforms usually has more outliers
than predicted by Eq. (4).

www.solid-earth.net/7/1521/2016/ Solid Earth, 7, 1521–1536, 2016
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Hence, Käufl et al. (2013) have proposed to use the more
outlier-resistant `1 norm as a misfit criterion of observed and
modelled seismograms. They assume that noise on the time
samples ui is independently Laplace-distributed with width
bi , i.e. no temporal correlation:

d = g(m)+ ε, εi ∼ Laplace(0,bi), (11)

8W
`1 (m|d)=−

∑
i

|di − gi(m)|

bi
− ln2bi . (12)

Time samples of realistic, band-limited seismograms are
strongly correlated, which calls for the use of multivariate
Laplace distributions. This is the subject of ongoing research
(Kotz et al., 2001; Kozubowski et al., 2013), but the resulting
probability density functions (PDFs) are still too complex to
be used in ensemble inference. To make things worse, seis-
mograms recorded at different stations j will generally also
be correlated. Hence the simplicity of the univariate Laplace
distribution is not applicable, and the robustness of the `1

norm currently cannot be harnessed.
Other authors have proposed to use misfits based on gen-

eral `p norms (e.g. p = 1.5 in Sambridge and Kennett, 2001),
which allow the robustness of the misfit to be tuned to the
noise on the data.

8W`p (m|d)=

(
n∑
i=1

|di − gi(m)|
p

σp

)1/p

(13)

The underlying noise model is an exponential power distribu-
tion. However, all problems described for the `1 norm apply
here as well, and no multivariate forms exist in general.

In summary, it is tempting to chose `p misfits based on
the time-sample-wise distance between observed and mod-
elled waveforms because the underlying noise models are
straightforward to state (uncorrelated or correlated Gaussian,
uncorrelated Laplace distribution) and to translate into cor-
responding likelihood functions. Unfortunately, these noise
models are very crude approximations of the pervasive noise
characteristics and correlation found in real time series.

These serious shortcomings motivate our proposal of al-
ternate misfit criteria.

2.3 Noise-model-based misfit

In a Bayesian context, the likelihood L(m|d) is a defined by
the noise model on the data. An equivalent function L∗(m|d)
can be constructed from the distribution p(F) of any func-
tional F of the observed and predicted waveforms ui,uc

i ∈

R: F : R×R 7−→ [0,∞). In our attempt to move beyond F
being a sample-wise distance between ui and uc

i , we gener-
ally want a candidate F to meet the following conditions:

1. For ui = uc
i , F should take a fixed value, say 0.

2. With decreasing similarity of ui and uc
i , F should in-

crease, irrespective of the exact definition of similarity
(Sect. 3 will consider this further).

3. F should be robust against time shifts 1t = k · dt or
amplitude errors a affecting the waveform ui , i.e.
F
(
a ·ui+k,u

c
i

)
uF

(
ui,u

c
i

)
for any a ∈ R,k ∈ N, be-

cause such unknown time shifts will affect real-world
seismograms.

4. F should have discriminative power with respect to the
model parameters m, combined with robustness against
realistic noise and theoretical errors.

Concerning the noise, we need to be able to calculate the
distribution of F for a waveform afflicted by the typical three
error sources: background noise, waveform modelling error
and instrument error.

1. Ambient noise εnoise: this is noise from man-made or
natural sources around the receiver. It can be described
very well by an additional term, like εnoise ∼N (0,S)
(see Eq. 5).

2. Waveform modelling error T model,i : the synthetic wave-
form uc

i can never be identical to the observed ui , even
in the absence of ambient noise. In the context of source
modelling, the earth’s impulse response (Green’s func-
tion) can be considered a linear, time-invariant opera-
tor that acts on the source time function. The calcu-
lation of this Green’s function is not perfect (e.g. due
to errors in the earth model or imperfect computational
methods). Tarantola and Valette (1982) called this the
theoretical density function and proposed to model this
systematic error by an additive term on uc

i , but we think
that it should rather take the form of a transfer function
T model,i , between ui and uc

i , which will hopefully be
Dirac-like in character. However, T model,i will include
the site response (receiver side reverberations), which
can create strong waveform coda; see Fig. 2. Hence,
T model,i could in practice be rather oscillatory.

3. Instrument error T inst,i : a displacement seismogram ui
is assumed to have been corrected for the instrument
response of its seismic sensor. In practice, this correc-
tion may be imperfect (Bogert, 1962), e.g. due to er-
roneous sensor metadata. We model this systematic er-
ror by another (hopefully Dirac-like) transfer function
T inst,i convolving ui .

In summary, the difference between a modelled uc
i and ob-

served waveform ui is

ui = u
c
i∗T model,i∗T inst,i + εnoise,i . (14)

It is this complex mixture of noises that misfit criterion
F should be robust against while retaining discriminatory
power toward source model parameters m.

Next, we will test the signal decorrelationD as an alterna-
tive to `p norms against these four criteria.
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2.4 Signal decorrelation coefficient as a misfit

We choose the signal decorrelation D as a misfit criterion,
defined as

Dui ,u
c
i = 1−max

k
{CC

ui ,u
c
i

k }, (15)

where

CC
ui ,u

c
i

k =

∑n
i=1
(
wiu

c
i−k · ui

)√∑n
i=1(wiu

c
i−k)

2 ·
∑n
i=1(wiui)

2
(16)

is the normalised cross-correlation coefficient and k is the
time delay between uc

i and ui for which the normalised

cross-correlation function CC
ui ,u

c
i

k takes its maximum value.
wi is a window function that allows to select a time window
for the cross-correlation measurement. D satisfies three of
the four criteria that we desired of a misfit in the last section:

1. Dui ,u
c
i takes the value 0 for identical signals uc

i ≡ ui ,

since CC
ui ,u

c
i

k=0 = 1.

