Ioan Doré Landau 
  
Revisiting the adaptation/learning algorithms -A dynamic system approach

The paper will review a number of parameter adaptation/learning algorithms (PALA) used in adaptive control, system identification and neural networks from an unified perspective. Parameter adaptation/learning algorithms are nonlinear/time varying systems for which stability is a key issue. Taking into account their inherent feedback structure, passivity approach appears as a basic tool for understanding, analyzing and synthesizing PALA algorithms. While the use of the passivity approach for analyzing PALA is not new, in this paper a number of PALA developed from different points of view (Nesterov, Conjugate gradients, Momentum back propagation, etc) will be analyzed from this perspective. It is shown that in all the algorithms considered, a linear filter is embedded and this filter should be characterized by a positive real transfer function in order to assure the stability of the algorithm for any value of the adaptation gain/learning rate. This provides a unified framework for better understanding the operation of PALA algorithms.

I. INTRODUCTION

With the booming of neural networks [START_REF] Haykin | Neural Networks[END_REF], [START_REF] Narendra | Gradient methods for the optimization of dynamical systems contining neural networks[END_REF], there was an explosion of the number of adaptation/learning algorithms which have been proposed. Some of these algorithms are inspired from optimization techniques [START_REF] Nesterov | A method for solving a convex programming problem with convergence rate 0(1/k2[END_REF], [START_REF] Fletcher | Function minimization by conjugate gradients[END_REF]. In most of the cases only qualitative analysis of these "new" algorithms is provided. The field becomes a kind of "fidler paradise". The papers [START_REF] Gaudio | Connections between adaptive control and optimization in machine learning[END_REF], [START_REF] Livieris | A survey on algorithms for training artificial neural networks[END_REF] give a comprehensive review of current used algorithms. In fact it can be shown that there is a systems theory behind all adaptation/learning algorithms which start from the observation that one has to deal with a dynamic system with a feedback structure. This approach has been developed in the field of adaptive control. See for example [START_REF] Ioannou | Robust Adaptive Control[END_REF], [START_REF] Landau | Adaptive control[END_REF].

It turns out that many adaptation/learning algorithms (maybe all?) are particular forms of a general structure and their basic properties result from their equivalent feedback structure where stability is a key issue. This approach allows to give an answer to the question: under what condition the PALA algorithms will be stable for any values of the adaptation gain/learning rate.

We will review briefly the gradient algorithm and few relevant versions emphasizing the equivalent feedback configuration and the stability issues. We will then present the general form for adaptation/learning algorithms and 1 Ioan Doré Landau, is with the Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France ioan-dore.landau@gipsa-lab.grenoble-inp.fr, provide the basic properties associated with this general structure. The remaining of the paper will be dedicated to the review of a number of currently used algorithms from the perspective provided by this general framework (IP, IPD, Nesterov, Conjugate Gradients, Momentum back propagation, averaged gradient, leakage). It turns out that in all these algorithms a linear filter is embedded and this filter should be characterized by a positive real transfer function in order to assure a stable operation for any positive finite value of the adaptation gain/learning rate. An interpretation of these conditions form the perspective of the basic gradient algorithm is also provided.

II. THE GRADIENT ALGORITHM-FEEDBACK INTERPRETATION AND STABILITY ISSUES

A. Basic Gradient Algorithm

The aim of the gradient parameter adaptation/learning algorithm is to drive the parameters of an adjustable model in order to minimize a quadratic criterion in terms of the prediction error (difference between real data and the output of the model used for prediction). To formalize the problem, consider the discrete-time model described by: y(t + 1) = -a 1 y(t) -a 2 y(t -1) -..

+b 1 u(t) + b 2 u(t -2) + ... = θ T φ(t) (1) 
where the unknown parameters a i and b i form the components of the parameter vector θ:

θ T = [a 1 , a 2 , ..., b 1 , b 2 , ...] (2) 
and

φ T (t) = [-y(t), -y(t -1), .., u(t), u(t -1), ...] (3) 
is the measurement vector The adjustable prediction model will be described in this case by:

ŷ0 (t + 1) = ŷ[(t + 1)| θ(t)] = θT (t)φ(t) (4) 
where ŷ0 (t + 1) is termed the a priori predicted output depending on the values of the estimated parameter at instant t given by:

