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Key Points 10 

 Subduction of Australian oceanic lithosphere drove northward motion of coupled India-11 

Australia plate since onset of collision at 45-40 Ma 12 

 Buoyant Indian continent stalled subduction of Indian slab whilst Australian slab 13 

subduction drove motion of coupled India-Australia plate 14 

 ~1000 km north lateral migration of Indian slab occurred to maintain compatibility with 15 

plate kinematics of coupled India-Australia plate 16 

 17 

 18 

Plain Language Summary 19 

To understand the links between plate tectonics and mantle processes, researchers must determine 20 

how tectonic plates have moved with respect the evolving mantle through geological time. To 21 

overcome this problem, recent studies use the locations of subducted slabs in the deep mantle to 22 

reconstruct plate motions, based on the hypothesis that slabs sink vertically through the mantle, and 23 

therefore mark the surface locations of past subduction zones. Here, we test slab sinking 24 

hypotheses, and their use in plate reconstruction modelling, by investigating the sinking kinematics 25 

of the subducting Indian and Australian slabs during the India-Asia collision. Our analysis indicates 26 

that since onset of collision at ~45-40 Ma, the Indian slab migrated laterally, ~1000 km northwards 27 

through the mantle, driven by subduction of the neighbouring Australian slab. We arrive at this new 28 

interpretation because we interpret Indian and Australian slab kinematics collectively, and with 29 

respect to India-Australia plate motions. Our study shows that the sinking behaviour of one slab can 30 

influence that of another slab in the same network. Slab-based plate reconstructions should 31 

therefore interpret slabs of the same network collectively, and with respect to plate motions, in 32 

order to constrain non-vertical slab motions and avoid potentially significant plate reconstruction 33 

errors.  34 

  35 



Abstract 36 

Distributions of slabs within Earth’s mantle are increasingly used to reconstruct past subduction 37 

zones, based on first-order assumptions that slabs sink vertically after slab break-off, and thus 38 

delineate paleo-trench locations. Non-vertical slab motions, which occur prior to break-off, 39 

represent a potentially significant source of error for slab-based plate reconstructions, but are 40 

poorly understood. We constrain lateral migration of the Indian slab and overlying India-Asia 41 

collision zone by comparing tomographically-imaged mantle structure with plate-kinematic 42 

constraints. Following coupling of the Indian and Australian plates at the onset of collision, ~1000 km 43 

lateral migration of the Indian slab was driven by vertical subduction of the Australian slab. The 44 

sinking behaviours of individual slabs do not evolve in isolation, but instead influence, or are 45 

influenced by, other slabs in the same plate network. Hence, lateral slab migrations may be 46 

determined by interpreting the sinking behaviour of slabs collectively, and with respect to plate 47 

kinematics. 48 

 49 

 50 

 51 

 52 

The ultimate goal of tectonic plate reconstruction modelling is to constrain absolute motions of 53 

Earth’s continents and oceans, with respect to the mantle, through geological time (Torsvik et al., 54 

2008, van der Meer et al., 2010, Doubrovine et al., 2012). This is crucial to our understanding of how 55 

surface processes, plate tectonics, and mantle dynamics link at a planetary scale (Steinberger et al., 56 

2012, Domeier et al., 2016), and essential for the ability to test working hypotheses against bedrock 57 

and mantle records (Wu et al., 2016, Sigloch and Mihalynuk, 2017, van de Lagemaat et al., 2018, 58 

Clennett et al., 2020, Fuston and Wu, 2020, Parsons et al., 2020). Absolute plate motions are 59 

constrained using a mantle reference frame, based primarily on the tracking of oceanic plates across 60 

mantle hot-spots (Torsvik et al., 2008, Doubrovine et al., 2012). However, hot-spot tracks do not 61 

extend beyond ~130 Ma, which increases the uncertainty of absolute reconstructions of earlier 62 

times (Doubrovine et al., 2012, Domeier et al., 2016). Development of a mantle reference frame that 63 

uses subducted slabs as fixed reference points is a highly desirable solution to this problem, because 64 

the widespread distribution and longer-term residency of slabs in the lower mantle should allow us 65 

to reconstruct absolute plate motions with greater accuracy, back to at least 200-300 Ma (van der 66 

