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1.  Introduction
The mantle beneath South America features voluminous regions where seismic waves travel faster than 
average for a given depth. Below lithospheric depths, such fast anomalies are generally interpreted as sub-
ducted paleo-lithosphere (e.g., Grand et al., 1997; Li et al., 2008; Portner et al., 2020; Ren et al., 2007; Scire 
et al., 2016; Sigloch & Mihalynuk, 2013; van der Meer et al., 2018; van der Voo et al., 1999). Under South 
America, this interpretation matches geologic evidence embodied in conspicuous continental arc volcanoes 

Abstract  We analyze mantle structure under South America in the DETOX-P1 seismic tomography 
model, a global-scale, multifrequency inversion of teleseismic P waves. DETOX-P1 inverts the most 
extensive data set of broadband, waveform-based traveltime measurements to date, complemented by 
analyst-picked traveltimes from the ISC-EHB catalog. The mantle under South America is sampled by 
∼665,000 cross-correlation traveltimes measured on 529 South American broadband stations and on 5,389 
stations elsewhere. By their locations, depths, and geometries, we distinguish four high-velocity provinces 
under South America, interpreted as subducted lithosphere (“slabs”). The deepest (∼1,800–1,200 km 
depth) and shallowest (<600 km) slab provinces are observed beneath the Andean Cordillera near the 
continent’s northwest coast. At intermediate depths (1,200–900 km, 900–600 km), two slab provinces 
are observed farther east, under Brazil, Bolivia and Venezuela, with links to the Caribbean. We interpret 
the slabs relative to South America’s paleo-position over time, exploring the hypothesis that slabs sank 
essentially vertically after widening by viscous deformation in the mantle transition zone. The shallowest 
slab province carries the geometric imprint of the continental margin and represents ocean-beneath-
continent subduction during Cenozoic times. The deepest, farthest west slab complex formed under intra-
oceanic trenches during late Jurassic and Cretaceous times, far west of South America’s paleo-position 
adjoined to Africa. The two intermediate slab complexes record the Cretaceous transition from westward 
intra-oceanic subduction to eastward subduction beneath South America. This geophysical inference 
matches geologic records of the transition from Jura-Cretaceous, extensional “intra-arc” basins to basin 
inversion and onset of the modern Andean arc ∼85 Ma.

Plain Language Summary  Eastward subduction of the Pacific basin lithosphere beneath 
South America has generated arc magmatism and produced the modern Andes. However, extrapolation 
of the modern east-dipping subduction scenario to before the Late Cretaceous does not readily explain 
the contrasting history of the ancestral Andes. Subducted former seafloor continues to exist in the mantle 
and remains visible to seismic tomography because P waves travel faster in it than in ambient mantle. We 
analyze such seismically fast domains, that is, “slabs” of interpreted paleo-seafloor, at depths of ∼300–
1,800 km in our global tomography model DETOX-P1. Combining these observations with quantitative 
plate reconstructions and geological observations, we attempt to reconstruct the subduction history under 
South America. The slab that dips eastward down beneath the present-day Andes is relatively continuous 
to ∼900 km depth. Deeper down, slab geometries completely change. Voluminous slabs are unexpectedly 
imaged thousands of kilometers west of South America’s reconstructed paleo-margin. We argue that in 
the simplest explanation all slabs sank essentially in place, and a trans-American, tectonic reconfiguration 
occurred the time equivalent to 900 km slab depth (∼80–90 Ma). Prior to this time, the “Andean” trench 
sat offshore (and the margin extended) but the subduction direction must have been oceanward, rather 
than eastward.
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that cap the Andean mountain belt, and are a product of the subduc-
tion of oceanic plates. The modern Andes (Figure 1) span the west coast 
of South America, stretching from the Caribbean Plate to the northern 
Scotia Plate (Ramos & Folguera, 2009). Studies of the area have shaped 
geologic thinking so that the term “Andean-style subduction” often refers 
to ocean-beneath-continent subduction as a general process.

Seismic illumination of the mantle beneath South America is variable, a 
consequence of very uneven distribution of seismic sources and receivers 
across the region. The active western margin produces a coast-parallel 
belt of abundant, strong seismicity beneath the Andes. Instrumentation 
efforts have focused on this region, often motivated by its serious seismic 
hazards. The largely aseismic interior and the eastern coastal parts of the 
continent are much more sparsely instrumented, in particular the vast 
and remote Amazon and Orinoco basins (Figure 1).

Most tomography studies of South America have produced region-
al, upper-mantle models beneath various parts of the Andes (Bianchi 
et al., 2013; Heintz et al., 2005; Marot et al., 2014; Scire et al., 2016; Ward 
et al., 2013). Along strike they have resolved the actively subducting Naz-
ca slab in the upper mantle, which plunges eastward beneath the Andes 
at normal and flat dip angles (Marot et al., 2014; Porter et al., 2012; Scire 
et al., 2016; Wagner et al., 2005); and seismically slow anomalies above 
and below the Peruvian and Chilean flat slabs (Portner et al., 2017; Scire 
et al., 2016). Tomography has also illuminated the upper mantle around 
the South American-Caribbean plate boundary (Bezada et al., 2010; Mill-
er et al., 2009) and beneath the Atlantic/South America boundary region 
(Celli et al., 2020).

Only a few tomography studies in South America have been conducted 
at the continental scale, notably the surface-wave tomography of Heintz 
et  al.  (2005) and the body-wave tomographies of Grand  (1994), Ren 
et al. (2007), and Portner et al. (2020). Much of what is known about low-
er-mantle structure under South America has been learned from glob-
al-scale tomography models (e.g., Amaru, 2007; Bijwaard et al., 1998; Li 
et al., 2008; Lu et al., 2019; Montelli et al., 2006; Obayashi et al., 2013; 
Simmons et al., 2012). These studies have traced the eastward-dipping, 

margin-parallel slab curtain of the Nazca plate (and ancestral Farallon plate) down to ∼900 km depth, with 
significant fragmentation along strike.

Between ∼900 and ∼1,700  km depth, slabs form a geometrically complex cluster beneath north-west-
ern South America, with a near-absence of slab under Southern Chile and Argentina (e.g., Amaru, 2007; 
Grand, 1994; Li et al., 2008; Lu et al., 2019; Montelli et al., 2006; Obayashi et al., 2013; Ren at al., 2007; 
Simmons et al., 2012).

Portner et al.  (2020) resolved lower-mantle slabs down to 1,200 km depth and suggested that slab stag-
nation occurs between 800 and 1,200  km depth. van der Meer et  al.  (2018), interpreting the models of 
Amaru (2007) and Ritsema et al.  (2011), associated a super-group of eastward-deepening fast anomalies 
(“Brasilia” slab, 0–2,500 km depth) with long-lived, eastward Farallon subduction. However, not all lower 
mantle assemblages are readily explained by persistent subduction beneath the continental margin. This 
particularly concerns far western, >1,600 km deep slabs below and offshore the northern Andean margin, 
and offshore Argentina below 1,500 km depth. These were instead interpreted as intra-oceanic subduction 
by van der Meer et al. (2010, 2018; northern Andean “Malpelo” slab) and by Chen et al. (2019) offshore 
Argentina.

The Andean mountain belt represents the surface record of the collective subduction history. Its strong 
segmentation into Northern, Central, and Southern Andes echoes the latitudinal dissimilarities in slab 
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Figure 1.  Tectonic setting of South America and its western, “Andean” 
margin. The map area approximately represents the geographic extent of 
mantle structure imaged and interpreted by this study, down to ∼1,800 km 
depth. R: Ridge, JFR: Juan Fernandez Ridge. Countries are labeled as Ar: 
Argentina, Br: Brazil, Ch: Chile, Co: Colombia, Ec: Ecuador, Pr: Peru, Pa: 
Paraguay, Ur: Uruguay, Ve: Venezuela. Rivers are labeled as: A: Amazon, 
O: Orinoco and P: Paraná; they drain basins of the same names.
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geometries. The Northern Andes contain sequences of oceanic terranes that accreted from Upper Jurassic 
to Eocene times (e.g., Braz et al., 2018; Kennan & Pindell, 2009; Spikings et al., 2015). This contrasts with the 
Central Andes, which lack evidence for Jurassic and younger terrane accretions (e.g., Sempere et al., 2008), 
instead containing sedimentary and volcanic formations interpreted as reflecting deposition in a conver-
gent-margin setting since early Paleozoic times (Pepper et al., 2016).

The model DETOX-P1 (Hosseini et al., 2020) that is described, resolution-tested, and analyzed here is a 
global, teleseismic P wave tomography model, constructed with particular attention to South American 
regional data. We were motivated to better resolve and understand the discontinuous and scattered geome-
tries of lower-mantle slabs that had become apparent in global tomographies.

This study represents the first regional-scale and “tomotectonic” interrogation of this recent global inver-
sion, against a backdrop of only a few comparable, global P-velocity models published over the past decade 
(Lu et al., 2019; Obayashi et al., 2013; Tesoniero et al., 2015), during which the number of seismic broad-
band stations has grown enormously. Section 2 gives an overview of the DETOX-P1 model, its strengths, and 
limitations. Section 3 presents the P wave traveltime measurements made, with a focus on South America, 
and Section 4 summarizes the tomography method. Section 5 offers a descriptive survey of slab geometries 
under South America. In Section 6, we attempt to reconcile these observations with plate kinematic mod-
els and geological records from mid-Jurassic (∼180 Ma) to Oligocene times (∼30 Ma), exploring the null 
hypothesis that subducting lithosphere essentially sank in place, that is, displaced laterally by no more 
than a few hundred kilometers since entering its paleo-trench (Steinberger et al., 2012; Sigloch & Mihaly-
nuk, 2013, 2017; van der Meer et al., 2010), such that the locations and strikes of slabs faithfully record their 
paleo-trench geometry. This is the simplest, physically reasonable slab sinking hypothesis, but the implica-
tions of such uniform mantle behavior and the powerful predictive capabilities that arise from it motivate 
us to test whether it can be rejected.

2.  Teleseismic Global Tomography Model DETOX-P1
Seismic tomography, and more specifically the inversion of teleseismic body waves, has long been the pre-
ferred tool for inferring mantle structure below lithospheric depths in contexts where high spatial resolution 
is of the essence. For mantle regions well sampled by body waves, P wave inversions usually offer higher 
resolution thanks to their shorter wavelengths and much more abundant observations. Global tomography 
models are very large data gathering and processing efforts. Therefore new issues or fundamental revisions 
of models are relatively infrequent. Recent global P wave tomographies published before DETOX-P1 (Hos-
seini et al., 2020) were GAP-P4 by Obayashi et al. (2013), SPani-P (Tesoniero et al., 2015), TX2019slab-P by 
Lu et al. (2019) and LLNL-G3D-JPS (Simmons et al., 2019). Between updates or new issues, global models 
typically see extensive use for tectonic and geodynamic interpretation, either with or without re-inversion 
of the data in order to test for hypothesized mantle features (“resolution tests”).

DETOX-P1 was produced as the first and least comprehensive of three global P-velocity models (Hosseini 
et al., 2020). DETOX-P2 made a major methodological advance by adding core-diffracted P waves (“Pdiff”) 
to the “conventional” teleseismic P wave observations of DETOX-P1; on top of those, DETOX-P3 included 
PP observations at (two times) teleseismic distances. The purpose was to fundamentally improve the sam-
pling of the mantle’s lowermost third, where P waves and their interaction with the Earth’s core had been 
poorly modeled previously, casting doubts on any deep, structural P wave results. Hosseini et al.  (2020) 
accordingly focused on DETOX-P1 as a starting point against which the enhanced deep resolution of DE-
TOX-P2 and DETOX–P3 compared favorably.

Yet DETOX-P1 is usually the superior model in the upper half of the mantle, in that slabs of subducted 
lithosphere are more crisply resolved, less blobby, and less affected by smearing artifacts. The reason is 
that the teleseismic-only observations of DETOX-P1 are more straightforward to regularize, compared to 
the heterogeneous P/Pdiff/PP data combinations in DETOX-P2 and–P3, where all parts of the mantle are 
not easily brought into focus simultaneously. Roughly speaking, DETOX-P1 usually seems clearer above 
∼1,500–1,800 km depth, the most relevant depth range for this study. Below 2,000 km depth, DETOX-P2/3 
is clearly better because DETOX-P1, robustly damped by design, fades below these depths.
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Hence for the investigation of upper and mid-mantle structure, we recommend relying on DETOX-P1 first 
and foremost, with a supporting role for DETOX-P2/-P3 where slabs need to be followed into the deepest 
mantle. Here we demonstrate the first such application, supported by extensive resolution testing.

Below 1,500 km depth, the mantle under South America, the focus of our study, contains very little seis-
mically fast material (interpreted as subducted slabs), in marked contrast to the surrounding ocean basins 
and to Central/North America (Hosseini et al., 2020). Hence, we focus on DETOX-P1 for the technical part 
of this paper and for the bulk of its interpretations. In the Discussion, we draw on two slabs resolved by 
DETOX-P3 under the South/Equatorial Atlantic to extend our tomotectonic analysis based on DETOX-P1 
to deeper mantle depths.

3.  Traveltime Data for Tomography
Our teleseismic P wave tomography maximizes resolution under the sparsely instrumented South Ameri-
can continent by combining modern broadband data in a waveform-based, multifrequency inversion with 
the much longer instrumental record of high-frequency, picked traveltimes. Like regional studies, we put 
special emphasis on South American seismometer networks. Like global tomographies, we attempted to 
include all suitable broadband stations located within teleseismic distances of South America, usually when 
recording South American earthquakes. This permits imaging to greater depths than typical regional stud-
ies, to approximately 1,800 km.

Figure 2 shows the teleseismic sources and receivers included in the DETOX-P1 data set, together with the 
number of traveltime measurements obtained at each receiver. Figures 2a and 2b show the earthquake lo-
cations used for finite-frequency waveform measurements and for ISC-EHB picks (Weston et al., 2018), re-
spectively. Figures 2c and 2e show global stations and South American, respectively, that yielded finite-fre-
quency waveform measurements, as described in Section 2.2. Figures 2d and 2f represent analyst-picked 
P-arrival time data, a subset of the new ISC-EHB catalog (Weston et al., 2018) selected to be as complemen-
tary as possible to the waveform measurements (details in Hosseini et al., 2020).

3.1.  Traveltime Picks From the International Seismological Centre

In South America, both earthquakes and stations are clustered along the active, western margin, and are 
sparse across large swaths of the interior and eastern passive margin. Arrival time picks by human analysts 
for regional network data extend back three decades longer than broadband stations, and they include 
data from short-period seismometers and from broadband networks not set up to deliver waveforms to 
international data centers. Hence these picked traveltimes, curated and bundled by the ISC, can plug signif-
icant spatial data gaps in broadband coverage—compare Figures 2e and 2f. It is technically straightforward 
to invert traveltime picks, modeled by ray theory, jointly with finite-frequency measurements (Montelli 
et al., 2004; Sigloch et al., 2008).

From the new ISC-EHB catalog (Weston et al., 2018), we adopted ∼128,000 P-arrival picks measured by 
1,075 stations in South and Central America (Figure 2f), and another ∼812,000 P wave picks from 4,549 
stations at teleseismic distances outside the study area (Figure  2d). The events occurred between 1967 
and 2014, source magnitudes exceeded 5.6, and only arrival time readings of high precision (<0.1 s error) 
were accepted. The ISC stations partly coincide with stations used for broadband measurements (compare 
Figures 2c–2f).

3.2.  Finite-Frequency Traveltime Measurements

For DETOX-P1, we measured the largest data set of teleseismic, multifrequency P wave traveltime anoma-
lies to date (Hosseini et al., 2020). Measuring a multifrequency traveltime anomaly involves cross-correla-
tion of an observed waveform with its synthetic counterpart in multiple frequency passbands.

