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Abstract

Inflammation of the central nervous system (CNS) induces endothelial blood–brain barrier

(BBB) opening as well as the formation of a tight junction barrier between reactive astro-

cytes at the Glia Limitans. We hypothesized that the CNS parenchyma may acquire protec-

tion from the reactive astrocytic Glia Limitans not only during neuroinflammation but also

when BBB integrity is compromised in the resting state. Previous studies found that astro-

cyte-derived Sonic hedgehog (SHH) stabilizes the BBB during CNS inflammatory disease,

while endothelial-derived desert hedgehog (DHH) is expressed at the BBB under resting

conditions. Here, we investigated the effects of endothelial Dhh on the integrity of the BBB

and Glia Limitans. We first characterized DHH expression within endothelial cells at the

BBB, then demonstrated that DHH is down-regulated during experimental autoimmune

encephalomyelitis (EAE). Using a mouse model in which endothelial Dhh is inducibly

deleted, we found that endothelial Dhh both opens the BBB via the modulation of forkhead

box O1 (FoxO1) transcriptional activity and induces a tight junctional barrier at the Glia Limit-

ans. We confirmed the relevance of this glial barrier system in human multiple sclerosis

active lesions. These results provide evidence for the novel concept of “chronic neuroinflam-

matory tolerance” in which BBB opening in the resting state is sufficient to stimulate a pro-

tective barrier at the Glia Limitans that limits the severity of subsequent neuroinflammatory

disease. In summary, genetic disruption of the BBB generates endothelial signals that drive

the formation under resting conditions of a secondary barrier at the Glia Limitans with pro-

tective effects against subsequent CNS inflammation. The concept of a reciprocally regu-

lated CNS double barrier system has implications for treatment strategies in both the acute

and chronic phases of multiple sclerosis pathophysiology.
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Introduction

In a healthy individual, the central nervous system (CNS) parenchyma is protected from the

peripheral circulation by the blood–brain barrier (BBB), which tightly regulates the entry and

exit of soluble factors and immune cells [1]. Importantly, during multiple sclerosis, the abnor-

mal permeability of the BBB allows penetration into the CNS parenchyma of inflammatory

cells and soluble factors such as autoantibodies, cytokines, and toxic plasma proteins, which

drive lesion formation and acute disease exacerbation [2,3]. Therefore, identifying key mecha-

nisms that promote BBB tightness is currently considered to be a main strategy for controlling

leukocyte and humoral entry, preventing acute relapse and disability progression in multiple

sclerosis.

Previous studies have identified the Hedgehog (HH) pathway as a regulator of BBB integrity

in multiple sclerosis, HIV, and stroke [4–7]. Desert hedgehog (DHH) is expressed constitu-

tively at the BBB in adults [8] and belongs, together with Sonic hedgehog (SHH) and Indian

hedgehog (IHH), to the HH family of morphogens, identified nearly 4 decades ago in Dro-

sophila as crucial regulators of cell fate determination during embryogenesis [9]. The interac-

tion of HH proteins with their specific receptor Patched-1 (PTCH1) derepresses the

transmembrane protein Smoothened (SMO), which activates downstream pathways including

the canonical HH pathway leading to the activation of Gli family zinc finger (Gli) transcription

factors, and the so-called noncanonical HH pathways, which are independent of SMO and/or

Gli [10].

Interestingly, a wealth of literature published during the last decades has enabled a change

in the vision of BBB structure and integrity, which has expanded to include contributions

from both barrier properties of the vascular endothelial cells and the astrocytic end feet of the

neurovascular unit. Within the neurovascular unit, substantial intercellular communication

network involves the vascular endothelial cells and astrocytic end feet, as well as the pericytes

and basement membranes within the perivascular space (PVS) [11–13]. How these signals reg-

ulate the passage of soluble factors and cells into and out of the CNS is not completely under-

stood and is of considerable translational interest to the field of neuroimmunology. Regulatory

mechanisms at the BBB include solute transporters and receptor-mediated transcytosis, and

immune cells are actively prevented from crossing the BBB by low levels of immune receptors

that normally permit immune trafficking. Once soluble factors and immune cells penetrate the

BBB, they circulate within the PVS, a region between the basal basement membrane of the

endothelial cell wall and the parenchymal basement membrane abutting the astrocyte end feet

[14,15]. While it is now well established that BBB breakdown leads to soluble factor and

inflammatory cell infiltration into the PVS during neuropathology, the role of the Glia Limit-

ans is more complex. Indeed, astrocytes, described as reactive, may demonstrate opposing

roles in both recruiting and restricting neuroinflammatory infiltration depending on the con-

text [16]. Specific reactive astrocyte behaviors are likely determined by signaling events that

vary with the nature and severity of CNS injury or disease. Specifically, in multiple sclerosis as

well as Alzheimer’s and Parkinson diseases, it has been shown that reactive astrocytes, on one

hand, produce pro-inflammatory and pro-permeability factors and on the other hand, neuro-

protective factors [17–19].

Astrocyte barrier properties are not as well characterized as those of the BBB. However, sev-

eral groups have highlighted barrier properties at the Glia Limitans [20–22]. Notably, endfoot–

endfoot clefts, similar to those observed between endothelial cells at the BBB, have been

described at the Glia Limitans and shown to be responsible for the sieving effect observed

between the distribution of small and large Dextrans [23]. Moreover, under neuroinflamma-

tory conditions, immune cell trafficking across the Glia Limitans is necessary for clinical
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experimental autoimmune encephalomyelitis (EAE) [21]; indeed, matrix metalloproteinase

(MMP)-2 and MMP-9 proteolytically cleave dystroglycan, which anchors astrocyte end feet to

the Glia Limitans basement membrane via binding to extracellular matrix molecules, allowing

infiltrating leukocytes to penetrate the parenchyma [24]. Additionally, it has been shown that

the scavenger receptor CXCR7 is up-regulated on the inflamed BBB endothelium, facilitating

mobilization of T cells from the PVS into the CNS parenchyma [25]. Altogether, these data

demonstrate that both the endothelial BBB and its basement membrane, along with the Glia

Limitans and the parenchymal basement membrane, are required for immune cell trafficking

across the neurovascular unit. Strikingly, our recent work has given considerable attention to a

new property of reactive astrocytes: the expression of tight junction proteins (notably Claudin4

(CLDN4)) under inflammatory conditions [26]. This result provides yet another argument in

favor of astrocytic barrier properties.

The first objective of our study was to decipher the role of the morphogen DHH in main-

taining BBB tightness. The second objective was to demonstrate that a double barrier system

comprising both the BBB and Glia Limitans is implemented in the CNS and regulated by a

crosstalk going from endothelial cell to astrocytes using endothelial Dhh knockdown as a

model of permeable BBB.

Here, we first demonstrate that endothelial DHH expression is down-regulated during neu-

roinflammation and is necessary to maintain BBB tightness. We then show that BBB opening,

induced by Dhh knockdown, drives astrocyte CLDN4 expression, conferring barrier proper-

ties to the Glia Limitans, which results in the PVS entrapment of plasma proteins and inflam-

matory cells, both under physiological conditions and during pathology. Together, these data

identify the neurovascular unit as a double barrier system whose function is controlled by the

crosstalk between endothelial cells and astrocytes.

In conclusion, this work strengthens the concept of CNS double barrier system, unveiling

how signals at the endothelium drive astrocyte barrier properties to protect the parenchyma

during neuropathology. Consequently, taking into account both components of the neurovas-

cular unit is of translational interest and could open the way for new therapeutic strategies

notably to limit progressive multiple sclerosis pathology.

Results

DHH, but not SHH or IHH, is expressed by CNS microvascular endothelial

cells and down-regulated during chronic neuroinflammation

First, we showed that DHH is expressed at the BBB in vitro using mouse CNS MECs� (Fig 1A).

CNS MEC purity was assessed using platelet/endothelial cell adhesion molecule 1 (PECAM1)

and zonula occludens 1 (ZO1) as positive endothelial markers and smooth muscle actin

(SMA), neural/glia antigen 2 (NG2), cluster of differentiation 45 (CD45), ionized calcium

binding adaptor molecule 1 (IBA1), and glial fibrillary acidic protein (GFAP) as markers of

contamination by smooth muscle cells, pericytes, leukocytes, microglia, and astrocytes, respec-

tively (Fig 1A and S1A Fig). DHH expression at the BBB was verified in vivo using human cor-

tical sections from healthy donors (Fig 1B) and brain sections from C57BL/6 mice (S1B Fig).

SHH and IHH are not expressed in the healthy BBB, and DHH is known to be stored intracel-

lularly as well as being secreted [7]. Therefore, we here infer the CNS endothelial cells as the

source of DHH within the neurovascular unit. Next, we demonstrated that Dhh is severely

down-regulated at the BBB under inflammatory conditions both in vitro using human brain

microvascular endothelial cells (HBMECs) treated with interleukin-1β (IL-1β) (one of the

main pro-inflammatory cytokine implicated in multiple sclerosis pathophysiology) (Fig 1C

and S1 Data) and in vivo (Fig 1F and S1 Data) using a preclinical model of multiple sclerosis
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Fig 1. DHH is expressed by CNS MECs and down-regulated during chronic neuroinflammation. (A) Primary BMECs were

isolated from 12-week-old C57Bl/6 mice, and Dhh, Ihh, Shh, Pecam1, Sma, Ng2, Cd45, and Gfap expressions were quantified by

qRT-PCR (cycle threshold mean values). β-actin is used as a reference. (B) Human cortical sections from healthy donors were

obtain from the NeuroCEB biobank and immunostained with anti-CDH5 (in red), anti-PECAM1 (in red), and anti-DHH (in

green) antibodies. Nuclei were stained with DAPI (in blue). (C–E) HBMECs were cultured until confluency and starved for 24 h.

HBMECs were then treated with PBS (control condition) or IL-1β 10 ng/mL for 24 h and (C) DHH, (D) ICAM1, and (E)
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(MOG35-55) to induce chronic neuroinflammation in C57BL/6 mice. For this experiment, iso-

lated spinal cord microvessels underwent a digestion step followed by a CD45+ T cell depletion

step to discard inflammatory cell contamination induced by EAE (S1C and S1D Fig). Dhh
down-regulation at the BBB is associated with the up-regulation of endothelial activation

markers intercellular adhesion molecule 1 (Icam1) (Fig 1D–1G and S1 Data) and vascular cell
adhesion molecule 1 (Vcam1) (Fig 1E–1H and S1 Data) and with down-regulation of mRNA

markers of tight junctions (claudin5 (Cldn5) and Zo1) (Fig 1I, 1J and S1 Data).