θT (t) = [ â1 (t), â2 (t), .. b1 (t), b2 (t), ..] (5) 
As it will be shown later, it is very useful to consider also the a posteriori predicted output computed on the basis of the new estimated parameter vector at t + 1, θ(t + 1), which will be available somewhere between t + 1 and t + 2. The a posteriori predicted output will be given by:

ŷ(t + 1) = ŷ[(t + 1)| θ(t + 1)] = θT (t + 1)φ(t) (6) 
One defines an a priori prediction error as:

0 (t + 1) = y(t + 1) -ŷ0 (t + 1) (7) 
and an a posteriori prediction error as:

(t + 1) = y(t + 1) -ŷ(t + 1) (8) 
The objective is to find a recursive parameter adaptation algorithm with memory. The structure of such an algorithm is:

θ(t + 1) = θ(t) + ∆ θ(t + 1) = θ(t) + f [ θ(t), φ(t), 0 (t + 1)] (9) 
The correction term f [ θ(t), φ(t), 0 (t + 1)] must depend solely on the information available at the instant (t+1) when y(t + 1) is acquired (last measurement y(t + 1), θ(t), and a finite amount of information at times t, t -

1, t -2 • • • t -n).
The correction term must enable to minimize the following criterion at each step:

min θ(t) J(t + 1) = [ 0 (t + 1)] 2 (10) 
A solution can be provided by the gradient technique. In order to minimize the value of the criterion, one moves in the opposite direction of the gradient of the criterion computed for a certain value of the estimated parameters.

The corresponding parametric adaptation algorithm will have the form:

θ(t + 1) = θ(t) -F δJ(t + 1) δ θ(t) (11) 
where F = αI(α > 0) is the matrix adaptation gain/learning rate (I -unitary diagonal matrix) and δJ(t + 1)/δ θ(t) is the gradient of the criterion given in Eq. ( 10) with respect to θ(t). From Eq. (10) one obtains:

1 2 δJ(t + 1) δ θ(t) = δ 0 (t + 1) δ θ(t) 0 (t + 1) (12) 
But from Eq.( 7)

0 (t+1) = y(t+1)-ŷ0 (t+1) = y(t+1)-θT (t)φ(t) (13) 
and δ 0 (t + 1)

δ θ(t) = -φ(t) (14) 
Introducing Eq. ( 14) in Eq. ( 12), the parameter adaptation algorithm of Eq. ( 11) becomes:

θ(t + 1) = θ(t) + F φ(t) 0 (t + 1) (15) 
where F is the matrix adaptation gain. The algorithm has memory (for ε 0 (t + 1) = 0, θ(t + 1) = θ(t)). The estimated parameter vector θ can be viewed as the output of a discrete time integrator filter whose input is the correcting term F φ(t) 0 (t+1). There are two possible choices for the matrix adaptation gain/learning rate: 1) F = αI; α > 0 2) F > 0 (positive definite matrix) For the case F = αI, α > 0 the correction is done in the direction of the observation (measurement) vector. For the case F > 0 the correction is done within ±90 deg around this direction (a positive definite matrix may cause a rotation of a vector for less than 90 deg). The parameter adaptation algorithm given in Eq. ( 11) presents instability risks if a large adaptation gain/learning rate (respectively a large α) is used. A necessary stability condition (but not sufficient) for the case

F = αI is α < 1 φ T (t)φ(t) (16) 
Details of this analysis can be found in [START_REF] Landau | Adaptive control[END_REF].

B. Improved (Normalized) Gradient Algorithm

In order to assure the stability of the PAA for any value of the adaptation gain/learning rate α (or of the eigenvalues of the gain matrix F ) the same gradient approach is used but a different criterion to be minimized should be considered [START_REF] Landau | Adaptive control[END_REF]:

min θ(t+1) J(t + 1) = [ (t + 1)] 2 (17) 
Eq. ( 8) can be rewritten as:

(t + 1) =y(t + 1) -ŷ(t + 1) = y(t + 1) -θT (t + 1)φ(t) = θT (t + 1)φ(t) (18) 
Following the same procedure used for the basic gradient algorithm, one finally gets the parameter adaptation/learning algorithm:

θ(t + 1) = θ(t) + F φ(t) (t + 1) (19) 
The resulting algorithm can be viewed as in integrator filter fed in by the correction term as shown in fig. 1. This algo- rithm depends on ε(t+1), which is a function of θ(t+1). For implementing this algorithm, ε(t + 1) must be expressed as a function of ε 0 (t + 1), i.e. ε(t + 1) = f [ θ(t), φ(t), ε 0 (t + 1)] Eq. ( 18) can be rewritten as:

(t+1) = y(t+1)-θT (t)φ(t)-[( θ(t+1)-θ(t)] T φ(t) (20)
The first two terms of the right hand side correspond to ε 0 (t+ 1) and using Eq. ( 19) one obtains:

θ(t + 1) -θ(t) = F φ(t) (t + 1) (21) 
which enables to rewrite Eq. ( 8) as:

(t + 1) = 0 (t + 1) -φ T (t)F φ(t) (t + 1) (22) 
from which the desired relation between ε(t+1) and ε 0 (t+1) is obtained:

(t + 1) = 0 (t + 1) 1 + φ T (t)F φ(t) (23) 
and the algorithm of Eq. ( 19) becomes:

θ(t + 1) = θ(t) + F φ(t) 0 (t + 1) 1 + φ T (t)F φ(t) (24) 
which is a stable algorithm irrespective of the value of the gain matrix F (positive definite). See [START_REF] Landau | Adaptive control[END_REF] for a stability analysis.

The division by 1 + φ T (t)F φ(t) introduces a normalization with respect to F and φ(t) which reduces the sensitivity of the algorithm with respect to F and φ(t). Approximations of this "normalization" have been introduced heuristically also on the basic gradient algorithm. See for example [START_REF] Haykin | Adaptive Filter Theory[END_REF]. One can also say that any time a normalization of this form is introduced on the basic gradient algorithm, the criterion to be minimized is modified to the form given in Eq. ( 17).

III. FEEDBACK SYSTEM INTERPRETATION OF

ADAPTION/LEARNING ALGORITHMS Fig. 2. Feedback structure of gradient adaptation/learning algorithm Consider Eq. ( 19). Subtracting θ from the both sides of Eq. ( 19) one gets:

θ(t + 1) = θ(t) + F φ(t) (t + 1) ( 25 
)
where θ is the parameter error. Eqs. ( 18) and (25) define a feedback system shown in Fig. 2. Since it is a feedback structure, stability of the system is a key issue. Using passivity arguments (see [START_REF] Landau | Adaptive control[END_REF]) it can be shown that the feedback path is passive and since the feedforward transfer function is 1 (a particular positive real transfer function), the system will be asymptotically stable. These results can be summarized as follows:

Lemma: For the predictor structure given in Eq. ( 6), passivity of the feedback path of the equivalent feedback representation of a PALA implies asymptotic stability for any positive constant adaptation gain/learning rate. Furthermore, examining the feedback path one observes that there is an embedded integrator filter which is a positive real transfer function.

IV. A GENERAL FORM FOR ADAPTATION/LEARNING

ALGORITHMS

In order to guarantee the passivity of the equivalent feedback path one can replace the integrator filter (in fact a multiinput, multi-output filter) by any positive real transfer matrix (of appropriate dimension) with a pole at z=1 in order to have memory or without a pole at z=1 if we do not want to have memory 1 . For details see [START_REF] Landau | Adaptive control[END_REF] . This allows on one hand to generate an infinite number of adaptation/learning algorithms and on the other hand it allows to analyze adaptation/learning algorithms which have been generated from different point of view. Therefore, one can consider to replace the integrator by a more general passive linear system leading to a PALA of the form ( [START_REF] Landau | Adaptive control[END_REF])

x(t + 1) = Ax(t) + Bφ(t) (t + 1) (26) θ(t + 1) = Cx(t) + Dφ(t) (t + 1) (27) 
where x(t) is the state of the passive linear filter and the input is the inverse of the gradient, in our case φ(t) (t + 1).

The system [A, B, C, D] is characterized also by the matrix transfer function:

H P AA (z) = C(zI -A) -1 B + D (28) 
One has the following result [START_REF] Landau | Adaptive control[END_REF] Theorem 1 For a PAA having the form of Eqs. (26) and (27), the equivalent feedback path is passive if the associated linear system [A, B, C, D] is passive, or alternatively, if H P AA (z -1 ) given in Eq. (28) is a positive real transfer matrix.