2. For ui 6= uc
i , 0<Dui ,u

c
i < 2, i.e. D values larger than

for the case uc
i ≡ ui , andDui ,u

c
i increases with decreas-

ing similarity of ui and uc
i .

3. If a time shift k′ is small compared to the window
length, we have

CC
ui ,u

c
i

k ≈ CC
ui ,u

c
i+k′

k+k′
and thus Dui ,u

c
i ≈D

ui ,u
c
i+k′ .

Due to the normalisation in Eq. (16), D is amplitude-
independent:

CCui ,u
c
i = CCui , a·u

c
i and thus Dui ,u

c
i =Dui , a·u

c
i

The fourth criterion, discriminative power and robustness
against noise is less straightforward to demonstrate. We pro-
ceed empirically by showing its superior performance over
the `2 and `1 misfits on an example of the kind of waveforms
we typically use for source inversion. Figure 3 shows in black
a simulated, broadband, noise-free P wave train, recorded at
40◦ epicentral distance. The seismograms were modelled us-
ing the WKBJ method of Chapman (1978) in the IASP91 ve-
locity model (Kennett and Engdahl, 1991), assuming an ex-
plosion source with M0 = 1020 Nm. Since the chosen source
depth is shallow (10 km), the P pulse is followed within sec-
onds by depth phases like pP, which effectively permits in-
version for source depth. However, once this waveform gets
perturbed by realistic modelling error (convolutive) and addi-
tive noise, resulting in the red waveform, the fit to the unper-
turbed original becomes tedious. A meaningful robustness
test is as follows: if the perturbed (red) waveform is mod-
elled for different candidate source depths, will the smallest
misfit be achieved for the perturbed wave simulated at the
correct depth of 10 km? This is a meaningful test of robust-
ness, because source depth tends to be the most challenging
parameter to retrieve in source inversions. Algorithmically,
the perturbation is done in two steps:

1. Perturbation by convolution with a “modelling er-
ror function” T error,i , which encompasses effects of
T model,i and T inst,i . It is defined as having a unit ampli-
tude spectrum and a random phase spectrum between 0
and α ·π/2.

um.e. = u
c
i∗T error,i (17)

This method adds realistic coda to the waveform, which
simulates the effects of structure, that was not included
in the forward simulation. The parameter α regulates the
perturbing effect of the modelling error function.

2. By adding a band-limited noise term

upert = um.e.+βε, whereε ∼N (0,SD), (18)

the covariance matrix SD is set to model a band-limited
noise with corner frequencies of (1/15,1/6Hz), similar
to microseismic background noise at the seismic station.
The peak amplitude is normalised to that of uc

i , so that
the parameter β controls the relative amplitude of this
noise term.

Figure 3 shows the resulting reference waveform (left) and
perturbed waveforms for α = 0.4 and β = 0.8, i.e. moderate
perturbation of the signal and strong background noise. The
unperturbed waveform ui is plotted in solid, thin black, the
waveform perturbed with modelling error um.e. in dotted blue
and the resulting reference trace in solid red. It bears little
resemblance to the unperturbed waveform.

The right plot shows the value of the three waveform mis-
fits `1, `2 and D between uc

i and upert over varying source
depths. It simulates an inversion for the depth of an earth-
quake using seismic waveforms. The waveform contains the
P and pP arrival. The depth is mainly constrained by the rela-
tive arrival time of the three and the resulting waveform of the
whole P − pP wave train. The perturbation of Eq. (18) adds
artificial coda with additional arrivals to the waveform, which
a good waveform misfit should be robust against. The misfit
should have a distinctively lower value for the “true” depth
of 10 km than for any of the others. To take into account the
stochastic nature of these perturbations, 500 realisations of
upert were calculated for the same parameters, α and β, but
with different random numbers. The coloured shades mark
the 95 % (2σ ) quantiles of the misfit values; the solid line
marks the median.

The `2 misfit could not recognise uc
i in upert anymore and

assigns the lowest misfit to a depth of 3 km. An analysis of
different noise and perturbation levels shows that the `2 norm
is relatively robust against background noise, but not against
perturbations from a modelling error; see Fig. S1 in the Sup-
plement. This seems reasonable given the underlying noise
model of this misfit.

The `1 norm does better, in that it has a minimum at 9 km
depth, close to the true value. The zigzag shape however sug-
gests that the value of 9 km is stochastic. The median value
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Figure 3. Comparison of the `1,`2 norm and the signal decorrelationComparison of the `1,`2 norm and the signal decorrelationD = 1−CC
as misfit criteria in noisy signals. A perturbed synthetic waveform ucpert for a 10 km deep explosion source, measured at a station at 40◦

epicentral distance, was compared to synthetic seismograms uc for other depths, using the three misfit criteria. The shaded colours mark
the 95 % quantiles of the misfit values, calculated by perturbing the reference waveform with different random seeds. The figure shows
the relatively high robustness of the cross-correlation coefficient in recognising reference signals in perturbed measurements. For better
visualisation, all misfit values have been normalised separately to have an average values of 1 between 20 and 30 km.

0 5 10 15 20 25

5σ

10σ

15σ

Signal-to-noise ratio

M
is

fi
t v

al
ue

 fo
r t

ru
e 

de
pt

h 

1σ
2σ

ℓ², weak pert.

D, weak pert.

ℓ¹, weak pert.

D, strong pert.
ℓ², strong pert.
ℓ¹, strong pert.
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for waveforms and misfit curves. The “weak-perturbation” curve
is calculated with perturbation factor α = 0.1, and the “strong-
perturbation” curve with α = 0.9 (see Eq. 17). For all SNR values,
the decorrelation has a higher discriminative power than `1 or `2.

at 9 to 10 km reaches only slightly below the lower quartile
for other depths, meaning that in reality the resolution power
of the `1 norm for this kind of problem will be very limited.
The studies for different noise and perturbation levels show
that it is generally more robust against background noise and
modelling error than the `2 norm but less so than the cross-
correlation coefficient.