Meer et al., 2010, Steinberger et al., 2012, Domeier et al., 2016, van der Meer et al., 2018). 67 

Tomographically constrained, slab-based plate reconstructions are typically founded on an 68 

assumption that after slab break-off, detached slabs sink vertically, such that the top of a detached 69 

slab constrains the surface location of its subduction zone trench, at point of break-off 70 

(Hafkenscheid et al., 2006, van der Meer et al., 2010, Steinberger et al., 2012, Replumaz et al., 2014, 71 

Domeier et al., 2016, Wu et al., 2016, Parsons et al., 2020). Prior to slab break-off, the potential for 72 

horizontal slab motions during subduction is poorly constrained, but has been shown to produce 73 

significant errors in slab-based reconstructions if overlooked (Schellart, 2005, van de Lagemaat et al., 74 

2018). 75 



Lateral slab migration (LSM) refers to a horizontal component of motion of part of, or all of, a slab, 76 

which occurs during subduction, prior to slab break-off, and with respect to the surrounding mantle. 77 

Numerical and analogue modelling suggest that LSM can occur in the upper mantle, where the 78 

viscosity of a slab may force it to migrate perpendicular to the trench, towards or away from the 79 

direction of subduction, as the slab bends and steepens (Schellart, 2005, Schellart et al., 2008, 80 

Capitanio and Morra, 2012, Čížková and Bina, 2013, Holt et al., 2018). Such migrations are predicted 81 

on the order of a few hundreds of kilometres and are typically accompanied by trench migration 82 

(Schellart, 2005, Schellart et al., 2008, Holt et al., 2018). Within the lower mantle, modelling suggests 83 

that slabs sink vertically (Steinberger et al., 2012, Čížková and Bina, 2013) with minor LSM on the 84 

order of ~100-200 km per 100 Myrs (Steinberger et al., 2012).  85 

LSMs inferred from observations of subducted slabs are uncommon (Le Dain et al., 1984, Giardini 86 

and Woodhouse, 1986, Liu et al., 2008, Spakman et al., 2018, van de Lagemaat et al., 2018), and in 87 

some cases disputed (Liu et al., 2008, Sigloch and Mihalynuk, 2017).  Most notably, van de Lagemaat 88 

et al. (2018) demonstrate ~1200 km of trench-parallel LSM of the Pacific slab beneath the Kermadec 89 

arc since ~30 Ma, which was previously unaccounted for by plate reconstructions. Importantly, 90 

magnitudes and directions of LSM inferred from natural examples have been shown to correspond 91 

to absolute plate motion of the subducting plate (Spakman et al., 2018, van de Lagemaat et al., 92 

2018). This implies that within a single plate network, slab sinking (prior to break-off) and absolute 93 

plate motions are related to each other. If this is correct, it should be possible to constrain 94 

components of LSM from multiple slabs of the same network, by interpreting their sinking 95 

kinematics collectively, and as connected parts that maintain compatibility with plate kinematics 96 

during subduction. To test this hypothesis, we investigate the subduction kinematics of the India-97 

Asia collision (Fig. 1), where LSM has been proposed previously, but not constrained (Le Dain et al., 98 

1984, Parsons et al., 2020). We integrate seismic tomography (Fig. 2) with bedrock and plate-99 

kinematic constraints to constrain the kinematics of the Australian and Indian slabs during the India-100 

Asia collision (Fig. 3). By interpreting the size, distribution and morphology of these slabs collectively, 101 

we propose that subduction of the Australian slab provided the driving force for ~1000 km 102 

northward LSM of the Indian slab (Fig. 4). 103 

 104 

Plate network configurations for the India-Asia collision 105 

Several hypotheses have been proposed for the India-Asia collision, which vary in terms of timing 106 

and number of collisions. Single-collision hypotheses propose a single, continuous collision between 107 

India and Asia, which initiated at 59 ± 1 Ma (Hu et al., 2016, Ingalls et al., 2016). Double-collision 108 

hypotheses argue for distinct collisional events at 59 ± 1 Ma (“First Collision”) and ~45-40 Ma 109 

(“Second Collision”) (Patriat and Achache, 1984, Bouilhol et al., 2013, Jagoutz et al., 2015, van 110 

