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Understanding electrified interfaces is crucial to enabling a multitude of applications, including 
photo(electrocatalysis), super- and pseudocapacitors, batteries, etc. However, reaching an 
atomistic understanding of electrified interfaces remains challenging and will require the 
combination and development of refined computations and experiments. 
 
 
Electrified interfaces are a key component of a variety of technologies, including 
(photo)electrocatalysis for the production of chemicals (for example, H2, NH3 and CO2 
reduction products)1, super- and pseudocapacitors, large-scale redox flow batteries and 
portable lithium-ion batteries.  
 
Electrified interfaces consist of an electrode and a liquid or solid electrolyte. This contact leads 
to the formation of an electric double layer. Practical electrodes expose a high surface area to 
maximize the contact with the electrolyte. Since molecules and ions coming from the bulk 
need to reach the electrode, these interfaces are generally non-crystalline and are, thus, 
complex at the atomic level. Moreover, if an (electro-)chemical reaction occurs at the 
electrified interface, the system is in a non-equilibrium state. Therefore, single-crystal surface 
models do not adequately describe electrified interfaces, and atomistic modelling is pushed 
to its limits.2  
 
[H1] The challenge of atomistic description 
 
For a realistic description of the physical and chemical processes in large, disordered systems, 
such as electrified interfaces, atomistic simulations need to be performed over sizeable 
timescales (for nanoseconds if coupled to biased exploration, otherwise even longer). 
Furthermore, electronic structure methods or interatomic potentials that capture the 
polarization in the presence of an electrochemical potential need to be considered to capture 
(electrochemical) reactivity. The experimental characterization of electrified interfaces is also 
challenging. Compared to the bulk electrode and electrolyte, the number of atoms forming 
the interface is generally small, so they tend to be difficult to detect experimentally. 
Furthermore, the non-crystalline nature of practical electrified interfaces prohibits the use of 
diffraction techniques, which are the most suitable methods to achieve atomic resolution. 
Nevertheless, advanced surface-sensitive techniques, such as operando variants of 
spectroscopies and microscopies, promise (near) atomic resolution and chemical 
characterization of electrified interfaces in the next decade under operating conditions. 
 



To gain a deeper understanding of electrified interfaces, and thus, finer handles to design 
improved interfaces, the community needs to embrace the challenge of reaching an atomistic 
description.1 Here, we suggest three complementary avenues to tackle this challenge: (a) 
autonomous workflows, (b) machine learning and (c) integrated computations and 
experiments. Our discussion is geared towards electrocatalysis; however, most aspects also 
apply to other electrified interfaces.  
 
[H1] Computational screening and autonomous workflows 
 
High-throughput and high-performance computing enables fast computational screening. 
Single crystal surfaces without a detailed description of the electrolyte are highly simplified 
models for electrified interfaces. Their simplicity enables efficient screening of electrode 
materials for various systems, such as catalysis and batteries. The systematic use of 
computations can guide experiments, but should also incorporate a feasibility component, 
that is, addressing the stability of the proposed active sites and materials. The screening of 
surfaces for assessing their activity and stability does not, in principle, require significant user 
knowledge and, thus, lends itself for high-throughput computing.3 However, the 
corresponding infrastructure for system setup and analysis largely relies on inefficient, in-
house scripting and programming. Therefore, these approaches require human intervention 
and remain time-consuming in practice. One of the potential ways to address these issues is 
to develop autonomous workflows. 
 
Autonomous workflows are highly beneficial to perform detailed mechanistic studies. In 
particular, they can be used in evaluation of relevant surface states as a function of the 
operating conditions (electrochemical potential, solvent and supporting electrolyte), 
evaluation of energies of various reaction intermediates by automatic ‘docking’ of 
intermediates on the surface, and determination of their energies as a function of the 
electrochemical potential by grand-canonical density functional theory (DFT). The identified 
intermediates should also be allowed to ‘back-couple’ to the surface state, i.e., the 
intermediates, rather than species derived from the solvent and electrolyte, can become the 
dominating species on the surface. In addition, to make experimentally relevant predictions, 
micro-kinetic models are required to describe the overall activity and selectivity. However, 
such models rely on the determination of the relevant activation energies, for which no 
generally accepted method exists for reactions at electrified interfaces.  
 
[H1] Limitations of machine learning 
 
Machine learning has the potential to change our workflows and (atomic) vision of electrified 
interfaces. Here, we focus on atomistic modelling, which excludes more global system-based 
machine learning techniques, such as surrogate models and data-driven rationalizations and 
predictions.4 At the atomic scale, machine learning can play several roles, including the 
generation of relevant geometries for high-throughput computing and autonomous 
workflows, automation of decision making during autonomous workflows (for example, which 
intermediates to follow, which transition states are relevant), and powering of atomistic 
simulations, that is, replacing costly DFT computations by faster energy evaluations. The 
possibility to reach (near) DFT accuracy for orders of magnitude larger systems with orders of 
magnitude lower computational cost is enticing: it would allow computations of larger, and 



thus more realistic, models for electrified interfaces as compared to what is attainable with 
DFT. However, powering atomistic simulations with machine learning potentials is not trivial, 
in particular, for electrified interfaces.  
 
