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Towards Generating Real-World Datasets for Teaching Statistics 

in Industrial Engineering 
 

Farida Saïd 

Iehann Eveno 

Jeanne Villaneau 

 

Abstract 

 
Driven by digital transformation, companies produce nowadays vast amounts of 

data. In the manufacturing industry, for example, the use of modern smart 

technology contributes to this data profusion. However, very few enterprise 

datasets are made freely available which results in a serious lack of open real data 

for research and education. In this paper, we present a discrete-events simulation 

tool that was developed to support undergraduate students in their Statistics and 

Data analysis course. It simulates scheduling scenarios in a manufacturing 

environment and the generated data may be used to put into practice Statistics 

concepts and methods to design cost-effective strategies for optimizing key 

performance indicators, such as reducing production time, improving quality, 

eliminating wastes, maximizing profit… 
 

Keywords: industrial datasets, teaching statistics, discrete events simulation 
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Introduction 
 

Industrial engineering (IE) is the branch of engineering that deals with 

improving processes, systems, or organizations and designing goods or services in 

the most efficient way possible, saving money, time, raw resources, labor, and 

energy while complying with safety standards and regulations. Industrial engineers 

use scientific and technical knowledge and skills to integrate and operate complex 

systems, and as such, their training programs have a significant scientific 

component. IE educators appear to agree on IE knowledge and curriculum 

structure while continually seeking innovations in content and instruction (Lang at 

al., 1999; Davies, 2001; Carrera, 2006; Eskandari et al., 2007; Lima et al., 2012; 

Sackey and Bester, 2016). In comparative studies (Kuo, 2001; Fraser and Teran, 

2006; Fraser, 2015; Nguyen and Nguyen, 2018), there is consensus that statistics 

and data analysis are part of the core courses in IE programs, and contextualizing 

learnings by working with real-world industry data is highly recommended to help 

students better understand their future profession. For that, we could take 

advantage of the vast amounts of data produced by companies driven by digital 

transformation and the increasing use of connected devices and interconnected 

machines. However, because these data are central to the manufacturing systems, 

they are rarely shared or made freely available which results in a serious lack of 

open real data for research and education. To overcome this difficulty, various 

simulation tools have been developed, some of which are free
1
. 

To support IE undergraduate students at University of South Brittany (France) 

in their one-semester course on Statistics & Data analysis, we developed a 

simulation tool in the agri-food domain. It simulates the operation of a pastry 

factory based on discrete-events simulations (DES) (Elizandro and Taha, 2007). 

Simulation models are usually built to understand how systems behave over time 

and to compare their performance under different conditions. DES models are 

widely used for design and implementation tasks, operational analysis, advanced 

planning, resource allocation, and logistics management. They are also commonly 

used for scheduling and automation, which are at the heart of Industry 4.0 (Ram et 

al., 2018).  
The main objective of our simulation tool was to create realistic industrial 

experiments and data to practice data analysis methods (sampling, confidence 

intervals, hypothesis testing, regression models...). The input parameters of the 

simulator are typical of ERP (Enterprise resource planning) data and the outputs 

are typical of SCADA (Supervisory control and data acquisition) feedback. The 

simulated data may be used, among others, to (1) identify the most significant key 

performance indicators (overall equipment effectiveness, capacity...) through the 

analysis of the production behavior, (2) to determine the critical phases of the 

production process and to understand the involvement of the physical environment 

in the quality of the production.   

 

 

  
                                                           

1
https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software. 
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The Manufacturing System 
 

The manufacturing system we are concerned with includes the 4 main 

activities depicted in Figure 1. Various raw ingredients (eggs, butter, sugar, flour) 

are mixed and kneaded to form a dough that is shaped into pastries that are baked 

by lots in an oven. Once cooked, the pastries are bagged and palletized. Quality 

control occurs after the bagging phase; it consists of testing a random sample of 

pastries from a lot and deciding whether to accept or reject the entire lot based on 

the quality of the random sample.   
 