The particular case of integral adaptation/learning corresponds to:

A = I, B = D = F , C = I.
For the purpose of this paper it is convenient to particularize the adaptation/learning algorithm given in Eqs. ( 26) and ( 27) by the following one:

θ(t + 1) = H P AA (q -1 )F φ(t) (t + 1) (29) 
where H P AA (q -1 ) is a MIMO diagonal transfer operator having identical terms. All the diagonal terms are identical and are described by:

H ii (q -1 ) = 1 + c 1 q -1 + c 2 q -2 + .. 1 -d 1 q -1 -d 2 q -2 + .. = C(q -1 ) D(q -1 ) (30) 
and the passivity condition of theorem 1 implies that H ii (z -1 ) should be a positive real transfer function with a pole at z=1 if we want memory. F is the adaptation gain/learning rate which is a positive definite matrix. For the remaining of the paper will consider that F = αI; α > 0.

The explicit form of the algorithm is:

θ(t + 1) = d 1 θ(t) + d 2 θ(t -1) + .... +F [φ(t) (t + 1) + c 1 φ(t -1) (t) +c 2 φ(t -2) (t -1) + ....] (31) 
The algorithm given in Eq. (31) will be termed Auto Regressive Moving Average (ARMA) adaptation/learning algorithm and if it has an integrator, it will be termed Auto Regressive with Integrator Moving Average (ARIMA) adaptation/learning algorithm. One can see that the current parameter estimates depend upon the previous parameter estimations over a certain horizon (auto regressive) and upon the current and past values of the gradient over a certain horizon (moving average). It will be shown subsequently on one hand that a number of well known adaptation/learning algorithms are particular cases of the ARIMA adaptation/learning algorithm and on the other hand conditions for the stability of these algorithms independently of the size of the adaptation gain/learning rate will be provided.

V. A SURVEY OF VARIOUS ADAPTATION/LEARNING ALGORITHMS

A. "Integral + Proportional" Parameter Adaptation Algorithm

A first particularization of the above results is obtained for the integral+proportional adaptation/learning algorithm [START_REF] Landau | Adaptive control : the model reference approach[END_REF], [START_REF] Landau | Adaptive control[END_REF], [START_REF] Landau | Analyse et synthse des commandes adaptatives l'aide d'un modle par des mthodes d'hyperstabilit[END_REF], [START_REF] Gilbart | Improved convergence and increased flexibility in the design of model reference adaptive control systems[END_REF].

A = I ; B = F I ; C = I ; D = F I + F P (32)
which corresponds to an associated transfer matrix:

H P AA (z -1 ) = 1 1 -z -1 F I + F P ; F I > 0 ; F P = αF i ; α > -0.5 (33) 
where F I is called the integral adaptation gain and F p the proportional adaptation gain.

The algorithm is in general written under the equivalent form:

θI (t + 1) = θI (t) + F I φ(t)ν(t + 1) ; F I > 0 (34) θP (t + 1) = F p φ(t)ν(t + 1) ; (35) θ(t + 1) = θI (t + 1) + θP (t + 1) (36) 
The adjustable predictor has the form:

ŷ0 (t + 1) = θT I (t)φ(t); y(t + 1) = θT (t + 1)φ(t) (37)
The associated passivity conditions on the matrices F I and F p takes the form [START_REF] Landau | Adaptive control[END_REF]:

F I > 0; F I + 2F P ≥ 0 (38)
which leads to the "surprising" condition:

F P ≥ -0.5F I (or F P = αF I ; α ≥ -0.5) (39) 
i.e.,a negative proportional adaptation gain can be used provided that the above condition is satisfied.

One can ask what is the influence of the proportional term upon the adaptation algorithm. Proportional + Integral PALA with positive proportional gain leads to the improvement of the convergence of the adaptation error. However, high value of the proportional gain will slow down the convergence of the parameters. Small negative proportional adaptation gain improves in general the convergence of the parameters, but large negative values (within the limit) will slow down the convergence of the adaptation error. This is illustrated in [START_REF] Landau | Adaptive control[END_REF] pg 93 and [START_REF] Airimitoaie | Improving adaptive feedforward vibration compensation by using integral+proportional adaptation[END_REF] among other references.