We summarize this method, especially the deconvolution of earthquake source time functions (STFs), 
through which our approach amounts to broadbanded, full-waveform fitting. Figure 2a shows the 3,472 
earthquakes of Mw ≥ 5.8 that generated broadband waveforms for this study. We attempted to process all 
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such earthquakes recorded by regional and global networks between 1990 and 2016. The usability of an 
earthquake for tomography depended on the deconvolution of a viable STF (see below). For all networks 
that were retrievable through the “web services” protocol of the International Federation of Digital Seismo-
graph Networks (FDSN), the broadband seismograms were downloaded from international data centers, 
bandpass-filtered between 0.01 and 3.5 Hz, and corrected for instrument responses using the open-source, 
Python-based tool suite obspyDMT (Hosseini & Sigloch, 2017).

Within South America, our broadband data set contains all permanent and temporary networks available 
through the IRIS DMC, through European data centers including GEOFON Data Centre (1993) and GEO-
SCOPE (1982), and through regional centers such as the Universidade de Sao Paulo Seismological Center. 
Table S1 summarizes the South American networks used, comprising 529 stations in South and Central 
America, between longitudes 111°W–35°W and latitudes 20°N–55°S.

Where studies with regional station coverage make traveltime measurements by cross-correlation, they 
usually correlate seismograms with spatially adjacent seismograms (Portner et al., 2020; Scire, 2015; Scire 
et  al.,  2016). This straightforward, computationally inexpensive approach is not possible for the global 
spread of our aggregated “network” because waveforms for a given earthquake vary strongly across the 
Earth’s surface as a function of the radiation pattern. Specifically, over 75% of events occurred at depths 
shallower than 50 km. For shallow earthquakes, the first-arriving P pulse is followed within seconds by 
its depth phases pP and sP, which have large amplitudes of their own, and different radiation patterns. 
Traveltime measurements from data-to-data correlations would be biased by these systematic, unmodelled 
shifts of the three radiation patterns, especially in areas of large interstation distances, which are common 
across South America. Hence, we explicitly model the depth phases and correlate each observed seismo-
gram with its predicted counterpart, consisting of a synthetic Green’s function convolved with an estimate 
of the broadband STF. This measurement method is adapted from Sigloch and Nolet (2006) and Hosseini 
and Sigloch (2015).

Broadband Green’s functions were obtained using the Instaseis software (van Driel et al., 2015), a look-up 
database of synthetic seismograms for regional and global distances, which were computed by the full-wave-
form, axisymmetric spectral element method AxiSEM (Nissen-Meyer et al., 2014), up to a dominant period 
of 2 s. Our velocity reference model is IASP91 (Kennett & Engdahl, 1991), complemented by the Q model of 
PREM (Dziewonski & Anderson, 1981).

For the moderate to large events we use (Mw between 5.8 and ∼7.8), earthquake ruptures and hence STFs 
are several seconds in duration. Such STFs blur together the tightly spaced P, pP, and sP pulses in the 
Green’s functions they convolve. Hence, a well-correlated synthetic seismogram needs to incorporate an 
accurate estimate of the event’s STF. Our iterative, linearized estimation (deconvolution) of the broadband 
STF also yields estimates for source depth and for the moment tensor (Sigloch & Nolet, 2006; Stähler & 
Sigloch, 2014).

Mohammadzaheri (2019) estimated broadband STFs, depths, and focal mechanisms for ∼2,000 earthquakes 
of magnitude Mw > 5.8, recorded between 2008 and 2016. They were deconvolved from seismograms of the 
Global Seismographic Network, which has a relatively even spatial spread. This data set was complemented 
by STFs estimated by Sigloch (2011) for earthquakes recorded between 1990–2008, processed by the same 
method. In total, 3,472 STFs were acceptable (epicenters shown in Figure 2a).

For each source-receiver pair, the broadband Green’s function was convolved with the event’s broadband 
STF to produce a synthetic seismogram. P wave traveltime anomalies were estimated by cross-correlat-
ing observed waveforms with synthetic waveforms in eight frequency passbands, using a Python-based 
tool suite by Hosseini and Sigloch (2015). The center periods of the Gabor (log-Gaussian) passband filters 
ranged between 30 and 2.7 s, spaced by factors of 2  (i.e., filter of constant fractional bandwidth).
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Figure 2.  Distributions of seismic sources and receivers used in this study. (a) Seismic sources that produced waveforms for cross-correlation measurements. 
(b) Seismic sources associated with our selected subset of traveltime picks from the ISC-EHB catalog. (c) Global distribution of broadband stations that 
yielded successful multifrequency cross-correlation measurements. (d) Global distribution of stations associated with the ISC-EHB picks. (e) South American 
broadband stations used for cross-correlation measurements. (f) South American ISC-EHB stations; note their complementarity to the spatial station 
distribution in (e).
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The finite-frequency traveltime anomaly is defined as the time shift between observed and modeled (band-
passed) seismograms for which the cross-correlation function attains its maximum value xcorr (Dahlen 
et al., 2000), a value that can in principle range between 1.0 and −1.0. We accept traveltime measurement 
for tomography if xcorr > 0.8. Figure 3a displays histograms of the cross-correlation coefficients obtained 
for each frequency band. The number of successful measurements decreases with the center period and 
drops precipitously for periods shorter than 2.7 s. This high-frequency limit seems to be mainly due to sys-
tematic noise (source-side and receiver-side reverberations) in the observed waveforms. Measurement er-
rors on the traveltime anomalies were assigned semi-empirically based on the value of xcorr (Sigloch, 2011).

The global, teleseismic, finite-frequency data set thus produced contains ∼5 million acceptable traveltime 
delays in the eight overlapping frequency passbands. Only ∼2.5 million traveltime measurements from four 
nonoverlapping frequency bands (center periods 30.0, 15.0, 7.5, and 3.8 s) were retained to manage com-
putational cost during inversion. These traveltime anomalies were corrected for station topography, crustal 
structure, and ellipticity before inversion. Their source and station locations are shown in Figures 2a and 2c, 
respectively. This teleseismic P wave data set was also used by Hosseini et al. (2020) for joint inversion with 
Pdiff and PP waves (producing models DETOX-P2 and DETOX-P3).

The set of successful measurements within South America (Figure 2e) consists of 61,605 traveltime delays 
from 529 broadband stations in the four frequency bands. 603,465 additional traveltime anomalies were 
obtained from receivers at teleseismic distances recording 684 earthquakes in and around South America 
(Figure 2c).

4.  Linear Inversion Under the Finite-Frequency Approximation
In finite-frequency tomography, we solve a system of linear equations

  


  3Κ P
i i

P

VdT x d x
V� (1)

with data index i running over the range of source-receiver-passband combinations. dTi is a traveltime 
anomaly and dVP/VP is the quantity to solve for—the deviation of P wave velocity VP from spherically sym-
metric reference earth model IASP91 (Kennett & Engdahl,  1991) as a function of 3-D location x in the 
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Figure 3.  Histograms of multifrequency cross-correlation measurements. (a) Cross-correlation coefficient xcorr. Color distinguishes frequency passbands, with 
center periods ranging from 30.0 to 2.7 s. Numbers of measurements of a quality suitable for tomography (xcorr > 0.8) are reduced in the high-frequency bands 
(blue color shades). (b) Accepted traveltime measurements, corrected for ellipticity, station elevation, and crustal model CRUST 2.0 by Laske et al. (2001). The 
temporal spread of these raw data is due not just to 3-D velocity anomalies in the mantle but also, and indeed mostly, to systematic mismatches between source 
depth and origin time at this processing stage. Compared to initial seismicity catalog values, source depth has already been re-estimated (as part of the STF 
deconvolution), whereas origin time gets re-adjusted only later during the tomography stage.
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mantle. The Fréchet, finite-frequency or “banana-donut” kernel  Κi x  quantifies the sensitivity of the ob-
servation dTi to mantle structures dVP/VP. We compute kernels using the method of Dahlen et al. (2000) and 
software by Tian et al. (2007).

Discretizing Equation 1 onto an irregular grid of tetrahedra with linear interpolation between vertices, we 
obtain the linear system


  ,j

i ij
j j

V
dT A

V� (2)

where index j runs over grid vertices, Vj is the P-velocity anomaly at vertex j and Aij results from the quad-
rature of Ki onto vertex j (Montelli et al., 2004). The tetrahedral mesh is adaptive (Persson & Strang, 2004), 
with vertices spaced more closely in densely sampled areas, as discussed in Hosseini (2016) and Hosseini 
et al. (2020). The facet length of the tetrahedra ranges between ∼80 km in the upper mantle under highly 
sampled regions and ∼400 km near the core in the lower mantle (see Figure 5 in Hosseini et al., 2020). 
Figure S3 shows map views of the volumes of Voronoi cells encasing the tetrahedra’ vertices j. The volume 
enclosing each vertex depends on the edge length of its closest tetrahedra. A Voronoi cell is closely similar 
to the volume that contributes to the sensitivity kernel values Aij. Figure S4 displays, for all vertices j located 
beneath South America, the kernel  sumi ijA , which is a rough proxy for the goodness of sampling and thus 
resolution of a location j by the seismic wave paths available to this study. Comparison of Figures S3 and S4 
shows how cell volumes are smaller where the seismic wave paths sample more densely (the proxy for 
sampling density is the column sums of the sensitivity kernel matrix). The purpose of this adaptive densifi-
cation of the inversion grid is to honor all spatial detail delivered by the data in well-sampled regions while 
stabilizing the ill-posed part of the problem arising from poorly sampled areas.

The tomography simultaneously inverts for the Vj and for four scalars “event corrections” per earthquake 
(dlat, dlon, ddepth, origin time), expressed as deviations from initial catalog values and subject to empirical 
prior uncertainties as follows:  lat    lon depth 10 km and  0 2T s. For multifrequency measurements, 
the effective prior uncertainty in source depth is smaller than 10 km (because much care was taken to esti-
mate depth during the STF inversion step) and ∼10 km for ISC measurements. We do not implement station 
corrections but rather correct for crustal structure a priori using model CRUST2.0 by Laske et al. (2001). On 
average, all earthquakes moved ∼3 km after inversion in the DETOX-P1 model.

The partly overdetermined and partly underdetermined linear system is solved in a least-squares sense 
by adding a weighted combination of norm damping and second-derivative smoothing (detailed in Hos-
seini et  al.,  2020). The full linear system becomes d Gm, where the unknown vector  m has length 

   606,087v cM M M , containing  396,501vM  velocities Vj  209,586cM  source corrections for the fi-
nite-frequency and ISC earthquakes. Data vector d contains  8.N 2 million traveltime measurements, ∼5.7 
million ISC and ∼2.5 million finite-frequency dTi + 2 million appended zeros corresponding to the damping 
and smoothing operators. Matrix G is size   2 ,N M M ; its upper left consists of kernel matrix A, sized 

 , vN M , expressing one sensitivity kernel per row; its upper right, sized  , cN M  is binary, and switching on 

the event corrections relevant to each kernel; and its lower part, sized  2 ,M M  contains the damping and 

smoothing operators.

Empirically we settled on three times stronger smoothing constraint than damping constraint. If the meas-
urement uncertainties were perfectly known and independently normally distributed, then the solution 
featuring a chi-square statistic of  2 1 would be optimal.
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Figure 4.  Checker-ball resolution tests consisting of regular grids of Gaussian balls of “radius” 200 km. (a) Input structure (Pattern 2) at 400 km depth. (b) 
Recovered structure at 400 km depth. (c) Input structure (Pattern 1) at 500 km depth. (d) Recovered structure at 500 km depth. (e) Input structure (Pattern 
1) at 660 km depth. (f) Recovered structure at 660 km depth. The use of two different patterns ensure that each test can cut near the center of a layer, where 
input anomalies are strong. This facilitates the visual assessment of the recovery results. The color bar is logarithmic, permitting to use the same color bar at all 
depths.
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Figure 5.  Checker-ball resolution tests at 900 km (Pattern 1), 1,200 km (Pattern 1), and 1,500 km depth (Pattern 2). 
Plotting styles as in Figure 4.
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Figure S5 displays the trade-off curve between data fit and regularization (“L-curve”) at 1,000 km depth, 
showing how solutions change with changing regularization parameters. The preferred solution presented 
in Sections 4 and 5 features  2 1.152. Figure S5 shows it to be in the regularization regime where the solu-
tion has robustly stabilized. This is the solution shown by Hosseini et al. (2020) as the “DETOX-P1” model 
and contrasted to models DETOX-P2 and–P3, which were regularized to almost identical chi-square misfit 
values and additionally inverted Pdiff and PP wave traveltimes.

4.1.  Resolution Tests

We performed synthetic resolution tests using regularly spaced Gaussian balls that fill the depth of the 
mantle column (Figures 4 and 5). The maximum velocity anomaly  3%jV , occurs at a ball’s center and 
decreases with distance according to a bell curve. The “radius,” chosen as 200 km throughout the mantle 

column, is the distance where the velocity anomaly has decreased to a value of  max
1

jV
e

, where e is the base 

of the natural logarithm. Before inverting the synthetic traveltime data, we added a realistic amount of 
white Gaussian noise, with a standard deviation of 0.35 s.

Two patterns have been used in the “checker-ball” resolution tests shown in Figures 4 and 5. The radius 
of the spherical input anomalies is 200 km in both patterns but the center depths of the ball layers are 
offset. In Pattern 1, the center depths are 0, 500, 1,000, 1,500, and 2,000 km; in Pattern 2 they are 0, 400, 
800, 1,200, 1,600, and 2,000 km. The resolution test results for 400 km (Figures 4a and 4b) and 1,200 km 
depth (Figures 5c and 5d) are presented for Pattern 2 because these depths cuts at or near the center of a 
layer, where the input anomalies are strongest. This facilitates the evaluation of the outputs. Test results 
for 500 and 660 km depth (Figures 4c–4f), 900 km (Figures 5a and 5b), and 1,500 km (Figures 5e and 5f) 
use Pattern 1 for the same reason. Figure  S6 extends these synthetic tests of DETOX-P1 under South 
America down to 1,900 km depth in 200-km increments. Figure S10 presents a global scale checker-ball 
test for this model.

From these resolution tests and the sampling densities of the seismic wavepaths (Figures 6 and 7 and Fig-
ure S4), we conclude that the DETOX-P1 model offers its best resolution down to ∼1,800 km. For structures 
below 1,500 km depth, we compare to DETOX-P3, which specializes on resolving the lower and lowermost 
mantle (Figures  S12–S27). Figure  S11 presents a checker-ball test for DETOX-P3 from 300 to 2,700  km 
depth.

Figure 4 shows that in the upper mantle, anomalies of 200 km are well resolved beneath the western half 
of the continent but gradually less so toward the east and south. Coverage and resolution improve from the 
transition zone downward, where the P waves travel increasingly horizontally with more abundant cross-
ings. In the lower mantle, resolution and coverage remain very good down to 1,500–1,700 km under the 
continent (Figures 5 and S4).

Elongated smearing artifacts are observed beneath the noninstrumented Atlantic, parallel to the dominant 
ray directions, which run toward the northeast and southeast, away from Andean seismicity. Similar smear-
ing effects are present beneath the Pacific basin between 1,400 and 1,500 km depth. We adjust for these 
oceanward artifacts in our interpretations.

5.  Tomography Results: Mantle Provinces Under South America
This section presents the results of our tomographic inversion, the DETOX-P1 model. Figure 6 shows map 
sections between 300 and 800 km depth, Figure 7 between 900 and 1,600 km. Figure 8 displays trench-per-
pendicular cross-sections through the slabs between latitudes 3°N and 33°S. Figures 9–12 compare DE-
TOX-P1 to five other tomography models at depths of 400, 800, 1,200, and 1,500 km. Figures S12–S27 extend 
this comparison to nine models, at depth increments of 100 km. The reader can visualize our model and 
create their own model comparisons using our “Submachine” web portal at http://submachine.earth.ox.ac.
uk/(Hosseini et al., 2018).
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Seismically fast anomalies in Figures 6–12 are rendered blue on the red-white-blue tomographic color scale. 
In the map sections of Figures 6 and 7, fast anomalies tend to be narrowly elongated, consistent with the 
geometries of (paleo-)trenches. Along strike, fast anomalies are often clearly segmented on lateral scales of 
1,000–3,000 km, consistent with the segmentation of present-day trench networks into arc segments. Indi-
vidual fast segments are still linearly elongate, or sometimes arcuate (beneath the Lesser Antilles subduc-
tion zone; Figures 6a–6c). Fast anomalies in the shallow upper mantle show a tight spatial correlation with 
active subduction zones (Lesser Antilles, Central America, Northern Andes, and Central Andes), consistent 
with their interpretation as subducted lithosphere (“slabs”). Integration of linear anomalies across depths 
shows slabs to have a tabular form in 3-D, consistent with subduction of lithosphere along a trench, over a 
period of geologic time. By extrapolation, we also interpret deeper fast anomalies as subducted lithosphere, 
including those now disconnected from the surface.

