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Analysis of the least sum-of-minimums estimator for switched
systems
Laurent Bako

Abstract—This paper considers a particular parameter estimator for
switched systems and analyzes its properties. The estimator in question is
defined as the map from the data set to the solution set of an optimization
problem where the to-be-optimized cost function is a sum of pointwise
infima over a finite set of sub-functions. This is a hard nonconvex problem.
The paper studies some fundamental properties of this problem such
as uniqueness of the solution or boundedness of the estimation error
regardless of computational considerations. The interestof the analysis
is to lay out the main influential properties of the data on theperformance
of this (ideal) estimator.

Index Terms—System identification, switched systems, sparsity, data
richness, robustness to outliers.

I. I NTRODUCTION

A switched system is defined by a finite set of dynamic systems
together with a map, called the switching law, which selects over
time which system (subsystem) is activated [10], [17]. The switching
law may be time-driven, event-driven or state-driven. Such systems
can be viewed as formal descriptions of physical phenomena taking
place in, for example, power converters [11], video sequences (from
segmentation perspective) [18]. Finding mathematical representations
of switched systems is fundamental for the purpose of control,
analysis or diagnosis. In this paper we discuss the theoretical perfor-
mances/properties of a particular method for identifying a switched
model from measurements.

The problem of identifying switched systems directly from input-
output data has been largely investigated in the recent literature. Ex-
amples of contributions include the works reported in [19], [1], [12],
[16], [5] most of which rely on numerical optimization. Some surveys
of the topic can be found in [9], [4], [13] (see the references therein).
It is fair to remark that a large number of computational methods have
been proposed for estimating the parameters of switched systems.
However, an important aspect that is not well understood yet is
how the properties of the data quantitatively impact the performance
of estimation methods operating on those data. In other words, the
necessary properties of informativity of the data which favor correct
estimation is still to be further investigated. In the current work we
take a step forward in the study of such informativity properties. Note
that so far, only a very few works have considered the fundamental
question of characterizing data informativity (richness) in the context
of switched system identification [14], [18]. [14] sketches a broad
purpose condition of persistence of excitation for estimating switched
state-space realizations. As to the characterization formulated in [18],
it can be interpreted as a rank condition in a lifted space (resulting
from polynomial embedding of the regressors). However, neither
of these contributions proposed a characterization of the parametric
estimation error bound as an explicit function of the informativity
degree of the regression data.

The goal of this paper is to analyze the properties of a particular
estimator which we call here the Least Sum-of-Minimums estimator
(LSM) for switched system identification. This estimator maps the
data to the parameter space (of the constituent subsystems) by
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associating to a given data set the minimizing set of some data-
dependent cost function. The cost function is formed as a sum of
pointwise infima of the prediction errors associated to each subsystem.
While the prediction errors may be measured in the LSM framework
with multiple different loss functions, we focus specifically on the
case of the absolute deviation loss function. We note that the LSM
estimator is neither analytically expressible, nor numerically solvable
directly at a reasonable computational price. Heuristics exist however
that allow to approach the solution with, sometimes, guarantees of
optimality. For a numerical approach to this problem we refer for
example, to [8]. The perspective taken here is formal rather than
computational, the goal being to lay out the properties the data should
enjoy to allow for an adequate retrieval of the system parameters, at
least in principle. In the wake of our previous work reported in [1], we
first derive conditions on the data that guarantee exact recoverability
of the true parameter matrix in the hypothetical scenario where the
measurements would be essentially noise-free. A striking property
of the absolute deviation loss (used in the framework of the LSM
estimator) is that it allows for exact recovery even in the face of
a sparse noise, provided that the number of nonzero values in the
sparse noise sequence does not exceed a certain threshold prescribed
by the informativity degree of the data. In the more realistic situations
where the data are affected by bothdense and sparse noise, we
provide parametric error bounds for the estimates delivered by the
estimator. The interest of our results reside in the fact that they reveal
the impact of the data informativity on the attainable performance
of the (ideal) switched system estimator. This feature makes them
potentially useful for optimal experiment design, that is, the process
of defining adequately the data-generating experimental conditions
that would lead to the smallest (estimation) uncertainty bound.

Outline. We state the switched system identification problem in
Section II and define the LSM estimator. We start the analysis by
considering essentially the noiseless scenario in Section III and then
the noisy one in Section IV. The main conclusions of our study are
recapitulated in Section V.

Notation. R denotes the set of real numbers;R+ is the set of
nonnegative real numbers. For a matrixA = [a1 · · · as] ∈ R

n×s,
we useSet(A) to denote the finite set formed with the columns of
A, i.e.,Set(A) = {a1, . . . , as}. If S is a finite set, then|S| denotes
the cardinality ofS. If x ∈ R then |x| is the absolute value ofx.
For x =

[

x1 · · · xn

]

∈ R
n, ‖x‖0 will refer to the ℓ0 norm

of x (namely the number of nonzero entries in the vectorx); and
‖x‖1 =

∑

i |xi| will denote theℓ1 norm of x. If X ∈ R
n×N is a

matrix andI ⊂ {1, . . . , N} is a subset of the column index ofX,
thenXI denotes the submatrix ofX formed with the columns ofX
which are indexed byI. Similarly, for a vectorv ∈ R

N , vI refers to
the subvector ofv consisting in the entries ofv indexed byI.

II. T HE SWITCHED SYSTEM IDENTIFICATION PROBLEM

A. The data-generating system

Consider a (possibly nonlinear) switched system described by an
equation of the form

yt = x⊤
t a

◦
σ(t) + vt, (1)
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where t ∈ Z+ refers to discrete-time,yt ∈ R is the output of the
system at timet, xt ∈ R

n is the regressor. As tovt, it refers to
potential additive noise component.σ : Z+ → S , {1, . . . , s}
defines a switching signal anda◦

i ∈ R
n, i ∈ S, denote some distinct

parameter vectors. Eq. (1) describes a switched system composed of
s dynamical subsystems each of which is activated one after another
in time by the switching signalσ.

The model (1) captures the situations where the regressorxt is
directly observed or obtained through an intermedirary nonlinear
mapping of some observable signalzt ∈ R

d. We will assume that

xt = ϕ(zt) (2)

whereϕ : Rd → R
n is some (known) linear or nonlinear map. Hence,

depending on the choice of the mappingϕ, the model (1) can describe
both linear and nonlinear switched systems.