The fundamental problem is that the interatomic potentials of many low-cost machine 
learning potentials do not consider atomic charges and polarizability. These physically 
motivated quantities may not be necessary for the computation of organic molecules and 
certain materials,5 but are key to the understanding of electrified interfaces. The electronic 
structure (and thus, the chemical properties) of electrodes, adsorbates and molecules depend 
on the electrochemical potential. If electrons are properly described in the simulations, the 
electrochemical potential can be accounted for by surface charge, electric fields, or explicit 
cation-electron pairs, since all three methods allow tuning of the Fermi level and thus the 
energy of electrons.2 By contrast, low-cost machine learning potentials do not define a Fermi 
level. System-specific potentials can still mimic similar effects via geometrical parameters, 
which may explain the attractiveness of such approaches.6,7 However, this pragmatic solution 
leads to ‘disposable’ interatomic potentials (force fields), that is, these potentials are useful 
only for the specific application for which they have been designed. 
 
To overcome the limitations of machine learning potentials and to enable computation of 
electrified interfaces, more physically motivated functional forms need to be developed and 
adopted.8 In addition, training sets should be made available in the form of curated datasets, 
similar as for molecular chemistry (quantum-machine.org). For example, the NOMAD 
Repository and Archive (nomad-lab.eu) could be used to centralize the available datasets and 
to compare results from various computational setups for identical systems. Combining 
datasets of various origins via machine learning (typically transfer learning) would allow the 
‘homogenization’ of inhomogeneous data, further increasing the reusability of the original 
data.  
 
[H1] Integrating computations and experiments 
 
A general challenge for electrified interfaces is the lack of a gold standard for electronic energy 
evaluations for surfaces and solids. By contrast, in molecular chemistry, complete basis set 
coupled cluster singles, doubles and perturbative triples, or CCSD(T), computations are widely 
accepted as gold standard for all but the most problematic electronic structures. Carefully 
converged quantum Monte Carlo simulations could provide the required accuracy for 
interfaces; however, the computational cost is currently only compatible with small model 
systems.9 In other words, the accuracy of commonly available DFT data compared to the 
reality (i.e., experiment or exact quantum mechanics) might be insufficient to produce 
experimentally relevant data. As a consequence, reproducing DFT data at a lower 
computational cost (i.e., via machine learning potentials) might not be sufficient to achieve 
physically relevant results. Therefore, experimental validation of computational insights 
remains indispensable for the foreseeable future. 
 
To validate computational models, surface-sensitive operando techniques need to be 
developed to characterize electrified interfaces in detail. Such techniques can be broadly 
classified into spectroscopic and microscopic methods. Spectroscopic techniques, such as X-
ray photoelectron spectroscopy, extended X-ray absorption fine structure, Fourier-transform 



infrared spectroscopy, Raman spectroscopy and ultraviolet-visible spectroscopy, can provide 
valuable information about the chemical species present at interfaces. For example, ambient 
pressure X-ray photoelectron spectroscopy performed at a synchrotron can be used to 
characterize solid/liquid interfaces, provided that the electrolyte layer is thin enough (< 20 
nm) to allow measurement.10 Scanning probe microscopy, such as scanning tunnelling 
microscopy, atomic force microscopy and scanning electrochemical microscopy, enable high- 
resolution topographic imaging of interfaces with atomic resolution. For example, scanning 
electrochemical microscopy, which uses a scanning tip as a miniaturized electrode, can be 
applied to study the local electrochemical behaviour and surface reactivity of liquid/solid/gas 
interfaces.10 Liquid phase-transmission electron microscopy has also emerged as a promising 
technique to study real-time morphological and compositional changes in the presence of 
flowing electrolytes under controlled electrochemical conditions. However, several challenges 
remain in the operation of this technique. The electron beam can induce radiolysis and sample 
damage, in addition to creating artificial hot spots with high electrochemical activity near the 
electrode tip.10 Thus, operando characterization techniques need to be explored that reflect 
real electrochemical conditions, ideally, operating high-throughput using smart automation 
and robotics.  
 
Finally, high-quality data collected by experimental techniques can be fed into computational 
models to validate and refine them in a tight feedback loop. Machine learning using deep 
generative models also enables the inverse design for a directed, automated search of the 
entire chemical space. Given a specified materials property, the ultimate goal of inverse design 
is to predict a feasible, optimal structure and composition within the chemical space.  
 
In summary, integrating computations and experiments will transform the way we understand 
and discover new electrified interfaces and materials in the future. 
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