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Large-eddy Lattice-Boltzmann modelling of transonic flows

A D3Q19 Hybrid Recursive Regularized Pressure based Lattice Boltzmann Method (HRR-P LBM) is assessed for the simulation of complex transonic flows. Mass and momentum conservation equations are resolved through a classical LBM solver coupled with a finite volume resolution of entropy equation for a complete compressible solver preserving stability, accuracy and computational costs. An efficient treatment for wall and open boundaries is coupled with a grid refinement technique and extended to the HRR-P LBM in the scope of compressible aerodynamics. A Vreman subgrid turbulence model and an improved coupling of immersed boundary method with turbulence wall model on Cartesian grid accounts for unresolved scales by Large-Eddy Simulation (LES). The validity of the present method for transonic applications is investigated through various test cases with increasing complexity starting from an inviscid flow over a 10% bump and ending with a turbulent flow over a ONERA M6 three-dimensional wing.

I. INTRODUCTION

Lattice Boltzmann Methods (LBM) are an alternative powerful tool for the simulation of fluid dynamics [START_REF] Chen | Lattice boltzmann method for fluid flows[END_REF] . Due to its attractive computational cost, its capacities for massively parallel computing and the ease to deal with complex geometries using multi-level Cartesian grids, these methods have shown a growing interest both in the academic and industrial spheres in the past decades [START_REF] Guo | Lattice Boltzmann method and its applications in engineering[END_REF][START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF][START_REF] Succi | The lattice Boltzmann equation: for complex states of flowing matter[END_REF] .

The development of LBM for compressible flows is still an open issue. Most existing methods on standard lattices (D1Q3, D2Q9 and D3Q19 or D3Q27) are restricted to isothermal or weakly compressible flows [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF] , and thus are not applicable to high speed and high Reynolds flows, such as those found in most aerospace engineering related applications. To obtain a fully compressible solver, the well-known Mach error must be corrected [START_REF] Feng | Hybrid recursive regularized lattice boltzmann simulation of humid air with application to meteorological flows[END_REF] , coupled with a proper way to resolve energy.

In extending LB methods to compressible flows, the main difficulty is to account for energy conservation [START_REF] Coreixas | High-order extension of the recursive regularized lattice Boltzmann method[END_REF] . Two options are then available: (i) increase the number of discrete velocities as to accurately recover the moment of the probability function corresponding to energy, and (ii) solve the energy equation in a coupled manner. Approach (i) includes, e.g. multi-speed approaches [START_REF] Frapolli | Entropic lattice Boltzmann models for thermal and compressible flows[END_REF] , but the number of discrete velocities (sometimes as high as 7 [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF] = 343) seriously thwarts computational performances as compared with nearest-neighbor lattices, consisting of only 15 to 27 discrete velocities. In the second approach (ii), energy conservation is tackled separately, either as a second distribution function [START_REF] Feng | A compressible lattice boltzmann finite volume model for high subsonic and transonic flows on regular lattices[END_REF] (in so-called double-distribution function methods), or simply as an additional scalar equation, solved using finite volumes [START_REF] Feng | Hybrid recursive regularized lattice boltzmann simulation of humid air with application to meteorological flows[END_REF][START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF] (often referred to as hybrid methods).

The hybrid formalism has recently attracted a lot of attention, because (i) it allows to account for any number of equations straightforwardly and without penalizing memory usage (e.g. for reactive flow applications [START_REF] Hosseini | Low-mach hybrid lattice boltzmann-finite difference solver for combustion in complex flows[END_REF][START_REF] Hosseini | Weakly compressible lattice boltzmann simulations of reacting flows with detailed thermo-chemical models[END_REF][START_REF] Tayyab | Hybrid regularized lattice-boltzmann modelling of premixed and non-premixed combustion processes[END_REF][START_REF] Tayyab | Lattice-boltzmann modelling of a turbulent bluffbody stabilized flame[END_REF][START_REF] Boivin | Benchmarking a lattice-boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF] , pollutant dispersion [START_REF] Merlier | Lattice-boltzmann large-eddy simulation of pollutant dispersion in street canyons including tree planting effects[END_REF][START_REF] Merlier | Lattice-boltzmann large-eddy simulation of pollutant dispersion in complex urban environment with dense gas effect: Model evaluation and flow analysis[END_REF][START_REF] Cheylan | Compressible pressure-based latticeboltzmann applied to humid air with phase change[END_REF] ...), (ii) physical models implemented in classical Navier-Stokes solvers can be effortlessly transferred in the LB solver (since only mass and momentum equations differ), and (iii) they present excellent accuracy for the transport of elementary Kovasznay modes [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF][START_REF] Feng | Hybrid recursive regularized thermal lattice boltzmann model for high subsonic compressible flows[END_REF][START_REF] Farag | A unified hybrid lattice-boltzmann method for compressible flows: bridging between pressure-based and density-based methods[END_REF] .