We consider a fast anomaly as a robustly interpretable slab of subducted lithosphere if and where its am-
plitude exceeds dVp/Vp > +0.25%, relative to reference model IASP91. This relatively weak threshold takes 
into account the observation that few fast anomalies exceed 1% amplitude while staying spatially connected, 
especially not below the transition zone. This is true for our own and most other global models, see model 
comparison Figures 9–12 and Figures S12–S27. For conceptual simplicity and clarity, we choose a single 
slab interpretation threshold of dVp/Vp > 0.25% for all depths, which is about the strongest dVp/Vp level at 
which fast anomalies generally tend to present as linearly elongated and interconnected belts at any mantle 
depth. Such geometric characteristics match those of present-day trench networks at the surface and of 
their associated, recently subducted slabs in the uppermost mantle. The conceptually simplest interpreta-
tive approach entails a baseline expectation that lower-mantle slabs are just older, sunken versions of such 
recent, shallow slabs. At larger velocity thresholds, fast anomalies appear spatially disconnected and blobby, 
no longer lending themselves to interpreting paleo-trenches. Figure S5, a visualization of candidate tomog-
raphy solutions along a regularization trade-off curve, further details this rationale and its robustness.

The slabs visible in Figures 6 and 7 fall into four main provinces according to their clustering in depth, 
latitude, and strike. Sections 5.1–5.4 are dedicated to these four slab provinces, progressing from shallow to 
deep, or from the more recently subducted lithosphere to the older plates. We introduce nomenclature for 
the arc-scale segments of the massive, eastward-dipping slab complex under South America, since not all 
of the segments have been described separately. Unlike most previous authors, we do not name slabs based 
on their presumed plate origins, such as Nazca, Farallon, Cocos, because future, more complete paleo plate 
models are likely to involve additional plates. Rather we name slab units after surface features that have the 
same locations, strikes and extents, presumably due to a shared origin. We newly name three slabs beneath 
the Atlantic, which have either not been described or not named previously. Table S2 maps our regional slab 
units to the global slab nomenclature of van der Meer et al. (2018), who in turn discuss the nomenclature 
of earlier workers.

5.1.  Slabs in the Upper Mantle (300–600 km Depth)

The mantle at 300 km depth (Figure 6a) shows fast (blue) and slow (red) anomalies concentrated below the 
Andean belt and the Caribbean. Large blank areas in most other regions signal a lack of illumination (Fig-
ures 4a and 4b and dotted areas in Figure 6), because tomographic regularization (norm damping) prevents 
the introduction of structure into the model, unless required by measurements. To greater depths in Fig-
ure 6, these blank areas shrink, consistent with the resolution test results in Figure 4. We do not describe or 
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Figure 6.  P-velocity model DETOX-P1 between 300 and 800 km depth. Seismically faster-than-average P wave anomalies are shown in blue shades, slower-
than-average anomalies in red. The color scale saturates at dVp/Vp = ±1%. The slab interpretation threshold of dVp/Vp = +0.25% is highlighted by a bold blue 
contour line. All velocity anomalies dV/V are plotted relative to the spherically symmetric reference model IASP91. A red-blue-red sequence of point-like 
anomalies in the top right corner of each map represents artificial downward smearing from isolated mid-Atlantic ridge earthquakes (see also Figure S5). Poorly 
sampled regions are highlighted by contours filled with gray dots and should not be interpreted (see Supporting Information and Figure S4 for details). The 
basemap shows coastlines, country boundaries (thin black lines) and the main branches of the Amazon, Orinoco and Paraná rivers (bold black lines). Labeling 
refers to seismic anomalies: CA: Central Andes slab, CoMa: Colombia-Maracaibo slab, CAM: Central American slab, ANT: Antilles slab, TA: Trans-Andean slab, 
P: Peruvian slab gap, Sc: Scotia slab. Gp: Galapagos hotspot.
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Figure 7.  Tomography model DETOX-P1 at six depths between 900 and 1,600 km. Plotting styles as in Figure 6. CAM: 
Central American slab, ANT: Antilles slab, TA: Trans-Andean slab, WC: Western Cordillera slab. The slab interpretation 
threshold of dVp/Vp = +0.25% is highlighted by a black contour line.
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Figure 8.  Cross-sections through the Andean subduction zone, from the surface to 1,800 km depth, and ordered from north to south. Black dots represent all 
earthquakes from the ISC-EHB catalog (Weston et al., 2018) parallel to cross-sections and within an out-of-plane distance of 200 km. Dashed lines mark 200, 
600, and 1,200 km depth. Labels in all sections refer to seismic anomalies: CA: Central Andean slab, ANT: Antilles slab, TA: Trans-Andean slab, WC: Western 
Cordillera slab. (a) Northern Andean section through the steeply dipping CoMa slab in the upper mantle (confirmed by seismicity down to ∼200 km depth) and 
through the TA, WC and ANT slabs in the lower mantle. (b and c) Cross-sections through the Peruvian gap where no slab is imaged and no seismicity is present 
between 200 and 600 km (see Section 5.1). Seismicity outlines a slab to 200 km depth, picked up by tomography as neutral P-velocities above a slow underlying 
asthenosphere. The earthquake cluster around 600 km depth coincides with the upward truncation of the deeper TA slab. (d and e) Sections featuring flat 
subduction near the trench under Peru and moderately dipping subduction further inboard. Where the seismicity dips more steeply, the slab is resolved. (f and 
g) Moderately dipping subduction under northern Chile. (h–j) Transition from the moderately dipping to flat subduction under Chile. Unlike beneath Peru, the 
Chilean flat slab segment is imaged by tomography, albeit with moderate smearing westward and downward. Note that each cross-section is visually subdivided 
by five evenly spaced green markers. Since the absolute lengths of the profiles vary, the absolute spacing between two green markers varies across sections.
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interpret slabs above 300 km because the densities of wave-path crossings are unsatisfactory in most areas, 
due to a lack of wave-path coverage.

The dominant fast structures in Figures 6a–6d are two margin-parallel, narrowly elongated slab segments: 
the Central Andes (CA) slab beneath that geographic region (∼10°S–40°S), striking north to northwest 
under Bolivia and Argentina; and the Colombia-Maracaibo slab (CoMa) beneath the northernmost Andes 
(0°N–10°N), striking northeast under Colombia and western Venezuela (this slab’s north-western half was 
named “Maracaibo slab” by van der Meer et al., 2018). Both slabs are located several hundred kilometers in-
board (toward the continental interior) of the present-day margin and trench. From 300 km down to 600 km 
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Figure 9.  Tomography model comparison at 400 km depth. Top row: DETOX-P1 (this study); regional P wave model SAMS_P_2019 by Portner et al. (2020); 
LLNL_G3Dv3, a global body wave model (Simmons et al., 2012). Bottom row shows three global P wave models: MITP08 (Li et al., 2008), PRI-P05 (Montelli 
et al., 2006), and UU-P07 (Amaru, 2007). The color scale for all global models saturates at dV/V = ±1% (threshold for darkest blue/red shades); SAMS_P_2019 
saturates at ±2%. Figures were created using the Submachine web portal by Hosseini et al. (2018) (http://submachine.earth.ox.ac.uk/). See Figures S12–S27 for 
more model comparisons.
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, the CA slab shifts eastward and the CoMa slab shifts south-eastward, that is, both slabs dip beneath the 
curved continental margin.

At 300–400 km, a marked gap (“P”) is present between ∼9°S and 1°N, that is, between the Ca and CoMa 
slab segments (Figures 6b and 6c). The gap disappears between 500 and 600 km depth (Figures 6c and 6d). 
At the surface, this Peruvian slab gap coincides with a paucity of seismic stations, raising doubts whether 
the apparent lack of slab might be an imaging artifact caused by norm damping. However, both our reso-
lution (Figure 4) and kernel densities (Figure S4 and Figure 6) are good. Moreover, in this margin segment 
(between ∼6°S and ∼4°N), the ISC-EHB catalog (Weston et al., 2018) lists earthquakes from the surface to 
200–250 km depth and again below ∼600 km, but none between 300 and 600 km (Figures 8b and 8c).

To further increase confidence that the Peruvian slab gap is a real feature, we implemented hypothesis-driv-
en resolution tests (Figure S7). The input model features a slab paralleling the Andean margin that is ver-
tical and 100 km wide between 0 and 300 km depth, and eastward-dipping, 150 km wide between 300 and 
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Figure 10.  Tomography model comparison at 800 km depth. Models and plotting styles as in Figure 9.
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900 km depth. A hypothetical, underlying and oceanward blanket of slow anomalies (red), as imaged by 
DETOX-P1, renders the resolution of slab more challenging. The Peruvian slab gap could conceivably rep-
resent an imaging artifact, in which the slow and fast layers smear together and average out under poorly 
instrumented Peru (but not under adjacent, better instrumented regions). Cross-sections a and b (Figure S7) 
cut through the input model across the location of Peruvian gap. Sections a′ and b′ show that the continu-
ous input anomaly is faithfully recovered under Ecuador and northern Peru. Although stations are lacking 
in northern Peru, wave paths propagating from regional seismicity (above 250 km depth) still sample the 
slab gap region, as Figure S4 shows. Hence all indications are that the gap is real, that is, that no slab is 
present at 300–600 km under Ecuador and northern Peru.

Below 600  km depth, slab beneath the Andean margin is continuous and strikes NNW along its entire 
length (Figures 6e and 6f, labeled TA). Among the two shallower slab segments just discussed, only the 
central Andean (CA) segment has this strike, whereas the northern (CoMa) slab strikes NE-SW, almost at a 
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Figure 11.  Tomography model comparison at 1,200 km depth. Models and plotting styles as in Figure 9.
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right angle. Hence, the slab gap seems to have accommodated trench divergence over the subduction times 
corresponding to 600–300 km depth. This inference is spatiotemporally consistent with an Eocene change 
in Farallon plate motion, from north-eastward to eastward, as recorded by magnetic isochrons. Hence, the 
southern flank of the Farallon plate may have veered toward the more easterly motion of the future Nazca 
plate well before 23 Ma (Lonsdale, 2005; and references therein). In contrast, Taboada et al. (2000) inter-
preted the E-SE dipping CoMa slab as a subducted part of the paleo-Caribbean plateau under the northern 
Andes.

A separate slab (ANT) is imaged beneath the Lesser Antilles arc, dipping steeply westward. An east-
ward-dipping slab (CAM) is imaged beneath the Central American arc where the Cocos plate is subducting, 
a Farallon plate remnant.
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Figure 12.  Tomography model comparison at 1,500 km depth. Models and plotting styles as in Figure 9. Since the deepest published depth for SAMS_P_2019 is 
1,200 km, it is omitted from this comparison. AgB: Argentine Basin slab.
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Other tomography models at 400 km depth (Figure 9) essentially agree on the shallow slab arrangements 
described. Models PRI-P05 (Montelli et al., 2006) and LLNL-G3Dv3 (Simmons et al., 2012) show the Pe-
ruvian slab gap less clearly than other models, and they hint at southward slab continuation beneath the 
Atlantic, offshore Argentina. Similarly, the regional tomography by Portner et al.  (2020) shows less of a 
slab gap than a thinning of fast anomalies. Additional tomography models (nine in total) are compared in 
Figures S12–S14, at 400–600 km depth.

5.2.  Slabs From ∼600 to ∼900 km Depth

The dominant structure at 600–900 km is a continuous, NNW-striking slab inboard of the Andean margin 
(Figures 6 and 7), which we term Trans-Andean slab (TA). This slab is the downward continuation of the 
CoMa and CA slabs, and with the Peruvian slab gap filled in below ∼600 km depth—we rename this merged 
structure in order to emphasize its latitudinal continuity (Trans-Andean). The slab extends ∼3,800  km 
between latitudes 5°N and 28°S and it dips eastward between 600 and 900 km depth. The simple linear 
geometry of the TA slab bears little resemblance to the present-day curvature of the continental margin, 
again in contrast to the shallower slab segments of Section 5.1. Most evidently absent is the imprint of the 
oceanward-concave Bolivian orocline, which is clearly expressed in CA slab above 500 km depth (Figure 6, 
roughly between 10°S and 22°S).

Under Central America and the Caribbean, the CAM and ANT slabs are well expressed between 600 and 
900 km; the Antilles slab is displaced to the south compared to shallower depths. No slab is imaged south 
of 30°S beneath Patagonia and the South Atlantic, with the exception of the South Sandwich arc. Imaging 
resolution south of 30°S is significantly better and broader in this depth range than in the upper mantle 
(Figure  4 vs. Figure  5); the main weakness is SE-ward smearing. A targeted resolution test (Figures  S8 
and S9) shows that shape recovery for a slab below 600 km depth is achieved south of 30°S, although with 
diminished amplitude.

The model comparison at 800 km depth (Figure 10) shows somewhat larger variance than in the upper 
mantle. The single, long Andean slab is evident in all global models, consistently terminating close to 30°S, 
beneath Argentina. None of the models shows well-defined fast anomalies farther south, except near the 
Scotia Sea (Sc slab of van der Meer et al., 2018) and the South Sandwich arc. The strike of the Andean slab 
varies perceptibly between models, especially along its northern half, where some models show it diffuse or 
trending north, instead of NNW. Presumably this reflects resolution limitations, specifically the smearing 
together of the NNW-trending Andean slab and the N-trending Antilles slab. Both slabs are well resolved 
individually by our study. The Portner et al. (2020) model shows more scattered small-scale structure across 
the continent than the other models. Since a physical interpretation in terms of widely scattered subduc-
tion products seems unlikely, this model’s overall appearance may reflect less conservative regularization 
(smoothing and damping) of the inverse problem.

5.3.  Fast Anomalies From ∼ 900 to ∼1,200 km Depth

Below 900 km, imaging resolution is good under the continent (except easternmost Brazil) and also under 
most of the adjacent ocean areas (Figures 5 and S6). The slab assemblage becomes markedly more frag-
mented and complex (Figures 7 and 8a). A first-order observation in the depth range of 900–1,200 km is 
that all slab geometries change. The Antilles (ANT) slab shrinks with depth, and its southern part merges 
with TA slab into a longitudinally widened slab body around the equator, presumably smearing together 
contributions from spatially close subduction zones. With depth, the southern tip of the TA slab fades: at 
900 km depth, TA extends to ∼28°S, at 1,200 km it is limited to ∼18°S.

The deep part of the TA slab does not dip down to the east, unlike shallower TA; instead this main An-
dean slab is essentially vertical from 900 km to its lower end at ∼1,200 km. We return to this subtle but 
arguably important observation in Section 6.2. The farthest eastward extent of TA, which thus occurs at 
900–1,200 km and at the southernmost TA segment, is ∼57°W.

Below 1,000 km, a different, westerly slab appears beneath the coast of Colombia, here named the Western 
Cordillera slab (WC, Figures 7c–7f). WC slab strikes north or NNW, and links up with the deep CAM.
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In the model comparison at 1,200 km depth (Figure 11), all models pick up on these multi-slab complexi-
ties. The degree to which slabs are resolved separately and with elongated (trench-like) geometries is var-
iable. No model shows TA slab continuing to south of ∼30°S, and in most models, it terminates by ∼20°S 
at these depths. The models also agree that TA is localized under west-central Brazil and does not extend 
under eastern Brazil. The mantle under Argentina and the Argentine basin remains free of well-defined 
slabs in all models. Some models feature a blue haze in the Argentine Basin, which forms a well-defined 
high-velocity domain at greater depth.