The cross-correlation misfit has the strongest difference
between the plateau of wrong depth solutions and the true
one. For low noise levels, the minimum is slightly wider than
the one for the `1 norm. More values of α and β are shown
in Fig. S1. The analysis of the confidence intervals shows
that the values for CC scatter slightly more than the ones for

`2 and much more than for `1. To employ it in Bayesian in-
ference, a detailed analysis of the statistical properties will
be necessary. The analysis also shows that the actual values
of D are influenced more strongly by the background noise
level than by the modelling error. We will use that observa-
tion in Sect. 3.3.

Figure 4 compares the resolution power of the three mis-
fits for different perturbation levels and signal-to-noise ra-
tios (SNRs). It shows the difference between the misfit value
for the true depth 10 km and the average misfit value for the
depths between 20 and 30 km. The difference is expressed in
numbers of standard deviations (sigmas) from the 500 sepa-
rate noise realisations. The dashed line shows the result for
weak perturbation (α = 0.1), and the solid line for strong per-
turbation (α = 0.9). It can be seen that, for strongly perturbed
waveforms, the `1 and `2 norm cannot recognise the true
depth with more than 2σ , even for high signal-to-noise ra-
tios, while the decorrelation D stays well above 3σ , even for
SNRs of 6.

3 Empirical likelihood function for the signal
decorrelation

3.1 Empirical likelihood function obtained from
high-quality, deterministic source estimates

In seismology, the cross-correlation coefficient CC= 1−D
has been used as a measure of goodness of fit to detect pre-
dicted waveforms in noisy signals (Sigloch and Nolet, 2006;
Houser et al., 2008), to filter bad recordings, to detect tempo-
ral changes in repeating signals (e.g. Larose et al., 2010) and
to estimate the spatial extents of earthquake clusters (Menke
et al., 1990; Menke, 1999; Kummerow, 2010). It has rarely
been used as a misfit criterion in source inversion – we are
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Figure 5. Probability distribution of D, the decorrelation of measured and synthetic P waveforms used for deterministic source inversions.
(a) Empirical histogram ofD is shown as grey bars. From 200 000 broadband, teleseismic P waveforms for 900 earthquakes, only waveforms
with signal-to-noise ratios between 20.0 and 21.0 were considered for this figure (because the scaling parameters of analytic fitting functions
depend mainly on SNR). Coloured lines show best-fitting realisations of three analytic probability density distributions: beta (red), exponen-
tial (green) and log-normal (blue). The log-normal distribution yields the best fit to data. (b) Quantile–quantile plot for the three candidate
distributions of (a) confirms that the log-normal distribution best fits the empirical histogram of D. The values on the x axis are percentiles
of the cumulative histogram of D in our dataset. The y axis shows the percentiles of the best-fitting distribution of each class. The closer the
percentiles are to the line y = x, the better the fit of the distribution to the underlying data over the entire range of values. Both subfigures
indicate that a log-normal distribution best fits the values of D = 1−CC.

only aware of Kikuchi and Kanamori (1991) and Marson-
Pidgeon and Kennett (2000). CC and D = 1−CC have not
been used in probabilistic inversion, and the main obstacle
would have been their unknown statistics.

We present an empirical solution to this problem by draw-
ing on a large, pre-existing database of cross-correlation
measurements that we assembled in the context of determin-
istic source inversions, as described in Section 1. Essentially
we assert that our human expert knowledge and extensive
experience have generated a large, representative and highly
quality-controlled set of 900 teleseismic source parameter es-
timates that are sufficiently close to the true source parame-
ters to reveal the statistics of the noise in the measurements
d these estimates m are based upon. The measurements d
consisted of 200 000 cross-correlation coefficients CC ob-
tained from 200 000 broadband fits of observed seismograms
to WKBJ synthetics. The synthetic waveforms were calcu-
lated using the WKBJ method (Chapman, 1978) in velocity
model IASP91 (Kennett and Engdahl, 1991), with attenua-
tion and density taken from PREM (Dziewoński and An-
derson, 1981). To the extent that our source solutions mj
approach the true source parameters m0,j , the histogram of
the CC (or D = 1−CC) values approximate the probability
density function of CC (or D) in the presence of noise and
modelling errors. Thus we can obtain an “empirical likeli-
hood function” L∗(m|d) even in the absence of an analyt-
ically describable noise model. We preface the term “like-
lihood” by “empirical” because strictly speaking the likeli-
hood would be associated with the noise model on the raw
samples i, rather than with the noise on the composite mea-
sure D. A similar approach has been adopted independently

and recently by Bodin et al. (2016) in the context of receiver-
function inversion. Note that the term “empirical likelihood”
has been used differently in statistics (Owen, 1988).

Our reasoning and procedure can be summed up as fol-
lows:

– We can consider the measurements of misfit functional
8j (m0|d) for one earthquake at j = 1, . . .,nS recording
receivers as realisations of a random process that fol-
lows a yet unknown probability density function p(x).
m0 are the true source parameters, and any misfit 8j is
therefore due to ambient noise and modelling errors in
the seismograms, as described in section 2.3.

– In practice we never get to know m0 but only a (hope-
fully close) estimate mest, the result of a deterministic
source inversion procedure. Hence all we can actually
observe is 8(mest|d), some of which is due to the es-
timation error mest−m0. However, by estimating mest
carefully and repeatedly (for 900 different earthquakes),
and by considering the resulting 900 sets of misfits 8
(at 200 000 source–receiver pairs) jointly, the histogram
of their 200 000 D values should approximate a his-
togram of the true 8(m0|d) as closely as we can hope
to get. Figure 5a shows this empirically obtained his-
togram8cumulative ofD in grey (for the subset of P seis-
mograms that had a SNR of 20; reason to be discussed).