Nonetheless, there remains a large gap between the complexity of full-scale industrial applications tackled by isothermal LB methods [START_REF] Casalino | Lattice-boltzmann aeroacoustic analysis of the lagoon landing-gear configuration[END_REF][START_REF] Sengissen | Simulations of lagoon landinggear noise using lattice boltzmann solver[END_REF] , and the compressible tests successfully validated using LBM: Kovasznay mode convections [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF] , thermal Couette flow [START_REF] Prasianakis | Lattice boltzmann method for thermal flow simulation on standard lattices[END_REF][START_REF] Liu | Thermal boundary conditions for thermal lattice boltzmann simulations[END_REF][START_REF] Frapolli | Multispeed entropic lattice boltzmann model for thermal flows[END_REF] , 2D NACA0012 [START_REF] Di Ilio | Fluid flow around naca 0012 airfoil at low-reynolds numbers with hybrid lattice boltzmann method[END_REF][START_REF] Feng | Solid wall and open boundary conditions in hybrid recursive regularized lattice boltzmann method for compressible flows[END_REF][START_REF] Latt | Efficient supersonic flow simulations using lattice boltzmann methods based on numerical equilibria[END_REF] , flow over bump [START_REF] Guo | An efficient lattice boltzmann method for compressible aerodynamics on d3q19 lattice[END_REF][START_REF] Hejranfar | A high-order accurate unstructured spectral difference lattice boltzmann method for computing inviscid and viscous compressible flows[END_REF] , shock/vortex interaction [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF][START_REF] Saadat | Lattice boltzmann model for compressible flows on standard lattices: Variable prandtl number and adiabatic exponent[END_REF] , Taylor-Green Vortex [START_REF] Boivin | Benchmarking a lattice-boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF][START_REF] Saadat | Extended lattice boltzmann model[END_REF] and inviscid flow over wing [START_REF] Yang | A hybrid lattice boltzmann flux solver for simulation of 3d compressible viscous flows[END_REF][START_REF] Feng | Grid refinement in the three-dimensional hybrid recursive regularized lattice boltzmann method for compressible aerodynamics[END_REF] . Filling that gap, and showing that our hybrid approach [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF][START_REF] Feng | Hybrid recursive regularized thermal lattice boltzmann model for high subsonic compressible flows[END_REF][START_REF] Farag | A unified hybrid lattice-boltzmann method for compressible flows: bridging between pressure-based and density-based methods[END_REF] is now application-ready is the objective of the present study.

To that end, we present, for our recent pressure-based compressible LB model [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF][START_REF] Farag | A unified hybrid lattice-boltzmann method for compressible flows: bridging between pressure-based and density-based methods[END_REF] : (i) an algorithm to deal with mesh transitions, derived from state-of-the-art approaches [START_REF] Feng | Grid refinement in the three-dimensional hybrid recursive regularized lattice boltzmann method for compressible aerodynamics[END_REF][START_REF] Filippova | Grid refinement for lattice-bgk models[END_REF][START_REF] Lagrava | Advances in multi-domain lattice boltzmann grid refinement[END_REF] ; (ii) a subgrid turbulent model and a compatible wall-model adapted from the literature [START_REF] Jacob | A new hybrid recursive regularised bhatnagargross-krook collision model for lattice boltzmann method-based large eddy simulation[END_REF][START_REF] Degrigny | Improved wall model treatment for aerodynamic flows in lbm[END_REF][START_REF] Cai | Coupling of turbulence wall models and immersed boundaries on cartesian grids[END_REF] ; and

(iii) an efficient shock-sensor. Equipped with these new developments, we present the first -to the authors' knowledge -wall-law large eddy Lattice-Boltzmann simulation of a 3D transonic flow.

The paper is organized as follows. Section II describes the key elements of the Hybrid Recursive Regularized Pressure based (HRR-P) model starting from the base of the LBM algorithm to the treatment of energy equation. Section III investigates the LES turbulence model including Vreman subgrid model and the wall law description. Section IV introduces new numerical ingredients for the pressure-based solver to handle complex geometries. Finally, numerical results obtained with this method are displayed in Section V, followed by concluding remarks in Section VI.

II. LATTICE-BOLTZMANN MODEL FOR COMPRESSIBLE FLOWS

A. Macroscopic governing equations

Before presenting the Lattice-Boltzmann model, let us introduce the corresponding macroscopic equations as well as necessary notations.

The motion of a fluid is described by the conservation laws of mass, momentum and energy.

∂ρ ∂t + ∂ρu β ∂x β = 0 , (1) 
∂ρu α ∂t + ∂ρu α u β + δ αβ p -Π αβ ∂x β = 0 , (2) 
∂ρE ∂t + ∂ρHu α ∂x α = ∂Π αβ u α ∂x β - ∂q β ∂x β , (3) 
where u α is the velocity vector, ρ the volumic mass, p the thermodynamic pressure, E = e + 1/2u α u α the total energy, and H = E + p/ρ the total enthalpy. The internal energy e is defined by e = C v T , assuming constant volume heat capacity C v . The viscous stress tensor

Π αβ is Π αβ = µ ∂u α ∂x β + ∂u β ∂x α -δ αβ 2 3 ∂u γ ∂x γ , (4) 
and the heat flux q β reads

q β = -λ ∂T ∂x β , (5) 
with µ the dynamic viscosity and λ the heat conductivity. To close the above system, we consider an ideal equation of state

p = ρrT, (6) 
with r = R/W the specific gas constant, R is the universal gas constant, W is the molecular weight. According to dry air properties, r = 2.9 × 10 2 J kg -1 K -1 will be considered in the following work. Assuming a calorically perfect gas (constant specific heat C p and C v , for constant pressure and volume process respectively), the entropy can be defined as:

s = C v ln p ρ γ , (7) 
where γ = C p /C v is the adiabatic exponent.