In light of plate reconstructions and widely held interpretations of persistent Andean arc magmatism, the 
area east of ∼57°W might be expected to hold slab as well (as discussed in Section 6.2). Hence, we need to 
be confident that TA slab does not in reality extend farther east than imaged, at the 900–1,200 km or deeper 
levels. The resolution tests in Figures 4 and 5 indicate that, for the relevant region of (eastern) Brazil, recov-
ery amplitudes are somewhat weakened, but that shape recovery is excellent at 900–1,200 km, in fact better 
than at any other depth in DETOX-P1. A targeted slab resolution test bears this out (Figures S8 and S9). It is 
implemented as horizontal slabs based on the broad longitudinal spread of slab material at 1,000–1,200 km 
depth (interpreted as “stagnating” in the lower mantle by Portner et al. (2020); we will offer the alternative 
interpretation of three concurrent trenches (WC, TA, and ANT) during a fundamental plate reorganization 
that presaged the modern Andean arc). The test results (Figures S8 and S9) show that if TA slab extended 
farther east, this should be easily resolved. Resolving a dipping slab would be equally feasible since resolu-
tion remains strong to ∼1,800 km depth (Figures S12–S27).

5.4.  Fast Anomalies Below ∼1,200 km Depth

Below 1,200 km, the combined Andean-Antilles slab (TA-ANT) rapidly fades, while the westerly WC slab 
persists beneath the Colombian coast and offshore. In Figure 7, the easterly, NNW-striking TA slab still 
extends south to ∼18°S at 1,200 km, but by 1,600 km depth it has retreated to around the equator as a very 
weak anomaly. Figure 5 demonstrates excellent resolution, implying that ∼1,600 km is the true lower limit 
of the Trans-Andean-margin slab. This result is confirmed by model DETOX-P3 in Figure S24 (Hosseini 
et al., 2020), which images more deeply into the mantle by including core-diffracted P-diff waves.

CAM slab remains clearly expressed to 1,600 km depth in DETOX-P1; WC slab remains robust to ∼2,200 km. 
In DETOX-P3, slab in the CAM/WC region continues to the core-mantle boundary in DETOX-P2 (Hosseini 
et al., 2020).

The model comparison at 1,500 km (Figure 12) shows slabs to be confined to latitudes north of ∼20°S (WC/
CAM), except for an isolated, seismically fast blob under Central Brazil (centered on ∼25°S and ∼60°W) in 
PRI-P05 and UU-P07. The extended model comparison down to 2,200 km (Figures S24–S27) shows how 
DETOX-P3, with its deep Pdiff wave constraints, evolves very differently from all other (teleseismic-only)  
models. Toward 2,200  km, all but DETOX-P3 become fainter under the action of regularization/norm 
damping and show less mutual agreement (compare WC slab, among the most robust features). DETOX-P3 
features strong anomalies with elongated, slab-like strikes beneath WC, the southern Atlantic and eastern 
seaboard of Brazil. The direct comparison between DETOX-P1 and DETOX-P3 is particularly informative 
because they share everything, including the same robust regularization, except that DETOX-P3 adds con-
straints from the deepest-diving Pdiff (and PP) waves.

6.  Tectonic Interpretation
6.1.  Gap in the Upper-Mantle Andean Slab Under Peru

Gutscher et al.  (1999, 2000) related the seismicity gap under Peruvian flat slab to subducted topograph-
ic anomalies, i.e., Nazca ridge and Inca Plateau. In this scenario, the shape and the length of subducted 
topographic anomalies are similar to their conjugates on the preserved Pacific plate, having formed dur-
ing symmetric seafloor spreading at the East Pacific Rise. Slab flattening and extinction of the overlying 
Andean volcanic arc followed the subduction of the thick plateau crust, with a compositional buoyancy 
that delayed sinking into the mantle. Although geodynamic modeling has shown that the subduction of a 
buoyant anomaly (e.g., an oceanic plateau, aseismic ridge or seamount chain) can cause a narrow flat slab, 
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an additional mechanism was proposed to be required to explain flat slab segments under Peru and Central 
Chile (van Hunen et al., 2002). Geodynamic modeling by these authors shows that the thermal structure of 
the subducting plate also impacts its buoyancy, and critically, its strength and ability to bend.

The Inca Plateau had been proposed to have subducted ∼10–12 Ma (Gutscher et al., 1999). However, our 
depth-time conversion suggests that the slab gap appears under Ecuador and northern Peru in the Eocene, 
implying a different scenario. We propose that the slab gap reflects a tectonic reorganization, as follows. The 
Ecuadorian margin accreted an oceanic plateau (Piñon plateau) which plugged the subduction zone, forc-
ing it to jump outboard to the western edge of the plateau during Eocene times (Kerr et al., 2002), or during 
Late Paleocene (∼58 Ma) (Jaillard et el., 2009). Its buoyant lithosphere may have clogged the trench instead 
of sinking like the seafloor to its north and south, during the times that correspond to slab now located be-
tween 300 and 600 km depth. Newer slab above 200 km in Figure 8b, as outlined (only) by seismicity, would 
then represent lithosphere subducted since the times that a rejuvenated trench stepped outboard (west), 
leaving the Piñon plateau accreted to the Ecuadorian margin, and a hole in the Andean slab reflecting the 
extent and time span of its nonsinking.

6.2.  Tectonic Interpretation of Lower-Mantle Slabs

6.2.1.  Synopsis of Slab Configurations Over Time: Two Fundamentally Different Regimes?

Figures 13a and 13b show all seismically fast anomalies of dVp/Vp > 0.25% located below 400 km and below 
600 km, respectively. Tabular domains greater than ∼5° long are presumed slabs. The differences between 
panels (a) and (b) indicate where material subducted during the time period corresponding to 400–600 km 
slab depth; slab present in panel (b) but not in panel (c) subducted during the time period corresponding to 
600–800 km slab depth, and so on. If slab sank at a uniform rate of, say, 10 mm/a, then 600–800 km deep 
slab would have subducted between 60 and 80 Ma. We do not assert any such depth-to-time mapping (or 
sinking rate) a priori. Rather we will estimate it from the observations, independently in various locations 
across the slab assemblage.

Slabs in blue and green shades (i.e., down to ∼1,000 km, Figures 13a–13c) resemble present-day trench 
geometries and subduction polarities at the surface. The Andean CA/TA slabs are elongated parallel to the 
western coast and have a concave-to-the-west curvature, similar but more open than the Bolivian orocline. 
The slab curvature increases to shallower depths (aqua to dark blue levels), consistent with a ∼45° clock-
wise rotation of the orocline’s southern limb since Late Cretaceous (Maffione et al., 2009), and 29° since 
Eocene (Arriagada et al., 2008). The CA/TA slab dips eastward down (dark blue through green color levels). 
The Antilles slab (ANT) is arcuate like its overlying Lesser Antilles arc and dips westward. The shallow 
CAM matches the strike of the Cocos trench and dips eastward. Hence, the blue-green assemblage in Fig-
ure 13c shows the spatiotemporal continuation of present-day deposition styles of ocean lithosphere in the 
Andean, Cocos, and Antilles trenches, back to 1000-km depth-equivalent time.

At deeper, earth-toned levels in Figures 14a–14d, the slab assemblage is completely reconfigured. Below 
1,200 km (Figure 14a), the Andean CA-to-TA slab is essentially gone. Instead, the dominant feature is a 
massive vertical slab wall extending north-northwest from the deep CAM and WC slabs under western 
Colombia. It crosses the Caribbean and tracks up the eastern seaboard of the United States, to Nova Scotia. 
Along its strike, this slab wall terminates upward at the salmon-pink level (800–1,000 km depth, best appre-
ciated in Figures 13a–13c). Among the most voluminous and visible features in the entire mantle, this su-
per-slab under the Americas has been resolved to varying detail by probably every global tomography in the 
past 20+ years, in addition to pertinent regional studies (e.g., Grand, 1994; Ren et al., 2007; Sigloch, 2011). 
Almost all authors have interpreted this slab as eastward subduction of the Farallon/Kula plate under the 
North American continent and Central American blocks, until Sigloch and Mihalynuk (2013, 2017) reinter-
preted the lower, vertical parts as intra-oceanic, westward subduction of Mezcalera Ocean (part of the North 
American plate) under the Insular/Guerrero microcontinent. North America, pulled westward by those 
trenches, ultimately collided with their arc terranes, which forced a flip of subduction polarity to eastward 
beneath the reconfigured continental margin, i.e., the establishment of “Andean-style” Farallon subduction 
beneath North America. At South American latitudes, the super-slab’s southernmost segment, WC slab, has 
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also been interpreted as intra-oceanic subduction, either westward by Mezcalera lithosphere (van der Meer 
et al., 2010) or eastward under the Caribbean plate (van der Meer et al., 2018, their “Malpelo slab”).

6.2.2.  Problem Statement: Attributing Complexity to the Surface Versus the Mantle?

The challenge here is to reconcile the earth-toned slab assemblage (below 800–1,000 km) in Figures 13d 
and 14 with Andean subduction history (Figure 15). The widely held perception is that the Andean margin 
hosted a continental arc since the Jurassic (e.g., Ramos, 2018) or latest Triassic (209 Ma; Spikings et al., 2015), 
although widely acknowledged to be in extension until Late Cretaceous times (e.g., Ramos, 2018). Figure 15 
reconstructs the opening of the Atlantic in a lower-mantle (hotspot) reference frame (Matthews et al., 2016, 
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Figure 13.  Color-banded depth stacks of seismically fast anomalies (slabs) in DETOX-P1 from 400 to 1,000 km depth. Fast velocity anomalies are isocontoured 
at the threshold of dVP/VP > 0.25% and colored by depth, with color changing in 200 km increments. Each panel shows the slab contours at and below the 
stated depth. Locations of present-day coastlines and plate boundaries are drawn in gray. At a uniform slab sinking rate of 10 mm/year, each color band would 
correspond to 20 million years of subduction. Panel (a), which renders slab at and below 400 km, would represent all lithosphere subducted up until 40 million 
years ago (starting from ∼180 Ma, since ∼1,800 km is the deepest well-resolved depth in our model). CA: Central Andean slab, CoMa: Colombia-Maracaibo 
slab, CAM: Central American slab, ANT: Antilles slab, TA: Trans-Andean slab, WC: Western Cordillera slab.
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corrected as per Torsvik et al., 2019), locating South America 4,000 km to the east of the present coastline 
by 140 Ma. At the same time, slab that reaches deeper than the east-dipping TA slab is found only in the 
opposite direction, far to the west. Hence, the continent and the presumed areas of subduction seemingly 
diverge into the distant past. The longitudinal translation of the slab system, from farthest east to farthest 
west, occurs quite abruptly across the depth range of 1,000–1,200 km, suggesting a rapid and fundamental 
reorganization of the plate system in the depth-equivalent time period, from an earlier system that was 
closely tied to Central and North American events, to the modern, Andean-style trench system.

Resolution tests (Figure 5 and Figures S8–S9) show that the Andean-margin TA slab does not reach farther 
east than ∼57°W because a hypothetical eastward continuation would be readily resolved. Yet quantita-
tive plate reconstructions in absolute hotspot reference frames place the Andean continental paleo-margin 
significantly farther east than ∼57°W for absolute times exceeding ∼75 Ma (Seton et al., 2012) or ∼85 Ma 
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Figure 14.  Color-banded depth stacks of seismically fast anomalies (slabs) in DETOX-P1 from 1,200 to 1,800 km depth. CAM: Central American slab, TA: 
Trans-Andean slab, WC: Western Cordillera slab. Plotting styles and color scale as in Figure 13.
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(Matthews et al., 2016), as seen in Figure 15. When South America broke 
away from Africa ∼120–140 Ma, its western margin lay >1,500 km east 
of ∼57°W and the TA slab. The intervening area is slab-free at 1,000–
1,600 km in DETOX-P1. Which slab, therefore, corresponds to presumed 
marginal subduction at times before 75 or 85 Ma? This is especially puz-
zling given that the TA slab (east of 57°W, above 900 km) conforms close-
ly to the expected shape of slab deposited beneath the continental mar-
gin. If a trench existed along the Andean margin prior to the times during 
which the blue-aqua slab levels in Figures 13 and 15 were deposited, then 
mantle advection behavior must have changed massively, for unknown 
reasons. Yet slab geometries below 900  km (Figures  13d–16a) appear 
equally structured (elongate, narrow, vertical) as slabs above 900 km, and 
plausible, especially as they represent seamless extensions of the North/
Central American configuration.

Plate reconstructions (Matthews et al., 2016; Seton et al., 2012) first posi-
tion the Andean margin above the easternmost south TA slab between 75 
and 85 Ma. If lithosphere had been deposited beneath the Andean margin 
before 75–85 Ma, then that lithosphere could not have sunk nearly ver-
tically, unlike more recent Andean-margin slabs—unless the reconstruc-
tions had South America’s position wrong (too easterly) by >1,500 km. 
This would imply that the Indo-Atlantic hotspots were not nearly fixed 
before ∼80 Ma, for which there is little evidence (Butterworth et al., 2014; 
O’Neill et  al.,  2005). This postulation would discard the most reliable 
workhorse of paleo-reconstruction. In summary, neither highly variable 
slab sinking styles nor highly mobile hotspots (only) before ∼80 Ma are 
attractive hypotheses due to their complexity and the cascading issues 
they would cause for paleo-reconstruction globally.

6.2.3.  Vertical Sinking Hypothesis for Viscously Thickened Slabs

As always, one should attempt to reject the simplest hypothesis first. 
From a mantle physics perspective, the simplest hypothesis is that slabs 
below 900 km reflect trench geometries equally faithfully as slabs above 
900  km. The simplest hypothesis that can in turn be made about the 
deposition of the aqua to dark blue slab levels (above 800 km and below 

∼300 km) is that they sank vertically down and are still located directly beneath the absolute coordinates 
where they originally entered the mantle (within observational uncertainties of a few hundred kilometers 
laterally, as will become clear). Slabs that did not displace laterally relative to the lower mantle also did not 
displace laterally relative to the hotspots (to the extent that the hotspots were fixed). Under this hypothesis, 
a mantle column that is slab-free should not have experienced a trench passing above. A stationary trench 
would produce a dip-less, vertical slab beneath it. For a dipping slab, the vertical sinking hypothesis implies 
that its dip was produced by the absolute lateral motion of its paleo-trench—westward in the case of the 
Andean margin and Central America, eastward in the case of the Antilles arc (Matthews et al., 2016; Seton 
et al., 2012). Specifically, if i denotes the slab’s dip angle measured relative to the surface, then tan(i) = vsink/
vtrench, where vsink is the slab sinking velocity (vertically down) and vtrench the trench migration velocity rel-
ative to the lower mantle (oceanward rollback). Note that the trench convergence rate vconv, the velocity at 
which the incoming plate converges on the trench, does not feature. This is taking a viscous view of the sub-
duction process: if we applied this approximation starting from the surface, it would imply that the moment 
the subducting plate enters the mantle, it turns viscous and drips vertically down beneath the trench at the 
rate vsink, while the trench moves horizontally away from this drip at the rate vtrench. The trench convergence 
rate vconv of a plate is typically 3–10 times faster than vtrench, where typical values would be 50 mm/a versus 
10 mm/a (Goes et al., 2011; Sdrolias & Müller, 2006). In this example, a cross-sectional 500-km long swatch 
of lithosphere would enter the mantle every 10 m.y. and drip vertically down in the 100-km wide column 
of accommodation space created by the retreating trench during this period. In reality, the transition from 
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Figure 15.  Depth stack of all slabs imaged below 300 km (plotting styles 
as in Figure 13). The quantitative plate reconstruction of Matthews 
et al. (2016) is superimposed at 30 Ma (dark blue coastlines), 70 Ma 
(aqua green), and 120 Ma (dark red). The line color associated with a 
reconstruction time is chosen to match the color of slab that subducted at 
this time, assuming the slab sinking rate was 10 mm/year. Hence slab that 
subducted at 120 Ma would have sunk to 1,200 km depth (dark red). The 
Andean margin lines up well with slab at the blue and aqua green levels 
but not at the red level since all slabs are located much farther west than 
the Andean margin at 120 Ma. Figure S28 disaggregates this figure into 
four separate reconstructions at 30, 70, 90, and 120 Ma.
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Figure 16.  Tomotectonic reconstruction of the Cretaceous basin (“Peru basin”) inferred to have existed between the 
Andean margin and the intra-oceanic arcs that sat offshore. (a) Slabs in the DETOX-P3 models are rendered as slab 
stacks from 900 km down (same plotting styles as Figure 14). South America is reconstructed to 140 Ma (translucent 
green) in the Matthews et al. (2016) reconstruction. Slab names: TA: Trans-Andean; AgB: Argentine Basin; EBEA: 
East Brazil/Equatorial Atlantic Basin; PaGe: Patagonia-Georgia; WC: Western Cordillera; CAM: Central America slab. 
Present-day continents are shaded gray. White arrows denote two ray-shaped smearing artifacts that should be ignored 
but make no difference to the interpretation. The basin (shaded cyan) occupies the space between the 140-Ma margin 
and the closest slab(s) to the west, i.e., AgB and TA. (b) Cartoon showing the subduction sequence inferred along the 
red cross-sectional line in (a). From ∼140 to 0 Ma, SAM moves continually westward in a lower-mantle reference frame. 
From 140 to ∼85 Ma, TA trench sits stationary above deepest TA slab (salmon-colored arrow). SAM approaches from 
the east while TA trench consumes the basin lithosphere into the deepest TA slab. Following collision/accretion by 
SAM ∼85 Ma, subduction into TA trench flips to eastward beneath the SAM margin—the birth of the modern Andean 
arc. All slab geometries are explained by vertical sinking (after viscous thickening). Slab dip (or not) is the consequence 
of trench motion, not of lateral slab displacement within the mantle.
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rigid to viscous will be gradual, but it remains the case that each vertical column ultimately needs to accom-
modate N-times more lithosphere than was originally overlying it at the surface, where N = vconv/vsink. Ribe 
et al. (2007) and Gibert et al. (2012) modeled how softening and thickening can occur by slab folding in the 
transition zone, against the high-viscosity backstop of the lower mantle. The tightness and stacking of the 
folds adjust to accommodate the thickening ratio N. This process is cartooned in Figure 16b for the Andean 
margin slab, followed by vertical sinking once the folds have been laid down (Čížková et al., 2012).