Hinsbergen et al., 2019). Double-collision Hypothesis I proposes “First Collision” between India and 111 

an equatorial intra-oceanic arc, followed by “Second Collision” between India-plus-arc and Eurasia 112 

(Patriat and Achache, 1984, Bouilhol et al., 2013, Jagoutz et al., 2015). Double-collision Hypothesis II 113 

proposes “First Collision” between an India-derived microcontinent and Eurasia, followed by  114 

“Second Collision” between India and the modified Eurasian margin (van Hinsbergen et al., 2019). 115 

Based on the review of Parsons et al. (2020), our study analyses slab kinematics during the India-Asia 116 

collision in the context of double-collision hypotheses I and II (Fig. 3) (Patriat and Achache, 1984, 117 



Bouilhol et al., 2013, Jagoutz et al., 2015, van Hinsbergen et al., 2019). Single-collision hypotheses 118 

require extreme magnitudes of continental subduction, do not fit restorations of Gondwana, offer 119 

no explanation for the plate network reorganization at 45-40 Ma (detailed below), and are not 120 

considered further (Parsons et al., 2020). 121 

Between ~120-40 Ma, the Indian plate was bounded by north-south striking transform boundaries to 122 

its west and east (Fig. 3); its eastern boundary, defined by the Wharton ridge (Fig. 1), formed a 123 

transform-dominated spreading ridge (Jacob et al., 2014, Gibbons et al., 2015). During that period, 124 

the adjacent Australian plate remained at a relatively fixed position (Torsvik et al., 2008). Bedrock 125 

records along the southern Eurasian margin reflect the contrasting kinematics of the Indian and 126 

Australian plates (Fig. 1). West of the Wharton ridge, subduction-related magmatism between 127 

southwest Tibet and Thailand occurred throughout the Late Cretaceous to ~50-40 Ma (Morley, 2012, 128 

Zhu et al., 2018, Lin et al., 2019). East of the Wharton ridge, northward subduction beneath Java and 129 

Sulawesi ceased at ~90-80 Ma (Hall, 2012, Morley, 2012, Breitfeld et al., 2020), and re-initiated 130 

beneath Java at 47-44 Ma (Smyth et al., 2008), coincident with onset of northward migration of the 131 

Australian plate (Torsvik et al., 2008, Müller et al., 2019).  132 

During the mid-Eocene, a significant plate network reorganization was recorded across the Indian 133 

Ocean (Patriat and Achache, 1984, Gibbons et al., 2015) (Fig. 3c). This included: (1) 30-38% reduction 134 

in Indian plate velocity between 45-40 Ma (Molnar and Stock, 2009); (2) cessation of Wharton ridge 135 

spreading and subsequent coupling between Indian and Australian plates at ~43-36 Ma (Jacob et al., 136 

2014, Gibbons et al., 2015); (3) onset of Australian plate subduction beneath Java at 47-44 Ma 137 

(Smyth et al., 2008); (4) onset of northward migration of the Australian plate at ~45-43 Ma (Torsvik 138 

et al., 2008, Müller et al., 2019); (5) accelerated spreading between the Australian and Antarctic 139 

plates at ~47-45 Ma (Torsvik et al., 2008, Eagles, 2019, Seton et al., 2020); (6) change in rates and 140 

azimuths of spreading between India and Africa between 47-41 Ma (Patriat and Achache, 1984, 141 

Cande et al., 2010, Seton et al., 2020); (7) southwestward jump of the Central India spreading ridge 142 

at ~41 Ma (Torsvik et al., 2013). These well-constrained changes in plate kinematics and subduction 143 

make the Indian and Australian plates and associated slabs a good target for testing whether LSMs 144 

can be inferred by interpreting the kinematics of multiple slabs collectively, and with respect to plate 145 

motions.  146 

 147 

Slab kinematics during the India-Asia collision 148 

We focus on two slabs of subducted lithosphere beneath southeast Asia (Anomaly VII) and northern 149 

India (Anomaly II; anomaly numbers follow Parsons et al., 2020) (Fig. 2), based on combined 150 

observations from six tomography models (Supporting Information and Dataset) (Amaru, 2007, Li et 151 

al., 2008a, Simmons et al., 2012, Obayashi et al., 2013, Schaeffer and Lebedev, 2013, Hosseini et al., 152 