B. Lattice Boltzmann Method for mass and momentum conservation

LB methods are based on the kinetic theory of gases at a mesoscopic scale, introducing a statistical representation of the fluid. The discrete description is done through the so-called particle distribution function f i (x, c i , t), function of the position x, the particle velocity c i (discretized as a finite dimension velocity space) and the time t. In the absence of external forces, the Lattice Boltzmann Equation (LBE) can be derived from the Boltzmann equation in the velocity space as

∂f i ∂t + c i,α ∂f i ∂x α = Ω i , (8) 
Ω i denotes the collision term. With the hypothesis of a single relaxation time collision operator, the so-called Bhatnagar-Gross-Krook (BGK) [START_REF] Bhatnagar | A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems[END_REF] operator can be introduced:

Ω i = - 1 τ (f i -f eq,19r i ), (9) 
where τ is the relaxation time toward equilibrium associated to the dynamic viscosity [START_REF] Farag | Consistency study of lattice-boltzmann schemes macroscopic limit[END_REF] :

τ = µ ρc 2 s ( 10 
)
Let us additionally introduce a dimensionless temperature θ as

θ = T T 0 , (11) 
Where T 0 is a reference temperature, corresponding to a reference velocity c 0 .

c 0 = rT 0 = c s ∆x ∆t (12) 
The collision step brings the distribution f i back to a modified pressure-based 9 third order equilibrium distribution f eq,19r i f eq,19r

i = ω ρθ + H (1) iα c 2 s ρu α + H (2) iαβ 2c 4 s ρu α u β + 1 6c 6 s + 3(H (3) i,xxy + H (3) i,yzz )(ρu x u x u y + ρu y u z u z ) + (H (3) 
i,xxy -H

(3) i,yzz )(ρu x u x u y -ρu y u z u z ) + 3(H (3) 
i,xzz + H (3) i,xyy )(ρu x u z u z + ρu x u y u y ) + (H (3) 
i,xzz -H

i,xyy )(ρu x u z u z -ρu x u y u y ) + 3(H (3) 
i,yyz + H

(3) i,xxz )(ρu y u y u z + ρu x u x u z ) + (H (3) 
i,yyz -H

i,xxz )(ρu y u y u z -ρu x u x u z ) .

The equilibrium function f eq,19r i is expressed in the D3Q19 rotational symmetry basis of Gauss-Hermite polynomials to reduce the defect of the third order moment [START_REF] Jacob | A new hybrid recursive regularised bhatnagargross-krook collision model for lattice boltzmann method-based large eddy simulation[END_REF] . In the pressure-based framework, the moments of the equilibrium distribution function Eq. ( 13) (denoted as f eq i for the sake of simplicity) on the nearest neighbor lattices type are:

i f eq i = ρθ, (14) 
i c i,α f eq i = ρu α , (15) 
i c i,α c i,β f eq i = ρu α u β + ρθc 2 s δ αβ . (16) 
H i are discrete Hermite polynomials in the velocity space, defined by:

H (0) i = 1, (17) 

H

(1)

iα = c iα , (18) 

H

(2)

iαβ = c iα c iβ -c 2 s δ αβ , (19) 
H (3) iαβγ = c iα c iβ c iγ -c 2 s [c iα δ βγ + c iβ δ γα + c iγ δ αβ ] , (20) 
The Lattice Boltzmann equation is then discretized in space and time using a trapezoidal method 3

f i (x α + c iα ∆t, t + ∆t) -f i (x α , t) = ∆t 2 [Ω f i (x α + c iα ∆t, t + ∆t) + Ω f i (x α , t)] (21) 
Eq. ( 21) is implicit since the collision term at t + ∆t depends on the distribution function f i at the same time step. To remove the implicit treatment of this equation and to ensure a second-order accuracy in time, a new distribution function is introduced, namely:

f i = f i - ∆t 2τ (f eq i -f i ) (22) 
associated to a new relaxation time:

τ = τ + ∆t 2 (23) 
The collision algorithm leading to the post-collide population at time step t + ∆t can be summarized as:

f col i (t + ∆t, x α ) = f eq i (t + ∆t, x α ) + (1 - ∆t τ )f neq i (t + ∆t, x α ) + ∆t 2 F E i (t + ∆t, x α ) (24) 
in which the forcing term F E i has been introduced, as described in Appendix A, to recover an accurate non-equilibrium tensor and to correct the defect of isotropy of the lattice [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF][START_REF] Feng | Hybrid recursive regularized thermal lattice boltzmann model for high subsonic compressible flows[END_REF][START_REF] Feng | A three dimensional lattice model for thermal compressible flow on standard lattices[END_REF] .

A hybrid recursive regularized collision kernel [START_REF] Jacob | A new hybrid recursive regularised bhatnagargross-krook collision model for lattice boltzmann method-based large eddy simulation[END_REF] (HRR) is used to recover a correct viscous stress tensor.

Regularization procedures of the distribution function f i were proposed to improve the numerical stability of BGK collision models in pioneering works [START_REF] Jacob | A new hybrid recursive regularised bhatnagargross-krook collision model for lattice boltzmann method-based large eddy simulation[END_REF][START_REF] Latt | Lattice boltzmann method with regularized pre-collision distribution functions[END_REF][START_REF] Malaspinas | Increasing stability and accuracy of the lattice boltzmann scheme: recursivity and regularization[END_REF] by filtering out spurious non-hydrodynamic modes. Hence, a regularized distribution function is introduced prior to the collision step through recomputing the non-equilibrium parts. This involves a truncation up to second order, projected on the Hermite polynomial basis. The non-equilibrium regularized population f neq i is evaluated as

f neq i ≡ ω i H (2) i,αβ 2c 4 s ã(2),neq αβ + H (3r) i,γ 6c 6 s a (3r),neq γ , (25) 
with the third order off-equilibrium a (3r),neq γ recursively derived as detailed in Appendix B.