– To evaluate the likelihood of a misfit value 8′ encoun-
tered in a future (Bayesian) inversion, we could in prin-
ciple compare it to this empirical histogram 8cumulative.
It would however be more convenient and computa-
tionally efficient to identify an analytic expression for
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the p(x) that produced this histogram 8cumulative and to
evaluate any 8′ against this p(x).

– The best we can do is to identify a suitable type of distri-
bution and fit its parameters to the empirical histogram
8cumulative of Fig. 5a, thus obtaining a PDF pfit(x) as
our best estimate for the true p(x).

– The likelihood of a data vector d given model m is then
considered to be

L∗(m|d)= pfit (8(d|m)) . (19)

3.2 Approximate log-normal distribution of
decorrelation D

We will consider three candidate distributions for fitting an
analytic pfit(x): beta, exponential and log-normal. They are
all positive one-sided (defined only for D > 0) and can take
negligible values for D > 2, where strictly they should be 0.
Figure 5a shows their fits to the empirical histogram after
determining the best-fitting scale parameters for each.

The beta and the exponential distributions are seen to over-
estimate the number of very small D values (i.e. values of
CC≈ 1). Hence these distributions would predict more ex-
cellent waveform fits than observed. The likelihood of actu-
ally well-fitting waveforms would be estimated too low; i.e.
we would be too pessimistic about the achievability of good
waveform fits.

The log-normal distribution clearly yields the best ap-
proximation of the D histogram. This is confirmed by the
quantile–quantile plot of Fig. 5b. Hence we choose the log-
normal distribution to express our likelihood function.

The (univariate) log-normal distribution function is de-
fined by two scale parameters µ and σ :

f (x)=
1

x
√

2πσ 2
exp

(
−
(lnx−µ)2

2σ 2

)
. (20)

The log-normal distribution also yields the best fit to our
synthetic data from Sect. 2.4, as calculated with the perturba-
tions in Eqs. (17) and (18). See Fig. S4 for a corresponding
quantile–quantile plot.

If random variable x in Eq. (20) is equated with the decor-
relation Dj of one waveform j , the logarithm ln(Dj ) is nor-
mally distributed with meanµ and standard deviation σ . This
fortunate link of our empirical D histogram to the Gaussian
distribution makes it trivial to express the joint, multivariate
distribution of all nS waveform measurements of an earth-
quake, collecting the Dj in vector D and the inter-station
covariances in nS× nS covariance matrix SD .

The nS-variate likelihood function for D becomes

L∗D =
exp

(
−

1
2 (ln(D)−µ)

T S−1
D (ln(D)−µ)

)
(2π)

n
2
√
|det(SD)|

, (21)
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Figure 6. Colour shade map out a two-dimensional histogram of
waveform decorrelation D, as a function of waveform SNR along
the y axis. All 200 000 waveform measurements from our 900 de-
terministic source inversions entered this histogram. Black lines are
the best-fitting log-normal distributions for SNRs of 10, 20 and 30.
(The 1-D histogram for SNR= 20 was discussed in Fig. 5.) Toward
smaller SNRs (high-noise conditions), the D distribution widens
(more occurrences of poorly fitting waveforms).

and the misfit becomes

8 =
1
2

(
n∑
j=1

n∑
k=1

(
ln(Dj )−µj

)T
(S−1
D )jk (ln(Dk)−µk)

)

+
1
2

ln
(
(2π)n|det(SD)|

)
. (22)

This is the Mahalanobis distance, not between the individ-
ual samples of two waveforms ui and uc

i as in Eq. (3) but
between the decorrelation Dj of these two waveforms and
its expected value µj , taking into account correlated noise
between two stations in SD .

Thus the use of D as a misfit criterion reduces the number
of misfit values to nS per earthquake (the number of source
receiver paths, or waveforms) compared to

∑nS
j=1nj in the

case of the `1 or `2 norms (nj is the number of samples on
waveform j ). In other words, Dj itself accounts for any cor-
relations across time samples on seismogram j and subsumes
them into a single number, leaving only spatial (inter-station)
correlations to be dealt with in SD and in the empirical like-
lihood function L∗.

3.3 Distribution coefficients determined by
signal-to-noise-ratio

Here we describe how µ and SD can be estimated for one
earthquake. So far it was implicitly assumed that a single
distribution pfit might fit 8cumulative for all source–receiver
paths.
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This may be an oversimplification since ambient noise lev-
els εnoise show significant diurnal and seasonal variations,
and are elevated at stations close to coastlines or cities (Peter-
son, 1993; Stutzmann et al., 2009). Hence we might expect
goodness of fit to vary across stations, which could be mod-
elled by adjusting the scale parameters of the log-normal dis-
tribution for each station. Goodness of fit is also influenced
by earthquake magnitude, and by station distance and back
azimuth, so we might even require different scale parameters
for each source–receiver pair.

To avoid this level of complexity, recall the investigation
of Sect. 2.3 that revealed the distribution of D to be most
sensitive to the level of ambient noise εnoise. Hence we bin
our 200 000 source–receiver pairs by SNR and estimate only
one pair of (µ,σ ) distribution parameters per SNR bin. This
hopefully subsumes all individual sources of random misfit.

SNR is defined as the integrated spectral energy in the sig-
nal time window, divided by that of a 120 s noise window
prior to the arrival of the first body-wave energy. Signal time
windows ui, i = 1, . . .,Nsignal are as follows: for P phase, 5 s
before to 20.6 s after its theoretical arrival time in IASP91, on
the Z component; for SH phase, 10 s before to 41.2 s after, on
the T component. Noise time windows ni, i = 1, . . .,Nnoise
are as follows: for both P and SH phases, −150 to −30 s be-
fore theoretical arrival time. We calculate SNRs for P and
SH waves as

SNR=
Nnoise

∑Nsignal
i=1 u2

i

Nsignal
∑Nnoise
i=1 n2

i

. (23)

Note that this way the noise window of the P wave mea-
surement contains only ambient noise, whereas the SH wave
noise window is in addition afflicted by some signal-
generated noise: P coda and phases like PP or PcP, which
get scattered into the transverse component due to lateral het-
erogeneities and anisotropy in the real earth.