2020). Our interpretations of these slabs are supported by the most up-to-date, integrated 153 

assessment of bedrock, subsurface and kinematic constraints from Tibet-Himalaya and central 154 

Indian Ocean (Parsons et al., 2020). Further constraints are provided by our own integration of 155 

bedrock and mantel records between Myanmar and Indonesia, and Australian plate kinematics (see 156 

Supporting Information), which were not considered by previous tomographically-constrained 157 

interpretations of the study region (Hafkenscheid et al., 2006; Replumaz et al., 2014; Parsons et al., 158 

2020).  159 



Anomaly VII comprises Indian and Australian lithosphere presently subducting between Myanmar 160 

and Indonesia and includes the extinct Wharton ridge (Figs. 1-2). Between Sumatra and Indonesia, 161 

Anomaly VII forms a near-vertical slab from the trench down to ~800-1000 km depth, where it 162 

thickens as it piles up in the mantle transition zone (MTZ) and lower mantle (Figs. 2i, S2j-q). Beneath 163 

Myanmar and Thailand, Anomaly VII dips southwards (Fig. 2h). Parts of this western section of 164 

Anomaly VII are doubly thickened with respect to its eastern section (Fig. S2i).  165 

Anomaly II is a detached slab imaged in the MTZ and lower mantle beneath Tibet and northern India 166 

(Fig. 2). Between ~450–550 km and ~800-1000 km depth, Anomaly IIa forms a NW-SE striking, 167 

southwest dipping, linear anomaly (Fig. 2a). Between ~800-1000 km and ~1100-1300 km depth, 168 

Anomaly IIb forms a wider, subhorizontal anomaly (Figs. 2b-d, 2g-h, S2e-g).   169 

We integrate our analysis of Anomalies VII and II within a kinematic reconstruction of the Indian, 170 

Australian and Eurasian plates at 59 Ma and 43 Ma (Fig. 3), corresponding to “First” and “Second” 171 

collision, respectively (Patriat and Achache, 1984, Bouilhol et al., 2013). Our 59 Ma restoration (Fig. 172 

3b) includes alternative plate-boundary configurations for both double-collision hypotheses (Patriat 173 

and Achache, 1984, Bouilhol et al., 2013, Jagoutz et al., 2015, van Hinsbergen et al., 2019). Indian 174 

and Australian plate motions are constrained by seafloor isochrons in a moving-hotspot reference 175 

frame (Müller et al., 2019). The location and kinematics of the southern Eurasian subduction zone 176 

are constrained from our tomography analysis (Figs. 2, S2-4), integrated with bedrock and plate-177 

kinematic constraints (Supporting Information). 178 

First, we focus on the kinematics of the Anomaly VII slab (beneath Myanmar to Indonesia). The well-179 

defined morphology of Anomaly VII and its connectivity with the Indian and Australian plates (Figs 2i, 180 

S2h-q) make it suitable for restoration to its pre-subduction horizontal length following methods 181 

outlined by Hafkenscheid et al. (2006) and Wu et al. (2016) (methods detailed in supporting 182 

information).  183 

Figure 3a shows our maximum and minimum restored lengths of the Anomaly VII slab determined 184 

from cross sections H to Q. Between cross sections J to Q, the length of lithosphere restored from 185 

Anomaly VII (distance between yellow dots and grey-white dashed lines) is equivalent to the total 186 

plate motion of the Australian plate, since ~43 Ma (Torsvik et al., 2008, Müller et al., 2019) (distance 187 

between yellow and red dots). This equivalency between Anomaly VII slab volume and Australian 188 

plate motion since ~43 Ma implies that Anomaly VII is not voluminous enough to account for 189 

subduction beneath the southeast Eurasian margin prior to ~43 Ma. This geometry-based inference 190 

is independent of, but consistent with (1) Late Cretaceous-Middle Eocene hiatus of subduction 191 

beneath southeast Eurasia (Hall, 2012, Morley, 2012) during a period of relative immobility of the 192 

Australian plate (Torsvik et al., 2008, Müller et al., 2019); followed by (2) onset of subduction 193 

beneath Java (Smyth et al., 2008) and northward migration of the Australian plate (Torsvik et al., 194 

2008, Müller et al., 2019) at 47-43 Ma (Fig. 3c). Integrating these events with our restoration of 195 