We further observe that the system represented by (1) can be static,
in which casezt is an unstructured multivariate input vector, or
dynamic. In this latter case,zt in (2) may assume the form

zt = [yt−1 · · · yt−na u⊤
t u⊤

t−1 · · · u⊤
t−nb

]⊤ ∈ R
d (3)

with na and nb being some integers andut ∈ R
nu the input of

the system. Note thatna can be taken equal to zero in which case
xt reduces toxt = [u⊤

t u⊤
t−1 · · · u⊤

t−nb
]⊤ (hence yielding a

switched nonlinear system of Finite Impulse Response type).

B. The least sum of minimums estimator

For convenience we collect the true parameter vectorsa◦
i ∈ R

n

from (1) in a matrixA◦ = [a◦
1 · · · a◦

s ] ∈ R
n×s which we call

the true parameter matrix. Given a collection ofN data points

̟N = ((x1, y1), . . . , (xN , yN )) (4)

generated by the switched system (1), the estimation problem of
interest here is to estimate the parameter matrixA◦.

The focus of this paper is this estimation problem. We consider that
the numbers of subsystems and the structural parameters(na, nb)
entering the definition ofxt in (2)-(3) are known a priori. Our goal
is to design a map, called estimator, which maps the data̟N to
the set of parameters describing the constituent subsystems of the
switched system (1). To begin with the approach taken in this paper
to such an estimation problem, letT and S denote the index sets
of the data and the subsystems respectively, i.e.,T = {1, . . . , N}
andS = {1, . . . , s}. Use the notationΣ to denote the set of all maps
σ : T → S (called here switching signals). Consider the cost function
J ◦ : Rn×s × Σ → R+ defined by

J ◦(A, σ) =

N
∑

t=1

∣

∣yt − a⊤
σ(t)xt

∣

∣

whereA ∈ R
n×s andσ ∈ Σ. Then a natural estimator ofA◦ can be

defined as the set-valued mapΨ : (Rn × R)N → R
n×s,

Ψ(̟N ) =
{

Set(Â) : ∃σ̂ ∈ Σ, (Â, σ̂) ∈ argmin
A,σ

J ◦(A, σ)
}

Ψ(̟N ) is the set of all setsSet(Â) for all Â ∈ R
n×s such that

(Â, σ̂) is a minimizer ofJ ◦(A, σ) for some switching signal̂σ. If
we let

J (A) =
N
∑

t=1

min
i=1,...,s

∣

∣yt − a⊤
i xt

∣

∣ (5)

then it can be easily shown that

Ψ(̟N ) =
{

Set(Â) : Â ∈ argmin
A

J (A)
}

. (6)

Hence, minimizingJ ◦(A, σ) is equivalent to minimizingJ (A) in
(5). The so definedΨ will be called the least sum-of-minimums
(LSM) estimator. Because the prediction error is measured here in
term of the absolute value loss function, we may also refer toΨ
in the sequel as the absolute deviation LSM estimator. We start by
observing that solving numerically any of these formulations of the
switched identification problem is quite hard. The focus of this paper
is not on this computational aspect but on the formal properties of the
mapΨ. More precisely, we are interested in characterizing conditions
(on the data-generating system (1) and on the properties of the data)
under whichΨ(̟N ) may contain a singleton (unique solution) or
may be located at a bounded distance from the true parameter matrix
A◦. The primary interest of such conditions is to emphasize the
main influential factors of the estimator’s performance. From this
perpective, we do not expect the intended properties to be necessarily
numerically verifiable but to have a rather qualitative flavor which
may serve for experiment design for instance.

III. B ASIC PROPERTIES OF THE ESTIMATOR

We start by introducing some definitions. For any matrixA =
[a1 · · · as] ∈ R

n×s, let σA ∈ Σ be a switching signal satisfying

σA(t) ∈ argmin
i∈S

∣

∣yt − x⊤
t ai

∣

∣ (7)

for all t ∈ T. The defining constraint (7) of the switching sig-
nal σA allows indeed for multiple choices ofσA(t) whenever
argmini∈S

∣

∣yt − x⊤
t ai

∣

∣ ⊂ S is not a singleton. One simple choice
to solve this issue would be to set arbitrarilyσA(t) to be equal to
the smallest element ofargmini∈S

∣

∣yt − x⊤
t ai

∣

∣. However, for the
purpose of our analysis we will define suchσA(t) in a more specific
way. Consider the index set

Ii(A) = {t ∈ T : σA(t) = i} . (8)

Then for allA ∈ R
n×s, we haveIi(A) ∩ Ij(A) = ∅ for i 6= j and

T = ∪s
i=1Ii(A). For reasons that will become clear in the rest of the

paper, it is desired here thatmini∈S |Ii(A)| be as large as possible.
That is, we want the partition{Ii(A)}i∈S

of T to be as balanced
as possible in term of the cardinalities of its members. Hence, it is
of interest to use the possible extra-degree of freedom offered by
Eq. (7) to selectσA so as to maximizemini∈S |Ii(A)| subject to
the constraint (7). In case the maximizingσA is still not unique, we
can make it unique for a givenA by selecting the one which assigns
to eacht, the smallest admissible indexi ∈ S. To sum up, given
A ∈ R

n×s, σA can be selected uniquely by following the process
described above.
GivenσA, let us now define the vectorφ(A) collecting the errors of
the formyt − x⊤

t aσA(t) for t ∈ T,

φ(A) =
[

y1 − x⊤
1 aσA(1) · · · yN − x⊤

NaσA(N)

]⊤
. (9)

Then the cost functionJ (A) in (5) is the ℓ1 norm of φ(A),
J (A) = ‖φ(A)‖1 . Note in passing thatJ (A) is invariant under
column permutation of the matrixA. This property implies thatJ (A)
is indeed a function ofSet(A). Note that this is an intrinsic property
of the multiple-regression problem. In other words, the invariance
property ofJ (A) does not constitute any restriction on the switching
mechanism of the to-be-identified data-generating system (1).

A. Informativity measure of data and exact recovery

For anyr ∈ {0, . . . , N}, denote withSr ⊂ R
N the set ofr-sparse

vectors inRN , i.e.,

Sr =
{

w ∈ R
N : ‖w‖0 ≤ r

}

. (10)
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For A ∈ R
n×s, define the distanceδr(A) from φ(A) to the setSr

by
δr(A) = inf

w

{

‖φ(A)− w‖1 : w ∈ Sr

}

. (11)

The so-definedδr(A) represents in fact the sum of theN−r smallest
entries (in absolute value) ofφ(A). In particular,δ0(A) = ‖φ(A)‖1
andδN (A) = 0.
For any subsetT of T, letφT (A) refer to a subvector ofφ(A) formed
with the entries indexed byT .

