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Abstract.  In a few recent studies, the action of a bacterial dioxygenase (10S-DOX) on 27 

palmitoleic acid was observed within some polar and estuarine settings. To add further 28 

mechanistic information regarding the action of this enzyme in marine settings, we measured a 29 

range of lipids (sterols, fatty acids and the chlorophyll phytyl side chain) and their biotic and 30 

abiotic degradation products in water samples collected in 2018 from two depths (5 m and 25 31 

m) at the temperate oceanographic time series site L4, located in the western English Channel. 32 

Lipid distributions indicated a dominance of diatoms and copepods during the spring bloom, 33 

while a peak in dinoflagellate activity was evident in samples collected from late 34 

summer/autumn, both outcomes being consistent with taxonomic data reported previously for 35 

the same sampling site and interval. Monitoring of lipid oxidation products characteristic of 36 

different degradation pathways showed a relatively weak effect of photo- and autoxidation 37 

processes, with these acting mainly on the more reactive lipids (i.e. chlorophyll and 38 

polyunsaturated fatty acids). In contrast, monitoring of biotic degradation processes revealed 39 

significant quantities of 10S-hydroxyhexadec-8(E)-enoic acid in samples collected at the end 40 

of April (reaching 40% of the residual parent palmitoleic acid), attributed to the involvement of 41 

bacterial 10-dioxygenase (10S-DOX) activity during the spring bloom. We propose that this 42 

enzyme could be utilised by bacteria to detoxify free fatty acids released by wounded diatoms 43 

in the presence of copepods 44 

 45 

Keywords: Biotic and abiotic degradation; 10S-DOX enzymatic activity; Bacteria; Wounded 46 

diatoms. 47 

 48 

 49 

 50 
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1. Introduction 51 

Suspended particles sink very slowly through the water column and constitute most of the 52 

standing stock of particulate matter in the oceans (Bacon et al., 1985; Wakeham and Lee, 1989). 53 

These particles are composed of a heterogeneous mixture of biogenic, lithogenic, and 54 

authigenic components, with their relative proportions dependent on location and depth. 55 

However, biogenic (mainly phytoplanktonic) material normally dominates particle composition 56 

in the upper 100 m (Honjo et al., 1982). Suspended particles are also generally considered to 57 

contain more highly degraded organic matter (OM) than sinking particles due to their longer 58 

residence times in the water column (Tanoue and Handa 1980). However, several previous 59 

field-based studies have shown high abundances of relatively undegraded labile material in 60 

suspended particles (Lee et al., 1983; Wakeham et al., 1985; Wakeham and Canuel, 1988; 61 

Sheridan et al., 2002). It is thus important to understand: (i) the mechanisms by which such 62 

organic matter is degraded in the water column, and (ii) the relative importance of biotic vs. 63 

abiotic processes responsible for this degradation.  64 

Biotic degradation of algal material in the water column depends not only on zooplankton 65 

grazing (Harvey et al., 1987), but also on the remineralization activity of the associated bacteria. 66 

Indeed, particles are rapidly colonized by prokaryotes, and particle-attached communities are 67 

often more metabolically active (Grossart et al., 2003; 2007) and phylogenetically diverse 68 

(Ortega-Retueta et al., 2013; Ganesh et al., 2014) than free-living assemblages. 69 

Although less widely studied than its biologically mediated (heterotrophic) counterpart, 70 

abiotic degradation by processes such as photooxidation and autoxidation (spontaneous free 71 

radical reaction of organic compounds with oxygen) is now understood to play a role in the fate 72 

of phytoplankton in the ocean (for a recent review, see Rontani and Belt, 2020). While, due to 73 

the presence of chlorophyll a, a very efficient photosensitizer (Foote, 1976), visible-light-74 

induced photosensitization involves mainly reaction with singlet oxygen (1O2) and acts on the 75 
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unsaturated lipid components of algae, the mechanism by which autoxidation is initiated in 76 

phytodetritus appears to be homolytic cleavage of photochemically-produced hydroperoxides 77 

(Girotti, 1998; Rontani et al., 2003). Consequently, both photooxidation and autoxidation can 78 

significantly affect the composition of lipids in suspended particles (Rontani and Belt, 2020).  79 

Lipids, which constitute one of the three main classes of organic matter in algal material 80 

(Sun et al., 2002), are less labile than carbohydrates and proteins and are thus often used as 81 

biomarkers to determine the sources (Volkman, 1986, 2003) and the alteration state of specific 82 

organisms (Rontani et al, 2012; 2016). 83 

In the present work, we monitored the biotic and abiotic degradation of lipids in 84 

suspended particle material (SPM) collected in 2018 from the Western Channel Observatory 85 

(WCO, https://www.westernchannelobservatory.org.uk/) marine station L4, which is a highly 86 

seasonal temperate shelf site (Widdicombe et al 2010, Atkinson et al 2015, Cornwell et al 2020). 87 