B. "Integral+Proportional+Derivative" parameter adaptation algorithm

This algorithm has been introduced in [START_REF] Landau | Adaptive control : the model reference approach[END_REF]] with a continuous time formulation. The corresponding discrete-time structure of the algorithm is as follows:

θI (t + 1) = θI (t) + F I φ(t)ν(t + 1) ; F I > 0 (40) θP (t + 1) = F p φ(t)ν(t + 1) ; F p = αF I ; α ≥ -0.5 (41) θD (t + 1) = F D [φ(t)ν(t + 1) -φ(t -1)ν(t)] (42) θ(t 
+ 1) = θI (t + 1) + θP (t + 1) + θD (t + 1) (43)

The associated transfer matrix function has the form:

H P AA (z -1 ) = 1 1 -z -1 F I + F P + F D (1 -z -1 ) ; (44)
and it is positive real under the conditions:

F I > 0 ; F P = αF i ; α > -0.5; F D > 0 (45) 

C. The Nesterov algorithm

The Nesterov algorithm [START_REF] Nesterov | A method for solving a convex programming problem with convergence rate 0(1/k2[END_REF], [START_REF] Gaudio | Connections between adaptive control and optimization in machine learning[END_REF] has been developed in the field of optimization in order to improve under certain conditions the convergence rate of the basic gradient algorithm. Based on [START_REF] Gaudio | Connections between adaptive control and optimization in machine learning[END_REF], the Nesterov algorithm can be written in the present context as :

θ(t + 1) = ρ(t) + αφ(t)ε(t + 1) (46) 
ρ(t) = θ(t) + β[ θ(t) -θ(t -1)] (47) 
Combining Eqs (46) and (47) one gets:

θ(t + 1) = (1 + β) θ(t) -β θ(t -1) + αφ(t)ε(t + 1) (48) 
This is equivalent to say that θ(t + 1) is the output of the filter2 

H(q -1) = 1 1 -(1 + β)q -1 + βq -2 = 1 (1 -q -1 )(1 -βq -1 ) (49) 
whose input is αφ(t)ε(t + 1) and this is illustrated in Fig. 3. This transfer operator has a pole at z=1 assuring the memory of the algorithm. However in order to lead to a stable algorithm H should be a positive real transfer operator. Basic calculus allows to find that the positive real condition (which implies also the stability of the algorithm for any finite learning rate) is -1 ≤ β ≤ 0.33 (see [START_REF] Landau | Adaptive control : the model reference approach[END_REF], pg.160 for details). 

D. Momentum back propagation algorithm

This algorithm has been proposed in [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF], [START_REF] Jacobs | Increased rates of convergence through learning rate adaptation[END_REF]. Following [START_REF] Livieris | A survey on algorithms for training artificial neural networks[END_REF], it can be expressed as:

θ(t + 1) = θ(t) + m[ θ(t) -θ(t -1)] +(1 -m)αφ(t)ε(t + 1) (50) 
where m is called momentum and it can be rewritten as:

θ(t + 1) = (1 + m) θ(t) -m θ(t -1) +(1 -m)αφ(t)ε(t + 1) (51) 
Comparing with the Nesterov algorithm given in Eq. ( 48) it results that the only difference is the term (1-m) multiplying the adaptation gain/learning rate. The equivalent filter is the one of fig 3 except that the numerator is (1-m) instead of 1.

The same conditions are imposed on m in order to guarantee the passivity of the embedded filter :-1 ≤ m ≤ 0.33

E. Conjugate gradient algorithm

Conjugate gradient methods [START_REF] Polak | Note sur la convergence de methods de directions conjuguees[END_REF], [START_REF] Hestenes | Methods for conjugate gradients for solving linear systems[END_REF], [START_REF] Fletcher | Function minimization by conjugate gradients[END_REF] are efficient methods for large scale optimization problems. The main idea for determining the adaptation/learning direction is to use a linear combination of the current gradient with the previous direction of adaptation/learning. Following [START_REF] Livieris | A survey on algorithms for training artificial neural networks[END_REF] this algorithm can be expressed as follows:

θ(t + 1) = θ(t) + αd(t) (52) 
d(t) = βd(t -1) + φ(t)ε(t + 1); d(0) = φ(0)ε(1) (53) 
Eq (53) can be rewritten as:

(1 -bq -1 )d(t) = φ(t)ε(t + 1) (54) 
Plugging Eq (54) in Eq. (52) one gets:

(1 -bq -1 ) θ(t + 1) = (1 -bq -1 ) θ(t) + αφ(t)ε(t + 1) (55) which can be rewritten as:

θ(t + 1) = (1 + β) θ(t) -β θ(t -1) + αφ(t)ε(t + 1) (56) 
Eq. ( 56) has the same form as the Nesterov algorithm and same passivity/stability condition applies.