Definition 1 (Concentration ratio). Consider the dataset̟N and the
associated mapφ defined in (9). Letr ∈ {0, . . . , N}. We call r-
th concentration ratio ofφ on the dataset̟ N expressed in (4), the
number defined by

ξr(̟
N ) = sup

(A,A′)∈(Rn×s)2

T ⊂T

{

‖φT (A)− φT (A′)‖1
‖φ(A)− φ(A′)‖1

:

φ(A) 6= φ(A′), |T | ≤ r

}

.

(12)

The supremum is taken here with respect to any pair(A,A′) ∈
(Rn×s)2 such thatφ(A) 6= φ(A′) and over all subsetsT of T whose
cardinality does not exceedr. The supremum exists because it is
applied to a set which is upper-bounded by1.
We interpret the concentration ratio as a function which measures
quantitatively different levelsr of informativity of the data. For a
given levelr, the data̟ N are all the more informative asξr(̟N )
is small. Ideally, we would likeξr(̟N ) to be as small as possible
for the largest possible levelr.
Computing numericallyξr(̟N ) would require in general solving a
hard combinatorial optimization problem, the complexity of which
might not be affordable in practice. It can however be more cheaply
over-approximated thanks to the direct observation thatξr(̟

N ) ≤
rξ1(̟

N ). This is because searching forξ1(̟N ) instead ofξr(̟N )
alleviates considerably the combinatorial nature of the problem. Note
in passing thatξr(̟N ) is an increasing function ofr and satisfies
ξ0(̟

N ) = 0 andξN (̟N ) = 1.

Remark 1. In the special case wheres = 1 (i.e., the situation where
(1) reduces to a single subsystem), the matrixA reduces to a single
vector, sayA = a ∈ R

n. We recover the classical linear regression
problem. Then

φ(A) =
[

(y1 − x⊤
1 a) (y2 − x⊤

2 a) · · · (yN − x⊤
Na)

]⊤

= y −X⊤a.

whereX = [x1 · · · xN ] ∈ R
n×N is a matrix collecting all the

regressors{xt}t∈T
generated by(1) andy = [y1 · · · yN ] is the

vector of all output samples. In this case,ξr(̟
N ) in (12) takes the

form

ξ◦r (̟
N ) = sup

η∈R
n

T ⊂T

{
∥

∥X⊤
T η

∥

∥

1

‖X⊤η‖1
: η 6= 0, |T | ≤ r

}

(13)

where it is assumed thatrank(X) = n, that is,X is full row rank.
The notationXT refers to the matrix formed with the columns ofX
indexed byT . We observe that in this case,ξ◦r (̟

N ) depends only on
the regressor matrixX. Moreover, it can be overestimated through
the solution of a convex optimization, see [2].

Using the concentration ratio introduced in (12), we can now state
a fundamental lemma for our analysis (see Lemma 2 below, which
can be viewed as a special reformulation of Lemma 4.2 in [3]). To
ease the proof, we start with a preliminary technical lemma.

Lemma 1. Let r ∈ {0, . . . , N} and Sr be defined as in(10).

Consider an arbitrary vectorv ∈ R
N and define1 Tr(v) ⊂ T to

be the index set of ther largest entries in absolute value ofv. Then
for all v′ ∈ R

N ,
∥

∥v′ − v
∥

∥

1
− 2

∥

∥(v′ − v)Tr(v)

∥

∥

1

≤
∥

∥v′
∥

∥

1
− ‖v‖1 + 2 inf

w∈Sr

‖w − v‖1
(14)

Proof. See Appendix A.

Lemma 2. Let r ∈ {0, . . . , N}. Consider the dataset̟ N as in (4)
and ξr(̟

N ) as defined in(12). If ξr(̟N ) < 1/2, then
∥

∥φ(A′)− φ(A)
∥

∥

1
≤

1

1− 2ξr(̟N )

(

J (A′)− J (A) + 2δr(A)
)

∀(A,A′) ∈ R
n×s × R

n×s

(15)
with φ(A), J (A) andδr(A) defined in(9), (5) and (11) respectively.

Proof. Let T be a subset ofT containing the indices of ther largest
entries ofφ(A) in absolute value. We apply the result of Lemma 1
with v = φ(A) andv′ = φ(A′), which leads immediately to

∥

∥φ(A′)− φ(A)
∥

∥

1
−2

∥

∥φT (A′)− φT (A)
∥

∥

1

≤
∥

∥φ(A′)
∥

∥

1
− ‖φ(A)‖1 + 2δr(A)

(16)

whereδr(A) is defined as in (11). From the definition (12) ofξr, it
can further be observed that

∥

∥φT (A′)− φT (A)
∥

∥

1
≤ ξr(̟

N )
∥

∥φ(A′)− φ(A)
∥

∥

1
,

which in turn implies that
(

1− 2ξr(̟
N )

)

‖φ(A′)− φ(A)‖1 is
smaller than the left hand side term of (16). We therefore get

(

1− 2ξr(̟
N )

)
∥

∥φ(A′)− φ(A)
∥

∥

1

≤
∥

∥φ(A′)
∥

∥

1
− ‖φ(A)‖1 + 2δr(A)

and the result follows.

Remark 2. In the scenario of Remark 1, the result of Lemma 2 would
read as

∥

∥X⊤ (

a′ − a
)
∥

∥

1
≤

1

1− 2ξ◦r (̟N )

(

J (a′)− J (a) + 2δr(a)
)

(17)
with ξ◦r (̟

N ) as in (13). Hence if X is full row rank then the
left hand side constitutes a data-dependent norm on the error
a′ − a. If we let λ = inf‖η‖1=1

∥

∥X⊤η
∥

∥

1
, then

∥

∥a′ − a
∥

∥

1
≤

1

λ(1− 2ξ◦r (̟N ))
(J (a′)− J (a) + 2δr(a)).

By interchanging the roles ofA andA′ in the inequality (15) one
can obtain
∥

∥φ(A)− φ(A′)
∥

∥

1
≤

1

1− 2ξr(̟N )

(

J (A)− J (A′) + 2δr(A
′)
)

Summing this with (15) then yields the following inequality
∥

∥φ(A′)− φ(A)
∥

∥

1
≤

1

1− 2ξr(̟N )

(

δr(A
′) + δr(A)

)

. (18)

Another immediate consequence of Lemma 2 can be stated as
follows:

Lemma 3. If ξr(̟N ) < 1/2 for somer ∈ {0, . . . , N}, then for all
Â ∈ argminA J (A) and for all A ∈ R

n×s,
∥

∥φ(A)− φ(Â)
∥

∥

1
≤

2

1− 2ξr(̟N )
δr(A). (19)

1with the convention thatTr(v) = ∅ for r = 0.
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Moreover, if there exists a matrix̃A such that‖φ(Ã)‖0 ≤ r then

argmin
A

J (A) =
{

A ∈ R
n×s :

∥

∥φ(A)
∥

∥

0
≤ r

}

=
{

A ∈ R
n×s : φ(A) = φ(Ã)

}

Proof. By Eq. (15), we have
∥

∥φ(A)− φ(Â)
∥

∥

1
≤

1

1− 2ξr(̟N )

(

J (Â)− J (A) + 2δr(A)
)

for all A ∈ R
n×s. BecauseJ (Â) − J (A) ≤ 0, this yields

immediately (19). The second statement follows from the fact that
if ‖φ(Ã)‖0 ≤ r, thenδr(Ã) = 0. Therefore, replacingA with Ã in
(19) shows thatφ(Ã) = φ(Â) and so,J (Ã) = J (Â). Hence such
an Ã is necessarily inargminA J (A). On the other hand, since
φ(Ã) = φ(Â), any Â ∈ argminA J (A) satisfies‖φ(Â)‖0 ≤ r
hence concluding the proof.