Figure 1. Main Activities of the Manufacturing Process 

 
Many factors are involved in the completion of each activity and any 

disruption in any one of them affects the rest of the process. For example, a 

stoppage during baking results in undercooking or overcooking of pastries and 

their subsequent disposal. This in turn has an impact on the number of products to 

be bagged, palletized, and sold. 

According to Schruben and Schruben (2001), the rules or factors that govern 

the interaction of entities in a system that can be controlled are called parameters, 

while those that cannot be controlled are called laws. Figure 2 shows some 

parameters and laws involved in the manufacturing system; one can refer to Table 

1 for a list of the main factors. 
 

Figure 2. Manufacturing System 

 
 

Table 1. Main Manufacturing System Factors 
Equipment shutdown by equipment (0, 1) 
Equipment failure by equipment (0, 1) 

Oven temperature (°C) 

Amount of each ingredient needed to make a lot of pastries (% of the tank size) 

Number of rejects during a run 
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Level of each ingredient tank during production (%) 

Maximal level of each ingredient tank 

Maximal refill time for each ingredient tank (seconds) 

Minimal refill time for each ingredient tank (seconds) 

Refill time for each ingredient tank during production (seconds) 

Maximal number of staffers 

Minimal number of staffers 

The actual number of staffers  

Time spent in the oven (min) 

Time spent on the conveyor 3 (min) 

Quality of the sampled items 

Disposal thresholds  

Random disposal thresholds 

 

 

The Simulation Tool 
 

A manufacturing system is a combination of resources (machines, people, raw 

materials...), planning, organizational structures, information flows, and IT- 

systems that aim to achieve the manufacture of an economic product cost-

effectively. To understand how systems behave over time and to compare their 

performance under different conditions, two types of simulation models can be 

built: (1) discrete-event dynamic system models where the operation of the system 

is represented as a chronological sequence of events, and (2) continuous-event 

dynamic systems that track systems responses over time according to a set of 

equations involving usually differential equations. 

We adopted the discrete-event simulation (DES) approach which is usually 

used to model workflow as a network of queues and activities where state changes 

occur at discrete and irregular time stamps. DES models are generally stochastic, 

and randomness is generated using statistical distributions. 
The general framework of the simulation is depicted in Figure 3. It proceeds 

in the following steps for a single run: (1) the user selects a combination of input 

factors related to the manufacturing system, the environment, and the simulation. 

(2) Depending on the stated inputs, a variety of failures can be generated. These 

can be random or functional (they follow statistical distributions). In case of 

failure, an intervention request is launched. It feeds a knowledge base of failures 

and repair response times according to the type of failure, the number of available 

staffers, and the failure time occurrence (hour, day, month). (3) The laws of the 

industrial process are adapted to the inputs and, (4) the production process is 

launched. (5) An assurance sampling is carried out; it consists of selecting some 

items in a lot and deciding whether to accept or reject the entire lot based on the 

inspection of the sample. (6) The output data are stored in a spreadsheet (CSV file) 

for subsequent statistical analysis: one line by run. (7) The simulation tool updates 

the input settings for a new run. 
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Figure 3. Simulation Framework 

 
 

The operation of the factory can be simulated over long periods - up to one 

year - with a time increment of one minute at least. Table 2 describes the main 

factors that are involved in the simulation process at different stages. 
 

Table 2. Main Simulation Factors  
Time  Start date of the simulation: parameter 
 Simulation during weekends (yes, no) 
 No simulation on Friday afternoons for clean-up (yes, no) 
Failure generation Failure simulation (yes, no) 
 Time occurrence 
 Number of runs before failure per equipment 
 Repair response time 
 Range of the response time per equipment 
 Range of the random failures per equipment 
Sampling Sampling range per hour of operation 
Outputs Recording of the data (yes, no) 
 Recording increment (day, minute) 
Environment Indoor and outdoor temperatures (°C) 
 Indoor humidity (%) 
 Particulate matter (ppm) 
 Range of particulate matter when the fan is on (ppm) 
 Thresholds that set the increase and decrease of the indoor temperature (°C) 
Production Theoretical time to produce a lot (seconds) 
 Number of pastries in a lot 
 Weight of a pastry (g) 

