BiLSTM Network-Based Extended Kalman Filter for Magnetic Field Gradient Aided Indoor Navigation - Archive ouverte HAL
Article Dans Une Revue IEEE Sensors Journal Année : 2022

BiLSTM Network-Based Extended Kalman Filter for Magnetic Field Gradient Aided Indoor Navigation

Makia Zmitri
Hassen Fourati

Résumé

This paper proposes an innovative method to estimate the velocity of a moving body. This is achieved using solely raw data from a triad of low-cost inertial sensors, i.e. accelerometer and gyroscope, as well as a determined arrangement of magnetometer array. The proposed approach combines a magnetic field gradient-based Extended Kalman Filter (EKF), with a Bidirectional Long Short-Term Memory (BiLSTM) network. This is to better estimate the velocity, especially when the magnetic field disturbances are low, which causes other magnetic field-based methods to be inaccurate. The proposed method also makes it possible to well update the velocity regardless of sensor location, without any heavy computation or complex tuning, as the case for the Zero-Velocity Update Technique (ZUPT). The performance of the proposed approach is demonstrated through real experiments data using a Magneto-Inertial Tachymeter (MIT). The obtained results show the efficiency of the velocity estimation and possibly position, for different sensor placements and trajectory scenarios.
Fichier non déposé

Dates et versions

hal-03425006 , version 1 (10-11-2021)

Identifiants

Citer

Makia Zmitri, Hassen Fourati, Christophe Prieur. BiLSTM Network-Based Extended Kalman Filter for Magnetic Field Gradient Aided Indoor Navigation. IEEE Sensors Journal, 2022, 22 (6), pp.4781-4789. ⟨10.1109/JSEN.2021.3091862⟩. ⟨hal-03425006⟩
115 Consultations
0 Téléchargements

Altmetric

Partager

More