An interpretation of Lemma 3 is that if the data̟N used to
construct the mapφ in (9) are generated by the switched system
(1) and if the data is sufficiently informative in the sense that
ξr(̟

N ) < 1/2 for somer and the system parameter vectors are
such that‖φ(A◦)‖0 ≤ r over the data, withA◦ denoting the true
parameter matrix (see Eq. (1)), thenSet(A◦) ∈ Ψ(̟N ). At this
step, a question that needs to be discussed further is whetherSet(A◦)
may be the unique member ofΨ(̟N ). For this purpose we need a
property of uniform rank on the dataX.

Definition 2 (An integer measure of genericity). [1] Let X ∈ R
n×N

be a data matrix satisfyingrank(X) = n. Then-genericity index of
X, denotedνn(X), is defined as the minimum integerm such that
anyn×m submatrix ofX has rankn,

νn(X) = min
{

m : ∀ S ⊂ T with |S| = m, rank(XS) = n
}

.

(20)
Here,XS is a matrix formed with the columns ofX indexed byS.

This definition implies that any submatrix ofX ∈ R
n×N having at

leastνn(X) columns (withn ≤ νn(X) ≤ N ), has full row rank. The
smallerνn(X), the more generic the regression dataX are said to be.
According to this rough criterion, the most generic dataX achieve
νn(X) = n. This is typically the case when the regressors{xt}t∈T

are in general positionin R
n. Under some minimality conditions

[15] on the data-generating system (1), if the input signal{ut} is
generated at random, thenνn(X) = n with probability one.

Equipped with this notation and the definition of genericity index
νn(X), we can now characterize uniqueness of the minimizer of
J (A) based on the following lemma.

Lemma 4. Consider a dataset̟ N of the form(4) and the notation
Ii(A) introduced at the beginning of Section III. Assume that there
exists a matrixÃ = [ã1 · · · ãs] ∈ R

n×s with distinct columns
ãi such that

min
i∈S

∣

∣Ii(Ã)
∣

∣ ≥ sνn(X) (21)

on the data̟ N . Then the following holds:

∀A ∈ R
n×s, φ(A) = φ(Ã) ⇒ Set(A) = Set(Ã). (22)

Proof. Let A be such thatφ(A) = φ(Ã). Then for all t ∈ T, yt −
x⊤
t aσA(t) = yt − x⊤

t ãσ
Ã
(t), which is equivalent tox⊤

t (ãσ
Ã
(t) −

aσA(t)) = 0 for all t ∈ T.
The next step of the proof is to show that for anyi ∈ S there exists
j⋆ ∈ S such thatIij⋆ , Ii(Ã)∩ Ij⋆(A) has a cardinality larger than
or equal toνn(X). For this purpose we proceed by contradiction.

Take an arbitraryi ∈ S and assume that|Iij | < νn(X) ∀j ∈ S.
Noting that

Ii(Ã) = Ii(Ã) ∩ T = Ii(Ã) ∩ (∪s
j=1Ij(A)) = ∪s

j=1Iij ,

we obtain|Ii(Ã)| ≤
∑s

j=1 |Iij | < sνn(X). But this constitutes a
contradiction to the assumption (21). In conclusion, for alli ∈ S,
there exists aj⋆ such that|Iij⋆ | ≥ νn(X). Now we observe that for
all t ∈ Iij⋆ , x⊤

t (ãi − aj⋆) = 0 and so,X⊤
Iij⋆

(ãi − aj⋆) = 0. But
since |Iij⋆ | ≥ νn(X), we haverank(XIij⋆ ) = n, which implies
that ãi = aj⋆ . Since all columns of̃A are distinct (no repetition), we
conclude thatÃ andA have the same columns up to a permutation
which is equivalent to saying thatSet(Ã) = Set(A).

It is interesting to note that in the absence of noise in (1), having
the true parameter matrixA◦ to obey (21) is a sufficient condition for
exact recovery of that matrix from the data. What this means is that
if vt = 0 for all t and if all the subsystems have been sufficiently
excited in the sense that condition (21) holds forÃ = A◦, then
Ψ(̟N ) = {Set(A◦)}.

The following theorem recapitulates the discussion of this section.

Theorem 1. Consider the dataset̟ N in (4), generated by the
switched system(1). Assume that:

• ̟N is informative enough in the sense thatξr(̟
N ) < 1/2 for

somer ∈ {0, . . . , N}; let then

r∗(̟N ) = max
{

r : ξr(̟
N ) < 1/2

}

.

• There exists a matrix̃A ∈ R
n×s satisfying the condition(21)

and ‖φ(Ã)‖0 ≤ r∗(̟N ).

Then the estimatorΨ defined in(6) satisfies

Ψ(̟N ) =
{

Set(Ã)
}

. (23)

Proof. To begin with, note that forr∗ defined as in the statement of
the theorem, it holds thatδr∗(Ã) = 0 (see Eq. (11) for the definition
of δr). Now, since the conditions of Lemma 3 are satisfied, we can
apply it to infer that ifÂ ∈ argminA J (A), thenφ(Â) = φ(Ã) so
that J (Ã) = minA J (A). Conversely, it is immediate to see that
any A′ ∈ R

n×s which satisfiesφ(A′) = φ(Ã) lies necessarily in
argminA J (A). Hence we can write

argmin
A

J (A) =
{

A ∈ R
n×s : φ(A) = φ(Ã)

}

Applying Lemma 4, we can then write

argmin
A

J (A) =
{

A ∈ R
n×s : Set(A) = Set(Ã)

}

and so, from (6) we see thatΨ(̟N ) =
{

Set(Ã)
}

.