Vertical sinking will not apply in the upper few hundred kilometers, where the slab is still rigid and where 
its seismicity shows no signs of slab thickening. However, an inspection of the combined seismicity and to-
mography of the Andean slab in Figure 8 shows the slab fundamentally changing between 300 and 600 km, 
consistent with the hypothesized behavior. In every panel (except for b and c, in the Peruvian slab gap), we 
observe a shallower slab dip in the uppermost mantle, clearly delineated by seismicity, and a much steeper 
dip deeper down, as indicated by the imaged slab and in most panels also by deep seismicity. In Figures 8d 
and 8e, abundant seismicity shows the transition from shallow to steep dip particularly clearly in a seismic-
ity kink occurring around 200 km depth. For the vertical viscous sinking hypothesis, this seismicity kink 
likely signals the point from which the slab starts to deform viscously.

In panel 8a, the slab is imaged through all depths and appears much fainter (light blue) and thinner above 
300 km depth than below. In the remaining panels, slab in the uppermost mantle is essentially not resolved, 
whereas from the transition zone down, it appears as a robust fast anomaly, hundreds of kilometers wide.

Clearly, the slab is widening several-fold as its passes through the transition zone. This cannot represent 
an imaging artifact where a non-thickened slab became laterally smeared at deeper depths. In principle, 
near-surface structure is easier to resolve than deeper anomalies. In the Andes, the near-trench regions 
also benefit from the region’s best source and receiver coverage (Figure 2). Despite these advantages, the 
shallow slab is not resolved whereas the deep slab is. In addition, the fast dVp/Vp anomaly in Figure 8a has 
a higher amplitude in the deep, thickened part than in the thinner near-surface part—this difference must 
be due to slab thickening, since it cannot be due to slab cooling with depth (rather the contrary). Under the 
densely instrumented United States, slab thickening is confirmed more directly because the dense USArray 
deployment resolves a shallow slab of the expected lithospheric thickness (<100 km), but shows it widening 
several-fold from ∼400 km down (Sigloch et al., 2008, their Figure 1).

The more voluminous such viscous slab pile-ups become, the more nearly vertically they would tend to 
descend, as massive Stokes sinkers under the pull of gravity (Morgan, 1965). The slabs under the Americas 
are among the most massive in the entire mantle. Hence, it seems reasonable to proceed with this vertical 
sinking hypothesis to explore what exactly it implies for the subduction history of South America, and 
whether observations exist that would permit to reject this simple hypothesis.

The east-dipping CA-TA slab above ∼900 km was almost certainly deposited beneath the Andean margin. 
We can estimate the vertical sinking rate from its dip. Figure 15 shows the dark-blue, 30-Ma margin contour 
aligning with the dark-blue slab contour at ∼300-km depth, and the aqua-colored, 70-Ma margin contour 
roughly aligning with the aqua-colored TA slab contour at ∼800-km depth. An optimized fit is achieved 
between the 75 Ma contour and the 800-km slab. This makes the eastward dip of the Andean slab consistent 
with vertical sinking at vsink=(800 − 300)km/(75−30)m.y. = 11.1 mm/a. Note that this estimate requires 
slab geometries and a plate reconstruction in a lower-mantle frame, but no geological constraints such as 
ages of arc volcanism. There is an obvious reading uncertainty; a plate reconstruction uncertainty; a spatial 
(imaging) uncertainty due to blurriness where the slab edge is located; and an uncertainty about the exact 
shape of the paleo-margin (due to subduction erosion, shortening, extension, and coastwise terrane trans-
lation). The latter uncertainty is often the largest; for the similar case of the North American Cordillera, an 
error propagation analysis by Sigloch and Mihalynuk (2013) yielded a timing uncertainty of ∼7 m.y., and 
a sinking rate uncertainty of 1–2 mm/a (relative error of ∼10%–20%) for times since 80 Ma. A slab sinking 
rate of 11 ± 2 mm/a for CA/TA slab would be the same (within error) as values across the lower-mantle 
slab assemblage under North America, which ranged from 9 ± 1 mm/a to 12 ± 2 mm/a (Sigloch & Mihal-
ynuk, 2013). Van der Meer et al. (2010) used the alternative method of associating slab tops and bottoms 
around the globe with arc volcanic dates, and obtained slab sinking rates of 12 ± 3 mm/a for the lower 
mantle (although subsequently van der Meer et al., 2018 proposed larger sinking variability or uncertainty).

MOHAMMADZAHERI ET AL.

10.1029/2020JB020704

27 of 35



Journal of Geophysical Research: Solid Earth

6.2.4.  Slab Constraints on a Jura-Cretaceous “Intra-Arc” Basin Offshore the Andean Margin

Under the vertical sinking hypothesis, eastward termination of TA slab at 57°W implies that the trench was 
never located farther east in absolute coordinates. Hence no trench should have lined the Andean margin 
for the times when hotspot frame reconstructions place the margin (shelf break) east of 57°W, which is 
before ∼80 Ma according to Seton et al. (2012) or before ∼75 Ma according to Matthews et al. (2016), cf. Fig-
ure 15 (±7 Ma, as discussed above). We denote this time of first longitudinal overlap between TA slab and 
the reconstructed SAM margin as T0. We note the good temporal correlation of T0 with the onset of vigorous 
arc magmatism in southern Peru (Toquepala arc in the region of Arequipa) ∼86–82 Ma constructed on older 
South American basement (Ramos, 2018; Spikings et al., 2015), marking the onset of the modern (Central) 
Andean arc. Before ∼85  Ma, Cretaceous magmatic arc rocks are only found in accreted terranes of the 
northern Andes, which are “suspect,” separated by major fault zones and ophiolitic slivers from older Trias-
sic-Jurassic arc rocks flanking cratonic South America. Thus, land geology is consistent with the separation 
of the Early to mid-Cretaceous arc from stable South America by an oceanic basin of uncertain width.

For times before T0 the reconstruction constrains the basin’s width as the space between 57°W and the 
South American margin. This space widens back in time as the South Atlantic is reconstructed to its ze-
ro-width state within Gondwana. By ∼120 Ma, in Figure 15, the space between the TA slab and the dark 
red coastline is 1,500 km wide at its narrowest, around the latitudes of northern Peru (∼1,800 km to central 
Peru; Figure 16b). This width rises well above the longitudinal reconstruction uncertainties for SAM, which 
increase as absolute positioning constraints from the Indo-Atlantic hotspots peter out between 100 and 
120 Ma (O’Neill et al., 2005; Seton et al., 2012).

The geometries of two additional slabs, located beneath today’s Atlantic, independently support the basin 
width implied by the hotspot frame reconstruction. These slabs are shown in Figure 16a, in a slab stack 
rendering of the DETOX-P3 model, since they are too deep to be confidently resolved by DETOX-P1. The 
Eastern Brazil/Equatorial Atlantic slab (EBEA) strikes northeast at ∼1,600 km to 2,200–2,400 km depth. 
The Argentine Basin slab (AgB) strikes southeast at ∼1,300 and ∼2,000 km depth. Both slabs are flat-topped 
and have no obvious dip. They can be further inspected and compared in Figures S21– and S27, and res-
olution tests of Figure S11. Figure 16a reconstructs South America and Gondwana to 140 Ma (Matthews 
et al., 2016), with continental positions almost unchanged to 120 Ma (Figure 15). The lithosphere of the 
inferred, >1,500-km wide offshore basin is shaded blue.

The EBEA slab strikes parallel and moderately inboard of the 140-Ma paleo-margin of northwestern 
SAM—a candidate slab for a continental arc. This is reassuring in light of a first-order geologic constraint: 
before the modern Andean arc, confidently interpreted arc magmas last intruded the continental margin 
strata of SAM in Late Jurassic times, in Colombia (e.g., Ibaqué batholith, 183–149 Ma according to Spik-
ings et al., 2015). Well-dated, calc-alkaline arc magmatism commenced in Colombia in Late Triassic (e.g., 
∼209 Ma; Spikings et al., 2015). Arc termination at ∼149 Ma and the upward termination of EBEA slab 
at ∼1,600 km implies a sinking rate of 10.7 mm/a for EBEA. A lower slab termination at 2,200–2,400 km 
(variable along the strike of EBEA) and arc onset ∼209 Ma imply sinking rates of 10.5–11.5 mm/a. Within 
the error limits of ∼2 mm/a, these rates are indistinguishable from those obtained for the TA slab, the latter 
without reference to arc volcanism, painting a self-consistent picture.

6.2.5.  Basin Closure by Intra-Oceanic Subduction and Establishing the Modern Andean Arc

No slab is observed beneath or aligned with more southerly segments of the SAM margin in Figure 16. 
The AgB slab strikes north-northwest, ∼60° to the paleo-Chilean margin, and terminates flush against it, 
implying intra-oceanic subduction. The relative depths of the slabs suggest that, at roughly uniform sink-
ing rates, EBEA slab (>1,600-km deep) would have gone extinct before AgB slab (>1,300 km), and that TA 
slab (extending to ∼1,200-km depth in the south, ∼1500 km in the north) started depositing around the 
time that AgB slab shut down. Honoring these geometric constraints, the blue-shaded lithosphere must 
have subducted westward into the AgB and TA slabs, accommodating South America’s westward motion 
as the South Atlantic opened. This basin lithosphere could not have subducted eastward beneath the An-
dean margin because no candidate slabs are imaged beneath the basin—the area across which a marginal 
Andean trench would have swept. Westward slab pull originating at the AgB and TA trenches would have 
favored an extensional regime on the continental margin. Indeed, the Peruvian margin was shaped by ex-
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tension and rifting during Jurassic and Early Cretaceous times, and it is difficult to observationall separate 
purely rift-related magmatism from arc-related. No arc was built between 145 and 110  Ma, and not all 
magmatic rocks of the Jurassic or Late Triassic age are clearly subduction-related (Spikings et al., 2015). A 
sinistral transpressional margin may have prevailed in the Jurassic, forming pull-apart basins; for example, 
the Ilo batholith in Peru (173–152 Ma) was emplaced into a slumping and extending margin (Boekhout 
et al., 2012). According to Ramos  (2018) “the magmatic arc products were juvenile poorly evolved in in-
tra-arc basins up to 9 km (6 miles) thick.” Extension-related batholiths in Equador are dated 185–145 Ma 
(Spikings et al., 2015. For the Central Andes, Ramos (2018) summarizes the literature as indicating that sub-
duction “developed under an extensional regime from Early Jurassic to Early Cretaceous times.” Absence in 
Figure 16 of margin-aligned slab under the 140-Ma margin of Peru, Ecuador, and Chile margin, as well as 
west of it beneath the blue-shaded basin, suggests that subduction contributions to the Jurassic magmatic 
margin were minimal or absent. In Chile, Cretaceous volcanic rocks are dominantly bimodal and primitive 
(Muñoz et al., 2018) with isotopic geochemistry very different from “Andean type” magmatism and fitting 
to a model mixing curve with Pacific MORB and Jurassic plutonic end-members (Morata & Aguirre, 2003).

Time T0∼75–85 Ma, when the reconstructed margin reaches southern TA slab, is the geophysically predict-
ed time of basin closure, trench override, subduction flip, and conversion from intra-oceanic to continental 
arc (Figure 16b). The first-order geologic observable of the Late Cretaceous is the Ayabacas giant submarine 
collapse ∼90 Ma (Ramos, 2018). This marks a change to collisional orogenesis in southern Peru, 5–10 m.y. 
later than in northern to central Peru (Ramos, 2018), and ∼185 km of shortening (Anderson et al., 2017). 
These observations fit the geophysically predicted scenario of the juvenile, westward-dipping AgB and TA 
arcs shedding their products into the blue-colored basin, while debris scraped off its subducting lithosphere 
piled up a subduction complex along the AgB and TA trenches, which was inverted as the basin approached 
closure. The AgB/TA arcs would have accreted or subcreted upon closure, and arc polarity was forced to flip 
eastward beneath the continental margin, to enable the continued westward drift of South America. This is 
marked by the onset of the modern Andean continental arc ∼85 Ma (85–45 Ma Toquepala arc in South Peru 
and North Chile; Ramos, 2018; Spikings et al., 2015).

Our interpretation of the TA slab topology, showing a transition at ∼900 km depth, from vertical to sloping 
slab deposition, is consistent with South America having collided with the intra-oceanic TA arc starting 
around 90 Ma. The timing of this collision is also consistent with both sedimentary and structural evidence 
in the Central Andes showing a transition from post-rift subsidence (during Late Jurassic-Early Cretaceous) 
to Late Cretaceous shortening. A north-to-south decrease in shortening (20°S–30°S, e.g., Horton, 2018) co-
incides spatially with the southern extent of the proposed collider, the TA intra-oceanic arc. Based on the 
slab extents, the collision of the TA arc would have been limited to north of ∼35°S, providing an answer to 
the long-standing question of why the Central Andes followed a distinctly different evolution path from that 
of the Southern Andes.

DeCelles et al. (2015) suggested that the majority of Triassic and Jurassic arc rocks in the Western Cordillera 
of Chile could have originated west of South America, and were subsequently accreted. In the case of the TA 
arc, this accretion began ∼90 Ma, and relicts of the TA arc have since been translated northward, laying bare 
the cratonic margin at the latitude of southern Peru. Classical Andean-type continental arc magmatism is a 
product of eastward subduction beneath the continental margin since TA collision.