In the hybrid recursive regularized collision kernel 

f i -f eq i + ∆t 2 F E i H (2) iαβ , (26) 
On the other hand, a

(2),neq,FD αβ is the approximation of the Navier-Stokes viscous stress tensor resolved by second order finite differences in the core of the fluid and a first order decentered procedure for the boundary conditions.

a (2),neq,FD αβ = -ρc 2 s τ ∂u α ∂x β + ∂u β ∂x α -δ αβ 2 3 ∂u γ ∂x γ , (27) 
Improved stability [START_REF] Farag | Consistency study of lattice-boltzmann schemes macroscopic limit[END_REF] is achieved by numerically enforcing a traceless stress tensor, which allows to filter an additional non-hydrodynamic mode [START_REF] Wissocq | Hydrodynamic limits and numerical errors of isothermal lattice boltzmann schemes[END_REF] . Finally, the stress tensor ã(2),neq αβ in the non-equilibrium part (25) reads [START_REF] Jacob | A new hybrid recursive regularised bhatnagargross-krook collision model for lattice boltzmann method-based large eddy simulation[END_REF] :

ã(2),neq αβ ≡ σ a (2),neq,PR αβ - δ αβ 3 a (2),neq,PR γγ + (1 -σ)a (2),neq,FD αβ , (28) 
with σ ∈ [0, 1] a free parameter. Then, knowing the collide population at time step t, an intermediate population f i is obtained by a streaming step from neighbors

f i (t + ∆t,x) = f col i (t, x -c i ∆t). (29) 
This post-streaming population acts as a base for the whole next time step calculations and the well-known stream and collide algorithm is recovered.

C. A finite difference method for entropy equation

To couple the energy conservation with the LBM solver, an entropy equation under nonconservative format is solved 18 using second order finite difference:

∂s ∂t + u β ∂s ∂x β MUSCL-Hancock = 1 ρT Π αβ ∂u α ∂x β - ∂q β ∂x β Finite differences -Second order , (30) 
The temporal derivative and the convective flux in Eq. ( 30) are discretized using a MUSCL-Hancock method (see Appendix C for details). This scheme is non-local and requires a fivepoints stencil per direction. Near boundary conditions, this stencil is not always available, and a mix 9 of second order centered flux (to properly include the boundary condition) with upwinding (for numerical stability) is used. Thermal conduction and viscous heat are computed through a simple second order centered finite difference scheme, involving a first order decentered procedure for near-boundaries nodes.

Note that we recently proposed a numerically conservative scheme [START_REF] Zhao | Toward fully conservative hybrid lattice boltzmann methods for compressible flows[END_REF] to solve directly a total energy equation, but applying it to configurations as complex as presented hereafter is still under investigation.

III. FILTERED EQUATIONS: TURBULENCE AND WALL LAW MODEL A. Vreman subgrid turbulence model

In the context of Large Eddy Simulations (LES) [START_REF] Sagaut | Large eddy simulation for incompressible flows: an introduction[END_REF] , the filtered macroscopic equations

(1-3) are ∂ρ ∂t + ∂ρũ α ∂x α = 0, (31) 
∂ρũ α ∂t + ∂ρũ α ũβ ∂x β = - ∂p ∂x α + ∂ ∂x β Παβ -R αβ , (32) 
∂s ∂t + u α ∂s ∂x α = 1 ρT ∂ ∂x α λ ∂T ∂x α -Q sgs α + 1 ρT Π αβ ∂u α ∂x β , (33) 
where () are the grid-filtered quantities and () indicates Favre filter ũα ≡ ρu α /ρ. R αβ is the unknown SGS Reynolds stress tensor R αβ = ρ( u α u β -ũα ũβ ) and Q sgs α is the sum of all subgrid contributions coming from the non-linearities in the entropy equation. Here, the unresolved heat flux will therefore follow from the eddy viscosity model. For the Vreman model [START_REF] Vreman | Large-eddy simulation of the turbulent mixing layer[END_REF] , the most important subgrid-term is the stress tensor R αβ which satisfies:

R αβ - 1 3 R γγ δ αβ = -2µ t Sαβ - 1 3 Sγγ δ αβ , (34) 
with Sαβ = 1 2

∂ ũα ∂x β + ∂ ũβ ∂x α
, δ αβ is the usual Kronecker symbol and µ t the turbulent viscosity. Vreman [START_REF] Vreman | An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications[END_REF] proposed a subgrid model where

µ t = c B β α ij α ij , (35) 
with

α ij = ∂ ũj ∂x i , (36) 
β ij = ∆ 2 m α mi α mj , (37) 
B β = β xx β yy -β 2 xy + β xx β zz -β 2 xz + β yy β zz -β 2 yz . (38) 
In Eq. ( 35), c is related to the Smagorinsky constant C s = 0.18 such that c = 2.5C 2 s . This turbulent viscosity introduced in the momentum equation is coupled with a turbulent thermal conductivity to model nonlinearities in entropy equation:

Q sgs α = -λ sgs ∂T ∂x α , (39) 
λ sgs = µ t c p Pr t , (40) 
where the turbulent Prandtl number is set as Pr t = 0.9, following Garnier et al. [START_REF] Garnier | Large eddy simulation for compressible flows[END_REF] .