 Number of lots produced during a run 
 Theoretical power consumption per equipment (W) 
 Thresholds for PID and engine power consumption (W) 
 Refill time for raw material tanks (min) 
 Temperature thresholds for fan operation (°C) 
 Thresholds for increase and decrease of indoor temperature and particulate 

matter 
 Thresholds for baking quality indicators, humidity index, ppm quality 

indicator, cooling quality indicator 
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The simulation outputs are provided in Table 4. Among them is the production 

quality indicator which is calculated as a linear combination of 5 stochastic quality 

indicators: 1) a baking quality indicator which corresponds to the time spent by a 

lot of pastries in the oven. It follows a Gaussian distribution around a theoretical 

baking time with a given standard deviation; 2) an error function that ensures that 

products that have been in the oven for a long time are not systematically rejected 

if the oven is at low temperature; 3) a humidity index, namely humidex, which 

combines temperature and humidity in one computed value. The higher the 

humidex, the more mold can grow; 4) a ppm quality indicator which corresponds 

to an error function that reflects the quantity of particles suspended in air; 5) a 

cooling quality indicator which corresponds to an error function that reflects the 

time spent by a lot of pastries between the oven and the bagger; this is a critical 

time during which bacteria can grow. Production quality is a standardized metric 

with values ranging from 0 to 1. The closer the value is to 1, the higher is the 

production quality.  
At last, the simulation tool was implemented in Python 3.6 with standard 

libraries.  

 

 

Output Analysis Framework 
 

After designing a simulation model and implementing a corresponding 

program, one must perform appropriate output analyses. As shown in Figure 4, the 

main activities related to the analyses of output data are experimentation, drawing 

reliable conclusions, communication, and presentation. 

 

Figure 4. Output Analysis Framework 

 
 

Since simulations of discrete event systems involve some randomness, the 

output of the simulation is effectively random variables. Thus, in principle, one 

can use the data analysis methods taught in statistics and data analysis courses to 

analyze the simulated data. However, in general, simulation data are not 

independent, and additional efforts may be needed to account for the dependency 

of simulation output. 

 

 

Cases of Study 
 

We simulated 10 months of operation of the factory, from 1 March to 31 

December. The weekly production load during the simulated period is given in 
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Figure 5. For example, from 1 March to 21 March inclusive, the production load 

per week was 70%. 
 

Figure 5. Weekly Production Load (%) 

 
 

Quality sampling was carried out every two hours, starting at 00:00 for 13 

minutes. In the following, we introduce the categorical variable Daytime which 

refers to the sampling periods (cf. Table 3).  
 

Table 3. Categorical Variable Daytime 

Sampling period 
00:00 
00:13 

02:00 
02:13 

04:00 
04:13 

06:00 
06:13 

08:00 
08:13 

10:00 
10:13 

Daytime 0am 2am 4am 6am 8am 10am 

Sampling period 
12:00 
12:13 

14:00 
14:13 

16:00 
16:13 

18:00 
18:13 

20:00 
20:13 

22:00 
22:13 

Daytime 12am 2pm 4pm 6pm 8pm 10pm 

 

We recorded 3,762 entries, one per sample, and for each sample, the variables 

in Table 4 were filled in. 
 

Table 4. Output Variables 
Categorical variables Continuous variables Discrete variables 
Day and Daytime Weekly production load: % Number of staffers 
Equipment Failure 
(oven, kneader, bagger, 

fan, conveyors): yes, no 

Equipment downtime (oven, kneader, 

bagger, fan, conveyors): min 
Number of lots 

produced 

 
Energy consumption per equipment (oven, 

kneader, bagger, fan, conveyors): W 
Number of samples 

 Production quality indicator Number of rejects 

 
Tank level per ingredient (egg, flour, 

butter, sugar): % 
 

 Outdoor temperature: °C  

 Indoor temperature: °C  

 Outdoor humidity: %  

 Oven temperature: °C  

 Particulate matter: ppm  
 

In the following, we use some techniques from the Statistics and Data 

Analysis course to analyze the data collected. Two questions are posed to illustrate 

the use that can be made of the simulated data. All the calculations presented were 

carried out in R, free software for data analysis (R Core Team, 2012). 