An interpretation of Theorem 1 is that if the data are sufficiently
informative, then the set-valued estimatorΨ(̟N ) returns only a
singleton. We would of course like this singleton to coincide with
the true set of parameter vectors{a◦

i }i∈S
. For this to hold, it suffices

that the true parameter matrixA◦ satisfies the second condition of
the theorem. Note that such a condition is readily satisfied (with at
leastr∗ = 0) when there is no noise in the data (i.e.,vt = 0 in (1)
for all t ∈ T) provided that each subsystem generates enough data.
Moreover, by the second condition of the theorem, exact recovery of
the true parameter matrixA◦ is still achievable by the estimatorΨ
when{vt} is a sparse noisesequence containing at mostr∗ nonzero
instances, regardless of the magnitude of these nonzero values. Hence,
the largerr∗ (i.e., the richer the regression data̟N ), the more
outliers the least absolute deviation LSM estimator can handle. In
contrast, the condition is unlikely to hold generally whendense noise
is present in the data.
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IV. ERROR BOUNDS IN THE PRESENCE OF NOISE

As mentioned above, we cannot hope for an exact recovery of the
true parameter matrixA◦ by the estimatorΨ from data affected by a
dense noise sequence{vt}. We need instead to search for a possible
bound on the estimation error in function of the magnitude of the
noise and the richness properties of the data. Indeed (19) almost
provides such a bound. The remaining question to be investigated is,
under which conditions we can lower-bound‖φ(Â)−φ(A◦)‖1 by a
norm applying directly toÂ−A◦.

A. A key step towards the obtention of an error bound

To begin with the analysis, we introduce some useful technical tools,
the first of which is the class ofK∞ functions (see, e.g., [6]). This
class of functions will be used to measure the increasing rate of the
estimation error.

Definition 3 (class-K∞ functions). A functionα : R+ → R+ is said
to be of class-K∞ if it is continuous, zero at zero, strictly increasing
and satisfieslims→+∞ α(s) = +∞.

Using this definition we can state a technical lemma which will
play an important role in the analysis.

Lemma 5 ([7]). Let f : Rn → R+ be a positive continuous function
satisfying the following properties:

• Positive definiteness:f(x) = 0 if and only if x = 0
• Relaxed homogeneity: There exists aK∞ function q such that

f(x) ≥ q( 1
λ
)f(λx) for all λ > 0.

Then for any norm‖·‖ on R
n, there exists a constantα > 0 such

that f(x) ≥ αq(‖x‖).

Our goal now is to derive a bound on a certain measure of the
parametric estimation error between the true parameter matrixA◦

and the estimated oneŝA ∈ argminA J (A). Recalling thatJ (A) is
invariant under column permutation of the matrixA, for this metric to
be pertinent, it needs to be specified in terms of distance between the
setsSet(A◦) andSet(Â). Hence we consider a metricd of the form
d(A,A′) = ‖A−A′

π‖ where‖·‖ is a norm onRn×s andπ : S → S

is a permutation depending on the matricesA and A′. Here, the
notationA′

π is used to refer to the matrix obtained by permuting the
columns ofA as prescribed byπ, A′

π = [a′
π(1) · · · a′

π(s)]. The
existence of a permutationπ such thatd(A,A′) is upper-bounded by
‖φ(A)−φ(A′)‖1 will depend here on the partitions{Ii(A)}i∈S

and
{Ii(A

′)}i∈S
achieved byA andA′ respectively on the data set̟N .

Definition 4. Consider the data set̟ N in (4), generated by thes-
modes switched system (1). We say that two matricesA ∈ R

n×s and
A′ ∈ R

n×s are comparable over the data setωN if there exists a
permutationπ : S → S such that

∣

∣Ii(A) ∩ Iπ(i)(A
′)
∣

∣ ≥ νn(X) for
all i ∈ S.

Note, from Lemma 4 above, that any matrixA ∈ R
n×s such that

mini∈S |Ii(A)| ≥ sνn(X) is comparable to any other matrixA′ with
distinct columns satisfyingφ(A) = φ(A′). In that case, it even holds
that A = A′

π for some permutationπ on S. We state hereafter a
sufficient condition for comparability.

Lemma 6. Consider a set̟ N of input-output data generated by
system(1) as defined in(4). LetA ∈ R

n×s be a matrix obeying(21).
Then any matrixA′ ∈ R

n×s satisfying

|Ii(A)|+ |Ij(A)|

≥ max
ℓ∈S

[
∣

∣Ii(A) ∩ Iℓ(A
′)
∣

∣+
∣

∣Ij(A) ∩ Iℓ(A
′)
∣

∣

]

+ 2(s− 1)νn(X) ∀(i, j) ∈ S
2, i 6= j,

(24)

is comparable toA over̟N in the sense of Definition 4.

Proof. See Appendix B.

To illustrate the condition (24), consider the simple case where|S| =
s = 2. Then, under the assumption thatA is subject to (21),A andA′

are comparable over̟ N if N ≥ max(|I1(A
′)|, |I2(A

′)|)+2νn(X).
Noting that max(|I1(A

′)|, |I2(A
′)|) = N/2 + 1/2

∣

∣|I1(A
′)| −

|I2(A
′)|
∣

∣ with the outer bars denoting the absolute value, (24) reduces
to N ≥ 4νn(X)+

∣

∣|I1(A
′)|−|I2(A

′)|
∣

∣. This relation identifies three
factors which promote comparability: (i) the dataX must be generic
enough (i.e.,νn(X) small); (ii) A′ must partition the data into sets
of balanced cardinalities; (iii) the numberN of data must be large
enough.

Theorem 2. Consider the dataset̟ N in (4), generated by the
switched system(1) and assume thatξr(̟N ) < 1/2 for some
r ∈ {0, . . . , N}. Let (A,A′) ∈ R

n×s × R
n×s be a pair of

comparable matrices with respect toωN (as defined in Eq.(4)). Letπ
denote the associated permutation. Then for any norm‖·‖ on R

n×s,
there exists a strictly positive numberD such that

‖A′
π −A‖ ≤

1

D
(

1− 2ξr(̟N )
)

(

J (A′)−J (A) + 2δr(A)
)

. (25)

Proof. We start by observing that all the conditions of Lemma 2
are satisfied. As a consequence, Eq. (15) holds. Departing from
this equation, we just need to find an appropriate underestimate of
‖φ(A)− φ(A′)‖1. To this end, note that

∥

∥φ(A)− φ(A′)
∥

∥

1
=

∑

t∈T

∣

∣x⊤
t (aσA(t) − a′

σA′ (t))
∣

∣

=
∑

(i,j)∈S2

∑

t∈Ii(A)∩Ij(A′)