Figure 6 shows the D histogram and three fitted probabil-
ity densities pfit(D), as a function of SNR. Under low-noise
conditions (high SNR), the log-normal distributions are nar-
rower and centred on smaller D misfit values, which seems
plausible.

By fitting functions of the form h(SNR)= a1+a2 ·exp(a3 ·

SNR) to the SNR-binned D histograms, we determined dis-
tribution parameters µP (SNR), µSH(SNR), σP (SNR) and
σSH(SNR) for SNR ranging from 1 to 1000 for P waveforms
and from 1 to 200 for SH waveforms (see Supplement for
details).

Hence the log-normal distribution pfit(D) ascribed to a
given source–receiver pair depends only on the ambient
signal-to-noise ratio of the receiver i, and its scale param-
eters are given by

µi = aµ,1+ aµ,2 · exp(aµ,3 ·SNRi), (24)
σi = aσ,1+ aσ,2 · exp(aσ,3 ·SNRi). (25)
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Figure 7. Correlation in misfit between neighbouring stations. The
measured Pearson correlation (see Eq. 26) is plotted over the differ-
ence in azimuths between two station for the same earthquake. A fit
function gb1,b2,b3(ϑ)= b1+ b2 · exp(−b3ϑ

2) is plotted in dashed
red lines.

The exact values for ai depend on the velocity model
and the solution method. Here, we used the WKBJ method,
which results in a simplistic crustal response. Other meth-
ods, like the spectral-element method, in combination with a
waveform database (as implemented in Instaseis by van Driel
et al., 2015) may produce more realistic seismograms, result-
ing in higher average values of D. What matters is that the
actual inversion uses exactly the same solver and velocity
model as was used to determine the distributions of D.

3.4 Estimating inter-station covariances

Decorrelation values D measured at different stations can-
not be expected to be uncorrelated, because systematic mod-
elling errors (due to differences between assumed earth
model and true earth, and to methodical inadequacies in the
Green’s function computations) will affect neighbouring sta-
tions in similar ways. A reasonable guess is that stations at
similar azimuths from the source would show the strongest
correlations because their wave paths have sampled similar
parts of the sub-surface, in particular similar parts of the crust
and upper mantle – regions to which the strongest modelling
errors can be ascribed.

To check these systematics, we calculated the Pearson cor-
relation coefficient r(ϑ) as a function of azimuthal distance
ϑ as follows. For each earthquake, we calculated the az-
imuthal distances ϑjk between all station pairs (j,k) and
binned those. A set {j,k}ϑ then contains all stations pairs for
one event that have the same azimuthal distance ϑ (in bins of
5◦ width).

We need to adjust for the fact that stations j and k usu-
ally have different SNR and hence different µj and σj in
their log-normal distributions of D. Hence we calculate the
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standard score of each station j as zj =
(
ln(Dj )−µj

)
/σj

and from this the Pearson correlation coefficient of a ϑ bin
{j,k}ϑ , using all nϑ station pairs in that bin:

r(ϑ)=
1

nϑ − 1

∑
{j,k}ϑ

zjzk. (26)

The use of standard scores permits comparison of stations of
different SNR and hence log-normal distribution parameters.
The values for r(ϑ) are then fit by a function (see Fig. 7)

g(ϑ)= b1+ b2 · exp(−b3ϑ
2). (27)

This permits comparison of Dj for stations with different
SNR and distributions ofDj . Then the correlation coefficient
was calculated for each azimuthal bin ϑ using all nϑ pairs
{i,j}ϑ in this bin.

This azimuth-dependent correlation coefficient g(ϑ) can
be used to fill the elements of covariance matrix SD in
Eq. (21):

SD,i,j =

{
σiσj ·

(
b1+ b2 · exp(−b3ϑ

2)
)
, i 6= j

σ 2
i , i = j.

(28)

An example of such a covariance matrix is shown in
Fig. 8. It is for the 2011 earthquake in the US state of
Virginia that was used as a detailed working example of
Bayesian source inversion in the companion paper (Stähler
and Sigloch, 2014).

3.5 Misfit distribution of waveform amplitude
measurements

Waveform amplitudes have not been considered so far, even
though they provide crucial constraints on focal mechanisms.
Our amplitude measurement consists of a comparison of
the logarithmic energy content ln(A) in a 1 s time window
around the peak i = i1, . . ., i2 of the measured seismogram
and its synthetic:

1 ln(A)j = ln

(
i2∑
i=i1

u2
j,i

)
− ln

(
i2∑
i=i1

ucj,i
2

)
. (29)

Again our goal it to approximate the distribution of this
misfit in order to obtain an empirical likelihood function. The
distribution of 1 ln(A) is almost symmetric around 0; see
Fig. S2. The amplitude misfit |1 ln(A)| approximately fol-
lows a Laplace distribution, where parameter k does not vary
much with SNR (see Supplement). We construct the likeli-
hood function

L∗Amp =

nS∑
j=1

1
2k

exp
(
−
|1 ln(A)|

k

)
, (30)

which assumes no correlation in amplitude misfit between
two stations. This assumption is not without problems, but
motivated by the fact that amplitude errors are often caused
by localised site effects.

Covariance matrix of the stations for the Virginia event
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Figure 8. Visualisation of an inter-station covariance matrix SD for
misfit D (centre panel; cf. Eq. 21), on the example of an mb 5.7
earthquake that occurred in the US state of Virginia in 2011. Two
maps for P and SH data show the recording seismic stations as dots;
colour fill indicates the SNR of each waveform measurement. Inter-
station correlation depends directly on the azimuthal proximity of
two stations. This results in a block-diagonal matrix structure for
SD , because we have sorted stations by azimuth from the source.
Blocks correspond to groups of stations with an expected high cor-
relation of errors: (1) a Northern Hemisphere cluster of P wave
measurements (circled in dark red), (2) a South American cluster
of P waveforms (green) and (3) a Northern Hemisphere cluster of
SH waveforms measurement (olive). P and SH measurements are
modelled as being uncorrelated. For the analysis, only stations be-
tween 32 and 85◦ epicentral distance have been used, as marked by
the dashed lines.