B. An explicit wall model for HRR LBM solver

For turbulent flows (at high Reynolds numbers), solving directly the flow conservation equations near the walls requires a huge number of points, a procedure which is not affordable for industrial applications. Hence, to reduce computational efforts, algebraic explicit wall models are proposed in the literature to cover the entire inner region of the turbulent boundary layer. In this study, logarithmic laws of the wall are used to calculate the friction velocity on boundary points, considering the cartesian grid model inherited from the LBM mesh. Non dimensional quantities:

u + = u u τ or y + = yu τ ν , (41) 
with u τ the friction velocity, y the distance to the wall and ν the molecular kinematic viscosity are expressed as a function of the local Reynolds number:

Re y = uy ν = u + y + , (42) 
implying for the friction velocity:

u τ = u u + (Re y ) or u τ = y + (Re y )ν y . ( 43 
)
The turbulent boundary layer can be divided into three parts: the viscous sublayer, the buffer layer and the inertial layer. In the viscous sublayer:

u + = y + = Re y . (44) 
In the inertial layer, the velocity follows a logarithmic law:

u + = 1 κ log Ey + or y + = 1 E exp κu + , (45) 
where κ ≈ 0.41 and E ≈ 7.9. Following a sixth order series expansion [START_REF] Cai | Explicit wall models for large eddy simulation[END_REF] of the Lambert function W (x), the following explicit version of the logarithmic profile on y + (Re y ) in the inertial layer is obtained:

y + (Re y ) = 1 E exp{W (κE Re y )}, (46) 
Then, a unified expression for the entire layer can be given in the form:

y + (Re y ) = 1 -tanh Re y s p (Re y ) 1/2 + tanh Re y s p 1 E exp{W (κE Re y )}. ( 47 
) u + (Re y ) = Re y y + (Re y ) , (48) 
with the constants p = 0.7894 and s = 86.58 calibrated to the Spalart-Allmaras turbulence model to minimize the error between the curve y + (Re y ) and the target one, taking into account the three zones of the turbulent boundary layer. The above formulae are used for κE Re y > e with e being the natural number, to ensure convergence of the expansion.

Otherwise, Eq. ( 44) should be used. Then, u τ can be deduced using Eq. ( 43). Following the Spalart-Allmaras turbulence model, u + can be written using arithmetic [START_REF] Allmaras | Modifications and clarifications for the implementation of the spalart-allmaras turbulence model[END_REF] :

u + (y + ) = B + c 1 log (y + + a 1 ) 2 + b 2 1 -c 2 log (y + + a 2 ) 2 + b 2 2 -c 3 atan2(y + + a 1 , b 1 ) -c 4 atan2(y + + a 2 , b 2 ), (49) 
where atan2(x, y) returns the principal value of the arc tangent of x/y, expressed in radians.

The values of the coefficients (B, c 3 and c 4 ) can be found in [START_REF] Allmaras | Modifications and clarifications for the implementation of the spalart-allmaras turbulence model[END_REF] . The definition of the tangential velocity follows:

a 1 , a 2 , b 1 , b 2 , c 1 , c 2 ,
u = u + u τ . (50) 

IV. NUMERICAL SETUP

A. An artificial viscosity method to capture shocks

The aim of shock capturing techniques is to automatically reduce the Gibbs phenomenon [START_REF] Hewitt | The gibbs-wilbraham phenomenon: an episode in fourier analysis[END_REF] that creates oscillations near discontinuities. The methods commonly exploit the effect of dissipative mechanisms on shocks. The idea is to add artificial dissipation through numerical viscosity into the conservation equations to increase the thickness of the shock and to make it of the order of (or larger than) the mesh size. The first step is to detect shocks properly.

For that, a pressure shock sensor based on a Jameson-Schmidt-Turkel 53 (JST) scheme is used:

ν sc = |p i-1 -2p i + p i+1 | |p i-1 + 2p i + p i+1 | . ( 51 
)
This result is turned into an artificial kinetic viscosity modelled by a free parameter s c chosen by the user. Hence, the effective relaxation time can be summed as:

τ e = µ + ρν sc s c ρc 2 s + ∆t 2 . (52) 

B. Immersed solid boundaries via cut cell approach

The boundary conditions of the pressure-based distribution function are implemented by a finite difference reconstruction approach along with the hybrid regularization procedure [START_REF] Latt | Lattice boltzmann method with regularized pre-collision distribution functions[END_REF] .

First, the macroscopic quantities ρ, u, θ and s are computed. A cut cell method is adopted to handle solid walls and open boundaries. Macroscopic quantities are calculated at two reference points with a Shepard's Inverse Distance Weighting (IDW) algorithm. Then, the boundary node is given by a second order Lagrangian interpolation to obtain a proper Dirichlet or Neumann condition [START_REF] Feng | Solid wall and open boundary conditions in hybrid recursive regularized lattice boltzmann method for compressible flows[END_REF] .

Next, the viscous stress tensor is computed using its Navier-Stokes format Eq. ( 4) and the velocity gradients are properly decentered with a first order algorithm. The non equilibrium part of the distribution function is finally recovered using Eq. ( 28) with σ = 0. To implement the characteristic subsonic outflow boundary condition with a prescribed static pressure p ∞ and to avoid spurious pressure drifts, a partially non-reflecting outflow is built using:

C. Open boundary conditions

L 1 = K cbc (p -p ∞ ), (53) 
where K cbc has to be changed as a function of a dimensional parameter depending on the test case [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] . Through numerical experiments over transonic test case, it was found that K cbc = 0.05 was a stable and robust value for all the cases mentioned in Section V. After this step, the reconstruction procedure is the same as mentioned before for solid boundaries.