∣

∣x⊤
t (ai − a′

j)
∣

∣

≥
∑

i∈S

∑

t∈Ii(A)∩Iπ(i)(A
′)

∣

∣x⊤
t ηi

∣

∣

whereηi = ai − a′
π(i) with π : S → S denoting the permutation

defining the comparability ofA andA′ (see Definition 4). Recall that
∣

∣Ii(A) ∩ Iπ(i)(A
′)
∣

∣ ≥ νn(X), i = 1, . . . , s. Let g : Rn×s → R+ be
the function defined by

g(Λ) = inf
{Ji}i∈S

|Ji|≥νn(X)

∑

i∈S

∥

∥X⊤
Ji
ηi
∥

∥

1
(26)

where the infimum is taken over alls-tuples(J1, . . . , Js) of disjoint
subsets ofT with cardinality larger or equal toνn(X). Then by
letting Λ = A−A′

π, it follows from the inequality above that
∥

∥φ(A)− φ(A′)
∥

∥

1
≥ g(Λ). (27)

Since the infimum in (26) operates here on a finite set, it is reached
by a certain(J⋆

1 , . . . , J
⋆
s ). As a consequenceg can be expressed by

g(Λ) =
∑

i∈S

∥

∥X⊤
J⋆
i
ηi
∥

∥

1
. The rest of the proof consists in showing

that the functiong satisfies the conditions of Lemma 5. Clearly,g
is positive. If for someE = [e1 · · · es] ∈ R

n×s, g(E) = 0,
then X⊤

J⋆
i
ei = 0 for all i = 1, . . . , s. It follows, by the fact that

|J⋆
i | ≥ νn(X), that ei = 0. HenceE = 0 and consequently,g is

positive-definite. Moreover,g is continuous as a consequence of theℓ1
norm being continuous. Finally,g satisfies the relaxed homogeneity
property with theK∞ function q defined byq(x) = x. We can
therefore apply Lemma 5 to conclude thatg(Λ) ≥ D ‖Λ‖ with D
being the strictly positive number defined by

D = inf
‖Λ‖=1

g(Λ). (28)

This concludes the proof.

The theorem establishes a bound on the metricd(A,A′) in case
A andA′ are comparable in the sense of Definition 4. For a given
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r, it is interesting to note that the bound displayed in (25) is all
the smaller as the data are more generic (i.e.,ξr(̟

N ) defined in
(12) is small for a relatively larger). We also note that ifA and
A′ are not comparable as required in the statement of the theorem
then, ‖A−A′

π‖ can grow arbitrarily for any permutationπ while
‖φ(A)− φ(A′)‖1 remains small. To see this, take for examples = 2
and

A =
[

ã1 ã2

]

, A′ =
[

ã′
1 βã′

2

]

with the ãi and ã′
i being unitℓ2-norm vectors andβ ∈ R. Then for

a given dataset̟ N one can chooseβ sufficiently large such that
σA′(t) = 1 for all t ∈ T, i.e., I1(A′) = T. For such values of
β, A and A′ are not comparable in the sense of Definition 4. We
can see however that‖φ(A)− φ(A′)‖1 is independent ofβ while
‖A−A′

π‖ will increase arbitrarily asβ increases for any permutation
π on S = {1, 2}.

Remark 3. Note that in the scope of Theorem 2, it is, in principle,
possible to restrict the defining supremum ofξr(̟

N ) in (12) only
to all pairs (A,A′) of comparable matrices. The interest of such
a slight reformulation is that it would produce a smaller value of
ξr(̟

N ) and hence a potentially tighter bound in(25).

B. Estimation error bound for the switched system

An interesting situation is when(A,A′) is taken in Theorem 2 to
be equal to(A◦, Â) with Â ∈ argminA J (A). In this specific
case, invoking the trick used to establish (19) yields the following
statement.

Corollary 1. Consider the data̟ N generated by system(1) and as-
sume thatξr(̟N ) < 1/2 for somer ≥ 0. Let Â ∈ argminA J (A).
If Â and the true parameter matrixA◦ are comparable in the sense
of Definition 4 withπ : S → S denoting the associated comparability
permutation, then for any norm‖·‖ on R

n×s, there exists a number
D > 0 such that

‖Âπ −A◦‖ ≤
2

D
(

1− 2ξr(̟N )
)δr(A

◦). (29)

Sincer can be any integer in{0, . . . , N} such thatξr(̟N ) < 1/2,
we can, at least formally, optimize the error bound over all such
r’s. Hence, whenever the comparability condition holds true, a better
bound can, in principle, be obtained as

∥

∥Âπ −A◦
∥

∥ ≤ min
r=0,...,N

{ 2δr(A
◦)

D
(

1− 2ξr(̟N )
) : ξr(̟

N ) <
1

2

}

(30)

As already remarked,δr(A◦) measures how farφ(A◦) is from the
setSr of all r-sparse signals inRN . This is essentially a measure of
the amount of noise{vt} in the system (1) which generates the data
̟N . More specifically,δr(A◦) equals the sum of theN−r smallest
elements in absolute value of the sequence{v◦t }t∈T

defined by

v◦t = vt + x⊤
t (a

◦
σ(t) − a◦

σA◦ (t)) (31)

with σ denoting the true switching signal from (1). From the defini-
tion of σA◦ ∈ Σ (see Eq. (7)), it is not hard to see that|v◦t | ≤ |vt|
for all t ∈ T and so,δr(A◦) ≤ ‖v‖1,r with ‖v‖1,r denoting the
sum, in absolute value, of theN − r smallest entries of{vt}t∈T

.
It follows that under the conditions of Corollary 1,‖Âπ − A◦‖ ≤
2/

(

D(1−2ξr(̟
N ))

)

‖v‖1,r . Hence, by considering the special case
wherer is taken equal to0 (this is a reasonable choice e.g., when
there is no outlier in the data), we get‖Âπ−A◦‖ ≤ 2/D ‖v‖1 .Note
that an underestimatêD of the numberD can be numerically found
as suggested in Appendix E. UsinĝD (instead ofD) in the expression
of the bound yields however a more pessimistic value of the bound.
A question we ask now is, under which condition we may have

v◦t = vt from (31). Such a condition is given in the following
proposition.

Proposition 1. Consider the switched system(1) driven by the
switching signalσ and the noise{vt}. Then a necessary and sufficient
condition forσA◦ = σ (irrespective of the values ofσ and those of
the noise) is

|vt| <
1

2
min

(i,j)∈S
2

i 6=j

∣

∣x⊤
t (a

◦
i − a◦

j )
∣

∣ ∀t ∈ T. (32)

Proof. See Appendix C.