 
Question 1: What is the impact of fan failures on the factory's indoor temperature and 

particulate matter? 
 

Temperature 
 

We used a two-sided independent t-test to determine if there is a statistical 

difference between the average indoor temperatures in case of fan failure 
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(  =2148,   =21.73,   =1.93) versus no fan failure (  =1524,   =18.32, 

  =1.83). We found out that fan failures significantly increase the indoor 

temperature of the factory (       =53.95,  <0.001). Cohen’s d (1.81) suggests 

that this is a large effect. The 95% confidence interval (CI) for the difference 

between temperature means is 3.29°C - 3.54°C and it suggests that the true 

increase in temperature means is likely to be within this range 95% of the time. 

Figure 6 depicts the 95% CIs of the indoor temperature by fan failure occurrence; 

the centers of the CIs are connected by segments for better graphical readability. 
The assumptions of the independent t-test require: (1) independence of the 

two groups (with and without fan failures groups are independent); (2) the 

dependent variable should be approximately normally distributed in each group. 

The QQ-plots in Figure 7 show deviation from normality of the two distributions, 

which is confirmed by Shapiro-Wilk tests (without fan failures:   =0.93,  <0.001; 

with fan failures:   =0.92,  <0.001). However, we have very large sample sizes, 

and we can still use t-tests; (3) homogeneity of variance is tested using Levene’s 

test of comparison of variances and it showed no difference between the variances 

of the two groups.  

 

Figure 6. 95% CIs for Indoor Temperature  

 
Note: 0 and 1 stand for ‘without’ and ‘with’ fan failures respectively. 

 

Figure 7. QQ-Plots of Indoor Temperature 

                                                               
Note: without fan failures.                              Note: with fan failures. 
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Particulate Matter 
 

We used a two-sided independent t-test with Welch correction, to compare the 

average indoor temperatures in case of fan failure (  =2148,   =611.36, 

  =181.99) versus no fan failure (  =1524,   =607.63,   =154.19). There is no 

evidence of an effect of fan failures on the amount of particulate matter in the air 

(t(3556.7)=0.67, p=0.50 ns); Figure 8 shows the large overlap of the 95% 

confidence intervals of the two groups. 
When checking t-test assumptions, we found out that the normality assumption 

was violated in both groups as assessed by Shapiro-Wilk tests (without fan failure: 

  =0.91, p<0.001; with fan failure:   =0.97, p<0.001), but this is not an obstacle 

to using t-tests as we have very large samples. On the other hand, Levene’s test 

showed a violation of the equality of variances condition; we corrected for this 

violation by using an adjusted t-test statistic based on the Welch method. 
 

Figure 8. 95% CIs for Particulate Matter 

 
Note: 0 and 1 stand for ‘without’ and ‘with’ fan failures respectively. 

 
Question 2: Does the production quality indicator change over time and is it affected 

by the weekly charge load? 
 

Tables 5 and 6 provide descriptive statistics of the production quality indicator 

by weekly charge load and daytime respectively. Differences in average quality 

scores can already be observed by weekly load and over time. It is yet to 

investigate whether these differences are significant and whether there is an 

interaction effect between the weekly production load and the sampling timetable.  