3.6 Application in Bayesian source inversion

In practice these concepts are integrated with the Bayesian
source inversion procedure of Stähler and Sigloch (2014) as
follows:

1. For every new earthquake, download and archive a suit-
able selection of broadband, three-component, teleseis-
mic seismograms (1= 32 to 85◦). A pragmatic ap-
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proach is to use stations from a handful of international,
permanent networks (e.g. II, IU, G and GE) to ensure
high quality, reliability and relatively even azimuthal
coverage, avoiding station clustering in any particular
region. This is easily automated using the freely avail-
able data management software ObsPyDMT (Schein-
graber et al., 2013).

2. Bandpass filter between 0.02 and 1.0 Hz. Rotate hor-
izontal components to the RTZ system. Select signal
time windows and noise time windows, and calculate
SNR as defined in Eq. (23).

3. For each station, and for P and SH separately, use
SNR to calculate distribution parameters µi and σi from
Eq. (25). Populate the diagonal of covariance matrix
SD,ii with the σ 2

i .

4. Estimate correlation coefficient r(ϑj,k) between two
stations (j,k) using Eq. (28). Fill off-diagonal elements:

SD,jk = r(ϑj,k)σjσk. (31)

5. Insertµi and SD in the likelihood equation (Eq. 21), and
combine with L∗Amp (Fig. 30) to create the total likeli-
hood function

L∗ = L∗D+L∗Amp. (32)

6. For each source model m proposed by the sampling al-
gorithm, calculate synthetic seismograms and pass them
through the filters of step 2. Calculate the empirical like-
lihood L∗(m|d) (Eq. 32), which is multiplied with a
suitable prior to obtain a posterior probability for m.
Parameterisation of m, Bayesian sampling strategy and
construction of the posterior distribution of m are de-
scribed in the companion paper (Stähler and Sigloch,
2014).

4 Discussion

The most common approach to Bayesian inversion is to as-
sert a simple noise model for which an analytic likelihood
function is known: this determines the measure of misfit. We
have gone the opposite route in designing a misfit D based
on considerations of robustness and dimensionality reduc-
tion. Since no noise model was known, we had to investi-
gate the actual noise statistics and thus derive an empirical
noise model and likelihood function from the data D. We
were fortunate to find that the (multivariate) log-normal dis-
tribution provides the best fit to our decorrelation data be-
cause it can be evaluated almost as easily and cheaply as the
most favourable of all distributions, the Gaussian (normal)
distribution.

In fact, analytic probability densities are known for only
a few misfit functionals. By far the most commonly used

are the Gaussian (normal) distribution, associated with the
`2 norm misfit, and the Laplace distribution, associated with
the `1 norm. Evaluating residuals of data fits against these
analytic distributions is straightforward and fast, which is im-
portant in the computationally expensive Bayesian realm.

In practice however, the adoption of `1 or `2 misfits may
be inappropriate or even impossible. Gauss and Laplace
functions may be (too-)poor approximations of the actual dis-
tributions of data residuals. Even if they can be deemed ade-
quate for some measurements (e.g. for the sample-wise dis-
tance of two times series), they may generate huge and non-
sparse covariance matrices (because time samples are numer-
ous and correlated), which are difficult to estimate from the
data. Even worse in such multivariate scenarios, analytic ex-
pressions of the joint distribution functions may not exist – as
is the case for the Laplace distribution (`1 norm). Effectively
this often leaves as the only “choice” for a noise model the
(multivariate) normal distribution – whether or not it fits the
data at hand.

More often than not, real data contain many more out-
liers than expected by the normal distribution, certainly in
the case of seismic data. Under the `2 norm, outliers dispro-
portionally bias the solution (deterministic case) or posterior
distribution (Bayesian case) and also affect convergence in
the Bayesian case. The problem may be mitigated by manual
removal of very poorly fitting waveforms, but this is usually
time-intensive guesswork and likely to result in other biases.

The `1 norm is more robust against outliers, and with the
same motivation distance norms with non-integer exponents
`p have been proposed and successfully applied, including
for source inversion (Marson-Pidgeon and Kennett, 2000).
But all norms with p 6= 2 share the serious limitation that no
analytic expressions are known for the multivariate case.

Samples of real-world, band-limited time series are cor-
related. If a measured seismogram of length N samples is
considered,

ui = u
c
i + εnoise,i, (33)

then an (N×N ) covariance matrix for εnoise needs to be esti-
mated under the `2 norm. Hierarchical Bayesian methods can
be applied to estimate the noise level and covariance from the
data itself (see Malinverno and Briggs, 2004; Bodin, 2010;
Mustać and Tkalčić, 2016)), but in many cases it may be
more guessed than estimated.

The situation is further complicated if the noise model can
no longer be purely additive (“+εnoise”). We have argued that
our noise model needs to be

ui = u
c
i∗T modeli∗T inst,i + εnoise,i, (34)

where the convolving terms are systematic modelling error.
In theory this type of error might be eliminated with compu-
tationally powerful waveform forward modelling and more
research into detailed earth structure. But since those efforts
would be tangential to the problem at hand (source inver-
sion), the cost would seem prohibitive. Hence we do want the
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option of treating the modelling error as “just another source
of noise”, to be accommodated by a more sophisticated noise
model, the analytic expression of which will be unknown.