Together, these data identify DHH as the only HH expressed in adults at the endothelial

BBB. Moreover, they highlight the fact that DHH expression is down-regulated at the BBB

during neuroinflammatory pathology.

Endothelial-specific Dhh inactivation induces down-regulation of adherens

junction CDH5 and tight junction CLDN5 ex vivo

To test the importance of endothelial DHH expression at the BBB, we conditionally disrupted

DHH expression in endothelial cells and examined the consequences on BBB integrity. To do

so, we used CNS MEC cultures isolated from Cdh5-CreERT2, DhhFlox/Flox mice (DhhECKO

mice), and DhhFlox/Flox control littermates, 2 weeks after inducing knockdown by intraperito-

neal injection of tamoxifen. There is no difference between DhhECKO and control mouse cell

culture viability (S1E, S1F Fig and S2 Data).

We first verified the efficiency of the knockout by measuring Dhh expression in primary CNS

MEC cultures obtained from DhhECKO and littermate controls and showed that Dhh expression is

strongly down-regulated in the knockout mice (Fig 2A and S1 Data). Moreover, CDH5, CLDN5,

and ZO1 junctions are disorganized in DhhECKO endothelial cells: In controls, CDH5, CLDN5,

and ZO1 display a well-defined pattern of sharp contours at endothelial cell–cell contacts. In con-

trast, in DhhECKO cultures, a broader, more irregular pattern is detected at endothelial cell–cell

contacts (Fig 2D–2F). This result is consistent with the previously documented phenotype using

small interfering RNA (siRNA) for DHH [8]. CDH5 and CLDN5 but not ZO1 are down-regu-

lated in DhhECKO CNS MECs compared to controls (Fig 2B, 2C and 2G–2I and S1 Data).

We concluded that endothelial DHH expression is necessary to maintain endothelial adhe-

rens and tight junction mRNA and protein expression level at the BBB and to maintain a well-

defined CDH5, ZO1, and CLDN5 pattern of sharp contours at endothelial cell–cell contacts.

DHH induces CLDN5 up regulation through the inhibition of FOXO1

transcriptional activity in vitro

We previously identified DHH as a factor facilitating the interaction between CDH5 and cate-

nin β1 (CTNNβ1) in endothelial cells [8], and others have shown that CDH5 interacts with

VCAM1 expression were quantified by qRT-PCR. (F–H) Twelve-week-old C57Bl/6 females (6 animals per group) were induced

with MOG35-55 EAE versus placebo. At day 13 post induction, mice were humanely killed, and spinal cord microvascular

endothelial cells were isolated. (F) Dhh, (G) Icam1, (H) Vcam1, (I) Cldn5, and (J) Zo1 expression were measured via qRT-PCR

in both groups (MOG35-55 versus placebo). ��P� 0.01, ����P� 0.0001 Mann–Whitney U test. The underlying data for Fig 1 can

be found in S1 Data (https://doi.org/10.6084/m9.figshare.12625034.v6). �It is important to note that CNS endothelial cells are

from a pooled source including both brain and spinal cord tissues. Therefore, the resulting cell cultures/lysates may be

heterogeneous in their use of DHH. This remark applies to Figs 1–4. BMECs, brain microvascular endothelial cells; CD45,

cluster of differentiation 45; CDH5, cadherin5; Cldn5, claudin5; CNS, central nervous system; Ctrl, control; DHH desert

hedgehog; EAE, experimental autoimmune encephalomyelitis; GFAP, glial fibrillary acidic protein; HBMECs, human brain

microvascular endothelial cells; IHH, Indian hedgehog; cam1, intercellular adhesion molecule 1; IL-1β, interleukin 1 beta; MEC,

microvascular endothelial cell; MOG35-55, myelin oligodendrocyte glycoprotein-35-55; NS, non-significant; NG2, neural/glia

antigen 2; qRT-PCR, quantitative reverse transcription polymerase chain reaction; PECAM1, platelet/endothelial cell adhesion

molecule 1; SMA, smooth muscle actin; SHH, Sonic hedgehog; Vcam1, vascular cell adhesion molecule 1; ZO1, zonula occludens

1.

https://doi.org/10.1371/journal.pbio.3000946.g001
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Fig 2. Endothelial-specific Dhh inactivation induces adherens and tight junction down-regulation through stimulation

of FOXO1 transcriptional activity. (A–C) CNS MECs were isolated from DhhECKO and control mice, and (A) Dhh, (B)

Cldn5, and (C) Zo1 expressions were quantified by qRT-PCR. (D–F) Primary BMECs from DhhECKO and control mice were

isolated and cultured on Lab-Tek. (D) CDH5 (in green), (E) ZO1 (in green), and (F) CLDN5 (in red) localizations were

evaluated by immunofluorescent staining of a confluent cell monolayer. Nuclei were stained with DAPI (in blue). The

experiment was repeated 3×. (G–L) CNS MECs were isolated from DhhECKO and control mice, seeded and cultured until

confluency, and (G, H) CDH5, (G, I) ZO1, (G, J) FOXO1, (G, K) and p-FOXO1 expression were quantified by western blot.

(L) BMECs were isolated from DhhECKO mice and control mice, seeded and cultured until confluency and starved for 24 h.
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CTNNβ1 to inhibit transcription factor forkhead box O1 (FOXO1) [27] via PI(3)K–AKT-

dependent phosphorylation, which thereby up-regulates the expression of the endothelial tight

junction protein CLDN5 [27]. Therefore, we next measured the expression level of the phos-

phorylated form of FOXO1 (p-FOXO1) in CNS MEC cultures from DhhECKO and control

(DhhFlox/Flox) mice and demonstrated that p-FOXO1 is down-regulated in DhhECKO mice

compared to controls (Fig 2G, 2J–2K). We then treated CNS MEC cultures from DhhECKO

mice with a cell permeable inhibitor of the transcription factor FOXO1 (AS1842856), which

blocks the transcription activity of FOXO1, and measured Cldn5 mRNA expression. We dem-

onstrated that Cldn5 mRNA expression, in DhhECKO CNS MEC cultures treated with the

inhibitor of FOXO1, returns to the expression level of control CNS MEC cultures, unlike the

DhhECKO CNS MEC cultures treated with DMSO (Fig 2L and S1 Data). Additionally, in

DhhECKO CNS MEC cultures treated with the inhibitor of FOXO1, CLDN5 displays a well-

defined pattern of sharp contours at endothelial cell–cell contacts. In contrast, in DhhECKO

CNS MEC cultures treated with DMSO, a broader, more irregular pattern is detected at endo-

thelial cell–cell contacts (Fig 2M).

We concluded that endothelial autocrine DHH expression at the BBB maintains the pool of

CDH5-CTNNβ1 signaling in endothelial cells, which promotes Cldn5 mRNA expression and

maintains a well-defined CLDN5 pattern of sharp contours at endothelial cell–cell contacts

through the inhibitory phosphorylation of the transcription factor FOXO1 (Fig 2N).

In the white matter, endothelial-specific Dhh inactivation induces BBB

permeability associated with endothelial and astrocytic activation in vivo

In vivo, on spinal cord sections from control and DhhECKO mice, we confirmed that the

expression of adherens junction CDH5 and tight junction CLDN5, when normalized for the

number and length of blood vessels, is down-regulated under resting conditions (Fig 3A–3D,

S1 Data and S3A Fig) and demonstrated that it is associated with an increase accumulation of

serum proteins (fibrinogen (FGB) and albumin (ALB)) [28] (Fig 3B, 3E, 3F, S1 Data, S3B and

S3C Fig) around the vessels, suggesting BBB opening.

We then analyzed the activation status of both the spinal cord endothelium and Glia Limit-

ans in DhhECKO and control littermates. We chose ICAM1 as a marker of endothelial activa-

tion and GFAP as a marker of astrocyte reactivity because they are both widely published in

the context of inflamed CNS tissues and represent a strong indicator of a reactive response of

the CNS endothelium and Glia Limitans.

Using spinal cord sections, we revealed that ICAM1 is up-regulated at the endothelium in

DhhECKO mice compared to littermate controls (Fig 3G, 3I and S1 Data) and associated with a

regionalized up-regulation of GFAP, a marker of astrocyte activation, in white matter (Fig 3H,

3J and S1 Data) but not gray mater (Fig 3H, 3K and S1 Data).

Control BMECs were then treated with DMSO and DhhECKO BMECs with DMSO versus an inhibitor of FOXO1

(AS1842856). (L) CLDN5 expression was then quantified by qRT-PCR and (M) CLDN5 (in red) localization was evaluated

by immunofluorescent staining of a confluent cell monolayer in DhhECKO BMECs treated with DMSO versus an inhibitor of

FOXO1 (AS1842856). Nuclei were stained with DAPI (in blue). The experiment was repeated 3×. (N) Summary outline of

the up-regulation of endothelial junctions by the morphogen DHH through inhibition of FOXO1 transcriptional activity.
�P� 0.05, ��P� 0.01, ���P� 0.001 Mann–Whitney U test. �P� 0.05 Kruskal–Wallis test. The underlying data for Fig 2 can

be found in S1 Data (https://doi.org/10.6084/m9.figshare.12625034.v6). �It is important to note that CNS endothelial cells

are from a pooled source including both brain and spinal cord tissues. Therefore, the resulting cell cultures/lysates may be

heterogeneous in their use of DHH. This remark applies to Figs 1–4. AKT, serine/threonine kinase 1; BMEC, brain

microvascular endothelial cell; CDH5, cadherin5; Cldn5, claudin5; CNS, central nervous system; CTNNβ1, catenin beta 1;

Ctrl, control; DHH desert hedgehog; FOXO1, forkhead box O1; MEC, microvascular endothelial cells; NS, non-significant;

PTCH1, Patched-1; qRT-PCR, quantitative reverse transcription polymerase chain reaction; ZO1, zonula occludens 1.

https://doi.org/10.1371/journal.pbio.3000946.g002
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Fig 3. Endothelial-specific Dhh inactivation induces BBB permeability associated with endothelial and astrocytic

activition in vivo: (A–F) Spinal cord sections were harvested from DhhECKO mice and littermate controls and

immunostained with anti-IB4 (in green), anti-CDH5 (in red or green), anti-CLDN5 (in red), anti-FGB (in red), and

anti-ALB (in red) antibodies. (A) Representative IB4/CDH5 and (B) CDH5/FGB staining are shown. (C) CDH5/IB4,

(D) CLDN5/IB4, (E) FGB, and (F) ALB positive areas were quantified (DhhECKO n = 6 to 12, WT n = 6 to 11). (G–K)

Spinal cord sections were harvested from DhhECKO mice and littermate controls and immunostained with anti

PECAM1 (in red), anti-ICAM1 (in green), and anti-GFAP (in gray) antibodies. (G, H) Representative PECAM1,

ICAM1, and GFAP staining are shown. (H) GFAP staining regionalization (WM and GM) is highlighted by orange

dotted lines on the images. (I) ICAM1 and (J, K) GFAP positive areas in the WM (J) and GM (K) were quantified

(DhhECKO n = 8 to 13, WT n = 5 to 12). �P� 0.05, ��P� 0.01, ���P� 0.001, ����P� 0.0001 Mann–Whitney U test.