In the mantle, the polarity switch of lithospheric deposition into the TA trench is recorded by the changing 
character of the TA slab: below 800–1,000 km depth, the TA slab is vertical (evident by comparing Fig-
ures 14 and 15: the ochre and red levels are represented in Figures 14a and 14b but remain hidden behind 
the salmon layer of the slab stack in Figure 15). A vertical slab is indicative of a stationary trench (neces-
sarily intra-oceanic, given that the SAM margin was moving). Above 900 km, the TA slab dips eastward, as 
expected from vertical sinking under a trench dragged westward by the continent (Figure 16). Hence the 
observation of a deep vertical part of TA slab suggests an intra-oceanic origin for this slab, and geometric 
constraints (slab free areas west of TA) require such an origin in the vertical sinking scenario. Associating 
TA slab inflection at 900 km with the Ayabacas collapse (∼90 Ma) or with modern arc onset (∼85 Ma) im-
plies an averaged sinking rate of 10.0 mm/a to 10.6 mm/a for the deep, vertical part of TA slab.
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6.2.6.  Summary: Complexity Resided at the Surface, Not in the Mantle

In summary, the hypothesis of vertical slab sinking and hotspot fixity infers a >1,500 km wide oceanic 
basin between the Andean margin and the volcanic arc in Jurassic and Early Cretaceous times. The basin's 
geophysically predicted evolution is in agreement with first-order geologic constraints, which represent 
completely independent observations. Hence, we perceive no need or motivation to invoke more complex 
hypotheses that involve non-vertical slab sinking (more than several hundred kilometers relative to the 
lower mantle) or reference frames that do not honor hotspot fixity (van der Meer et al., 2010). Across the 
lower-mantle slab assemblage, we consistently found sinking rates of 10–11 mm/a, with and without invok-
ing knowledge of the ages of associated arcs.

Geometric constraints require that the “intra-arc” basin closed by westward (oceanward) subduction. 
Hence, the closed “Peru Basin” was not a backarc basin (formed east of an eastward-dipping subduction 
zone), an inference that differs from earlier interpretations (e.g., Braz et al., 2018; Kennan & Pindell, 2009). 
Establishing the polarity of intra-oceanic arcs from land-geologic constraints is notoriously difficult, espe-
cially if a polarity flip occurred, with younger continental arc overprinting the older intra-oceanic arc and 
suture. We acknowledge the remaining ambiguities in the geologic record, which have led to diverging 
interpretations. Specifically, a confident demonstration of arc volcanism on the Andean margin in Early 
Cretaceous times (as opposed to remelting of arc crust during extension) could seriously challenge our 
hypothesis.

A closely analogous controversy exists in the North American Cordillera on whether a dozen Jura-Creta-
ceous “collapsed basins”, located inboard of accreted terranes, represent former backarc basins of eastward 
Farallon subduction (Monger, 2014; Pavlis et al., 2019), or a mature, westward subducted ocean basin, the 
Mezcalera Ocean (Sigloch & Mihalynuk, 2013, 2017, 2020). Labeled in Figure 16, this inferred Mezcalera 
Ocean represents the northward continuation of the Andean intra-arc basin constrained here. Hence fur-
ther investigation of geologic constraints in the Andes will have implications for the understanding of man-
tle and of tectonic processes across the American Cordilleras. The South American situation is more favora-
ble than for North America because the Peru basin sutured during the more recent times when hotspots still 
yield good paleo-positioning constraints.

Arc terranes that accreted to the northern Andean margin in Cretaceous times must be associated with the 
deep, intra-oceanic Western Cordillera slab (WC), and with the deepest parts of the (northern) TA slab. Fur-
ther work is needed and ongoing toward reconciling these shifting slab geometries below ∼1,000 km with 
the complex sequence of terrane accretions in the western Cordillera of Colombia and Ecuador (e.g., Braz 
et al., 2018; Kennan & Pindell, 2009; Kerr et al., 2002; Reynaud et el., 1999; Spikings et al., 2015).

The hypothesis that a hemisphere-spanning, intra-oceanic archipelago pulled in the Americas by westward 
subduction during Jura-Cretaceous times was put forward by Moores (1970) a half a century ago, motivated 
by the quest to explain ophiolite distributions in the southwest United States. Moores (1998) extended the 
evidence to Central and South America, an effort revived by Hildebrand and Whalen (2014). The root cause 
of such a vast and mantle-anchored arc complex has been attributed to a meridional girdle of degree-2 man-
tle downflow that persisted for the last 200 m.y. or more (Spencer et al., 2019).

7.  Conclusion
The DETOX-P1 teleseismic P wave tomography has brought the elongated geometries of subducted slabs 
under South America into sharper focus, especially in the lower mantle down to ∼1,800 km depth. Mantle 
structures above ∼900 km depth correlate well with the modern (Early Cenozoic to present) geology of the 
Andes. Confirming previous studies, we resolve an eastward-dipping slab that conforms to the curvature 
of the Andean margin, i.e., has carried a faithful record of its paleo-trench geometry to the depths of the 
mantle. By contrast, slab geometries below 1,000 km are decorrelated from the shape of the continent and 
from its reconstructed paleo-position.

We explored the hypothesis that these deeper slabs reflect paleo-trench configurations equally faithfully as 
shallower slabs. More specifically, we asked whether existing observational evidence that might permit to 
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reject the simple hypothesis that slabs sank vertically in the lower mantle, after deforming and widening 
viscously in the transition zone. This hypothesis predicts the geometry and temporal evolution of an “in-
tra-arc” basin (Peru Basin) offshore the Jura-Cretaceous Andean margin. The Peru Basin must have closed 
by westward, intra-oceanic subduction, followed by a forced polarity flip to eastward, modern-style Andean 
subduction ∼85 Ma. Much evidence for the inferred basin has been reported in the geologic literature but 
its interpretations have been overprinted by expectations of keeping a trench close to the Andean margin 
at all times. The vertical slab sinking hypothesis is not compatible with this interpretation, which should 
therefore be scrutinized. The vertical slab sinking hypothesis does appear to accommodate all first-order 
constraints from the geologic record. Hence, we currently perceive no reason for rejecting it in favor of 
hypotheses that postulate more complex slab sinking behaviors or non-stationary hotspots. Our reinterpre-
tation of subduction geometries bears close resemblance to those of the North American Cordillera.

Data Availability Statement
All the data used in this study are freely retrievable at all international data centers that implement the 
“web service” protocols of the International Federation of Digital Seismograph Networks. Specifically, we 
used the obspyDMT software of Hosseini and Sigloch  (2017) to retrieve from the data centers listed at 
this URL: https://docs.obspy.org/packages/obspy.clients.fdsn.html. See Supporting Information S2 for de-
tails of the networks located in South and Central America. Our tomography model DETOX-P1, and the 
models compared to in this paper, are freely available through the “SubMachine” tomography web portal 
at: https://www.earth.ox.ac.uk/∼smachine/cgi/index.php?page=tomo_depth (where the user can select 
models, depths, and other parameters). The DETOX models can also be downloaded from the open-access 
repository Zenodo (https://doi.org/10.5281/zenodo.3993276).

References
Amaru, M. (2007). Global travel time tomography with 3-D reference models (Doctoral dissertation). Utrecht University.
Anderson, R. B., Long, S. P., Horton, B. K., Calle, A. Z., & Ramirez, V. (2017). Shortening and structural architecture of the Andean fold-

thrust belt of southern Bolivia (21°S): Implications for kinematic development and crustal thickening of the central Andes. Geosphere, 
13(2), 538–558. https://doi.org/10.1130/GES01433.1

Arriagada, C., Roperch, P., Mpodozis, C., & Cobbold, P. R. (2008). Paleogene building of the Bolivian Orocline: Tectonic restoration of the 
central Andes in 2-D map view. Tectonics, 27, TC6014. https://doi.org/10.1029/2008TC002269

Bezada, M. J., Levander, A., & Schmandt, B. (2010). Subduction in the southern Caribbean: Images from finite-frequency P wave tomogra-
phy. Journal of Geophysical Research, 115. B12333. https://doi.org/10.1029/2010JB007682

Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, S. M., Sandvol, E., et al. (2013). Teleseismic tomography of the southern Puna plateau in 
Argentina and adjacent regions. Tectonophysics, 586, 65–83. https://doi.org/10.1016/j.tecto.2012.11.016

Bijwaard, H., Spakman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global travel time tomography. Journal of Geo-
physical Research, 103(B12), 30055–30078. https://doi.org/10.1029/98jb02467

Boekhout, F., Spikings, R., Sempere, T., Chiaradia, M., Ulianov, A., & Schaltegger, U. (2012). Mesozoic arc magmatism along the southern 
Peruvian margin during Gondwana breakup and dispersal. Lithos, 146–147, 48–64. https://doi.org/10.1016/j.lithos.2012.04.015

Braz, C., Seton, M., Flament, N., & Müller, R. D. (2018). Geodynamic reconstruction of an accreted Cretaceous back-arc basin in the North-
ern Andes. Journal of Geodynamics, 121, 115–132. https://doi.org/10.1016/j.jog.2018.09.008

Butterworth, N. P., Talsma, A. S., Müller, R. D., Seton, M., Bunge, H.-P., Schuberth, B. S. A., et al. (2014). Geological, tomographic, kine-
matic and geodynamic constraints on the dynamics of sinking slabs. Journal of Geodynamics, 73(2014), 1–13. https://doi.org/10.1016/j.
jog.2013.10.006

Celli, N. L., Lebedev, S., Schaeffer, A. J., Ravenna, M., & Gaina, C. (2020). The upper mantle beneath the South Atlantic Ocean, South 
America and Africa from waveform tomography with massive data sets. Geophysical Journal International, 221(1). 178–204. https://
doi.org/10.1093/gji/ggz574

Chen, Y.-W., Wu, J., & Suppe, J. (2019). Southward propagation of Nazca subduction along the Andes. Nature, 565, 441–447. https://doi.
org/10.1038/s41586-018-0860-1

Čížková, H., van den Berg, A. P., Spakman, W., & Matyska, C. (2012). The viscosity of Earth’s lower mantle inferred from sinking speed of 
subducted lithosphere. Physics of the Earth and Planetary Interiors, 200, 56–62.

Dahlen, F. A., Hung, S.-H., & Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophysical Journal Internation-
al, 141, 157–174. https://doi.org/10.1111/j.1365-246X.2004.02453.x

DeCelles, P. G., Zandt, G., Beck, S. L., & Currie, C. A. (2015). Cyclical orogenic processes in the Cenozoic central Andes. In P. G. DeCelles, 
M. N. Ducea, B. Carrapa, & P. A. Kapp (Eds.), Geodynamics of a Cordilleran orogenic system: The central Andes of Argentina and 
northern Chile (Vol. 212, pp. 459–490). Geological Society of America Memoir. https://doi.org/10.1130/2015.1212(22)

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356. 
https://doi.org/10.1016/0031-9201(81)90046-7

GEOFON Data Centre. (1993). GEOFON Seismic Network. Deutsches GeoForschungsZentrum (GFZ). https://doi.org/10.14470/TR560404
Gibert, G., Gerbault, M., Hassani, R., & Tric, E. (2012). Dependency of slab geometry on absolute velocities and conditions for cyclicity: In-

sights from numerical modelling. Geophysical Journal International, 189(2), 747–760. https://doi.org/10.1111/j.1365-246X.2012.05426.x

MOHAMMADZAHERI ET AL.

10.1029/2020JB020704

31 of 35

Acknowledgments
This study was supported by funding 
from the European Research Council 
(ERC) under the European Union’s 
Horizon 2020 Research and Innova-
tion Programme (Grant agreement 
no. 639003 “DEEP TIME”) and from 
Deutsche Forschungsgemeinschaft 
(DFG) Grant number SI 1538/1-1. 
Afsaneh Mohammadzaheri acknowl-
edges support through an Exonian 
Matched Graduate scholarship from 
Exeter College, University of Oxford. 
Karin Sigloch acknowledges additional 
funding from a Philip Leverhulme Prize 
awarded by The Leverhulme Trust. 
Kasra Hosseini acknowledges support 
by The Alan Turing Institute under 
the EPSRC Grant EP/N510129/1. We 
thank Douwe van der Meer and an 
anonymous reviewer for their careful 
and constructive reviews.

https://docs.obspy.org/packages/obspy.clients.fdsn.html
https://www.earth.ox.ac.uk/?smachine/cgi/index.php?page=tomo_depth
https://doi.org/10.5281/zenodo.3993276
https://doi.org/10.1130/GES01433.1
https://doi.org/10.1029/2008TC002269
https://doi.org/10.1029/2010JB007682
https://doi.org/10.1016/j.tecto.2012.11.016
https://doi.org/10.1029/98jb02467
https://doi.org/10.1016/j.lithos.2012.04.015
https://doi.org/10.1016/j.jog.2018.09.008
https://doi.org/10.1016/j.jog.2013.10.006
https://doi.org/10.1016/j.jog.2013.10.006
https://doi.org/10.1093/gji/ggz574
https://doi.org/10.1093/gji/ggz574
https://doi.org/10.1038/s41586-018-0860-1
https://doi.org/10.1038/s41586-018-0860-1
https://doi.org/10.1111/j.1365-246X.2004.02453.x
https://doi.org/10.1130/2015.1212(22)
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.14470/TR560404
https://doi.org/10.1111/j.1365-246X.2012.05426.x


Journal of Geophysical Research: Solid Earth

Goes, S., Capitanio, F. A., Morra, G., Seton, M., & Giardini, D. (2011). Signatures of downgoing plate-buoyancy driven subduction in Ceno-
zoic plate motions. Physics of the Earth and Planetary Interiors, 184(1–2). https://doi.org/10.1016/j.pepi.2010.10.007

Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. Journal of Geophysical Research, 99(B6), 11591–
11621. https://doi.org/10.1029/94jb00042

Grand, S. P., van der Hilst, R. D., & Widiyantoro, S. (1997). Global seismic tomography: A snapshot of convection in the earth. Geological 
Society of America Today, 7(4), 1–7.

Gutscher, M.-A., Olivet, J.-L., Aslanian, D., Eissen, J.-P., & Maury, R. (1999). The “lost Inca Plateau”: Cause of flat subduction beneath 
Peru? Earth and Planetary Science Letters, 171, 335–341. https://doi.org/10.1016/s0012-821x(99)00153-3

Gutscher, M.-A., Spakman, W., Bijwaard, H., & Engdahl, E. R. (2000). Geodynamics of flat subduction: Seismicity and tomographic con-
straints from the Andean margin. Tectonics, 19, 814–833. https://doi.org/10.1029/1999tc001152

Heintz, M., Debayle, E., & Vauchez, A. (2005). Upper mantle structure of the South American continent and neighboring oceans from 
surface wave tomography. Tectonophysics, 406, 115–139. https://doi.org/10.1016/j.tecto.2005.05.006

Hildebrand, R. S., & Whalen, J. B. (2014). Arc and slab-failure magmatism in Cordilleran batholiths I—The Cretaceous Coastal Batho-
lith of Peru and its role in South American orogenesis and hemispheric subduction flip. Geoscience Canada, 41, 255–282. https://doi.
org/10.12789/geocanj.2014.41.047

Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth-Science Reviews, 178, 279–309. https://doi.org/10.1016/ 
j.earscirev.2017.11.025

Hosseini, K. (2016). Global multiple-frequency seismic tomography using teleseismic and core-diffracted body waves (Doctoral dissertation). 
LMU.