Anomaly VII suggests that the Eurasian margin between sections J to Q has been stationary since 196 

~90-80 Ma (Fig. 3a). This is consistent with the vertical morphology of Anomaly VII between sections 197 

J to Q (Fig. 2i), which is most simply explained by subduction beneath a stationary trench with 198 

negligible LSM. We therefore carry over our 43 Ma restoration of the Eurasian margin between 199 

sections J to Q into our 59 Ma restoration (Fig. 3b). 200 



On cross sections H and I, we interpret the southwards dip (Fig. 2h) and thickened geometry (Fig. 201 

S2i) of Anomaly VII as a record of slab overturning (e.g. Schellart, 2005, Capitanio et al., 2015), 202 

caused by northwards trench migration, during subduction. Assuming that the slab sank vertically as 203 

it overturned, the southern basal edge of the slab marks the approximate location of the overlying 204 

trench at the onset of subduction. From this, we estimate that since ~43 Ma, the Sunda-Andaman 205 

trench has migrated ~800 km and ~300 km northeast along sections H (Fig. 2h) and I (Fig. S2i), 206 

respectively. Incorporating our estimates of trench migration into our restoration demonstrates an 207 

equivalency between Indian plate motion since ~43 Ma (distance between yellow and red dots) and 208 

the combined length of [restored Anomaly VII slab] + [trench migration] from sections H and I 209 

(distance between yellow dots and light blue-white dashed lines). Thus, at 43 Ma, we restore the 210 

Sunda-Andaman trench overlying sections H and I, 800 km and 300 km southeast of its present day 211 

location (orange dots, Fig 3a), along strike from the restored Eurasian margin between sections J to 212 

Q. 213 

Crucially, the restored 43 Ma Eurasian margin between sections H and I (orange dots, Fig. 3a) 214 

coincides spatially with the reconstructed northern edge of Greater India (Fig. 3a) (constrained by 215 

Parsons et al., 2020), and temporally with the 30-38% reduction in Indian plate velocity between 216 

~45-40 Ma (Molnar and Stock, 2009) (Fig. 3c). Hence, our restoration supports previous arguments 217 

(Patriat and Achache, 1984, Bouilhol et al., 2013, Gibbons et al., 2015, Jagoutz et al., 2015) that 218 

collision between India and Eurasia occurred at ~45-40 Ma (Fig. 3c). We therefore propose that at 43 219 

Ma, the northern edge of Greater India was in contact with the Eurasian margin, and so we extend 220 

our Eurasian margin restoration (red barbed line, Fig. 3a) westward from section H, coincident with 221 

the edge of Greater India. Our restoration implies that since collision at ~43 Ma, the India-Eurasia 222 

plate boundary west of section H has migrated ~1000-2000 km northeast to its present-day location, 223 

defined by the Indus suture zone (ISZ, Fig. 3a). This is consistent with paleomagnetic constraints 224 

which place southern Tibet at 20°N ± 4° at ~52 Ma (Huang et al., 2015). A shapefile of our Eurasian 225 

margin restoration is included in supplementary files. 226 

We attribute differences in trench kinematics and slab morphology between sections H to I, and J to 227 

Q, to the Wharton ridge, which we restore coincident with section J at 43 Ma and 59 Ma (Fig. 3a-b). 228 

The Eurasian margin at sections H and I formed part of the longer lived subduction zone between 229 

Myanmar-Thailand and southern Tibet that was responsible for subduction of the Indian ± 230 

Neotethys plate(s) from ~110 Ma to ~40 Ma (Zhu et al., 2018, Lin et al., 2019) (Fig. 3b). The 231 

corresponding slab(s) associated with that subduction began subducting ~70 Myr earlier than the 232 

Anomaly VII slab (Fig 3b), and hence should now be located deeper than Anomaly VII. We therefore 233 

assign the Indian plate slab to Anomaly II (Fig. 3b), imaged beneath north India from ~450-550 km to 234 

~1000-1300 km depth (Fig. 2a-c,g-h). We are confident in this interpretation because it is the 235 

simplest explanation for the whereabouts of the Indian plate slab, and because there are no other 236 

oceanic basins that Anomaly II can be related to (Parsons et al., 2020).  237 

Importantly, Anomaly II is presently located ~1000 km north of our 43 Ma restoration of the 238 