The underlying data for Fig 3 can be found in S1 Data (https://doi.org/10.6084/m9.figshare.12625034.v6). �It is

important to note that CNS endothelial cells are from a pooled source including both brain and spinal cord tissues.

Therefore, the resulting cell cultures/lysates may be heterogeneous in their use of DHH. This remark applies to Figs 1–

4. ALB, albumin; AU, arbitrary units; BBB, blood–brain barrier; CDH5, cadherin5; Cldn5, claudin5; Ctrl, control;

DHH desert hedgehog; FGB, fibrinogen; GFAP, glial fibrillary acidic protein; GM, gray matter; IB4, isolectin B4;

ICAM1, intercellular adhesion molecule 1; NS, non-significant; PECAM1, platelet/endothelial cell adhesion molecule

1; WM, white matter; WT, wild type.

https://doi.org/10.1371/journal.pbio.3000946.g003
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Here, we detected that, in the white matter, DHH expression at the endothelium controls

BBB tightness and demonstrated that endothelial-specific Dhh inactivation at the BBB drives

endothelial and astrocyte activation.

DhhECKO-induced BBB breakdown is sufficient to induce a secondary CNS

protective barrier at the Glia Limitans

As we already demonstrated in Fig 3, DhhECKO mice display BBB leakage, whereas control lit-

termates feature a tight BBB.

Although we demonstrated BBB leakage in DhhECKO mice (Fig 3B, 3E, 3F and S1 Data), we

noticed that infiltrating plasmatic proteins are concentrated around the vascular area in arteri-

oles and venules and not seamlessly distributed within the parenchyma��. To verify this obser-

vation, we quantified the distribution of immunoglobulin G (IgG) and a smaller sized dye (70

kDa fluorescein isothiocyanate (FITC) Dextran) in the 3 compartments (lumen, PVS, and

parenchyma). Specifically, in control mice, there is no significant endothelial permeability,

with more than 95% of IgG and 97% of 70 kDa FITC Dextran contained in the lumen of blood

vessels and 5% of IgG and 3% of 70 kDa FITC Dextran segregated in the PVS area limited by

the astrocytic end feet (aquaporin 4 (AQP4) or laminin (LAM) antigen) on 1 side and the ves-

sel wall (PECAM1 or LAM antigen) on the other side, and none found in the parenchyma (S1

Data, S4A–S4E Fig and S2 Data). The quantification protocol of IgG and 70 kDa FITC Dextran

distribution within the lumen, PVS, and parenchyma is described in S4 Fig. In DhhECKO mice,

vascular leakage is significant, but strikingly, 50% of IgG and 50% of 70 kDa FITC Dextran is

contained into the PVS, while none is found in the parenchyma, indicating the presence of a

secondary barrier at the Glia Limitans (S1 Data, S4A–S4E Fig and S2 Data). Interestingly,

some overlap is observed between the IgG signal and the AQP4 signal, concentrated within the

internal surface of the Glia Limitans (Fig 4A). Thus might reflect a potential interaction

between the inner face of astrocyte end feet and IgG accumulated in the PVS, as astrocytes

express Fc receptors (cell surface receptors for IgG), which play a role in both CNS health and

disease [29,30]. The perivascular trapping of IgG in DhhECKO mouse CNS was confirmed

using co-immunostaining of IgG and LAM antigen, which mark the endothelial and astrocytic

basement membranes (S5A and S5B Fig).

We have previously found that reactive astrocytes express tight junctions, notably CLDN4,

under inflammatory conditions in a mouse model of multiple sclerosis (EAE) [26]. Here, we

found that these data are relevant to human disease since CLDN4 is also expressed by reactive

astrocytes, with stronger CLDN4 labeling intensity at the Glia Limitans, in active cortical

lesions from multiple sclerosis patients (Fig 4D). Based on the above results, we investigated

whether the PVS entrapment of plasmatic proteins observed in DhhECKO mice is linked to the

expression of the tight junction CLDN4 at the Glia Limitans in response to BBB permeability

(Fig 4E–4H and S1 Data). We showed that CLDN4 is expressed at the Glia Limitans in

DhhECKO mice but not control littermates (Fig 4E–4H and S1 Data) using isolated neurovascu-

lar enriched fractions. Small intestine samples were used as a positive control for the quantifi-

cation of CLDN4 by western blot (S6A Fig).

Altogether, these results suggest that, in DhhECKO mice, spontaneous BBB permeability leads

to the establishment of a physical barrier at the Glia Limitans, characterized by the expression of

the tight junction protein CLDN4. Therefore, in DhhECKO mice, astrocytic end feet at the Glia

Limitans are “preconditioned” to form a secondary barrier protecting the parenchyma. (��It is

important to note that this study focuses on arterioles and venules but not capillaries. Indeed,

CLDN4 is only up-regulated in DhhECKO-enriched neurovascular fractions, which are 100 μm

and larger in diameter (Fig 4F–4H and S1 Data). In the lysates obtained with enriched
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Fig 4. DhhECKO-induced BBB breakdown is sufficient to induce a secondary CNS protective barrier at the Glia

Limitans. (A–C) Spinal cord sections were harvested from DhhECKO mice and littermate controls and (A) immunostained

with anti-PECAM1 (in gray), anti-AQP4 (in green), and anti-IgG (in red) antibodies (nuclei were stained with DAPI (in

blue)), and (B, C) the distribution of IgG within the lumen, PVS, and parenchyma was quantified. We quantified the

amount of IgG in the PVS and parenchyma and inferred from it the amount of IgG contained in the lumen. (DhhECKO

n = 6, WT n = 6). P< 0.0001, 95% CI: 0.3281 to 0.5558, chi-squared test. (D) Human active multiple sclerosis cortical

lesions were obtained from the NeuroCEB biobank and immunostained with anti-ZO1 (in gray), anti-GFAP (in red), and
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neurovascular fractions, which are 20 μm and larger, CLDN4 expression level is not different

between the DhhECKO and control group (S6B–S6D Fig and S2 Data). In this condition,

CLDN4 expression in arterioles and venules might have been lost in the crowd of capillaries.)

Endothelial signals can drive astrocyte barrier properties at the Glia Limitans

Given the above results, we wanted to determine if astrocyte barrier formation requires signals

from the endothelial BBB or from the plasmatic protein perivascular infiltrate. To do so, we

first studied in vitro the response of normal human astrocytes (NHAs) to HBMEC conditioned

media versus plasmatic proteins from healthy donors. HBMECs used to produce the condi-

tioned media were treated with either the osmotic agent Mannitol or the pro-permeability fac-

tor vascular endothelial growth factor A (VEGFA) to induce BBB breakdown (S7A Fig and S2

Data) through various methods.

We demonstrated that Gfap (Fig 5A, 5E–5I and S1 Data), aldehyde dehydrogenase 1 family,

member l1 (Aldh1l1) (Fig 5B and S1 Data) (markers of astrocyte reactivity), and Cldn4 mRNA

expression (Fig 5D, 5A–5H, 5J and S1 Data) are up-regulated in the NHA treated with

HBMEC-conditioned media but not in the NHA treated with plasma from healthy donors.

vimentin (Vim) (marker of astrocyte reactivity) mRNA expression level was not modulated in

any condition (Fig 5C and S1 Data).

To confirm this observation in vivo, we delivered murine VEGFA or murine plasmatic pro-

teins into the left cerebral cortex of adult mice and evaluated the consequences on CLDN4

expression by astrocytes. PBS stereotactic administration was used as a control. Importantly,

VEGFA cortical stereotactic injection has already been shown to efficiently induce BBB break-

down in mice [17,31].

In vivo, GFAP (Fig 5K–5N and S1 Data) and CLDN4 (Fig 5K–5M, 5O and S1 Data) are

induced in mouse cortex after murine VEGFA and murine plasmatic protein treatments, with

VEGFA having a much stronger effect than plasmatic proteins.

We concluded that permeable endothelial monolayers produce signals that can drive astro-

cyte reactivity and tight junction expression. Plasmatic protein involvement in controlling

astrocyte barrier behavior is, however, less clear as astrocyte reactivity and tight junction

expression are up-regulated in vivo but not in vitro when treated with plasma; further investi-

gations will be necessary to identify the mechanisms involved.