F. Averaged gradient algorithms

The basic idea is to use an average of the current and of previous gradients over a certain horizon (see [START_REF] Schmidt | Stochastic average gradient[END_REF], [START_REF] Pouyanfar | A survey on deep learning: Algorithms, techniques, and applications[END_REF]). A general formulation in the present context can be:

θ(t + 1) = θ(t) + F n i=0 λ i φ(t -i)ε(t + 1 -i); λ 0 = 1 (57)
The associated embedded adaptation filter will be:

H(q -1) = 1 + λ 1 q -1 + λ 2 q -2 + ..... (1 -q -1 ) (58) 
One observes that this type of algorithm is totally different from the Nesterov, Conjugate gradient and Momentum back propagation algorithms since instead of using an average on previous parameters (auto regressive form) it uses an average on the current and previous gradients which constitute the input to the algorithm (moving average). Of course the λ i should be chosen such that the transfer function associated to the transfer operator given in Eq. ( 58) is positive real. Note that I+P and I+P+D adaptation/learning algorithms for F I = α I I, F P = α P I, F D = α D I can be viewed as a particular form of this algorithm (λ

1 = -(α P +2α D ) α I +α P +α D , λ 2 = α D α I +α P +α D ).

G. Parameter Adaptation Algorithm with Leakage

For the case of tracking slowly time-varying parameters where there is not a steady state parameter to be reached, the integrator may not be justified (see [START_REF] Ioannou | Robust Adaptive Control[END_REF], [START_REF] Landau | Adaptive control[END_REF]). In this case, one can replace the integrator by a first order system i.e. in the PALA of Eq. ( 29)

H P AA (q -1 ) = 1 1 -σq -1 F ; 0 < σ < 1 (59) 
The associated transfer matrix is positive real. The PALA takes the form:

θ(t + 1) = σ θ(t) + F φ(t)ε(t + 1) ; 0 < σ < 1 (60) 
and the parameter error is driven by:

θ(t + 1) = σ θ(t) + F φ(t)ε(t + 1) -(1 -σ)θ (61) 
The term (1 -σ)θ corresponds to an exogenous bounded input to the equivalent feedback representaion (EFR) as indicated in Fig. 4. Since the linear feedforward path is strictly passive, the equivalent feedback representation has a BIBO property, and this exogenous input will generate a bounded adaptation error ε(t + 1) = 0 even for the case θ = constant. (The algorithm does not have a memory). Assume that θ is time-varying as:

θ(t + 1) = σθ(t) ; 0 < σ < 1
then the exogenous input in (61) disappears and lim t→∞ ε(t + 1) = 0. This remark suggests that it may be possible to perfectly track asymptotically the output of a system with time-varying parameters if the law of variation is known and it satisfies some conditions (see [START_REF] Landau | Adaptive control[END_REF]). It is known that the performance criterion can be reduced at each iteration if the correction moves in a direction which is deviated from the gradient direction by less than 90 o . The interpretation of the presence of this embedded filter is that one can modify dynamically the gradient correction, provided that the output of the filter introduces a phase lag/advance within ±90 • .

The passivity/stability conditions provided in this paper corresponds to the case when the adaptation gain/learning rate is constant (but of any value). When using time varying adaptation gains/learning rates passivity conditions have to be established taking into account the law of variation of the adaptation gain/learning rate (see [START_REF] Landau | Adaptive control[END_REF]).

The passivity/stability conditions can be further relaxed if it is possible to find a negative feedback gain λ < 1 around the equivalent feedback path, which makes passive the equivalent feedback path with this feedback.

VII. CONCLUSION

The paper has tried to convey several basic messages: 1) parameter adaptation/learning algorithms are dynamic systems and as such the stability of these algorithms is an important issue 2) they have a nonlinear/time varying feedback structure and passivity is a key tool for their analysis 3) inside the algorithm there is an embedded linear filter that should be characterized by positive real transfer function 4) the algorithms reviewed in this paper appear to be particular cases of a general adaptation/learning algorithm having an embedded IIR filter characterized by a positive real transfer function.
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 4 Fig. 4. Equivalent feedback representation for the adaptation/learning algorithm with leakage

A positive real discrete-time transfer matrix is characterized by the following properties :1) All elements of H(z) are analytic outside the unit circle (i.e. they do not have poles in | z |> 1).

2) The eventual poles of any element of H(z) on | z |= 1 are simple and the associated residue matrix is a positive semidefinite Hermitian.3) The matrix H(z) + H T (z -1 ) is a positive semidefinite Hermitian for all | z |= 1 which are not a pole of H(z).

In fact a MIMO diagonal transfer operator.