Hosseini, K., Matthews, K. J., Sigloch, K., Shephard, G. E., Domeier, M., & Tsekhmistrenko, M. (2018). SubMachine: Web-based tools for 
exploring seismic tomography and other models of Earth's deep interior. Geochemistry, Geophysics, Geosystems, 19, 1464–1483. https://
doi.org/10.1029/2018GC007431

Hosseini, K., & Sigloch, K. (2015). Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography. Geo-
physical Journal International, 203, 506–521. https://doi.org/10.1093/gji/ggv298

Hosseini, K., & Sigloch, K. (2017). ObspyDMT: A Python toolbox for retrieving and processing large seismological data sets. Solid Earth, 8, 
1047–1070. https://doi.org/10.5194/se-2017-4610.5194/se-8-1047-2017

Hosseini, K., Sigloch, K., Tsekhmistrenko, M., Zaheri, A., Nissen-Meyer, T., & Igel, H. (2020). Global mantle structure from multifrequen-
cy tomography using P, PP and P-diffracted waves. Geophysical Journal International, 220, 96–141. https://doi.org/10.1093/gji/ggz394

Institut De Physique Du Globe De Paris (IPGP), & Ecole Et Observatoire Des Sciences De La Terre De Strasbourg (EOST). (1982). GEO-
SCOPE, French Global Network of broad band seismic stations. Institut de Physique du Globe de Paris (IPGP). https://doi.org/10.18715/
GEOSCOPE

Jaillard, E., Lapierre, H., Ordoñez, M., Álava, J. T., Amórtegui, A., & Vanmelle, J. (2009). Accreted oceanic terranes in Ecuador: Southern 
edge of the Caribbean Plate? Geological Society, London, Special Publications, 328, 469–485. https://doi.org/10.1144/sp328.19

Kennan, L., & Pindell, J. L. (2009). Dextral shear, terrane accretion and basin formation in the Northern Andes: Best explained by inter-
action with a Pacific-derived Caribbean Plate? Geological Society, London, Special Publications, 328, 487–531. https://doi.org/10.1144/
sp328.20

Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal Inter-
national, 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

Kerr, A. C., Aspden, J. A., Tarney, J., & Pilatasig, L. F. (2002). The nature and provenance of accreted oceanic terranes in western Ecuador: 
Geochemical and tectonic constraints. Journal of the Geological Society, 159, 577–594. https://doi.org/10.1144/0016-764901-151

Laske, G., Masters, G., & Reif, C. (2001). Crust 2.0: A new global crustal model at 2 × 2 degrees. Institute of Geophysics and Planetary Phys-
ics, The University of California. Retrieved from http://mahi.ucsd.edu/Gabi/rem.dir/crust/crust2.html

Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth's mantle. Geo-
chemistry, Geophysics, Geosystems, 9, Q05018. https://doi.org/10.1029/2007GC001806

Lonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404, 237–264. https://doi.
org/10.1016/j.tecto.2005.05.011

Lu, C., Grand, S. P., Lai, H., & Garnero, E. J. (2019). TX2019slab: A new P and S tomography model incorporating subducting slabs. Journal 
of Geophysical Research: Solid Earth, 124(11), 11549–11567. https://doi.org/10.1029/2019JB017448

Maffione, M., Speranza, F., & Faccenna, C. (2009). Bending of the Bolivian orocline and growth of the central Andean plateau: Pale-
omagnetic and structural constraints from the Eastern Cordillera (22-24°S, NW Argentina). Tectonics, 28, TC4006. https://doi.
org/10.1029/2008TC002402

Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., & Pardo, M. (2014). Flat versus normal subduction zones: A comparison based 
on 3-D regional traveltime tomography and petrological modeling of central Chile and western Argentina (29°-35°S). Geophysical Jour-
nal International, 199, 1633–1654. https://doi.org/10.1093/gji/ggu355

Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., & Müller, R. D. (2016). Global plate boundary evolution and kine-
matics since the late Paleozoic. Global and Planetary Change, 146, 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002

Miller, M. S., Levander, A., Niu, F., & Li, A. (2009). Upper mantle structure beneath the Caribbean-South American plate boundary from 
surface wave tomography. Journal of Geophysical Research, 114. B01312. https://doi.org/10.1029/2007JB005507

Mohammadzaheri, A. (2019). P-wave velocity structures under South America from multi-frequency tomography (Doctoral dissertation). 
University of Oxford.

Monger, J. W. H. (2014). Logan Medallist 1. Seeking the suture: The Coast-Cascade conundrum. Geoscience Canada, 41(4), 379. https://
doi.org/10.12789/geocanj.2014.41.058

Montelli, R., Nolet, G., Dahlen, F. A., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite-frequency tomog-
raphy. Geochemistry, Geophysics, Geosystems, 7(11), Q11007. https://doi.org/10.1029/2006GC001248

Montelli, R., Nolet, G., Masters, G., Dahlen, F. A., & Hung, S.-H. (2004). Global P and PP traveltime tomography: Rays versus waves. Geo-
physical Journal International, 158, 637–654. https://doi.org/10.1111/j.1365-246X.2004.02346.x

Moores, E. M. (1970). Ultramafics and orogeny, with models of the US Cordillera and the Tethys. Nature, 228, 837–842. https://doi.
org/10.1038/228837a0

Moores, E. M. (1998). Ophiolites, the Sierra Nevada, “Cordilleria,” and orogeny along the Pacific and Caribbean margins of North and 
South America. International Geology Review, 40(1), 40–54. https://doi.org/10.1080/10.1080/00206819809465197

Morata, D., & Aguirre, L. (2003). Extensional Lower Cretaceous volcanism in the Coastal Range (29°20′-30°S), Chile: Geochemistry and 
petrogenesis. Journal of South American Earth Sciences, 16(6), 459–476. https://doi.org/10.1016/j.jsames.2003.06.001

MOHAMMADZAHERI ET AL.

10.1029/2020JB020704

32 of 35

https://doi.org/10.1016/j.pepi.2010.10.007
https://doi.org/10.1029/94jb00042
https://doi.org/10.1016/s0012-821x(99)00153-3
https://doi.org/10.1029/1999tc001152
https://doi.org/10.1016/j.tecto.2005.05.006
https://doi.org/10.12789/geocanj.2014.41.047
https://doi.org/10.12789/geocanj.2014.41.047
https://doi.org/10.1016/j.earscirev.2017.11.025
https://doi.org/10.1016/j.earscirev.2017.11.025
https://doi.org/10.1029/2018GC007431
https://doi.org/10.1029/2018GC007431
https://doi.org/10.1093/gji/ggv298
https://doi.org/10.5194/se-2017-4610.5194/se-8-1047-2017
https://doi.org/10.1093/gji/ggz394
https://doi.org/10.18715/GEOSCOPE
https://doi.org/10.18715/GEOSCOPE
https://doi.org/10.1144/sp328.19
https://doi.org/10.1144/sp328.20
https://doi.org/10.1144/sp328.20
https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
https://doi.org/10.1144/0016-764901-151
http://mahi.ucsd.edu/Gabi/rem.dir/crust/crust2.html
https://doi.org/10.1029/2007GC001806
https://doi.org/10.1016/j.tecto.2005.05.011
https://doi.org/10.1016/j.tecto.2005.05.011
https://doi.org/10.1029/2019JB017448
https://doi.org/10.1029/2008TC002402
https://doi.org/10.1029/2008TC002402
https://doi.org/10.1093/gji/ggu355
https://doi.org/10.1016/j.gloplacha.2016.10.002
https://doi.org/10.1029/2007JB005507
https://doi.org/10.12789/geocanj.2014.41.058
https://doi.org/10.12789/geocanj.2014.41.058
https://doi.org/10.1029/2006GC001248
https://doi.org/10.1111/j.1365-246X.2004.02346.x
https://doi.org/10.1038/228837a0
https://doi.org/10.1038/228837a0
https://doi.org/10.1080/10.1080/00206819809465197
https://doi.org/10.1016/j.jsames.2003.06.001


Journal of Geophysical Research: Solid Earth

Morgan, W. J. (1965). Gravity anomalies and convection currents: 1. A sphere and cylinder sinking beneath the surface of a viscous fluid. 
Journal of Geophysical Research, 70(24), 6175–6187. https://doi.org/10.1029/jz070i024p06175

Muñoz, M., Tapia, F., Persico, M., Benoit, M., Charrier, R., Farías, M., & Rojas, A. (2018). Extensional tectonics during Late Cretaceous 
evolution of the Southern Central Andes: Evidence from the Chilean main range at ∼35°S. Tectonophysics, 744, 93–117. https://doi.
org/10.1016/j.tecto.2018.06.009

Nissen-Meyer, T., van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., et al. (2014). AxiSEM: Broadband 3-D seismic wavefields 
in axisymmetric media. Solid Earth, 5(1), 425–445. https://doi.org/10.5194/se-5-425-2014

Obayashi, M., Yoshimitsu, J., Nolet, G., Fukao, Y., Shiobara, H., Sugioka, H., et al. (2013). Finite frequency whole mantle P wave tomog-
raphy: Improvement of subducted slab images. Geophysical Research Letters, 40, 5652–5657. https://doi.org/10.1002/2013GL057401

O’Neill, C., Müller, R. D., & Steinberger, B. (2005). On the uncertainties in hot spot reconstructions and the significance of moving hot spot 
reference frames. Geochemistry, Geophysics, Geosystems, 6(4). Q04003. https://doi.org/10.1029/2004GC000784

Pavlis, T., Amato, J., Trop, J., Ridgway, K., Roeske, S., & Gehrels, G. (2019). Subduction polarity in ancient arcs: A call to integrate geology 
and geophysics to decipher the Mesozoic tectonic history of the Northern Cordillera of North America. GSA Today, 29(11), 4–10. https://
doi.org/10.1130/GSATG402A.1

Pepper, M., Gehrels, G., Pullen, A., Ibanez-mejia, M., Ward, K. M., & Kapp, P. (2016). Magmatic history and crustal genesis of west-
ern South America: Constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere, 12(5), 1532–1555. 
https://doi.org/10.1130/GES01315.1

Persson, P.-O., & Strang, G. (2004). A simple mesh generator in MATLAB. SIAM Review, 46(2), 329–345. https://doi.org/10.1137/
s0036144503429121

Porter, R., Gilbert, H., Zandt, G., Beck, S., Warren, L., Calkins, J., et al. (2012). Shear wave velocities in the Pampean flat-slab region from 
Rayleigh wave tomography: Implications for slab and upper mantle hydration. Journal of Geophysical Research, 117, B11301. https://
doi.org/10.1029/2012JB009350

Portner, D. E., Beck, S., Zandt, G., & Scire, A. (2017). The nature of subslab slow velocity anomalies beneath South America. Geophysical 
Research Letters, 44, 4747–4755. https://doi.org/10.1002/2017GL073106

Portner, D. E., Rodríguez, E. E., Beck, S., Zandt, G., Scire, A., Rocha, M. P., et al. (2020). Detailed structure of the subducted Nazca slab 
into the lower mantle derived from continent-scale teleseismic P wave tomography. Journal of Geophysical Research: Solid Earth, 125. 
https://doi.org/10.1029/2019jb017884

Ramos, V. A. (2018). Tectonic evolution of the central Andes: From terrane accretion to crustal delamination. In G. Zamora, K. M. McClay, 
& V. A. Ramos (Eds.), Petroleum basins and hydrocarbon potential of the Andes of Peru and Bolivia (pp. 1–34). AAPG Memoir 117.

Ramos, V. A., & Folguera, A. (2009). Andean flat-slab subduction through time. In S. M. Kay, V. A. Ramos, & W. Dickinson (Eds.), Back-
bone of the Americas (Vol. 327, pp. 31–54). Geological Society of America Memoir. https://doi.org/10.1130/2009.1204(02)

Ren, Y., Stutzmann, E., van der Hilst, R. D., & Besse, J. (2007). Understanding seismic heterogeneities in the lower mantle be-
neath the Americas from seismic tomography and plate tectonic history. Journal of Geophysical Research, 112. B01302. https://doi.
org/10.1029/2005JB004154

Reynaud, C., Jaillard, É., Lapierre, H., Mamberti, M., & Mascle, G. H. (1999). Oceanic plateau and island arcs of southwestern Ecua-
dor: Their place in the geodynamic evolution of northwestern South America. Tectonophysics, 307, 235–254. https://doi.org/10.1016/
s0040-1951(99)00099-2

Ribe, N. M., Stutzmann, E., Ren, Y., & van der Hilst, R. (2007). Buckling instabilities of subducted lithosphere beneath the transition zone. 
Earth and Planetary Science Letters, 254, 173–179. https://doi.org/10.1016/j.epsl.2006.11.028

Ritsema, J., Deuss, A., Van Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: A degree-40 shear-velocity model for the mantle from new 
Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 
184(3), 1223–1236. https://doi.org/10.1111/j.1365-246x.2010.04884.x

Scire, A. (2015). Imaging variations in the central Andean mantle and the subducting Nazca slab with teleseismic tomography (Doctoral 
dissertation). The University of Arizona. https://doi.org/10.1130/2015.1212(02)

Scire, A., Zandt, G., Beck, S., Long, M., Wagner, L., Minaya, E., & Tavera, H. (2016). Imaging the transition from flat to normal subduction: 
Variations in the structure of the Nazca slab and upper mantle under southern Peru and northwestern Bolivia. Geophysical Journal 
International, 204(1), 457–479. https://doi.org/10.1093/gji/ggv452

Sdrolias, M., & Müller, R. D. (2006). Controls on back-arc basin formation. Geochemistry, Geophysics, Geosystems, 7(4), Q04016. https://doi.
org/10.1029/2005GC001090

Sempere, T., Folguera, A., & Gerbault, M. (2008). New insights into Andean evolution: An introduction to contributions from the 6th ISAG 
symposium (Barcelona, 2005). Tectonophysics, 459, 1–13. https://doi.org/10.1016/j.tecto.2008.03.011

Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., et al. (2012). Global continental and ocean basin reconstructions 
since 200Ma. Earth-Science Reviews, 113, 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002

Sigloch, K. (2011). Mantle provinces under North America from multifrequency P wave tomography. Geochemistry, Geophysics, Geosys-
tems, 12(2). https://doi.org/10.1029/2010GC003421

Sigloch, K., McQuarrie, N., & Nolet, G. (2008). Two-stage subduction history under North America inferred from multiple-frequency 
tomography. Nature Geoscience, 1, 458–462. https://doi.org/10.1038/ngeo231

Sigloch, K., & Mihalynuk, M. (2020). Comment on GSA Today article by Pavlis et al., 2019: "Subduction polarity in ancient arcs: A call to 
integrate geology and geophysics to decipher the Mesozoic Tectonic history of the Northern Cordillera of North America". GSA Today, 
30, e47. https://doi.org/10.1130/GSATG431C.1

Sigloch, K., & Mihalynuk, M. G. (2013). Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature, 496, 50–56. 
https://doi.org/10.1038/nature12019

Sigloch, K., & Mihalynuk, M. G. (2017). Mantle and geological evidence for a Late Jurassic−Cretaceous suture spanning North America. 
The Geological Society of America Bulletin, 129, 1489–1520. https://doi.org/10.1130/B31529.1

Sigloch, K., & Nolet, G. (2006). Measuring finite-frequency body-wave amplitudes and traveltimes. Geophysical Journal International, 167, 
271–287. https://doi.org/10.1111/j.1365-246X.2006.03116.x

Simmons, N. A., Myers, S. C., Johannesson, G., & Matzel, E. (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional 
and teleseismic travel time prediction. Journal of Geophysical Research, 117. B10302. https://doi.org/10.1029/2012JB009525

Simmons, N. A., Schuberth, B. S. A., Myers, S. C., & Knapp, D. R. (2019). Resolution and covariance of the LLNL-G3D-JPS global seismic 
tomography model: Applications to travel time uncertainty and tomographic filtering of geodynamic models. Geophysical Journal Inter-
national, 217(3), 1543–1557. https://doi.org/10.1093/gji/ggz102

MOHAMMADZAHERI ET AL.