Mice with endothelial Dhh inactivation display reduced disability in a

model of multiple sclerosis during the onset of the disease

To examine the impact of these findings on disease severity, we investigated the phenotype of

induced experimental multiple sclerosis (EAE) in DhhECKO and control mice.

anti-CLDN4 (in green) antibodies. Strong CLDN4 signal at the Glia Limitans is indicated by white arrows. Nuclei were

stained with DAPI (in blue). (E–H) Enriched neurovascular fractions were isolated from DhhECKO and control mouse

CNS and (E) immunostained with anti-CDH5 (in gray), anti-CLDN4 (in red), and anti-GFAP (in green) antibodies

(nuclei were stained with DAPI (in blue)). (F) Representative blots of GFAP and CLDN4 expression levels on DhhECKO

and control mouse enriched neurovascular fractions were shown, and (G, H) GFAP and CLDN4 expression levels were

quantified by western blot of DhhECKO and control mouse enriched neurovascular fractions. (DhhECKO n = 5, WT n = 5).
��P� 0.01, Mann–Whitney U test. The underlying data for Fig 4 can be found in S1 Data (https://doi.org/10.6084/m9.

figshare.12625034.v6). �It is important to note that CNS endothelial cells are from a pooled source including both brain

and spinal cord tissues. Therefore, the resulting cell cultures/lysates may be heterogeneous in their use of DHH. This

remark applies to Figs 1–4. AQP4, aquaporin 4; BBB, blood–brain barrier; CDH5, cadherin5; CI, confidence interval;

CLDN4, Claudin4; CNS, central nervous system; Ctrl, control; DHH desert hedgehog; GFAP, glial fibrillary acidic protein;

IgG, immunoglobulin G; NS, non-significant; PECAM1, platelet/endothelial cell adhesion molecule 1; PVS, perivascular

space; WT, wild type; ZO1, zonula occludens 1.

https://doi.org/10.1371/journal.pbio.3000946.g004
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Fig 5. Endothelial signals can drive astrocyte barrier properties at the Glia Limitans. (A–K) NHA were cultured until

confluency and starved for 24 h. NHA were then treated for 24 h with HBMEC medium from untreated cells (control

condition), conditioned media from HBMECs treated with VEGFA, conditioned media from HBMECs treated with

Mannitol, or HBMEC medium with 20% plasma from healthy donors (Mannitol and VEGFA were washed out of the

HBMEC cultures before the medium was used to treat the NHA cultures). (A) Gfap, (B) Aldh1l1, (C) Vim, and (D) Cldn4
mRNA expression was quantified by qRT-PCR. (Post-VEGFA n = 5, Mannitol n = 8 to 9, Plasma n = 7 to 8, Vehicle

control n = 14 to 15). (E–H) GFAP (in green) and (E) CLDN4 (in red) localizations were evaluated by immunofluorescent
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We observed that in control mice, neurologic deficits were observed from day 9 and

increased in severity until day 18, when clinical score stabilized at a mean of 3.2, representing

hind limb paralysis. In contrast, the onset of clinical signs in DhhECKO mice was first seen 4

days later, and the clinical course was much milder. In DhhECKO mice, disease reached a pla-

teau at day 21 at a mean of 2.3, indicating hind limb weakness and unsteady gait, a mild pheno-

type (Fig 6A and S1 Data). The EAE peak score (Fig 6B and S1 Data) and average score during

the time of disability (Fig 6C and S1 Data) were both decreased in DhhECKO mice, but there

were no significant changes in survival and mortality rates (Fig 6D and S1 Data).

Interestingly, the reduced clinical course of EAE in DhhECKO mice was much more marked

during the onset of the disease (between day 12 and day 20 post EAE induction). However,

when the plateau phase was reached (after day 21 post EAE induction), the clinical score differ-

ence between the DhhECKO and the control group was greatly reduced and coincided with an

acceleration of the mortality rate in both groups (Fig 6A–6D and S1 Data). One explanation

for this observation is that, in the DhhECKO group, inflammatory cells, accumulated in the

PVS, end up degrading astrocytic tight junctions by secreting proteases. This previously

described phenomenon [26] explains how inflammatory cells trapped in the PVS can eventu-

ally pass through the astrocytic barrier at the Glia Limitans and thereby enter the CNS, thus

inactivating Dhh at the BBB. This in turn slows disease progression until the perivascular accu-

mulation of inflammatory cells causes the degradation of the astrocyte secondary barrier, lead-

ing to the deterioration of the clinical course of EAE in the DhhECKO mice.

Importantly, the clinical course in the DhhECKO mice is correlated with strikingly decreased

areas of demyelination as compared to the control cohort (Fig 6E, 6F and S1 Data). Critically,

these studies reveal that the clinical course and pathology of EAE are strongly reduced in

DhhECKO mice during the onset of the disease.

We concluded that endothelial Dhh knockdown-induced BBB opening is associated with a

clinical protective effect during the onset of the disease in a model of multiple sclerosis.

Mice with endothelial Dhh inactivation display a reinforced barrier at the

Glia Limitans, restraining access to the parenchyma to inflammatory

infiltrate in a model of multiple sclerosis

Although DhhECKO mice display equivalent FGB densities (Fig 7A and S1 Data) as well as

numbers of CD45+ leukocytes (Fig 7B and S1 Data) in lesions compared to those in control

mice, neuropathology in both cohorts appeared very different.

We found that while the BBB is permeable in both groups, with plasmatic protein extravasa-

tion associated with equivalent CDH5 densities, astrocyte reactivity in EAE lesions in

DhhECKO mice is greatly increased with GFAP immunoreactivity strongest at the Glia Limitans

(Fig 7C, 7E and S1 Data). Moreover, infiltrating plasmatic proteins in DhhECKO mice show less

CNS parenchymal dispersion (Fig 7E, 7F and S1 Data), with 68.0% of FGB trapped into the

staining of a confluent NHA monolayer. Nuclei were stained with DAPI (in blue). The experiment was repeated 3 times. (I,

J) GFAP and CLDN4 positive areas were then quantified. (Post-VEGFA n = 7 to 8, Mannitol n = 7 to 8, Plasma n = 8,

Vehicle control n = 7 to 8). (K–O) Cerebral cortices of 10-week-old C57BL/6 mice were harvested 24 h following

stereotactic microinjection of murine VEGFA (60 ng in 3 μL PBS), healthy C57BL/6 mouse plasma (3 μL), or vehicle

control (3 μL PBS). (K–M) Cortical lesions were immunostained with anti-GFAP and anti-CLDN4 antibodies. (N) GFAP

positive areas and (O) CLDN4 positive areas were quantified (VEGFA n = 4, healthy C57BL/6 mouse plasma n = 4, Vehicle

control n = 4). �P� 0.05, ��P� 0.01, ���P� 0.001 Kruskal–Wallis test. The underlying data for Fig 5 can be found in S1

Data (https://doi.org/10.6084/m9.figshare.12625034.v6). Aldh1l1, aldehyde dehydrogenase 1 family, member l1; AU,

arbitrary units; CLDN4, Claudin4; Ctrl, control; GFAP, glial fibrillary acidic protein; HBMEC, human brain microvascular

endothelial cells; NHA, normal human astrocytes; NS, non-significant; qRT-PCR, quantitative reverse transcription

polymerase chain reaction; VEGFA, vascular endothelial growth factor A; Vim, vimentin.

https://doi.org/10.1371/journal.pbio.3000946.g005
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Glia Limitans in the DhhECKO cohort versus 32% in the control cohort (Fig 7F, S7B Fig and S1

Data).

In previous work from our laboratory [8], we showed that endothelial-specific deletion of

Dhh in the peripheral vasculature is associated with vascular permeability and endothelial acti-

vation, notably in the lung, and that lipopolysaccharide (LPS) injection increased pulmonary

neutrophil infiltration in DhhECKO mice compared to control littermates. Therefore, we can

hypothesize that endothelial Dhh knockdown increases the peripheral recruitment and activa-

tion of inflammatory cells that need to travel to the CNS. However, in our study, we do not

Fig 6. DhhECKO mice display reduced disability in a model of multiple sclerosis during the onset of the disease.

(A) DhhECKO and control mice induced with EAE were scored daily on a standard 5-point scale, nonlinear regression

(Boltzmann sigmoidal). (DhhECKO n = 8, WT n = 10). (B) DhhECKO and control mice EAE peak score, (C) EAE

average score during time of disability, and (D) mortality rate were quantified other the course of the disease. (E, F)

Spinal cord EAE lesions from DhhECKO mice and littermate controls were harvested at 28 days post induction or at the

time of euthanasia. (E) DhhECKO and control lesions were immunostained with an anti-MBP (in green) antibody;

arrows indicate white matter loss areas. Nuclei were stained with DAPI (in blue). (F) MBP positive areas were

quantified ((DhhECKO n = 5, WT n = 5). �P� 0.01, Mann–Whitney U test. The underlying data for Fig 6 can be found

in S1 Data (https://doi.org/10.6084/m9.figshare.12625034.v6). AU, arbitrary units; Ctrl, control; DHH desert

hedgehog; EAE, experimental autoimmune encephalomyelitis; MBP, myelin basic protein; NS, non-significant; WT,

wild type.

https://doi.org/10.1371/journal.pbio.3000946.g006
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Fig 7. Mice with endothelial Dhh knockdown display a reinforced barrier at the Glia Limitans restraining access to

the parenchyma to inflammation in a model of multiple sclerosis. (A–H) Spinal cord from DhhECKO mice and

littermate controls under resting condition and after EAE induction were harvested. (A–D) DhhECKO and control sections

were immunostained with anti-FGB, anti-CD45, anti-GFAP, anti-IB4, and anti-CDH5 antibodies. (A) FGB positive areas,

(B) the number of CD45+ T cells per mm2, (C) GFAP positive areas, and (D) CDH5/IB4 positive area were quantified

(DhhECKO n = 5 to 17, WT n = 5 to 10). (E) DhhECKO and control EAE lesions were immunostained with anti-CDH5 (in

gray), anti-FGB (in green), and anti-GFAP (in red) antibodies (Nuclei were stained with DAPI (in blue)), and (F) the
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observe any difference in terms of CD45+ leukocyte populations in the spinal cord of DhhECKO

and control mice induced with EAE MOG35-55. What we do observe is a significant difference

in terms of the repartition of these CD45+ cell populations between both groups, with 77.1%

of CD45+ cells trapped into the PVS in the DhhECKO cohort versus 25.1% in the control cohort

(Fig 7G, 7H, S1 Data and S7C Fig).

Altogether, these data suggest less access through the Glia Limitans in the DhhECKO mice

compared to the littermate control mice. Finally, we demonstrated that CLDN4 expression in

spinal cord EAE lesion lysates is up-regulated in DhhECKO mice as compared to control mice

(Fig 7I, 7J and S1 Data).