Eurasian margin (Figs. 2g, 3a). Applying an assumption of vertical sinking with no LSM to Anomaly II 239 

would contradict our restorations of the Eurasian and Indian margins, and from a kinematic 240 

perspective, would delay contact between India and Eurasia by ~10-20 Myrs. We therefore propose 241 

that since “Second Collision” at ~45-40 Ma, the Anomaly II slab has laterally migrated ~1000 km 242 



northwards through the surrounding mantle (Figs 2g, 4). The south dipping morphology of Anomaly 243 

II is consistent with slab-overturning during LSM (Figs. 2g, S2e-g).  244 

Previous studies that did not consider the sinking kinematics of Anomaly VII in their investigations of 245 

Anomaly II, did not detect LSM (Hafkenscheid et al., 2006, Replumaz et al., 2014). Instead, those 246 

studies either located the ~60-45 Ma collision zone above present-day Anomaly II (Hafkenscheid et 247 

al., 2006), which is inconsistent with the location of the northern Indian margin at that time (Fig. 3a-248 

b), or interpreted Anomaly II as subducted Indian and Asian continental lithosphere (Replumaz et al., 249 

2014), which is not robustly demonstrated by bedrock and geophysical observations (Parsons et al. 250 

2020). Interpreting the Indian slab (Anomaly II) with respect to the Australian slab (Anomaly VII) and 251 

the surrounding plate network, as we do, leads us to our new interpretation, which is supported by a 252 

greater set of constraints. 253 

Lastly, we note that our Eurasian margin restoration (red barbed line, Fig. 3a-b) is coincident with 254 

Anomaly III (grey-dashed line, Fig. 3a), which forms a vertical slab-wall from ~800-950 km to ~1700-255 

1800 km depth (Fig. 2). We therefore propose that the southern Eurasian plate boundary formed a 256 

subduction zone above Anomaly III, tens of millions of years prior to 59 Ma (Fig. 3b). 257 

Plate tectonic explanation for LSMs 258 

Our analysis suggests that east of the Wharton ridge, the Eurasian margin and Anomaly VII slab 259 

remained at a relatively fixed location since ~43 Ma. At the same time, west of the Wharton ridge, 260 

the Anomaly II slab laterally displaced by ~1000 km, and the Anomaly VII slab overturned as the 261 

overlying India-Asia collision zone migrated ~1000-2000 km northwards (Fig. 4).  262 

Our interpretation is consistent with numerical models, which propose northward migration of the 263 

India-Asia collision zone was driven by Australian plate subduction (e.g. Capitanio et al., 2015). 264 

Consistent with those models, we propose that following Second Collision at ~45-40 Ma (Fig. 4a), 265 

wholesale motion of the newly coupled India-Australia plate was driven by slab-pull of the 266 

subducting Australian oceanic lithosphere (Anomaly VII-Aus, Fig. 4) (e.g. Li et al., 2008b, Capitanio et 267 

al., 2015), whilst to the west, buoyancy of the Indian continent stalled Indian-plate subduction (Fig. 268 

4a-c). To maintain compatibility between slab kinematics and plate kinematics, the Indian continent 269 

was forced northwards, dragging the Indian oceanic slab with it (Anomaly II, Fig. 4b-c). Within the 270 

mantle, the laterally migrating Indian slab (Anomaly II) separated from the vertically sinking 271 

Australian oceanic slab (Anomaly VII-Aus, Fig.4b-c) along the subducted portion of the Wharton 272 

ridge (Fig. 4b-c).  273 

During northward migration of the Anomaly II slab and the India-Asia collision zone, Indian oceanic 274 

lithosphere between India and the Wharton ridge overturned during subduction (Anomaly VII-Ind, 275 

Figs. 2i, 4b-c), whilst the overlying subduction zone between Myanmar and Sumatra rotated 276 

clockwise (around a vertical axis) and lengthened via NW-SE transform faulting (Fig. 4a-c). We 277 

interpret the present-day location of Anomaly II as the location of complete Indian slab break-off 278 

from the Indian continent, corresponding to a restoration age of ~30-25 Ma (Fig. 4b-c).  279 