D. Absorbing sponge layer

NSCBC boundary conditions are supplemented by absorbing sponge terms. The compressible Navier-Stokes equations are artificially modified using source terms as follows:

∂ρ ∂t + ∂(ρu α ) ∂x α = -σ s (x)(ρ -ρ f ), (54) 
∂(ρu α ) ∂t + ∂ ∂x β (ρu α u β + pδ αβ ) = ∂Π αβ ∂x β -σ s (x)(ρu α -ρ f u α,f ), (55) 
∂s ∂t + u α ∂s ∂x α = 1 ρT ∂ ∂x α λ ∂T ∂x α + 1 ρT Π αβ ∂u α ∂x β -σ s (x)(s -s f ), (56) 
Where ρ f , u α,f and s f are the prescribed density, velocity and entropy at the reference state, respectively. The sponge terms on the right-hand side are activated near open boundaries in order to damp the fluctuations via a relaxation toward a prescribed reference state.

In the absorbing layers, the profile σ s (x) could not be a uniformly distributed parameter.

This will induce a significant wave reflection from the interfaces between the wave propagation domain and the sponge domain. Several definitions of this parameter exist. In this study, we will use 55

σ s (x) = σ A 3125(x -x 0 ) 4 (L s -x) 256(L s -x 0 ) 5 , (57) 
where σ A , x 0 and L s are respectively the sponge strength factor to tune, starting position and thickness of the absorbing sponge layer, respectively.

E. 3D Grid refinement for compressible HRR-LBM

The grid refinement method for three-dimensional grid is based on multidomain decomposition. The space is discretized with a hierarchy of uniform embedded meshes, including a grid step ratio of 2 between two successive refinement areas. In this section, only the principal formalism and major equations are presented. Detailed description and explanatory schemes can be found in [START_REF] Feng | Grid refinement in the three-dimensional hybrid recursive regularized lattice boltzmann method for compressible aerodynamics[END_REF] . The mesh size and time step are defined as:

∆x f = 1 2 ∆x c = 1 2 (L+1) ∆x 0 , (58) 
∆t f = 1 2 ∆t c = 1 2 (L+1) ∆t 0 , (59) 
With ∆x 0 and ∆t 0 the mesh size and the time step at the coarsest level L = 0. Subscripts f and c denote respectively the fine and coarse grid. With this approach, the stream and collide algorithm cannot be applied as it for a transition node at the interface between a fine and a coarse mesh. The detailed communication algorithm between the different levels is given in [START_REF] Feng | Grid refinement in the three-dimensional hybrid recursive regularized lattice boltzmann method for compressible aerodynamics[END_REF] . An interpolation step is needed at the transition interface. The time interpolation is due to the synchronisation of informations at odd and even time steps. During even time steps, informations on coarse and fine points are synchronous while they must be interpolated from coarse to fine grid at odd time steps:

φ (f ) f = φ (f -∆t f ) f + φ (f +∆t f ) c -φ (f -2∆t f ) f 3 , (60) 
where φ

(f +∆t f ) c
is obtained in advance on the coarse mesh. For transition points on the fine side which are not in the overlapped region, namely edge and face interfaces, spatial interpolations are performed, respectively in one and two dimensions. An automatic switch to asymmetric scheme is adopted when the number of neighbors if not fulfilled [START_REF] Feng | Grid refinement in the three-dimensional hybrid recursive regularized lattice boltzmann method for compressible aerodynamics[END_REF] . To better illustrate these words, examples of these cubic interpolations are provided (with i, j and k respectively the index in x, y and z directions):

• One-dimensional edge interpolation

φ(i, j, k) = - 1 16 φ(i -3, j, k) + 9 16 φ(i -1, j, k) + 9 16 φ(i + 1, j, k) - 1 16 φ(i + 3, j, k), (61) 
• Two-dimensional face interpolation on x -y plane

φ(i, j, k) = 1 2 - 1 16 φ(i -3, j, k) + 9 16 φ(i -1, j, k) + 9 16 φ(i + 1, j, k) - 1 16 φ(i + 3, j, k) + 1 2 - 1 16 φ(i -3, j, k) + 9 16 φ(i -1, j, k) + 9 16 φ(i + 1, j, k) - 1 16 φ(i + 3, j, k) . (62) 

F. Coupling of wall model with immersed boundaries on Cartesian grids

Spurious oscillations are frequently observed near surfaces where wall model is applied in the context of turbulent flows, especially on Cartesian grids [START_REF] Cai | Coupling of turbulence wall models and immersed boundaries on cartesian grids[END_REF] . The problem is well known and comes from the stair-step grid boundaries, inducing irregularities on the wall distances.

To reduce these oscillations, several modifications are picked from [START_REF] Cai | Coupling of turbulence wall models and immersed boundaries on cartesian grids[END_REF] .

The first ingredient is to work on u τ interpolations. As it is constant on the wall normal direction, interpolation can be performed only in the wall parallel direction. Usually, macroscopic quantities are interpolated and u τ is deduced from the law of the wall. Direct interpolation of u τ avoids the use of quantities following a rapid change. The tangential velocity at each neighbour points is calculated through:

u t = u -(u.n)n, (63) 
with the parallel distance obtained from:

d 2 t,k = x B -x k 2 -(x B -x k ).n 2 . ( 64 
)
The inverse is used as a weight to interpolate u τ , inverting the wall function. As in [START_REF] Wilhelm | An explicit power-law-based wall model for lattice boltzmann method-reynolds-averaged numerical simulations of the flow around airfoils[END_REF] , the interpolation support domain includes two layers of points, starting from the boundary node, in the D3Q19 lattice. Moreover, as the interpolation takes into account only parallel directions, the order of interpolation is reduced by one.