Collectively, data from Fig 4 to Fig 7 reveal that conditional loss of a key structural compo-

nent of endothelial integrity at the BBB in DhhECKO mice leads to increased astrocyte reactivity

and implementation of barrier properties at the Glia Limitans, allowing for less diffusion of

plasmatic proteins and immune cells into the CNS parenchyma than in control mice. There-

fore, in DhhECKO mice, astrocytic end feet at the Glia Limitans are “preconditioned” to form a

barrier, explaining their ability to protect the parenchyma more efficiently during neuropa-

thology than in controls, leading to the protective effect observed clinically. Thus, we identify

BBB leakage, induced by the down-regulation of Dhh endothelial expression, as an important

mechanism controlling Glia Limitans reactivity and barrier properties, and subsequently, tis-

sue damage and clinical deficits in a model of human disease (Fig 8).

Discussion

While it is now well established that BBB breakdown leads to soluble factor and inflammatory

cell infiltration into the PVS during neuropathology [4], the function of the Glia Limitans bar-

rier is just starting to be unraveled [15,20,24,26]. In the present study, we have enabled a differ-

ent perspective on CNS barrier organization, unveiling the existence of 2 independent,

dissociable states of the astrocyte and endothelial barriers in the neurovascular unit. Indeed,

we confirmed that, just like the BBB, the Glia Limitans can form a protective barrier. For the

first time, to our knowledge, we have demonstrated that BBB breakdown is sufficient to induce

chronic barrier properties at the Glia Limitans, and we uncovered crosstalk from endothelial

cells to astrocytes that restricts access to the parenchyma of plasmatic proteins and inflamma-

tory cells during multiple sclerosis. Moreover, we showed that in DhhECKO mice, which display

an open BBB, astrocytes express the tight junction protein CLDN4 under resting conditions.

Therefore, under neuroinflammatory conditions, Glia Limitans in DhhECKO mice is primed

with stronger barrier properties protecting against the onset and severity of EAE symptoms in

the DhhECKO mice compared to control littermates.

However, 2 questions remain regarding barrier properties at the Glia Limitans: (1) Is this a

specific aspect of the DhhECKO mouse model or more broadly applicable to any model of BBB

breakdown; and (2) is it observed in other CNS pathologies than inflammation?

distribution of FGB within the Glia Limitans and the parenchyma was quantified. (DhhECKO n = 6, WT n = 5). P< 0.0001,

95% CI: 0.2467 to 0.5137, chi-squared test. (G) DhhECKO and control lesions were immunostained with anti-LAM (in red)

and anti-CD45 (in green) antibodies (Nuclei were stained with DAPI (in blue)), and (H) the distribution of CD45+ T

lymphocytes within the Glia Limitans and the parenchyma was quantified. P< 0.0001, 95% CI: 0.4107 to 0.6581, chi-

squared test. (I) Representative blots of CLDN4 expression level on DhhECKO and control spinal cord EAE lesion lysates

were shown, and (J) CLDN4 expression level was quantified by western blot on DhhECKO and control spinal cord EAE

lesion lysates. (DhhECKO n = 5, WT n = 5). ��P� 0.01, Mann–Whitney U test. �P� 0.05, ��P� 0.01, Kruskal–Wallis test.

The underlying data for Fig 7 can be found in S1 Data (https://doi.org/10.6084/m9.figshare.12625034.v6). AU, arbitrary

units; CD45, cluster of differentiation 45; CDH5, cadherin 5; CI, confidence interval; CLDN4, Claudin4; Ctrl, control;

DHH desert hedgehog; EAE, experimental autoimmune encephalomyelitis; FGB, fibrinogen; GFAP, glial fibrillary acidic

protein; IB4, isolectin B4; LAM, laminin; NS, non-significant; PVS, perivascular space; WT, wild type.

https://doi.org/10.1371/journal.pbio.3000946.g007
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Fig 8. Schematic of the BBB and Glia Limitans in DhhECKO versus control mice, in health and inflammatory disease.

Under resting conditions, in control mice, ECs express CLDN5 and CDH5, which reinforce a closed BBB. In DhhECKO mice,

CLDN5 and CDH5 are disrupted leading to BBB permeability; in turn, astrocytes of the Glia Limitans up-regulate CLDN4,

closing the Glia Limitans and restricting incoming plasmatic proteins to the PVS. Under inflammatory condition, in both

control and DhhECKO mice, CLDN5 and CDH5 are disrupted leading to BBB permeability, astrocyte reactivity, and up-

regulation of CLDN4. However, in DhhECKO mice, astrocytic end feet of the Glia Limitans have been “preconditioned” to

form a barrier, explaining their ability to trap plasmatic proteins and inflammatory cells in the PVS, and thus protecting the

parenchyma more efficiently than in the controls. BBB, blood–brain barrier; CDH5, cadherin 5; CLDN4, Claudin4; CLDN5,

claudin5; CTNNβ1, catenin β1; DHH desert hedgehog; EC, endothelial cells; FOXO1, forkhead box O1; PTCH1, Patched-1;

PVS, perivascular space.

https://doi.org/10.1371/journal.pbio.3000946.g008
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A model of pericyte-deficient mice featuring BBB breakdown has been described; but, in

this model, endothelial permeability is due to increased transcytosis and not junction degrada-

tion as in the DhhECKO mouse model. Therefore, it would be interesting to study the behavior

of astrocytes in this model, notably their capacity to express CLDN4 and to restrain parenchy-

mal access to plasmatic proteins. Should astrocyte barrier properties be observed in the peri-

cyte-deficient mouse model, thus would be suggestive for a more generalized role of BBB

breakdown in driving astrocyte barrier properties, either by parallel or convergent mechanisms.

The expression of CLDN4 by astrocytes has only been identified in mouse models of CNS

inflammation (acute CNS inflammation model (stereotactic injection of the pro-inflammatory

cytokine IL-1β and model of multiple sclerosis: EAE MOG35-55) [26]. However, in the present

study, we demonstrated that CLDN4 is expressed by astrocytes under resting conditions in

response to BBB opening in the DhhECKO mouse model and after cortical stereotactic injection

of the pro-permeability factor VEGFA. The next step would be to examine astrocytic CLDN4

expression in other pathologies of the CNS, notably Alzheimer’s disease, stroke, or amyotro-

phic lateral sclerosis in which BBB permeability has been identified as a critical pathophysio-

logical player. This could implicate CLDN4-mediated barrier function in astrocytes as a more

generalized defense against BBB opening in other chronic diseases of the CNS.

The critical role of Hh signaling in CNS neuroinflammation was first highlighted in 2011;

this study revealed that during EAE, the morphogen SHH is expressed by reactive astrocytes

and participates in the maintenance of BBB integrity [4]. Following this discovery, our group

found that DHH is physiologically expressed at the BBB in adults [8]. Here, we demonstrated

for the first time that DHH is down-regulated at the BBB during EAE and that DHH knock-

down is sufficient to induce BBB permeability by inhibiting CDH5 and CLDN5 expression

through the modulation of FOXO1 activity, strengthening the idea that HH signaling is essen-

tial to control BBB integrity both physiologically and under multiple sclerosis conditions.

Based on our results and the literature, we hypothesize that DHH is necessary to maintain BBB

tightness under physiological conditions and that DHH down-regulation under inflammatory

conditions might be offset by astrocytic SHH secretion to maintain BBB homeostasis during

disease progression.

Over the past years, the field has begun to acknowledge the fact that the BBB is not the sole

line of defense of the CNS and that the astrocytic end feet of the Glia Limitans might play a

role in restricting access to the parenchyma. Indeed, it was first described that in spinal cord

injury, astrocyte scar borders corral inflammatory cells within areas of damaged tissue [32,33].

Moreover, we have found that during EAE, reactive astrocytes of the Glia Limitans form tight

junctions of their own containing CLDN4 [26], a junction protein also expressed in tightly

sealed epithelia [34,35]. Noteworthy is the fact that down-regulation or reorganization of

CLDNs and other tight junction proteins has been implicated in permeability in various tis-

sues, particularly the gut [19,36,37]; however, reports of dynamic tight junction protein induc-

tion resulting in functional barrier formation have been rare [38,39]. Here, we have shown for

the first time that genetically induced disruption of endothelial junctions is sufficient to induce

CLDN4 expression at the Glia Limitans under resting condition, identifying an inducible

astrocyte barrier mediated fully by signals transmitted by the open BBB.

It has already been described, by our group and others, that astrocytes can send signals,

notably VEGFA [18], thymidine phosphorylase (TYMP) [17], and SHH [4], to the BBB to

modulate its state (tight versus permeable). In this study, we identify a reciprocal signaling

pathway demonstrating that BBB endothelial junction disruption leads to CLDN4 expression

at the Glia Limitans. Interestingly, endothelial cell capacity to send signals to neighboring cells

has been previously identified, notably in the context of pericyte (mural cells associated with

arterioles, capillaries, and venules) recruitment at the vascular wall [40]. Specifically, it has
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been shown that platelet-derived growth factor subunit b (PDGFB) is secreted from angiogenic

sprout endothelium where it serves as an attractant for co-migrating pericytes, which in turn

express platelet-derived growth factor receptor beta (PDGFRβ) [41]. Based on these arguments

and our results, it appears highly likely that endothelial signals can be sent to astrocytes. Identi-

fying such signals will be the aim of future studies by our group.

We then showed that in animals, which exhibit an open BBB (DhhECKO mice), astrocytic

end feet of the Glia Limitans form a barrier more efficiently than in the littermate controls,

leading to the protective effect observed clinically in the model of multiple sclerosis. This is

somehow reminiscent of what is observed in brain ischemic preconditioning where a mild

nonlethal ischemic episode (preconditioning) can produce resistance to a subsequent more

severe ischemic insult [42,43]. Here, inducing BBB opening and PVS plasmatic protein accu-

mulation produces resistance to the subsequent massive inflammatory infiltration induced by

multiple sclerosis development. This could account for the infrequency of recurrent multiple

sclerosis relapse/lesion formation at the same location in the CNS. Interestingly, among neu-

rons and nonneuronal cells, astrocytes are considered increasingly important in regulating

cerebral ischemic tolerance [44], and a parallel can be easily drawn between these results and

ours showing a major role for “preconditioned” astrocytes in the control of “chronic neuroin-

flammation tolerance” and protection against further relapse.