The term on the right hand side of (32) can be interpreted as
a measure of how distinguishable the subsystems are with respect
to each other. Hence, what the proposition says is that if the noise
level is below a certain threshold (which depends on the parametric
distinguishability of the subsystems and on some genericity condition
on the regressors), then the true switching signal coincides withσA◦ .
Finally, an interesting consequence of Proposition 1 is that, under
condition (32), we obtain from (31) thatv◦t = vt for all t ∈ T with
the consequence thatδr(A◦) reduces to‖v‖1,r.

C. On the comparability of̂A andA◦

According to Corollary 1, a sufficient condition for the estimation
error induced by the estimatorΨ to be bounded as in (29), is
that of comparability ofÂ and A◦ over ̟N for all Â such that
Set(Â) ∈ Ψ(̟N ) (see Definition 4). Lemma 6 suggests that to
favor the comparability ofA◦ and Â, the data̟N and the true
parameter matrixA◦ should satisfy (21) and (24). Indeed these
conditions impose, though in a non trivial way, some constraints on
the distinguishability of the modes composing the switched system,
the magnitude of the noise, the excitation signal{ut} and the
switching signalσ.
Intuitively, if the level of the noise{vt} is low and if the constituent
subsystems are distinguishable enough, then the true parameter matrix
A◦ and its estimateÂ should be comparable. We formalize this as
follows.

Lemma 7. Assume that the input-output data̟ N (4), gener-
ated by thes-mode switched system(1) is such thatA◦ obeys
mini∈S |Ii(A

◦)| ≥ sm with m ≥ νn(X). Introduce the notation

γm = inf
‖η‖2=1
|I|≥m

∥

∥X⊤
I η

∥

∥

1
, (33)

where the infimum is taken over all subsetsI of T with cardinality
at leastm and over allη ∈ R

n with unit ℓ2 norm.
If the subsystems of the switched system(1) are parametrically
distinguishable enough in the sense that

min
i 6=j

∥

∥a◦
i − a◦

j

∥

∥

2
>

2δr(A
◦)

γm
(

1− 2ξr(̟N )
) (34)

for somer ∈ {0, . . . , N} such thatξr(̟N ) < 1/2, thenA◦ and
Â are comparable over̟ N in the sense of Definition 4 for any
Â ∈ argminA J (A).

Proof. See Appendix D.

V. CONCLUSION

In this paper we have studied some properties of the least sum-of-
minimums (LSM) absolute deviation estimator for switched system
identification. Although this estimator is hard to implement numeri-
cally, it serves here as a reference estimator to analyze the degree of
richness in the data for the identification scheme to be successful. In
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particular, we have proposed a bound on the estimation error induced
by this estimator. Interestingly, the expression of the proposed bound
involves explicitly some informativity measures of the training data.
The message of that expression in essence is that the richer the data,
the smaller the estimation error. This opens a nice perspective for
identification experiment design for switched systems. In effect, one
can form an experiment design problem by searching for the input
signal which optimizes the derived information-theoretic measures
and thereby, the error bound delivered by the estimator. To further
pave the avenue towards optimal experiment design, an intermediary
step would, perhaps, be to complement the current analysis with
one of the LSM estimator when used with the classical quadratic
loss. Another important direction of research is to devise efficient
numerical routines for estimating the informativity indices derived in
this paper.

APPENDIX

A. Proof of Lemma 1

For the sake of notational simplicity we useTr in place ofTr(v).
Let T c

r = T \ Tr be the complement ofTr in T. Then
∥

∥v′ − v
∥

∥

1
=

∥

∥(v′ − v)Tr

∥

∥

1
+

∥

∥(v′ − v)T c
r

∥

∥

1

≤
∥

∥(v′ − v)Tr

∥

∥

1
+

∥

∥v′T c
r

∥

∥

1
+

∥

∥vT c
r

∥

∥

1

=
∥

∥(v′ − v)Tr

∥

∥

1
+

∥

∥v′T c
r

∥

∥

1
+ inf

w∈Sr

‖w − v‖1

The inequality is derived from the triangle inequality property of
the ℓ1 norm. The last equality relation relies on the fact that
infw∈Sr ‖w − v‖1 =

∥

∥vT c
r

∥

∥

1
(the sum of theN−r smallest entries

in absolute value ofv). Considering the term
∥

∥v′T c
r

∥

∥

1
, we can write

∥

∥v′T c
r

∥

∥

1
=

∥

∥v′
∥

∥

1
−

∥

∥v′Tr

∥

∥

1

= ‖vTr‖1 −
∥

∥v′Tr

∥

∥

1
+

∥

∥v′
∥

∥

1
−

(

‖v‖1 −
∥

∥vT c
r

∥

∥

1

)

≤
∥

∥(v′ − v)Tr

∥

∥

1
+

∥

∥v′
∥

∥

1
− ‖v‖1 + inf

w∈Sr

‖w − v‖1

Here, the second equality follows by adding and subtracting‖vTr‖1
while the last line is obtained by applying again the triangle inequality
which gives

∥

∥vTr

∥

∥

1
−

∥

∥v′Tr

∥

∥

1
≤

∥

∥(v′ − v)Tr

∥

∥

1
. The result follows

by combining the second inequality with the first one above.

B. Proof of Lemma 6

By reasoning as in the proof of Lemma 4 thanks to the fact that
A satisfies condition (21), we reach easily the conclusion that for all
i ∈ S, there existsi∗ ∈ S such that|Ii(A) ∩ Ii∗(A

′)| ≥ νn(X). Let
us define a mapπ : S → S by posingπ(i) = i∗. We need to show
thatπ can be selected to be a permutation under condition (24) of the
lemma. For this purpose, we proceed by contradiction. Recall thatπ
is a permutation here if and only if it is injective. And there is no
injective mapπ that satisfies

∣

∣Ii(A) ∩ Iπ(i)(A
′)
∣

∣ ≥ νn(X) for all
i ∈ S, if and only if there is a pair(i, j), i 6= j, and an indexℓ ∈ S

such that
{
∣

∣Ii(A) ∩ Iℓ(A
′)
∣

∣ ≥ νn(X)
∣

∣Ij(A) ∩ Iℓ(A
′)
∣

∣ ≥ νn(X)
(35a)

and∀k 6= ℓ,
{
∣

∣Ii(A) ∩ Ik(A
′)
∣

∣ < νn(X)
∣

∣Ij(A) ∩ Ik(A
′)
∣

∣ < νn(X)
(35b)

Assume for contradiction that (35) holds. Then, because{Ir(A
′)}r∈S

forms a partition ofT, |Ii(A)| =
∑s

r=1 |Ii(A) ∩ Ir(A
′)| < (s −

1)νn(X) + |Ii(A) ∩ Iℓ(A
′)|. Similarly, we can write,|Ij(A)| <

(s − 1)νn(X) + |Ij(A) ∩ Iℓ(A
′)|. Hence |Ii(A)| + |Ij(A)| <

2(s − 1)νn(X) + |Ii(A) ∩ Iℓ(A
′)| + |Ij(A) ∩ Iℓ(A

′)|. This is in

contradiction with (24). We therefore conclude on the existence of
an injective map (and hence of a permutation)π : S → S.