We build upon the observations of Replumaz et al. (2014), who recognised an overturned slab in the 280 

upper mantle beneath India, by kinematically demonstrating that (1) Anomaly II is an oceanic slab, 281 

which was dragged ~1000 km northwards during collision; and (2) timing and duration of Anomaly II 282 



LSM coincided with the timing and duration of Australian plate subduction. Our study also 283 

demonstrates that onset of subduction of the Australian plate coincided with plate network 284 

reorganization in the Indian Ocean (Fig. 3c), including: (1) reorientation of Indian plate-motion 285 

azimuth, from 000-020◦ to 020-040◦ (Torsvik et al., 2008, Gibbons et al., 2015, Müller et al., 2019); 286 

and (2) changes in rates and azimuths of spreading between the Indian and African plates (Patriat 287 

and Achache, 1984, Cande et al., 2010, Torsvik et al., 2013, Seton et al., 2020) and between the 288 

Australian and Antarctic plates (Torsvik et al., 2008, Eagles, 2019, Seton et al., 2020) (Fig. 3c). Based 289 

on an understanding that slab-pull is the dominant force behind plate motions (Forsyth and Uyeda, 290 

1975), we postulate that these kinematic changes occurred in response to the onset of Australian 291 

slab subduction.  292 

Conclusions 293 

We believe this is the first kinematically-constrained demonstration of significant LSM reported (1) 294 

from a now-detached slab; and (2) in a trench-forward direction. Our findings demonstrate that 295 

magnitudes of LSM prior to slab break-off can be large, and will produce errors in slab-based plate 296 

reconstructions if overlooked. An assumption of vertical sinking applied to the Indian slab (Anomaly 297 

II) would reconstruct the Eurasian margin directly above Anomaly II, which is incompatible with our 298 

interpretation of the Australian slab (Anomaly VII), our restoration of the Eurasian and Indian 299 

margins, and from a kinematic perspective, would delay collision by ~10-20 Myrs. Instead, we have 300 

demonstrated that the Indian slab migrated ~1000 km laterally through the mantle since collision 301 

between India and Eurasia at 45-40 Ma.  302 

Previous studies, did not detect LSM because they did not consider the kinematics of Anomaly VII 303 

(Australian slab) in their interpretations of Anomaly II (Indian slab). We arrive at our new 304 

interpretation because, (1) we interpreted the distribution and geometry of subducted slabs as 305 

integrated parts of a larger system (rather than in isolation); and (2) we expanded our region of 306 

interest to include the Myanmar-to-Indonesia margin and Australian plate kinematics, to ensure that 307 

our interpretations maintained compatibility between slab kinematics and plate kinematics.  308 

 309 
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Figure 1. Tectonic map of the Indian Ocean, showing outlines of Anomalies II, III and VII, and Late 632 

Cretaceous-Cenozoic subduction magmatism. Plate boundaries, slab-depth profile, and seafloor 633 

isochrons drawn from Bird (2003), Hayes et al. (2018) and Müller et al. (2019). 634 

Figure 2. Select seismic tomography depth slices (a-c) and cross sections (d-f) with outlines of 635 

seismic anomalies from P-wave tomography model UU-P07 (Amaru, 2007). (g-i) Outlines of 636 

anomalies used for slab restorations (Figs. 3-4), are based on interpretation of six tomography 637 

models and Slab2.0 model (see Supporting Information and Supporting Dataset). 638 

Figure 3. (a-b) Reconstruction of two-stage India-Asia collision modified from Müller et al. (2019), 639 

including Anomaly VII slab restoration. (c) Plate kinematics (Torsvik et al., 2008, Doubrovine et al., 640 

2012, Müller et al., 2019) highlighting plate network reorganisation events following Second 641 

Collision at 45-40 Ma. 642 

Figure 4. Cartoon representations of slab kinematics since Second Collision (45-40 Ma), looking 643 

southwest. Anomaly VII divides into Indian (green) and Australian (purple) slabs, either side of the 644 

extinct Wharton ridge. Coloured arrows show approximate slab motions. LSM of Anomaly II (blue) 645 

occurs between (a) Second Collision and (b) slab break-off. Indian plate Anomaly VII slab (green) is 646 

overturned and fragmented during northeast migration of India-Eurasia collision zone.  647 
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