In light of the above observations, we may assume that the CNS has the ability to protect

itself against isolated BBB leakage episodes through a secondary barrier at the Glia Limitans

that takes over once the BBB is open. Moreover, it suggests that manipulation of the BBB and

Glia Limitans in combination may have greater potential than either alone to control CNS

entry of leukocytes and pro-inflammatory soluble factors in conditions such as multiple sclero-

sis and perhaps more widely. Indeed, taking into account both components of the neurovascu-

lar unit is of translational interest, notably to limit CNS parenchymal access to pathogenic

agents by strengthening the Glia Limitans once the BBB is open in cardiovascular diseases

such as brain ischemic strokes [45], neuroinfections [46], and neurodegeneration (Parkinson/

Alzheimer’s diseases and vascular dementia) [47], or to facilitate parenchymal access to drugs,

by opening the BBB and Glia Limitans together, in CNS tumor treatment [48]. Along similar

lines, it is unknown how the barrier properties of the Glia Limitans may impact the pharmaco-

kinetics of drugs that must enter the CNS parenchyma in conditions such as multiple sclerosis,

which may account for treatment failure.

In summary, our study first demonstrates the critical role of DHH in maintaining BBB

integrity. We find that DHH is down-regulated during the animal model of multiple sclerosis

and that Dhh knockdown leads to BBB opening. Using Dhh knockdown as a tool to cause BBB

opening, we then show that BBB permeability is sufficient to induce a secondary barrier at the

Glia Limitans, mediated by CLDN4 and astrocyte reactivity. These findings not only highlight

the capacity for bidirectional signaling between the endothelial BBB and the astrocytic Glia

Limitans in modulating the double barriers of the CNS but also provide support for a novel

concept of “chronic neuroinflammatory tolerance”, in which chronic induction of Glia Limit-

ans barrier properties by BBB opening may lead to a protective effect against neuroinflamma-

tory disease activity and progression.

Methods

Human tissues

Cortical sections from multiple sclerosis patients (active lesions) and healthy controls (frontal

cortex) were obtained from the NeuroCEB bio bank (https://www.neuroceb.org/fr). The sec-

tions were 30 μm thick and obtained from fresh frozen samples.
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Mice

Dhh Floxed (DhhFlox) mice were generated at the “Institut Clinique de la Souris” through the

International Mouse Phenotyping Consortium (IMPC) from a vector generated by the Euro-

pean conditional mice mutagenesis program, EUCOMM, and described before [8].

The Cre recombinase in cadherin5 (Cdh5)-CreERT2 mice was activated by intraperitoneal

injection of 1-mg tamoxifen (Sigma Aldrich, St. Louis, Missouri, United States of America) for

5 consecutive days at 8 weeks of age. Mice were phenotyped 2 weeks later. Successful and spe-

cific activation of the Cre recombinase has been verified by measuring recombination efficacy

in Cdh5-CreERT2;Rosa26mTmG mice (S2A Fig). Importantly, Dhh endothelial knockdown does

not impact CNS angiogenesis (S2 Data) nor angioarchitecture (S2D Fig). The Cdh5-CreERT2

mice and C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, Maine,

USA).

Ethical statement

Human samples: The NeuroCEB bio bank and the INSERM U1034 certify that all human sec-

tions utilized for this study are ethically obtained with documented, legal permission for

research use (authorization number #AC-2018-3290 obtained from the Ministry of Higher

Education and Research) and in the respect of the written given consent from the source per-

son in accordance with applicable laws and the World Medical Association (WMA) Helsinki

declaration of 2013.

Animal experiments were performed in accordance with the guidelines from Directive

2010/63/EU of the European Parliament on the protection of animals used for scientific pur-

poses and approved by the local Animal Care and Use Committee of the Bordeaux University

CEEA50 (IACUC protocol #16901).

Neurovascular fraction enrichment from mouse CNS

Mouse was humanely killed by cervical dislocation, and its head was cut and rinsed with 70%

ethanol. Brain and spinal cord were then harvested, and cerebellum, olfactory bulb, and white

matter were removed from the brain with sterile forceps. Additionally, meninges were elimi-

nated by rolling a sterile cotton swab at the surface of the cortex. The cortex and spinal cord

were then transferred in a potter containing 2 mL of buffer A (HBSS 1X w/o phenol red

(Gibco, Waltham, Massachusetts, USA), 10-mM HEPES (Gibco), and 0.1% bovine serum

albumin (BSA) (Sigma Aldrich), and the CNS tissue was pounded to obtain an homogenate,

which was collected in a 15-mL tube. The potter was rinsed with 1 mL of buffer A, which was

added to the 2-mL homogenate. Cold 30% dextran solution was then added to the tube (V:V)

to obtain a 15% dextran working solution centrifuged for 25 minutes at 3,000 g, 4˚C without

brakes. After centrifugation, the pellet (neurovascular components and red cells) was collected,

and the supernatant (dextran solution and neural components) was centrifuged again to get

the residual vessels. Neurovascular components were then pooled and resuspended in 4 mL of

buffer B (HBSS 1X Ca2+/ Mg2+ free with phenol red (Gibco), 10-mM HEPES (Gibco), and

0.1% BSA (Sigma Aldrich)).

Neurovascular fraction enrichment for RT-PCR, western blots, or

immunohistochemistry

After centrifugation of the cell suspension, the pellet was washed 3 times with the buffer B and

filtered through a 100-μm nylon mesh (Millipore Corporation, Burlington, Massachussetts,

USA). The nylon mesh was washed with 7 mL of buffer B to collect the retained enriched
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neurovascular fractions. The suspension was then centrifuged for 10 minutes at 1,000 g, and

the pellet suspended in 300 μL of radioimmunoprecipitation assay (RIPA) lysis buffer for west-

ern blot analysis or 1,000 μL of Tri-Reagent (MRC, Cincinnati, Ohio, USA) for quantitative

reverse transcription polymerase chain reaction (qRT-PCR) analysis. For immunohistochem-

istry, the pellet was suspended in 3 mL of a solution of matrigel (Corning, Steuben, New York,

USA)-Dulbecco’s Modified Eagle Medium (DMEM) 1 g/L glucose, Mg+, Ca2+ (Gibco) 1:80,

distributed on a labtek (Starstedt, Nümbrecht, Germany) (1 mouse brain is needed to seed 1

labtek) and incubated for 30 minutes at 37˚C. Finally, the enriched neurovascular fraction

embedded in the matrigel (Corning) solution was fixed with 10% formalin for 10 minutes.

Primary culture of mouse CNS micro vascular endothelial cells (CNS MECs)

After centrifugation of the cell suspension, the pellet was washed 3 times with the buffer B and

transferred in an enzyme solution (2 mg/mL Collagenase/Dispase (Roche, Bale, Switzerland),

0.147 μg/mL TLCK (Lonza, Bäle, Switzerland), and 10 μg/mL DNAse 1 (Roche)), prewarmed

at 37˚C, before being placed on a shaking table at maximum speed agitation at 37˚C. After 30

minutes, the digestion was stopped by adding 10 mL of buffer B, the cell suspension centri-

fuged, and the digested neurovascular pellet washed 3 times with 3 mL of buffer B. After the 3

washing steps, the digested neurovascular pellet was resuspended in 1 mL of Mouse Brain

Endothelial Cell Culture Medium (DMEM 1 g/L glucose, Mg+, Ca2+ (Gibco), fetal bovine

serum (FBS) 20% (Gibco), sodium pyruvate 2% (Gibco), nonessential amino acids 2%

(Lonza), FGF 1 ng/mL (PeproTech, Rocky Hill, New Jersey, USA), and gentamycin 10 mg/mL

(Gibco)), and plated on a labtek (Starstedt) (1 mouse brain is needed to seed 1 labtek) previ-

ously coated with 2% matrigel (Corning) diluted in DMEM 1 g/L glucose, Mg+, Ca2+ (Gibco).

Cell culture

HBMECs (Alphabioregen–CliniSciences, Nanterre, France) were cultured in endothelial basal

medium-2 (EBM-2) supplemented with EGM-2 BulletKits (Lonza). Cells from passage 3 to

passage 6 were used. Before any treatment, cells were serum starved in 0.5% FBS EGM-2

medium for 24 hours. NHAs (Lonza) were cultured in astrocyte basal medium (ABM) supple-

mented with AGM BulletKits (Lonza). Cells from passage 2 to passage 4 were used. Before any

treatment, cells were serum starved in DMEM 1 g/L glucose, Mg+, Ca2+ (Gibco) without

serum for 24 hours.

Cytokines/growth factors/chemicals

Human IL-1β was purchased from PeproTech (Rocky Hills, New Jersey, USA), and Human

and mouse VEGF-165 (VEGFA) were purchased from CliniSciences (Nanterre, France).

Based on previous studies, Human IL-1β and Human VEGF-165 were routinely used at 10 ng/

mL [19,49]. Mouse VEGF-165 was used at a concentration of 20 ng/μL. The inhibitor of

FOXO1 total (AS1842856) was purchased from Merck (Kenilworth, New Jersey, USA) and

was used at 100 nM [50]. D-Mannitol was purchased from Sigma Aldrich (St. Louis, Missouri,

USA) and was used at 100 mM [51].

Antibodies

Anti-CLDN4 (mouse), anti-CLDN5 (mouse (tissues) and rabbit (cell culture)), anti-human

ZO1 (rabbit), and anti-GFAP (rat) were from Invitrogen (Carlsbad, California, USA). Anti-

CDH5 (goat) was from R&D systems (Minneapolis, Minnesota, USA). Anti-human CDH5

(mouse) and anti-human DHH (H-85) (rabbit) were from Santa Cruz Biotech (Santa Cruz,
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California, USA). Anti-FGB (rabbit) and anti-human PECAM1 (mouse) were from Dako (Car-

pinteria, California, USA). Anti-ALB (sheep) and anti-MBP (rat) were from Abcam (Cam-

bridge, Massachusetts, USA). Anti-CD45 (rat) was from eBioscience (San Diego, California,

USA). Anti-RNA binding fox-1 homolog 3 also known as neuronal nuclei antigen (NEUN)

(rabbit) and anti-AQP4 (rabbit) were from Millipore (Billerica, Massachusetts, USA). Anti-

LAM (rabbit) was from Sigma Aldrich (St. Louis, Missouri, USA). Anti-ZO1 (rabbit) was from

Life Technologies (Grand Island, New York, USA). Anti-FOXO1 (rabbit), anti-p-FOXO1 (rab-

bit), and anti-β-ACTIN (rabbit) were from cell signaling (Danvers, Massachusetts, USA).

