
1/18

METEORIX
A new processing chain for detection and tracking of meteors from space

M. Millet1,2, N. Rambaux3, A. Petreto1,2, F. Lemaitre1, L. Lacassagne1

1LIP6, Sorbonne Université, CNRS
2LERITY - Alcen

3IMCCE, Observatoire de Paris, PSL Université, Sorbonne Université, CNRS

International Meteor Conference
September 26th, 2021



2/18

METEORIX

The project :

I Universitary CubeSat mission of Sorbonne University[1]

I Several purposes :
I Educational Enroll students in a space mission
I Astronomical Estimate the flux of meteoroids and space debris entering the

atmosphere
I Technological Show the feasibility of a real-time processing chain

embedded in a nanosatellite.

I Step A : proof of concept validated

I Step B : definition and prototyping of the payload (in progress)
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METEORIX

The CubeSat :
I CubeSat 3U : 3 cubes of 10cm3.

I Payload :
I Camera
I Processing chain

I Strong energy constraint : −10W available

Figure 1 – View of Meteorix’s CubeSat[2]



4/18

State of art

I MeteorScan (1995) [3], MetRec (1999) [4], UFOCapture (2004) [5]
I Old but still used and popular
I Probability of detection in real-time greater than 80%.

I Ground camera networks
I FRIPON[6] (by IMCCE) with 250 cameras
I Wide sky coverage

I RPi Meteor Station [7]
I Croatian Meteor Network
I Designed for low power computer (Raspberry Pi)

I Processing chains with neural networks
I Probability of detection between 96%[8] and 99.9%[9].
I Require hardware[10][8] that can’t be embedded in a nanosatellite.
I Too few images of meteors from space.
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State of art

Image processing techniques used for meteor detection are not suited for space
detection.

Figure 2 – Example from RMS : Which lines are meteors ? Which lines are cities ?

⇒ No processing chain for space detection



6/18

Processing chain
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Figure 3 – CC = Connected Components, CCL = Connected Components Labelling,
CCA = Connected Components Analysis, v̄ = average speed, ᾱ = mean angle,
σα = angular standard deviation, σmax = 30 deg, NMAJ = 3
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Step 1 : Optical flow

I Optical flow estimation = apparent movement estimation
I Horn & Schunck [11]

I Iterative algorithm
I Pyramidal algorithm [12]

I Field of displacement vectors
I Speed in px/frame

Figure 4 – Frame 119 from sequence v86
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Step 1 : Optical flow

Figure 5 – Example : Frame 119 of sequence v86
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Step 1 : Optical flow

Figure 6 – Example : Frame 120 of sequence v86
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Step 1 : Optical flow

Figure 7 – Example : optical flow between frame 119 and 120
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Step 2 : Speed thresholding

I Meteors, space debris and lightnings are faster than Earth.
I Threshold set at 2.5px/frame.

Figure 8 – Example : norm of displacements vectors
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Step 2 : Speed thresholding

I Mathematical morphology : opening and closing.
I To remove pixels without neighbors.
I To regroup nearby cluster of pixels.

Figure 9 – Example : Binary mask of the fastest pixels.
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Steps 3 and 4 : Connected Components Labelling and Analysis

I Pixels representation → objects representation.
I Compute statistical features on each object.

I Average speed v̄ .
I Average angle ᾱ and its standard deviation σα.

Figure 10 – Example : connected components with their bounding box.
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Step 5 : Classification by σα
I How to differentiate the connected components ? (= fastest objects)

I The trajectory of the meteor is rectilinear.
I Low angular standard deviation ⇒ displacement vectors have a similar

direction.

I A lightning spreads in all directions inducing a high angular standard
deviation.

Figure 11 – Example : Angles
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Step 6 : Tracking

I Simple algorithm based on a state machine

I The position of a meteor can be extrapolated in case of temporary loss.

I 2 purposes :
I To confirm that it is a meteor (3 detections in less than a second).
I To group frames into a sequence.
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Figure 12 – State machine
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Validation bench

⇒ Qualify the processing chain

I ISS Meteor mission of Chiba University (Japan) [13].
I High resolution camera filming Earth from the ISS [14].
I 150 video sequences containing 50 meteors.

I Manual analysis to build a ground truth for each meteor.

I What is a valid detection ?
I The supposed meteor is on the ground truth’s trajectory.
I The supposed meteor progresses on this trajectory in the right direction.

I Three scores :
I Meteor detected or not.
I Ratio between number of frames containing a meteor and number expected

from the ground truth.
I Number of false positives
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Results

I 48 out of 50 meteors detected.
I Probability of detection : 96%.
I 70% of frames containing meteors are labelled as such.
I Not really comparable to state of art results.

I Some issues
I Cloudy and brightly sequences ⇒ false positives

I Fixed speed threshold ⇒ false negatives

I Bonus : detection seems work on Earth (with stationary camera).



18/18

Conclusion

I Proposition of a new processing chain for meteors detection from space.

I Validation bench to qualify the chain.

Next steps :
I Adaptive threshold on speed.
I Algorithm optimizations.

I Quality [15]/consumption [16]/speed [17] trade-off.
I Simple and/or efficient algorithms [18, 19].

I Consider other hardware architectures (FPGA?) [20].
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Thanks
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Example

Figure 13 – Complete example for frame 119
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How to speed up detection ?

Our goal is to reach real-time rate (25 frame/s).

I High Level Transforms
I reducing time and energy consumption [21, 22, 23].

I Code parallelization
I Multi-threading
I SIMD (data parallelism) [24]

I Quality trade off
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Connected Component Labeling

I Performed with Light Speed Labeling algorithm [25].
I Available in a parallel version [26].
I Very fast and energy efficient [27].
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