We observed through numerical experiments that evaluation of the velocity gradients near the wall is a main source of spurious oscillations. Classicaly, gradients are decentered near boundaries to achieve a first order scheme. This treatment seems not to be adequate for turbulent boundary layers where steep gradients are present near the wall. Then, an higher order method is used, namely, the Weighted Least Square (WLSQ) algorithm. This method is widely used in classical Navier-Stokes based immersed boundary wall modeling [START_REF] Capizzano | Turbulent wall model for immersed boundary methods[END_REF][START_REF] Tamaki | Near-wall modification of spalart-allmaras turbulence model for immersed boundary method[END_REF] . The gradient is taken as the unknown, solved by minimizing the error function:

J = k (w k e k ) 2 = e T We, (65) 
The weight W is the inverse distance to the boundary point, in order to give more influence to close points. The error minimization leads to:

(∇φ) B = (D T WD) -1 D T W(φ -φ B ), (66) 
where (D T WD) -1 is a 3 × 3 matrix for 3D. 

V. RESULTS

In

CFL = |u ∞ | + c ∆x/∆t , ( 67 
)
with the physical sound speed c = γrT ∞ . A necessary condition for stability is CFL ≤ 1.

For each test case, this free parameter, to be tuned through a reference sound speed changing the time step ∆t, will be precised.

Note that additional academic validation test cases are available in our initial publication [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF] and in a recent comparison between pressure-based and density-based solvers [START_REF] Farag | A unified hybrid lattice-boltzmann method for compressible flows: Bridging between pressure-based and density-based methods[END_REF] , including in particular:

• Convection of Kovásznay modes (vortex, entropy, acoustic) up to Mach 4 for the first two,

• Couette flows up to Mach 3.3,

• Shock tubes problems,

• Shock/vortex interaction.

A. Inviscid transonic flow over a 10% bump

The first test case chosen to validate our model on a two-dimensional configuration involving non-straight walls and a Mach number close to 1 is a transonic flow over a 10 % circular bump. The length of the domain is L = 3m for a height of the channel H = 1m on a 300 × 100 mesh. The flow at the inlet is injected in the x-direction corresponding to a Mach number M = 0.675 with a total pressure of P t = 10 5 Pa and a total temperature T t = 293.15K. At the outlet, NSCBC with a prescribed pressure, corresponding to the inlet conditions, is used to avoid spurious wave reflection into the domain [START_REF] Feng | Solid wall and open boundary conditions in hybrid recursive regularized lattice boltzmann method for compressible flows[END_REF] . The other boundaries (top and bottom surfaces) are frictionless adiabatic walls. Simulation is performed with the condition CFL = 0.4. To properly capture the shock induced by the curved profile, a shock sensor is applied with s c = 10. Figure 1 shows the adimensional macroscopic quantities (density, pressure and Mach number) fields. A quantitative comparison is given in Fig. 2 where the Mach number on the horizontal lower wall is compared to a LU-SGS scheme using a AUSM+up flux [START_REF] Fürst | On the implicit density based openfoam solver for turbulent compressible flows[END_REF] . It can be seen through these figures that the shock waves are properly captured by the method with few oscillations. Axes are normalized using the height of the channel h.

B. Inviscid supersonic flow over a 4% bump

The second test case reproduces the same channel dimensions including a 4% circular bump with a 600 × 200 mesh grid. This configuration is showed here to assess the capability of the method to deal with supersonic flow including shock waves reflection [START_REF] Allahyari | A block-interface approach for high-order finite-difference simulations of compressible flows[END_REF][START_REF] Karbalaei | A central difference finite volume lattice boltzmann method for simulation of 2d inviscid compressible flows on triangular meshes[END_REF] . As for the previous test case, the bump is set in the middle of the channel. At the inlet, a supersonic Figure 3 shows the density, pressure and Mach number fields. It can be seen that the shock waves and reflections through the frictionless walls are properly captured without non-physical oscillations, exhibiting similar properties with previous work [START_REF] Guo | An efficient lattice boltzmann method for compressible aerodynamics on d3q19 lattice[END_REF] . On Fig. 4, values of Mach number are plotted along the top and bottom walls. These distributions are compared with reference simulation on a 90 × 30 nonuniform body-fitted grid, using Artificial Compression Method (ACM) with a second-order accuracy scheme [START_REF] Djavareshkian | Shock-capturing method using characteristic-based dissipation filters in pressure-based algorithm[END_REF] . Our results are in good agreement with this reference solution. Finally, a comparison is made concerning Mach number and pressure distributions along horizontal and vertical middle lines with a reference Jameson Schmidt Turkel second-order accurate finite volume scheme [START_REF] Jameson | Origins and further development of the jameson-schmidt-turkel scheme[END_REF] . In this case, both solutions are computed with the same mesh size 28 . x/h 0.8 

c p = p -p ∞ 1 2 ρ ∞ u ∞ 2 (68) 
Our pressure coefficients are plotted together with a reference body fitted Euler solver solution [START_REF] Ferreira | Simulation results and applications of an advection bounded scheme to practical flows[END_REF] . The results of our algorithm are in good agreement with this reference, demonstrating the capability of the method to handle shock in a transonic regime for a complex 2D test case.