Quantitative RT-PCR

RNA was isolated using Tri Reagent (Molecular Research Center) as instructed by the manu-

facturer, from 3 × 105 cells or from isolated mouse-enriched neurovascular fractions. For

qRT-PCR analyses, total RNA was reverse transcribed with Moloney Murine Leukemia Virus

(M-MLV) reverse transcriptase (Promega, Madison, Wisconsin, USA), and amplification was

performed on a DNA Engine Opticon2 (MJ Research, St. Bruno, Canada) using B-R SYBER

Green SuperMix (Quanta Biosciences, Beverly, Massachusetts, USA). Primer sequences are

reported in Table 1.

The relative expression of each mRNA was calculated by the comparative threshold cycle

method and normalized to β-actin mRNA expression.

Western blots

Protein expression was evaluated by SDS-PAGE. Protein loading quantity was controlled

using the rabbit monoclonal anti-β-actin antibody (cell signaling). Secondary antibodies were

from Invitrogen. The signal was then revealed by using an Odyssey Infrared imager (LI-COR,

Lincoln, Nebraska, USA). For quantification, the mean pixel density of each band was mea-

sured using Image J software (NIH, Bethesda, Maryland, USA), and data were standardized to

β-actin, and fold change versus control calculated.

Stereotactic injection

Ten-week-old C57BL/6 mice (4 mice per condition) were anaesthetized using isoflurane (3%

induction and 1% maintenance) (Virbac Schweiz, Glattbrugg, Germany) and placed into a ste-

reotactic frame (Stoelting Co., Illinois, USA). To prevent eye dryness, an ophthalmic ointment

was applied at the ocular surface to maintain eye hydration during the time of surgery. The

skull was shaved, and the skin incised on 1 cm to expose the skullcap. Then, a hole was drilled

into the skull, using a pneumatic station S001+TD783 Bien Air, until reaching the dura mater.

A total of 3 μl of murine VEGFA (20 ng/μL), 3 μL of healthy mouse plasma, or 3 μL of vehicle

control (PBS) were then delivered at 0.01 μl/s into the frontal cortex at coordinates of 1 μm

posterior to bregma, 2 μm left of the midline, and 1.5 μm below the surface of the cortex [36].

Mice received a subcutaneous injection of buprenorphine (0.05 mg/kg) (Ceva santé ani-

male, Libourne, France) 30 minutes before surgery and again 8 hours post-surgery to assure a

constant analgesia during the procedure and postoperatively. Mice were humanely killed by

pentobarbital (Richter Pharma, Wels, Austria) overdose at 24 hours post injection (dpi). For

histological assessment, the brain of each animal was harvested.

Experimental autoimmune encephalomyelitis (EAE)

Ten-week-old female mice were immunized by subcutaneous injection of 300-μg myelin oligo-

dendrocyte glycoprotein-35-55 (MOG35–55) (Hooke Laboratories, Lawrence, Massachusetts,
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USA) in 200-μl Freund’s Adjuvant containing 300-μg/mL mycobacterium tuberculosis H37Ra

(Hooke Laboratories) in the dorsum. Mice were administered with 500-ng pertussis toxin

(PTX) intraperitoneously on day of sensitization and 1 day later (Hooke Laboratories). The

emulsion provides antigen, which initiates expansion and differentiation of MOG-specific auto-

immune T cells. PTX enhances EAE development by providing additional adjuvant. EAE will

develop in mice 7 to 14 days after immunization (Day 0): Animals that develop EAE will

become paralyzed. Disease was scored (0, no symptoms; 1, floppy tail; 2, hind limb weakness

(paraparesis); 3, hind limb paralysis (paraplegia); 4, fore and hind limb paralysis; 5, death)) [31]

from day 7 post immunization until day 32 post immunization. At Day 32, all the animals were

euthanized by pentobarbital (Richter Pharma) overdose. For histological assessment, cervical,

lumbar, and dorsal sections of each animal spinal cord, as well as the spleen, were harvested.

Immunohistochemistry

Prior to tissue collection and staining, mice were transcardially perfused with PBS (10 mL) fol-

lowed by 10% Formalin (10 mL) to remove intravascular plasma proteins. Brain and spinal

cord samples were either fixed in 10% formalin for 3 hours, incubated in 30% sucrose

Table 1. List of primers used for RT qPCR.

mDhh F 50 -CTTGGACATCACCACGTCTG- 30

R 50 -ATGTAGTTCCCTCAGCCCCT- 30

mIcam1 F 50 -TGGCCTGGGGGATGCACACT- 30

R 50-CCACCGGGCTGTAGGTGGGT-30

mVcam1 F 50 -CGTACACCATCCGCCAGGCA- 30

R 50 -TAGAGTGCAAGGAGTTCGGGCG- 30

mCldn5 F 50 -GCAAGGTGTATGAATCTGTGCT- 30

R 50 -GTCAAGGTAACAAAGAGTGCCA- 30

mZo1 F 50 -GCTAAGAGCACAGCAATGGA- 30

R 50 -GCATGTTCAACGTTATCCAT- 30

mβ-actin F 50 -GAAGCTGTGCTATGTTGCTCTA- 30

R 50—GGAGGAAGAGGATGCGGCA- 30

hGfap F 50 -TGGGTCAAAGGAAACCGGAA- 30

R 50 -GAAAGTCCCAAGCCATCAGC- 30

hDhh F 50 -AACAGCTTACTTCCGGCTCC- 30

R 50 -CGACTCTTGTGGGCTCTGTT- 30

hIcam1 F 50 -ACGCCGGAGGACAGGGCATT- 30

R 50 -GGGGCTATGTCTCCCCCACCA- 30

hVcam1 F 50 -GGCCCAGTTGAAGGATGCGGG- 30

R 50 -AGAGCACGAGAAGCTCAGGAGAA- 30

hAldh1L1 F 50 -CCAGGGTTCTTCTTTGAGCCA- 30

R 50 -CACCAGAAGCCAGGCCAAAT- 30

hVim F 50 -CAGTTTTTCAGGAGCGCAAGA- 30

R 50 -CAAGTTGGTTGGATACTTGCTGG- 30

hCldn4 F 50 -GACACTAATGAGCCTGGGAGG- 30

R 50 -GTGCACAGGTCCCATTTATTGTAG- 30

hβ-actin F 50 -GCTGTGCTACGTCGCCCTG- 30

R 50 -GGAGGAGCTGGAAGCAGCC- 30

F, forward; R, reverse; RT qPCR, quantitative reverse transcription polymer chain reaction.

β-actin was used as the household gene.

https://doi.org/10.1371/journal.pbio.3000946.t001
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overnight, OCT embedded and cut into 9-μm thick sections, or directly OCT embedded and

cut into 9 μm thick sections. Cultured cells were fixed with 10% formalin for 10 minutes.

Human frozen sections were used directly without any prior treatment. Concerning the fixed

sections, for CLDN4, prior to blocking, sections were soaked in Citrate (pH 7.5; 100˚C). For

CLDN5, prior to blocking, sections were soaked in EDTA (pH 6.0; 100˚C). For CD45, sections

were treated with 0.5 mg/mL protease XIV (Sigma Aldrich) at 37˚C for 5 minutes. Primary

antibodies were used at 1:100 except CLDN4 (1:50), FGB (1:1,000), and ALB (1:1,000). Sam-

ples were examined using a Zeiss Microsystems confocal microscope (Oberkochen, Germany),

and stacks were collected with z of 1 μm.

For immunofluorescence analyses, primary antibodies were resolved with Alexa Fluor–con-

jugated secondary polyclonal antibodies (Invitrogen), and nuclei were counterstained with

DAPI (1:5000) (Invitrogen). For all immunofluorescence analyses, negative controls using sec-

ondary antibodies only were done to check for antibody specificity.

Morphometric analysis

Morphometric analyses were carried out using NIH ImageJ software (NIH).

BBB permeability was evaluated by measuring tight junction integrity and plasmatic protein

extravasation. Brain and spinal cord sections were immunostained for the expression of

CLDN5/CDH5 and FGB/IgG/ALB, respectively. For each brain or spinal cord section,

CLDN5+, CDH5+, FGB+, IgG+, and ALB+ areas were quantified in 20 pictures taken at the

margins of the lesion area under 40× magnification. One section was quantified per spinal

cord (3 different zones are displayed on the same section: 1 cervical, 1 lumbar, and 1 dorsal to

get a global vision of the lesion) (per mouse).

Leukocyte densities were evaluated in sections stained for the expression of CD45 leukocyte

population. For each brain or spinal cord section, CD45+ leukocytes were counted in 20 pic-

tures randomly taken under 40× magnification. One section was quantified per spinal cord (3

different zones are displayed on the same section: 1 cervical, 1 lumbar, and 1 dorsal to get a

global vision of the inflammatory lesion) (per mouse).

Demyelination was evaluated in spinal cord sections stained for the expression of MBP. For

each spinal cord section, MBP+ area was quantified in 10 pictures taken in and around inflam-

matory lesion sites under 20× magnification. One section was quantified per spinal cord (3 dif-

ferent zones are displayed on the same section: 1 cervical, 1 lumbar, and 1 dorsal to get a global

vision of the lesion) (per mouse).

Plasmatic protein and leukocyte infiltrate distribution at the neurovascular unit were evalu-

ated in brain or spinal cord sections (1) triple stained for PECAM1 or CDH5 (markers of the

BBB), IgG (plasmatic proteins), and AQP4 or GFAP (markers of the Glia Limitans); or (2)

double stained for IgG (plasmatic proteins), FITC Dextran (exogenous tracer) or CD45 (leuko-

cyte infiltrate), and LAM (marker of basement membranes). For each section, the distribution

(between the lumen, the PVS, and the parenchyma) of IgG, 70 kDa FITC Dextran or leukocyte

infiltrate was quantified for 5 to 6 neurovascular units randomly taken under 60× magnifica-

tion, each 1 from a different animal. We used negative working images highlighting the endo-

thelial BBB and astrocyte Glia Limitans and outlined them by using dotted lines. Dotted lines

were then transferred to the plasmatic protein or leukocyte infiltration images so that we could

quantify their distribution within the 3 compartments (lumen, PVS, and parenchyma).