 

Table 5. Production Quality Indicator by Weekly Production Load 
 Weekly charge load (%) 

 50 60 70 80 90 100 

Sample size 504 252 839 1008 672 393 

Mean 0.87 0.77 0.89 0.85 0.85 0.78 

Std. Deviation 0.07 0.05 0.08 0.09 0.09 0.07 

Minimum 0.63 0.57 0.60 0.57 0.53 0.60 

Maximum 0.98 0.91 0.98 0.98 0.97 0.96 
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Table 6. Production Quality Indicator over Time 
 Daytime  

   0am 2am 4am 6am 8am 10am 12am 2pm 4pm 6pm 8pm 10pm 

Sample size 305 306 306 306 306 306 306 306 305 305 305 306 

Mean 0.86 0.86 0.84 0.85 0.87 0.86 0.84 0.84 0.87 0.86 0.83 0.84 

Std. Deviation 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

Minimum 0.63 0.63 0.60 0.64 0.60 0.61 0.61 0.57 0.60 0.57 0.63 0.53 

Maximum 0.98 0.97 0.96 0.97 0.98 0.97 0.96 0.97 0.98 0.98 0.96 0.96 

 

A two-way independent Anova (Analysis of variance) was conducted to 

examine the effect of the weekly production load and daytime on the production 

quality indicator. There were significant main effects for both weekly production 

load (         =147.62,  <0.001) and daytime (         =6.51,  <0.001). There 

was no evidence of an interaction effect (          =0.26,   ). Omega squared 

measure suggests a large main effect of the weekly production load (  =0.17) and 

a small effect of daytime (  =0.014). After checking Anova’s assumptions, we 

carry out post hoc testing to go further. 

 

Effect of the Weekly Production Load 

 

Figure 9 depicts the behavior of the production quality according to the 

weekly production load; p-values and confidence intervals are adjusted for 

comparing a family of 6 estimates using Tukey’s correction method. The centers 

of the confidence intervals are connected by segments for better graphical 

readability. 
 

Figure 9. Production Quality Indicator by Weekly Production Load 

 
 

We observe that the best quality scores are achieved for a weekly production 

load of 70% and the lowest for 60% and 100% loads. These findings are confirmed 

by Tukey’s pairwise comparisons which are summed up in Table 7. 
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Table 7. Tukey’s Post Hoc Comparisons - Weekly Production Load (%) 

Weekly 

Production 

Load (%) 

Mean 

Difference 

95% CI for Mean 

erence t ptukey Difference 

Lower Upper 

60 

 50  -0.10  -0.12 -0.08  -15.20  < 0.001 *** 

 70  -0.12  -0.14 -0.10  -20.49  < 0.001 *** 

 80  -0.08  -0.10 -0.07  -14.47  < 0.001 *** 

 90  -0.08  -0.10 -0.07  -13.70  < 0.001 *** 

70 

 50  0.02  0.01 0.04  5.32  < 0.001 *** 

 80  0.04  0.03 0.05  9.69  < 0.001 *** 

 90  0.04  0.03 0.05  8.89  < 0.001 *** 

 100  0.11  0.10 0.12  21.66  < 0.001 *** 

100 

 50  -0.08  -0.10 -0.07  -15.22  < 0.001 *** 

 80  -0.07  -0.09 -0.06  -14.65  < 0.001 *** 

 90  -0.07  -0.09 -0.06  -13.60  < 0.001 *** 
* p < 0.05, ** p < 0.01, *** p < 0.001. 

Note: Results are averaged over the levels of Daytime. 

Note: The pairwise comparisons that are not presented are non-significant. 

 

A low-quality score for a 100% production load can be understood by the fact 

that higher workloads lead to higher equipment utilization and therefore higher 

risk of breakdowns and sub-quality. On the other hand, such a low score for a 60% 

workload should raise questions and call for investigations to find potential 

sources and correct them. 
 

Effect of Daytime 

 

Figure 10 depicts the evolution of the production quality over time; p-values 

and confidence intervals are adjusted for comparing a family of 12 estimates using 

Tukey’s correction method. 
 