Another reason for leaving the Gaussian or `2 realm
might be a change of measurement. In our case, the cross-
correlation or decorrelation measurements collapse N × 2
samples of two times series into a single scalar CC or D.
Even if inter-sample correlations of the time series actually
were multivariate Gaussian, the statistics of CC or D would
be something more complicated. On the upside, the dimen-
sionality of the multivariate problem is reduced by a factor of
N , which helps substantially when forced to take the empir-
ical path toward obtaining a likelihood function. Thus inter-
station covariances are the only correlations to estimate, and
the fact that they are simple covariances (second moments)
is, again, owed to the fortunate fact that the log-normal dis-
tribution yielded the best fit to the misfit histogram.

We are not sure whether there is a theoretical reason that
the log-normal distribution should be associated with the
decorrelation misfit D, and thus effectively with CC. What-
ever the case, this finding is highly relevant in that it also
opens up the path to Bayesian sampling of other optimisation
problems that have previously adopted the cross-correlation
coefficient CC of seismograms as their misfit criterion, e.g.
other flavours of seismic source inversion (Kikuchi and
Kanamori, 1991; Marson-Pidgeon and Kennett, 2000), seis-
mic tomography (Sigloch and Nolet, 2006; Tape et al., 2009)
or the estimation of earthquake cluster sizes (Menke et al.,
1990; Menke, 1999; Kummerow, 2010).

As noted, the proposed empirical likelihood function
L∗(m|d) is no likelihood function in a strict sense because
it is not derived from the noise on the raw data samples but
rather from the noise (i.e. residual) of misfit functional D.
For other inverse problems, it has to be evaluated separately,
whether or not a noise model exists that can describe the dif-
ference between modelled and measured seismograms com-
pletely as an additive term. If that is the case, a classical like-
lihood can be used, but many inverse problems in seismology
are similar to the one presented here, and the proposed em-
pirical likelihood offers a path to a more thorough Bayesian
treatment. It is just important to remember that the distribu-
tion of D has to be determined from synthetic seismograms
calculated with the same velocity model and forward solver
as it is used for the actual inversion.

Other misfit criteria have been used in optimisation con-
texts in seismology. For the purpose of source parameter in-
version, their noise properties could be investigated along the
lines laid out by this work, and their empirical likelihood
functions studied. But unless their noise distributions turn
out to be as simple as for theD misfit (they would essentially
have to follow the normal or log-normal distribution), these
other misfit choices will be computationally more costly to
sample. It is pleasing that the cross-correlation, long appreci-
ated for its robust performance in deterministic optimisation,

is now also vindicated in a Bayesian context by the results of
our study.

5 Conclusions

This paper presents an approach to Bayesian inference using
the new misfit criterion of waveform (de)correlation. Decor-
relation D greatly reduces the number of data uncertainties
and correlations, by collapsing the temporal correlations of
samples in a broadband seismogram into a single scalar D,
or into n scalars per source estimate, where n is the number
of time windows on different seismogram components used
to estimate the source parameters of one earthquake. This
leaves only nS inter-station correlations to be determined,
and we show how they depend on the SNR of the D mea-
surements and on the azimuthal distances of seismic stations.
The noise on D turns out to have simple characteristics, ap-
proximately following an nS-variate log-normal distribution,
a finding that renders the formulation of the likelihood func-
tion for D straightforward.

This opens the way for the methodically correct Bayesian
sampling of parameter estimation problems that use the
cross-correlation CC or decorrelation D = 1−CC of seis-
mological broadband waveforms as their measure of data
(mis)fit – including not only our source inversion procedure
PRISM but also certain flavours of waveform tomography
or earthquake cluster analysis. In terms of data dimension-
ality reduction the present work complements its companion
Stähler and Sigloch (2014), which focused on reducing the
dimensionality of model parameters to a number amenable
to Bayesian sampling. It can also serve as a template for the
empirical derivation of noise models and likelihood functions
for other misfit measures on broadband seismograms.

6 Data availability

The analysis has been performed on publicly available seis-
mological data. All waveform data came from the IRIS and
ORFEUS data management centres.

The Supplement related to this article is available online
at doi:10.5194/se-7-1521-2016-supplement.
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Mustać, M. and Tkalčić, H.: Point source moment tensor inversion
through a Bayesian hierarchical model, Geophys. J. Int., 204,
311–323, doi:10.1093/gji/ggv458, 2016.

Owen, A. B.: Empirical likelihood ratio confidence inter-
vals for a single functional, Biometrika, 75, 237–249,
doi:10.1093/biomet/75.2.237, 1988.

Peterson, J.: Observations and Modeling of Seismic Background
Noise, Tech. Rep., USGS, Albuquerque, New Mexico, 1993.

www.solid-earth.net/7/1521/2016/ Solid Earth, 7, 1521–1536, 2016

http://dx.doi.org/10.1111/j.1365-246X.2012.05414.x
http://dx.doi.org/10.1093/gji/ggw124
http://dx.doi.org/10.1111/j.1365-246X.2011.05107.x
http://dx.doi.org/10.1093/gji/ggu280
http://dx.doi.org/10.1111/j.1365-246X.2012.05554.x
http://dx.doi.org/10.1093/gji/ggt517
http://dx.doi.org/10.1016/0031-9201(81)90046-7
http://dx.doi.org/10.1093/gji/ggv298
http://dx.doi.org/10.1111/j.1365-246X.2008.03763.x
http://dx.doi.org/10.1016/0031-9201(81)90083-2
http://dx.doi.org/10.1016/0031-9201(81)90083-2
http://dx.doi.org/10.1093/gji/ggs131
http://dx.doi.org/10.1111/j.1365-246X.1991.tb06724.x
http://dx.doi.org/10.1016/j.jmva.2012.02.010
http://dx.doi.org/10.1785/0120060012
http://dx.doi.org/10.1190/1.3463713
http://dx.doi.org/10.1063/1.3431269
http://dx.doi.org/10.1190/1.1778243
http://dx.doi.org/10.1785/0120000020
http://dx.doi.org/10.1093/gji/ggv458
http://dx.doi.org/10.1093/biomet/75.2.237


1536 S. C. Stähler and K. Sigloch: Probabilistic source inversion II

Sambridge, M.: Geophysical inversion with a neighbourhood algo-
rithm – II. Appraising the ensemble, Geophys. J. Int., 138, 727–
746, doi:10.1046/j.1365-246x.1999.00900.x, 1999.