Statistical analyses

Results are reported as mean ± SEM. Comparisons between groups were analyzed for signifi-

cance with the nonparametric Mann–Whitney U test, the nonparametric Kruskal–Wallis test

PLOS BIOLOGY Blood brain barrier disruption leads to astrocyte barrier formation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000946 November 30, 2020 24 / 30

https://www.google.com/search?client=firefox-b-e&sxsrf=ACYBGNSGG69OQ0ioQ4pM7AAjaqD819iCtw:1579180369591&q=Oberkochen&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEwutChWAjNNTTPMy7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxYtYufyTUouy85MzUvN2sDICAP8BmH9UAAAA&sa=X&ved=2ahUKEwjLz9ynmYjnAhWozYUKHalcDjcQmxMoATARegQIDRAH
https://doi.org/10.1371/journal.pbio.3000946


followed by the Dunn multiple comparison test when we have more than 2 groups, the chi-

squared test for the distribution of plasmatic proteins and inflammatory cells in the neurovas-

cular unit, or a nonlinear regression test (Boltzmann sigmoidal) for the EAE scoring analysis

using GraphPad Prism v8.0.2 (GraphPad, San Diego, California, USA). Differences between

groups were considered significant when P� 0.05 (�P� 0.05, ��P� 0.01, ���P� 0.001).
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S1 Text. Supporting information file containing the S1 Data and S2 Data legends and DOI

links (A), the Supporting Methods (B), and the associated References (C).
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S1 Raw Images. Supporting information file containing the original, uncropped, and mini-

mally adjusted images supporting all blot and gel results reported in Fig 2 panel G, Fig 4 panel

F, and Fig 7 panel I as well as S6 Fig panel A and B.

(PDF)

S1 Fig. (Related to Fig 1 and Fig 2). BMEC purity analysis shows limited contamination by

other neurovascular components (A) Primary BMECs from DhhECKO and control mice were

isolated and cultured on Lab-Tek. ZO1 (in green) and SMA, NG2, IBA1, or GFAP (in red)

localizations were evaluated by immunofluorescent staining of a confluent cell monolayer.

Nuclei were stained with DAPI (in blue). The experiment was repeated 3×. Mouse brain in

situ hybridization analysis highlights Dhh expression at the BBB. (B) C57BL/6 cortical

cross section hybridized with the Dhh RNA probe show Dhh expression in blood vessels. A

control section hybridized with the Dhh antisense RNA probe show the absence of hybridiza-

tion signals. MECs isolated from the spinal cord of mice induced with EAE MOG35-55 are

highly contaminated by leukocytes (C) Spinal cord MECs were isolated from 12-week-old

C57Bl/6 mice at day 13 post induction with EAE MOG35-55 or placebo and Pecam1, Cd45,

Sma, Ng2, and Gfap expressions were quantified by qRT-PCR (cycle threshold mean values)

before and after the cell suspension were depleted in CD45+ leukocytes. β-actin is used as a ref-

erence. A MACS CD45+ cell depletion step is sufficient to eliminate leukocyte contamina-

tion in MECs isolated from the spinal cord of mice induced with EAE MOG35-55 (D)

Representative graphs of flow cytometry analysis performed on C57BL/6 mouse spinal cord

MECs harvested at day 13 post EAE MOG35-55 induction. Analysis showed no CD45+ cell

population in samples depleted in leukocytes using the MACS CD45+ cell isolation kit (Milte-

nyi Biotec) (EAE MOG35-55 spinal cord MECs n = 3; EAE MOG35-55 spinal cord MECs

+ MACS CD45+ cell isolation n = 3). Dhh endothelial knockdown does not impact CNS

MEC viability in culture (E-F). (E) Primary CNS MECs from DhhECKO and control mice

were isolated and cultured on Lab-Tek and immunostained with Propidium Iodide (in red)

and Hoechst 33342 to label the nuclei (in blue). (F) DhhECKO versus control primary CNS

MEC viability was evaluated by quantifying the number of nuclei that incorporated Propidium

Iodide. NS, Mann–Whitney U test. The underlying data for S1 Fig can be found in S2 Data

(https://doi.org/10.6084/m9.figshare.12625085.v7).

(TIF)

S2 Fig. (Related to Fig 3, Fig 4, Fig 6 and Fig 7). Cadherin5CreERT2 recombinase activation

in blood vessels is successful and specific (A) Brain and spinal cord sections were harvested

from Cadherin5CreERT2,Rosa26mTmG mice and littermate controls and immunostained with

anti-GFP (in green) and anti-PECAM1 (in red) antibodies. Dhh endothelial knockdown does

not impact CNS angiogenesis (B) Spinal cord sections were harvested from DhhECKO mice

and littermate controls and immunostained with an anti-IB4 (in green) antibody. IB4 positive
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area was quantified (DhhECKO n = 7, control n = 6). (C) Cortical sections were harvested from

DhhECKO mice and littermate controls and immunostained with an anti-IB4 (in green) anti-

body. IB4 positive area was quantified (DhhECKO n = 6, WT n = 6). Dhh endothelial knock-

down does not impact brain angioarchitecture (D) The vascular network in the brain of

DhhECKO mice and control littermates was imaged by microcomputed tomography (micro-

CT). NS, Mann–Whitney U test. The underlying data for S2 Fig can be found in S1 Data (indi-

vidual numerical data (excel file)) and S2 Data (statistical analysis (Prism file)) (https://doi.

org/10.6084/m9.figshare.12625034.v6; https://doi.org/10.6084/m9.figshare.12625085.v7).

(TIF)

S3 Fig. Endothelial-specific Dhh inactivation induces BBB permeability in vivo. (A) Spinal

cord sections were harvested from DhhECKO mice and littermate controls and immunostained

with anti-IB4 (in green) and anti-CLDN5 (in red) antibodies. Representative IB4/CLDN5

staining was shown. (B–C) Spinal cord sections were harvested from DhhECKO mice and litter-

mate controls and immunostained with anti-CDH5 or anti-CLDN5 (in green), and anti-FGB

or anti-ALB (in red) antibodies. Representative (B) CDH5/FGB and (C) CLDN5/ALB staining

were shown.

(TIF)

S4 Fig. (Related to Fig 4). DhhECKO-induced BBB breakdown is sufficient to induce a sec-

ondary CNS protective barrier at the Glia Limitans. (A) Brain sections were harvested from

DhhECKO mice and littermate controls injected with 70 kDa FITC Dextran and (A) immunos-

tained with an anti-LAM (in red) antibody (nuclei were stained with DAPI (in blue)). Repre-

sentative LAM/FITC Dextran staining was shown. (B) Negative working images of LAM

channels were used to highlight the endothelial (EBM) and astrocyte (ABM) basement mem-

branes, using orange dotted lines. The outlines were then transferred to the FITC Dextran

images to discriminate the distribution of FITC Dextran between the lumen, PVS, and paren-

chyma. (C–D) The distribution of FITC Dextran within the lumen, PVS, and parenchyma was

quantified. (DhhECKO n = 6, control n = 6) P< 0.0001, 95% CI: 0.3518 to 0.5734, chi-squared

test. (E) Negative working images of AQP4/PECAM1 channels were used to highlight the

endothelial (EBM) and astrocyte (ABM) basement membranes, using orange dotted lines. The

outlines were then transferred to the IgG images to discriminate the distribution of IgG

between the lumen, PVS, and parenchyma. The underlying data for S4 Fig can be found in S2

Data (https://doi.org/10.6084/m9.figshare.12625085.v7).

(TIF)

S5 Fig. (Related to Fig 4). DhhECKO-induced BBB breakdown is sufficient to induce a sec-

ondary CNS protective barrier at the Glia Limitans. (A) Spinal cord sections were harvested

from DhhECKO mice and littermate controls and immunostained with anti-LAM (in green)

and anti-IgG (in red) antibodies (nuclei were stained with DAPI (in blue)). Representative

LAM/IgG staining was shown. (B) Negative working images of LAM channels were used to

highlight the endothelial (EBM) and astrocyte (ABM) basement membranes, using orange dot-

ted lines. The outlines were then transferred to the IgG images to discriminate the distribution

of IgG between the lumen, PVS, and parenchyma.

(TIF)

S6 Fig. (Related to Fig 4). Small intestine samples are used as a positive control for the

quantification of CLDN4 expression by western blot. (A) Representative blots of CLDN4

expression level on control mouse neurovascular unit lysates and mouse small intestine lysates

were shown. There is astrocyte reactivity but no astrocytic CLDN4 up-regulation at the

capillary level in DhhECKO mouse CNS. (B) Representative blots of GFAP and CLDN4
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expression level on DhhECKO and control lysates were shown. Lysates were obtained with neu-

rovascular units, which are 20 μm and larger. (C) GFAP expression level was quantified by

western blot on DhhECKO and control lysates obtained with neurovascular units, which are

20 μm and larger. (D) CLDN4 expression level was quantified by western blot on DhhECKO

and control lysates obtained with neurovascular units, which are 20 μm and larger. (DhhECKO

n = 6, WT n = 6). �P� 0.05, Mann–Whitney U test. The underlying data for S6 Fig can be

found in S2 Data (https://doi.org/10.6084/m9.figshare.12625085.v7).

(TIF)

S7 Fig. (Related to Fig 5 and Fig 7). Both VEGFA and Mannitol induce HBMEC permeabil-

ity in vitro. (A) Cultured HBMECs were treated with PBS, VEGFA, or Mannitol for 6 h, and

HBMEC monolayer permeability to 70 kDa FITC Dextran was quantified. Mice with endothe-

lial Dhh knockdown display a reinforced barrier at the Glia Limitans restraining access to

the parenchyma to inflammation in a model of multiple sclerosis: (B) Negative working

images of GFAP/CDH5 channels were used to highlight the endothelial (EBM) and astrocyte

(ABM) basement membranes, using orange dotted lines. The outlines were then transferred to

the FGB images to discriminate the distribution of FGB between the lumen, PVS, and paren-

chyma. (C) Negative working images of the LAM channel were used to highlight the endothe-

lial (EBM) and astrocyte (ABM) basement membranes, using blue dotted lines. The outlines

were then transferred to the CD45 images to discriminate the distribution of leukocytes

between the lumen, PVS, and parenchyma. �P� 0.05, ����P� 0.0001 Kruskal–Wallis test. The

underlying data for S7 Fig can be found in S2 Data (https://doi.org/10.6084/m9.figshare.

12625085.v7).

(TIF)
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