Figure 10. Production Quality Indicator over Time 

 
 

One can observe that the best quality scores are achieved for 0am, 8am, 10am, 

4pm, and 6pm, and the lowest for 4am, 12am, 8pm, and 10pm. These findings are 

confirmed by Tukey’s pairwise comparisons which are given in Table 8. 
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Table 8. Tukey’s Post Hoc Comparisons – Daytime 

Daytime 
Mean 

difference 

95% CI for mean difference    

t ptukey 

 

Lower  Upper   
 

4am    

 0am  -0.03  -0.05  -4.13e-3 -3.82  < 0.01 **  

 8am  -0.03  -0.06  -7.79e -3 -4.32  < 0.001 ***  

 10am  -0.03  -0.05  -3.53e -3   -3.74  0.01 *  

 4pm  -0.03  -0.05  -5.85e -3   -4.05  < 0.01 **  

 6pm  -0.03  -0.05  -2.46e -3   -3.60  0.02 *  

12am    

 0am  -0.03  -0.05  -2.10e -3   -3.55  0.02 *  

 8am  -0.03  -0.05  -5.77e -3   -4.04  < 0.01 **  

 10am  -0.03  -0.05  -1.51e -3   -3.47  0.03 *  

 4pm  -0.03  -0.05  -3.83e -3   -3.78  < 0.01 **  

 6pm  -0.02  -0.05  -4.37e -4   -3.33  0.04 *  

8pm    

 0am  -0.03  -0.05  -5.72e -3   -4.04  < 0.01 **  

 8am  -0.03  -0.06  -9.38e -3   -4.53  < 0.001 ***  

 10am  -0.03  -0.05  -5.13e -3   -3.96  < 0.01 **  

 4pm  -0.03  -0.06  -7.44e -3   -4.27  < 0.01 **  

 6pm  -0.03  -0.05  -4.05e -3   -3.81  < 0.01 **  

10pm 

 0am  -0.02  -0.05  -2.90e -4   -3.31  0.04 *  

 8am  -0.03  -0.05  -3.95e -3   -3.80  < 0.01 **  

 4pm  -0.03  -0.05  -2.01e -3   -3.54  0.02 *  

2pm    
8am  -0.03  -0.05  -2.74e -3   -3.64  0.01 *  

4pm  -0.03  -0.05  -7.97e -4   -3.38  0.04 *  

 * p < 0.05, ** p < 0.01, *** p < 0.001 
Note: Results are averaged over the levels of Weekly production load. 

Note: The pairwise comparisons that are not presented are non-significant. 

 

In conclusion, the two case studies presented illustrate some practical uses of 

the simulation tool in a statistics and data analysis course. We have covered some 

descriptive and inferential statistics topics (confidence intervals, normality tests, 

tests of equality of means and variances, Anovas, etc.), however the diversity of 

the output variables (continuous, discrete, categorical) allows for a wider variety of 

analyses (linear regression, logistic regression, multiple component analysis, etc.). 

An advantage of this tool is also the ability to generate customized datasets, to 

focus on a particular technique and explore its multiple facets. 

 

 

Discussion and Conclusion 
  

We have proposed a simulation tool to generate realistic industrial datasets 

and we have presented two case studies to illustrate their utilization in the context 

of a statistics and data analysis course for IE undergraduate students. The 

examples treated involve common concepts of descriptive and inferential statistics. 

However, the varied nature of the output variables allows for a wider range of 

analysis techniques.  
The simulated data can serve the analysis of the production behavior of 

manufacturing systems and the identification of the most significant key 
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performance indicators (overall equipment effectiveness, capacity...). They can 

also be used to identify the critical phases of the production process and to 

understand the involvement of the physical environment in production quality.  
As for future evolutions of the simulation tool, randomness is currently 

generated via uniform and Gaussian distributions, and we plan to introduce other 

statistical distributions for specific events (Exponential and Erlang for inter-arrival 

times, triangular, Beta, Normal and LogNormal for service times, Weibull for 

inter-failure times…). 
It also remains to develop a user interface that allows students to design their 

datasets and their quality indicators for subsequent statistical analyses. We believe 

that when students are actively involved in an experiment, they internalize better 

the material being taught and mobilize more inner resources for learning. The 

industrial context could help to get more commitment of the students by projecting 

them in their future profession and following that, to adopt a professional posture 

in the analysis of the problem, the choice of the data analyses to carry out, their 

rigorous application, and the restitution of the results in a form that is clear, 

concise, and adapted to the recipient. 
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