Sambridge, M. and Kennett, B. L. N.: Seismic event location: non-
linear inversion using a neighbourhood algorithm, Pure Appl.
Geophys., 158, 241–257, doi:10.1007/PL00001158, 2001.

Scheingraber, C., Hosseini, K., Barsch, R., and Sigloch, K.: Ob-
sPyLoad: A Tool for Fully Automated Retrieval of Seismo-
logical Waveform Data, Seismol. Res. Lett., 84, 525–531,
doi:10.1785/0220120103, 2013.

Schimmel, M.: Phase cross-correlations: design, comparisons and
applications, Bull. Seismol. Soc. Am., 89, 1366–1378, 1999.

Sigloch, K.: Mantle provinces under North America from multifre-
quency P wave tomography, Geochemistry, Geophys. Geosys-
tems, 12, Q02W08, doi:10.1029/2010GC003421, 2011.

Sigloch, K. and Mihalynuk, M. G.: Intra-oceanic subduction shaped
the assembly of Cordilleran North America, Nature, 496, 50–56,
doi:10.1038/nature12019, 2013.

Sigloch, K. and Nolet, G.: Measuring finite-frequency body-wave
amplitudes and traveltimes, Geophys. J. Int., 167, 271–287,
doi:10.1111/j.1365-246X.2006.03116.x, 2006.

Sigloch, K., McQuarrie, N., and Nolet, G.: Two-stage subduction
history under North America inferred from multiple-frequency
tomography, Nat. Geosci., 1, 458–462, doi:10.1038/ngeo231,
2008.

Stähler, S. C. and Sigloch, K.: Fully probabilistic seismic source in-
version – Part 1: Efficient parameterisation, Solid Earth, 5, 1055–
1069, doi:10.5194/se-5-1055-2014, 2014.

Stähler, S. C., Sigloch, K., and Nissen-Meyer, T.: Triplicated P-
wave measurements for waveform tomography of the mantle
transition zone, Solid Earth, 3, 339–354, doi:10.5194/se-3-339-
2012, 2012.

Stutzmann, E., Schimmel, M., Patau, G., and Maggi, A.: Global cli-
mate imprint on seismic noise, Geochemistry, Geophys. Geosys-
tems, 10, Q11016, doi:10.1029/2009GC002619, 2009.

Tape, C., Liu, Q., Maggi, A., and Tromp, J.: Adjoint tomogra-
phy of the southern California crust, Science, 325, 988–92,
doi:10.1126/science.1175298, 2009.

Tape, W. and Tape, C.: A uniform parametrization of moment ten-
sors, Geophys. J. Int., 202, 2074–2081, doi:10.1093/gji/ggv262,
2015.

Tape, W. and Tape, C.: A confidence parameter for seismic moment
tensors, Geophys. J. Int., 205, 938–953, doi:10.1093/gji/ggw057,
2016.

Tarantola, A. and Valette, B.: Inverse problems = quest for informa-
tion, J. Geophys., 50, 159–170, doi:10.1016/j.pepi.2016.05.012,
1982.

Vallée, M. and Douet, V.: A new database of Source Time Func-
tions (STFs) extracted from the SCARDEC method, Phys. Earth
Planet. Int., 257, 149–157, 2016.

Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B., and Ver-
goz, J.: SCARDEC: a new technique for the rapid determina-
tion of seismic moment magnitude, focal mechanism and source
time functions for large earthquakes using body-wave decon-
volution, Geophys. J. Int., 184, 338–358, doi:10.1111/j.1365-
246X.2010.04836.x, 2011.

van Driel, M., Krischer, L., Stähler, S. C., Hosseini, K., and
Nissen-Meyer, T.: Instaseis: instant global seismograms based
on a broadband waveform database, Solid Earth, 6, 701–717,
doi:10.5194/se-6-701-2015, 2015.

Solid Earth, 7, 1521–1536, 2016 www.solid-earth.net/7/1521/2016/

http://dx.doi.org/10.1046/j.1365-246x.1999.00900.x
http://dx.doi.org/10.1007/PL00001158
http://dx.doi.org/10.1785/0220120103
http://dx.doi.org/10.1029/2010GC003421
http://dx.doi.org/10.1038/nature12019
http://dx.doi.org/10.1111/j.1365-246X.2006.03116.x
http://dx.doi.org/10.1038/ngeo231
http://dx.doi.org/10.5194/se-5-1055-2014
http://dx.doi.org/10.5194/se-3-339-2012
http://dx.doi.org/10.5194/se-3-339-2012
http://dx.doi.org/10.1029/2009GC002619
http://dx.doi.org/10.1126/science.1175298
http://dx.doi.org/10.1093/gji/ggv262
http://dx.doi.org/10.1093/gji/ggw057
http://dx.doi.org/10.1016/j.pepi.2016.05.012
http://dx.doi.org/10.1111/j.1365-246X.2010.04836.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04836.x
http://dx.doi.org/10.5194/se-6-701-2015

	Abstract
	Introduction
	Noise and misfit criteria
	Bayesian inference
	Metric-based misfit criteria
	Noise-model-based misfit
	Signal decorrelation coefficient as a misfit

	Empirical likelihood function for the signal decorrelation
	Empirical likelihood function obtained from high-quality, deterministic source estimates
	Approximate log-normal distribution of decorrelation D
	Distribution coefficients determined by signal-to-noise-ratio
	Estimating inter-station covariances
	Misfit distribution of waveform amplitude measurements
	Application in Bayesian source inversion

	Discussion
	Conclusions
	Data availability
	Author contributions
	Acknowledgements
	References