C. Proof of Proposition 1

If (32) holds true, then for allt ∈ T and all i ∈ S with i 6= σ(t),
∣

∣yt − x⊤
t a

◦
σ(t)

∣

∣ = |vt| <
1

2

∣

∣x⊤
t (a

◦
σ(t) − a◦

i )
∣

∣

≤
1

2

∣

∣yt − x⊤
t a

◦
i

∣

∣+
1

2

∣

∣yt − x⊤
t a

◦
σ(t)

∣

∣

where the last inequality is derived from the triangle inequality
property of| · |. It follows that

∣

∣yt − x⊤
t a

◦
σ(t)

∣

∣ <
∣

∣yt − x⊤
t a

◦
i

∣

∣ which
implies thatσA◦(t) = σ(t) for all t. Conversely, ifσA◦ = σ, then
for all (j, t) ∈ S × T such thatj 6= σ(t), we get immediately that
∣

∣vt
∣

∣ <
∣

∣yt − x⊤
t a

◦
j

∣

∣ =
∣

∣x⊤
t (a

◦
σ(t) − a◦

j ) + vt
∣

∣. Taking the square and
dividing by

∣

∣x⊤
t (a

◦
σ(t) − a◦

j )
∣

∣ gives
∣

∣x⊤
t (a

◦
σ(t) − a◦

j )
∣

∣ > −2vtsj(t)

with sj(t) denoting the sign ofx⊤
t (a

◦
σ(t) − a◦

j ). The last inequality
holds for any possible values ofσ if and only if

∣

∣x⊤
t (a

◦
i−a◦

j )
∣

∣ > 2|vt|
for all (i, j) ∈ S

2 with i 6= j.

D. Proof of Lemma 7

To begin with, let us observe that by relying on Lemma 5, it can
be shown that the numberγm in (33) is well defined and satisfies
γm > 0. By the same reasoning as in the proof of Lemma 4, we
know that there exists a mapπ : S → S such

∣

∣Ii(A
◦)∩ Iπ(i)(Â)

∣

∣ ≥
m ≥ νn(X). We just need to establish that such aπ is bijective
under the conditions of the lemma, a property which is equivalent
here just to injectivity ofπ. We proceed by contradiction. Suppose
that π is not injective, that is, we can find(i, j) ∈ S

2 with i 6= j
such thatπ(i) = π(j). Let Ji = Ii(A

◦) ∩ Iπ(i)(Â). By applying
Lemma 3, we can write

∑

i∈S

∥

∥X⊤
Ji
(a◦

i − âπ(i))
∥

∥

1
≤

∥

∥φ(A◦)− φ(Â)
∥

∥

1
≤ d,

where we have posedd = 2δr(A
◦)/(1 − 2ξr(̟

N )) for concise-
ness. On the other hand, it follows from the definition (33) of
γm that

∑

i∈S

∥

∥X⊤
Ji
(a◦

i − âπ(i))
∥

∥

1
≥ γm

∑

i∈S
‖a◦

i − âπ(i)‖2.
As a consequence, we can write

∑

i∈S
‖a◦

i − âπ(i)‖2 ≤ d/γm.
Hence, if π(i) = π(j), then by virtue of the triangle inequality,
‖a◦

i − a◦
j‖2 ≤ ‖a◦

i − âπ(i)‖2 + ‖a◦
j − âπ(j)‖2 ≤ d/γm. This is in

contradiction with the assumption (34). We therefore conclude that
the claim of the lemma holds true.

E. On the estimation of the numberD in (28)

The following lemma provides a method for computing an under-
estimate of the parameterD in (28) for a particular choice of the
norm involved in its definition though at the price of a combinatorial
complexity.

Lemma 8. Assume that the norm used for the definition of the
numberD in (28) is ‖·‖2,col defined by‖Λ‖2,col =

∑s
i=1 ‖ηi‖2

for Λ =
[

η1 · · · ηs
]

. Let m = νn(X). Then

D ≥ γm ≥ inf
|I|=m

λ
1/2
min(XIX

⊤
I ), (36)

where γm is the number defined in(33) and λ
1/2
min(·) denotes the

square root of the minimum eigenvalue. The infimum is taken over
all subsetsI of T with cardinality equal tom.

Proof. Recall from (26) and the proof of Theorem 2 the expression
g(Λ) =

∑

i∈S

∥

∥X⊤
J⋆
i
ηi
∥

∥

1
of the functiong, where theJ⋆

i are subsets
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of T satisfying |J⋆
i | ≥ m = νn(X). Then by substituting‖Λ‖2,col

for the norm‖Λ‖ in Eq. (28), we have

D = inf
‖Λ‖2,col=1

g(Λ) = inf
‖η1‖2+···+‖ηs‖2=1

∑

i∈S

∥

∥X⊤
J⋆
i
ηi
∥

∥

1

≥ inf
‖η1‖2+···+‖ηs‖2=1

∑

i∈S

γm‖ηi‖2 = γm

The inequality follows as a consequence of the definition ofγm by
which

∥

∥X⊤
J⋆
i
ηi
∥

∥

1
≥ γm ‖ηi‖2 since |J⋆

i | ≥ m. Now, to prove the
last inequality in (36), it suffices to notice that

∥

∥X⊤
I η

∥

∥

1
≥

∥

∥X⊤
I η

∥

∥

2
.

As a result,

γm = inf
‖η‖2=1
|I|≥m

∥

∥X⊤
I η

∥

∥

1
≥ inf

‖η‖2=1
|I|≥m

∥

∥X⊤
I η

∥

∥

2

= inf
|I|=m

λ
1/2
min(XIX

⊤
I ).

Given I ⊂ T, it is easy to obtainλ1/2
min(XIX

⊤
I ). Hence to obtain an

(under)-estimate ofD, we need to compute
(

N
m

)

such values and take
the minimum of them. Here the notation

(

N
m

)

refers to the binomial
coefficient. If we letD̂ = inf |I|=m λ

1/2
min(XIX

⊤
I ), then it follows

from (29) that‖Âπ −A◦‖ ≤ 2

D̂
‖v‖1 in the particular case wherer

is taken equal to0.
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