D. Steady inviscid transonic flow over an ONERA M6 wing

The complete model is now validated on a fully three dimensional test case with an ON-ERA M6 wing. It is a swept, semi-span wing with no twist. The free-stream Mach number is Free-stream macroscopic state is given at the inlet and bottom boundaries while a subsonic outlet with a prescribed pressure p ∞ is imposed for the outflow to mimic a far field This validates the method for 3D complex geometry in the scope of transonic regime. Equipped with these methods, the HRR-P LBM is assessed with a succession of increasingly complex test cases, ending with the first wall-law, large eddy Lattice-Boltzmann simulation of a full 3D transonic wing. These results allow to envision encouraging perspectives for both industrial and academic configurations. Future works include applications (i) to aero-acoustics, and (ii) to complex 3D supersonic flows.

M ∞ = 0.
When discontinuities are encountered at a Mach number higher than 1. 

For

  far-field open boundaries and subsonic flows, characteristic boundary conditions are used. Local One-Dimensional Inviscid (LODI)[START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] are extended and evaluated within the hybrid thermal lattice Boltzmann framework. The time evolution of a closed system is governed by the state in the interior of the domain and by waves entering the domain through its boundaries. In a characteristic-based nonreflecting boundary condition, the time derivatives of physical quantities at the boundary are modified. The first goal of this filter is to minimize the spurious reflection of characteristic waves leaving the domain and the second one is to enforce the desired value of incoming waves. In the framework of NSCBC boundary conditions, the amplitude of outgoing waves can be calculated using interior points and previous time step. But, it is impossible to determine the exact values of the incoming waves. Approximations have to be done to express the unknown L i 's (incoming waves) as a function of the known L i 's (outgoing waves).

  this section, the proposed HRR-p model coupled with proper boundary conditions, a shock capturing technique and a turbulence model is assessed on different configurations and compared to reference solutions that can be either analytical solutions or previous numerical solutions obtained by validated flow solvers. The validations are aimed at demonstrating the ability of the present model to accurately reproduce fully compressible effects for a wide range of physical parameters. Unless it is specified, all the simulations are carried out with σ = 0.9 and inviscid cases with a dynamic viscosity of µ = 10 -15 . The classical definition for the acoustic Courant-Friedrichs-Lewy (CFL) number with respect to infinite state is used in this study:

Figure 1 :

 1 Figure 1: Density, Pressure and Mach number (respectively from top to bottom) fields.

6 MFigure 2 :

 62 Figure 2: Mach number distribution along the lower wall. • LU-SGS, AUSM+up ;LBM results. x axis is normalized using the height of the channel h.

Figure 3 :

 3 Figure 3: Density (top), Pressure (middle) and Mach number (bottom) fields. Axes are normalized using the height of the channel h.
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 452 Figure 4: Mach number distribution along the top and lower walls. x axis is normalized using the height of the channel h.
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 6 Figure 6: Mach number field for (from top-left to bottom-right): M ∞ = 0.6, M ∞ = 0.75, M ∞ = 0.8, M ∞ = 0.9, M ∞ = 1.2. Axes are normalized using the chord of the wing c. The last plot indicates the mesh refinement regions around the wing: a growth on the colorbar represents a finer mesh and the maximum value indicates the solid body.
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 7 Figure 7: Pressure coefficient c p for M ∞ = 0.8;LBM results; • 66 ; x axis is normalized using the chord of the wing c.
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 8 Figure 8: Mesh refinement regions with the smallest grid size around the wing and the largest one in the far field space.

Figure 9 :

 9 Figure 9: Pressure coefficient at (from top-left to bottom-right) y = 20%, y = 44%, y = 65% and y = 90% of the wing span; LBM results; • Euler Ref. x axis is normalized using the chord of the wing c at the spanwise considered section.

Figure 10 :

 10 Figure 10: Mesh refinement regions with the smallest grid size around the wing and the largest one in the far field space.

Figure 11 :

 11 Figure 11: Pressure coefficient on the top surface of the ONERA M6 wing

Figure 12 :

 12 Figure 12: Pressure coefficient at (from top-left to bottom-right) y = 20%, y = 44%, y = 65% and y = 90% of the wing span;LBM results; • Expt. x axis is normalized using the chord of the wing c at the spanwise considered section.
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Appendix A: Forcing terms

Depending on the order of the Gauss-Hermite quadrature [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF] used in the LB model, an adequate forcing term should be added to achieve a correct viscous stress tensor:

with D the spatial dimension. For the D3Q19r basis, the projected forcing term reads as

where a cor αβ is a correction tensor due to the deflection of second order moments of the population introduced by the modification of the mass equation, which can be evaluated as

which can be discretized using a backward Euler operator and a F D αβ the correction tensor due to the defect of the lattice at third order

where all the differential operations are performed using first order upwind FD except for the divergence operator for which a second order centered FD scheme was employed. The final expression of the forcing term is then

Appendix B: Recursive reconstruction of third order off-equilibrium tensor

The third order non-equilibrium tensor is achieved via a recursive procedure from second order tensor, and reads as a ) and F (s n i-1

2

) for a non-conservative form are computed as follows :

i) Data reconstruction. Evaluate the extrapolated intercell values at the left and right sides of the ith cell as

with ∆ i the local approximated slope

and φ i a Van Albada flux limiter, only used for shocked flows, which reads

In order to improve the accuracy, it was chosen to evaluate dynamically κ = 1 3 2∆t u i ∆x -sign(u i ) , leading to a third-order accurate scheme in both space and time for a constant u i value [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: a practical introduction[END_REF] .

ii) Data evolution. Let the extrapolated boundary values evolve of a time ∆t 2 according to

iii) Solution of the piece-wise constant problem. Finally we simply compute F (s n i+

2

) and

) using :

Note that this scheme uses a 5-points stencil because the evaluation of the slope is non-local.