10.1029/2020JB020704

33 of 35

https://doi.org/10.1029/jz070i024p06175
https://doi.org/10.1016/j.tecto.2018.06.009
https://doi.org/10.1016/j.tecto.2018.06.009
https://doi.org/10.5194/se-5-425-2014
https://doi.org/10.1002/2013GL057401
https://doi.org/10.1029/2004GC000784
https://doi.org/10.1130/GSATG402A.1
https://doi.org/10.1130/GSATG402A.1
https://doi.org/10.1130/GES01315.1
https://doi.org/10.1137/s0036144503429121
https://doi.org/10.1137/s0036144503429121
https://doi.org/10.1029/2012JB009350
https://doi.org/10.1029/2012JB009350
https://doi.org/10.1002/2017GL073106
https://doi.org/10.1029/2019jb017884
https://doi.org/10.1130/2009.1204(02)
https://doi.org/10.1029/2005JB004154
https://doi.org/10.1029/2005JB004154
https://doi.org/10.1016/s0040-1951(99)00099-2
https://doi.org/10.1016/s0040-1951(99)00099-2
https://doi.org/10.1016/j.epsl.2006.11.028
https://doi.org/10.1111/j.1365-246x.2010.04884.x
https://doi.org/10.1130/2015.1212(02)
https://doi.org/10.1093/gji/ggv452
https://doi.org/10.1029/2005GC001090
https://doi.org/10.1029/2005GC001090
https://doi.org/10.1016/j.tecto.2008.03.011
https://doi.org/10.1016/j.earscirev.2012.03.002
https://doi.org/10.1029/2010GC003421
https://doi.org/10.1038/ngeo231
https://doi.org/10.1130/GSATG431C.1
https://doi.org/10.1038/nature12019
https://doi.org/10.1130/B31529.1
https://doi.org/10.1111/j.1365-246X.2006.03116.x
https://doi.org/10.1029/2012JB009525
https://doi.org/10.1093/gji/ggz102


Journal of Geophysical Research: Solid Earth

Spencer, C. J., Murphy, J. B., Hoiland, C. W., Johnston, S. T., Mitchell, R. N., & Collins, W. J. (2019). Evidence for whole mantle convection 
driving Cordilleran tectonics. Geophysical Research Letters, 46(8), 4239–4248. https://doi.org/10.1029/2019gl082313

Spikings, R., Cochrane, R., Villagomez, D., van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of north-
western South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290-75Ma). Gondwana Research, 
27, 95–139. https://doi.org/10.1016/j.gr.2014.06.004

Stähler, S. C., & Sigloch, K. (2014). Fully probabilistic seismic source inversion – Part 1: Efficient parameterisation. Solid Earth, 5(2), 
1055–1069. https://doi.org/10.5194/se-5-1055-2014

Steinberger, B., Torsvik, T. H., & Becker, T. W. (2012). Subduction to the lower mantle – A comparison between geodynamic and tomo-
graphic models. Solid Earth, 3, 415–432. https://doi.org/10.5194/se-3-415-2012

Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., et al. (2000). Geodynamics of the northern Andes: Sub-
ductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787–813. https://doi.org/10.1029/2000TC900004

Tesoniero, A., Auer, L., Boschi, L., & Cammarano, F. (2015). Hydration of marginal basins and compositional variations within the conti-
nental lithospheric mantle inferred from a new global model of shear and compressional velocity. Journal of Geophysical Research: Solid 
Earth, 120, 7789–7813. https://doi.org/10.1002/2015JB012026

Tian, Y., Montelli, R., Nolet, G., & Dahlen, F. A. (2007). Computing traveltime and amplitude sensitivity kernels in finite-frequency tomog-
raphy. Journal of Computational Physics, 226(2), 2271–2288. https://doi.org/10.1016/j.jcp.2007.07.004

Torsvik, T. H., Steinberger, B., Shephard, G. E., Doubrovine, P. V., Gaina, C., Domeier, M., et al. (2019). Pacific-Panthalassic reconstructions: 
Overview, errata and the way forward. Geochemistry, Geophysics, Geosystems, 20, 3659–3689. https://doi.org/10.1029/2019GC008402

van der Meer, D. G., Spakman, W., Van Hinsbergen, D. J. J., Amaru, M. L., & Torsvik, T. H. (2010). Towards absolute plate motions con-
strained by lower-mantle slab remnants. Nature Geoscience, 3(1), 36–40. https://doi.org/10.1038/ngeo708

van der Meer, D. G., van Hinsbergen, D. J. J., & Spakman, W. (2018). Atlas of the underworld: Slab remnants in the mantle, their sinking 
history, and a new outlook on lower mantle viscosity. Tectonophysics, 723, 309–448. https://doi.org/10.1016/j.tecto.2017.10.004

van der Voo, R., Spakman, W., & Bijwaard, H. (1999). Tethyan subducted slabs under India. Earth and Planetary Science Letters, 171(1), 
7–20. https://doi.org/10.1016/S0012-821X(99)00131-4

van Driel, M., Krischer, L., Stähler, S. C., Hosseini, K., & Nissen-Meyer, T. (2015). Instaseis: Instant global seismograms based on a broad-
band waveform database. Solid Earth, 6, 701–717. https://doi.org/10.5194/se-6-701-2015

van Hunen, J., van den Berg, A. P., & Vlaar, N. J. (2002). On the role of subducting oceanic plateaus in the development of shallow flat 
subduction. Tectonophysics, 352(3), 317–333. https://doi.org/10.1016/s0040-1951(02)00263-9

Wagner, L. S. B., Beck, S., & Zandt, G. (2005). Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). Journal 
of Geophysical Research, 110. B01308. https://doi.org/10.1029/2004JB003238

Ward, K. M., Porter, R. C., Zandt, G., Beck, S. L., Wagner, L. S., Minaya, E., & Tavera, H. (2013). Ambient noise tomography across the 
Central Andes. Geophysical Journal International, 194, 1559–1573. https://doi.org/10.1093/gji/ggt166

Weston, J., Engdahl, E. R., Harris, J., Di Giacomo, D., & Storchak, D. A. (2018). ISC-EHB: Reconstruction of a robust earthquake data set. 
Geophysical Journal International, 214, 474–484. https://doi.org/10.1093/gji/ggy155

References From The Supporting Information
Albuquerque Seismological Laboratory (ASL)/USGS. (1988). Global Seismograph Network (GSN–IRIS/USGS). International Federation of 

Digital Seismograph Networks. https://doi.org/10.7914/SN/IU
Albuquerque Seismological Laboratory (ASL)/USGS. (1993). Global Telemetered Seismograph Network (USAF/USGS). International Fed-

eration of Digital Seismograph Networks. https://doi.org/10.7914/SN/GT
Beck, B. G. Z. (2010). Central Andean uplift and the geodynamics of the high topography. International Federation of Digital Seismograph 

Networks. https://doi.org/10.7914/SN/ZG_2010
Beck, S. G. Z. (2007). Lithospheric structure and deformation of the flat slab region of Argentina. International Federation of Digital Seismo-

graph Networks. https://doi.org/10.7914/SN/ZL_2007
Beck, S. T. W. (2000). Slab geometry in the Southern Andes. International Federation of Digital Seismograph Networks. https://doi.

org/10.7914/SN/YC_2000
Ebinger, C. (2009). Sierra Negra array Galapagos. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/

XE_2009
Fundación Venezolana De Investigaciones Sismológicas (FUNVISIS), Caracas. (2000). Red Sismológica Satelital Nacional (Data set). Inter-

national Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/VE
GFZ German Research Centre For Geosciences, & Institut Des Sciences De L’Univers-Centre National De La Recherche CNRS-INSU. 

(2006). IPOC Seismic Network. Integrated Plate boundary Observatory Chile—IPOC. https://doi.org/10.14470/PK615318
Gilbert, H. (2008). Lithospheric Structure above the variably dipping Nazca Slab. International Federation of Digital Seismograph Networks. 

https://doi.org/10.7914/SN/XH_2008
Grand, S. J. N. (2006). Mapping the Rivera subduction zone. International Federation of Digital Seismograph Networks. https://doi.

org/10.7914/SN/XF_2006
Institut De Physique Du Globe De Paris (IPGP). (2008). GNSS, seismic broadband and strong motion permanent networks in West Indies. 

Institut de physique du globe de Paris (IPGP). https://doi.org/10.18715/antilles.WI
Instituto Nicaraguense De Estudios Territoriales (INETER). (1975). Nicaraguan Seismic Network. Instituto Nicaraguense de Estudios Ter-

ritoriales (INETER). https://doi.org/10.7914/SN/NU
Istituto Nazionale Di Oceanografia E Di Geofisica Sperimentale. (1992). Antarctic Seismographic Argentinean Italian Network—OGS (Data 

set). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AI
Johnston, S. T. (2001). The Great Alaskan Terrane Wreck: Reconciliation of paleomagnetic and geological data in the northern Cordillera. 

Earth and Planetary Science Letters, 193, 259–272. https://doi.org/10.1016/s0012-821x(01)00516-7
Johnston, S. T. (2008). The Cordilleran ribbon continent of North America. Annual Review of Earth and Planetary Sciences, 36, 495–530. 

https://doi.org/10.1146/annurev.earth.36.031207.124331
KNMI. (2006). Caribbean Netherlands seismic network. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.21944/

dffa7a3f-7e3a-3b33-a436-516a01b6af3f
Levander, A. (2008). Bolivar: Western Venezuela. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/

XN_2008

MOHAMMADZAHERI ET AL.

10.1029/2020JB020704

34 of 35

https://doi.org/10.1029/2019gl082313
https://doi.org/10.1016/j.gr.2014.06.004
https://doi.org/10.5194/se-5-1055-2014
https://doi.org/10.5194/se-3-415-2012
https://doi.org/10.1029/2000TC900004
https://doi.org/10.1002/2015JB012026
https://doi.org/10.1016/j.jcp.2007.07.004
https://doi.org/10.1029/2019GC008402
https://doi.org/10.1038/ngeo708
https://doi.org/10.1016/j.tecto.2017.10.004
https://doi.org/10.1016/S0012-821X(99)00131-4
https://doi.org/10.5194/se-6-701-2015
https://doi.org/10.1016/s0040-1951(02)00263-9
https://doi.org/10.1029/2004JB003238
https://doi.org/10.1093/gji/ggt166
https://doi.org/10.1093/gji/ggy155
https://doi.org/10.7914/SN/IU
https://doi.org/10.7914/SN/GT
https://doi.org/10.7914/SN/ZG_2010
https://doi.org/10.7914/SN/ZL_2007
https://doi.org/10.7914/SN/YC_2000
https://doi.org/10.7914/SN/YC_2000
https://doi.org/10.7914/SN/XE_2009
https://doi.org/10.7914/SN/XE_2009
https://doi.org/10.7914/SN/VE
https://doi.org/10.14470/PK615318
https://doi.org/10.7914/SN/XH_2008
https://doi.org/10.7914/SN/XF_2006
https://doi.org/10.7914/SN/XF_2006
https://doi.org/10.18715/antilles.WI
https://doi.org/10.7914/SN/NU
https://doi.org/10.7914/SN/AI
https://doi.org/10.1016/s0012-821x(01)00516-7
https://doi.org/10.1146/annurev.earth.36.031207.124331
https://doi.org/10.21944/dffa7a3f-7e3a-3b33-a436-516a01b6af3f
https://doi.org/10.21944/dffa7a3f-7e3a-3b33-a436-516a01b6af3f
https://doi.org/10.7914/SN/XN_2008
https://doi.org/10.7914/SN/XN_2008


Journal of Geophysical Research: Solid Earth

National Seismological Centre Of Autonomous University Of Santo Domingo. (1998). CNS-UASD (Data set). International Federation of 
Digital Seismograph Networks. https://doi.org/10.7914/SN/DR

Pritchard, M. (2009). The life cycle of Andean volcanoes: Combining space-based and field studies. International Federation of Digital Seis-
mograph Networks. https://doi.org/10.7914/SN/YS_2009

Protti, M. (1984). Observatorio Vulcanológico y Sismológico de Costa Rica (Data set). International Federation of Digital Seismograph Net-
works. https://doi.org/10.7914/SN/OV

Pulliam, J. (2013). Greater Antilles Seismic Program. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/
SN/ZC_2013

Roecker, S. R. R. (2010). RAMP response for 2010 earthquake. International Federation of Digital Seismograph Networks. https://doi.
org/10.7914/SN/XY_2010

Roman, & DC. (2009). Telica Seismic and Deformation Network (Data set). International Federation of Digital Seismograph Networks. 
https://doi.org/10.7914/SN/6D_2009

Sandvol, E. L. B. (2007). SLIP—Seismic lithospheric imaging of the Puna Plateau. International Federation of Digital Seismograph Net-
works. https://doi.org/10.7914/SN/X6_2007

Schaeffer, A. J., & Lebedev, S. (2013). Global shear speed structure of the upper mantle and transition zone. Geophysical Journal Interna-
tional, 194, 417–449. https://doi.org/10.1093/gji/ggt095

Schwartz, S. Y. A. N (1999). Imaging the seismogenic zone with geodesy and seismology. International Federation of Digital Seismograph 
Networks. https://doi.org/10.7914/SN/XY_1999

Schwartz, S. Y. A. N. (2009). Nicoya seismogenic zone. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/
SN/YZ_2009

Scripps Institution Of Oceanography. (1986). IRIS/IDA Seismic Network. International Federation of Digital Seismograph Networks. 
https://doi.org/10.7914/SN/II

Servicio Geologico Colombiano. (1993). Red Sismologica Nacional de Colombia (Data set). International Federation of Digital Seismograph 
Networks. https://doi.org/10.7914/SN/CM

Universidad De Chile. (2013). Red Sismologica Nacional. International Federation of Digital Seismograph Networks. https://doi.
org/10.7914/SN/C1

University Of Puerto Rico. (1986). Puerto Rico Seismic Network (PRSN) & Puerto Rico Strong Motion Program (PRSMP). International Fed-
eration of Digital Seismograph Networks. https://doi.org/10.7914/SN/PR

Wagner, L. S. B. (2010). PerU Lithosphere and Slab Experiment. International Federation of Digital Seismograph Networks. https://doi.
org/10.7914/SN/ZD_2010

Waite, G. P. (2010). An Integrated Analysis of Low-Frequency Seismicity at Villarrica Volcano, Chile. International Federation of Digital 
Seismograph Networks. https://doi.org/10.7914/SN/YM_2010

Wiens, D. (1997). A Broadband study of the tectonics and structure of the Antarctic Peninsula and Scotia Sea Regions. International Federa-
tion of Digital Seismograph Networks. https://doi.org/10.7914/SN/XB_1997

Zandt, G. (1996). Altiplano-Puna Volcanic Complex Seismic Experiment. International Federation of Digital Seismograph Networks. 
https://doi.org/10.7914/SN/XH_1996

MOHAMMADZAHERI ET AL.

10.1029/2020JB020704

35 of 35

https://doi.org/10.7914/SN/DR
https://doi.org/10.7914/SN/YS_2009
https://doi.org/10.7914/SN/OV
https://doi.org/10.7914/SN/ZC_2013
https://doi.org/10.7914/SN/ZC_2013
https://doi.org/10.7914/SN/XY_2010
https://doi.org/10.7914/SN/XY_2010
https://doi.org/10.7914/SN/6D_2009
https://doi.org/10.7914/SN/X6_2007
https://doi.org/10.1093/gji/ggt095
https://doi.org/10.7914/SN/XY_1999
https://doi.org/10.7914/SN/YZ_2009
https://doi.org/10.7914/SN/YZ_2009
https://doi.org/10.7914/SN/II
https://doi.org/10.7914/SN/CM
https://doi.org/10.7914/SN/C1
https://doi.org/10.7914/SN/C1
https://doi.org/10.7914/SN/PR
https://doi.org/10.7914/SN/ZD_2010
https://doi.org/10.7914/SN/ZD_2010
https://doi.org/10.7914/SN/YM_2010
https://doi.org/10.7914/SN/XB_1997
https://doi.org/10.7914/SN/XH_1996

	Subducted Lithosphere Under South America From Multifrequency P Wave Tomography
	Abstract
	Plain Language Summary
	1. Introduction
	2. Teleseismic Global Tomography Model DETOX-P1
	3. Traveltime Data for Tomography
	3.1. Traveltime Picks From the International Seismological Centre
	3.2. Finite-Frequency Traveltime Measurements

	4. Linear Inversion Under the Finite-Frequency Approximation
	4.1. Resolution Tests

	5. Tomography Results: Mantle Provinces Under South America
	5.1. Slabs in the Upper Mantle (300–600 km Depth)
	5.2. Slabs From ∼600 to ∼900 km Depth
	5.3. Fast Anomalies From ∼ 900 to ∼1,200 km Depth
	5.4. Fast Anomalies Below ∼1,200 km Depth

	6. Tectonic Interpretation
	6.1. Gap in the Upper-Mantle Andean Slab Under Peru
	6.2. Tectonic Interpretation of Lower-Mantle Slabs
	6.2.1. Synopsis of Slab Configurations Over Time: Two Fundamentally Different Regimes?
	6.2.2. Problem Statement: Attributing Complexity to the Surface Versus the Mantle?
	6.2.3. Vertical Sinking Hypothesis for Viscously Thickened Slabs
	6.2.4. Slab Constraints on a Jura-Cretaceous “Intra-Arc” Basin Offshore the Andean Margin
	6.2.5. Basin Closure by Intra-Oceanic Subduction and Establishing the Modern Andean Arc
	6.2.6. Summary: Complexity Resided at the Surface, Not in the Mantle


	7. Conclusion
	Data Availability Statement
	References
	References From The Supporting Information