A focus of the study was the action of a particular bacterial enzyme (10S-DOX), which was 88 

previously observed in Arctic sea ice and sinking particles (Amiraux et al., 2017; Rontani et al., 89 

2018), and in estuaries of diverse latitudes (Galeron et al., 2018); however, the role of this 90 

enzyme in the environment has hitherto remained unclear. Here, we hypothesised that this 91 

enzyme could be employed by bacteria to detoxify free fatty acids released by wounded 92 

diatoms, perhaps as a result of increased copepod activity (i.e. grazing). 93 

 94 

 95 

2. Experimental 96 

  97 

2.1. Site description 98 

The oceanographic time-series and marine biodiversity reference site L4 (50° 15′N, 4° 13′W, 99 

ca. 53 m water depth), is located in the Western English Channel, 13 km south southwest of 100 
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Plymouth, UK (Fig. 1). L4 is one of Europe’s principal coastal time series sites and the 101 

Plymouth Marine Laboratory has sampled its natural phytoplankton community since 1992. 102 

The seasonal phytoplankton community at L4 has been well documented over many years (e.g. 103 

Widdicombe et al. 2010, Atkinson et al. 2015, Tarran and Bruun 2015, Cornwell et al. 2020). 104 

Specifically, phytoplankton biomass at L4 typically comprises a background population of 105 

flagellates, which increase steadily into summer (Atkinson et al 2015). A diatom bloom often 106 

begins in April, with a bloom of Phaeocystis spp. (Prymnesiophyte) in some years 107 

(Widdicombe et al 2010, Atkinson et al 2015). With the onset of summer stratification and 108 

nutrient limitation, Chl a levels often diminish around June as the diatom bloom is succeeded 109 

by a peak of autotrophic dinoflagellates (Atkinson et al 2015). Coccolithophores increase in the 110 

autumn of some years, but their contribution to biomass overall is relatively minor (Atkinson 111 

et al. 2015).  112 

The microzooplankton protist assemblages are dominated by ciliates and colourless 113 

dinoflagellates (defined here as heterotrophic). Ciliates typically peak at around the same time 114 

as the spring diatom bloom (Widdicombe et al 2010, Atkinson et al 2015, Cornwell et al 2020), 115 

whereas the stronger peak of dinoflagellates appears later (Atkinson et al 2015). The non-116 

carnivorous holoplankton, which also includes copepods, starts to increase before the spring 117 

bloom and is often sustained until October (Atkinson et al 2015). In contrast, the carnivorous 118 

zooplankton typically peak during the autumn (Atkinson et al., 2015).  119 

   120 

2.2 SPM sampling 121 

Water samples from 5 m and 25 m water depth were collected from the L4 station throughout 122 

2018 (and some in 2019) on board the R/V Plymouth Quest (approximately monthly) using 10 123 

L Niskin bottles mounted on to a conductivity, temperature and depth (CTD) rosette sampler. 124 

The particulate fractions were collected under subdued light conditions from 2-4 L of water by 125 
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means of vacuum filtration on 47 mm glass microfibre filters (Whatman, GF/F, as supplied). 126 

Water samples were processed immediately after collection and filtered materials kept frozen 127 

(-20°C) until further analysis.  128 

 129 

2.3. Lipid extraction 130 

Filtered water samples (GF/F filters) were reduced at room temperature with excess NaBH4 (70 131 

mg) after adding MeOH (25 mL, 30 min) to reduce labile hydroperoxides (resulting from photo- 132 

or autoxidation) to alcohols, which are more amenable to analysis by gas chromatography (GC). 133 

Water (25 mL) and KOH (2.8 g) were then added and the resulting mixture saponified by 134 

refluxing (2 h). After cooling, the mixture was acidified (HCl, 2 N) to pH 1 and extracted with 135 

dichloromethane (DCM; 3 × 20 mL). The combined DCM extracts were dried over anhydrous 136 

Na2SO4, filtered and concentrated by rotary evaporation at 40°C to give total lipid extracts 137 

(TLEs). TLEs were then silylated and analyzed by gas chromatography-electron impact 138 

quadrupole time-of-flight mass spectrometry (GC-QTOF). Analysis of blank filters showed the 139 

presence of small amounts (< 10% of the values obtained from water samples) of cholesterol 140 

and saturated fatty acids, which were subtracted. 141 

A different treatment was used to determine the proportion of free fatty acids (FFAs). The 142 

samples were extracted three times with chloroform-MeOH-H2O (1:2:0.8, v:v:v) using 143 

ultrasonication. The supernatant was separated by centrifugation at 3500G for 9 min. To initiate 144 

phase separation, purified H2O was added to the combined extracts to give a final volume ratio 145 

of 1:1 (v:v). The upper aqueous phase was extracted three times with DCM and the combined 146 

DCM extracts were filtered and the solvent removed via rotary evaporation. The residue 147 

obtained after extraction was dissolved in 4 mL of DCM and separated into two equal 148 

subsamples. After evaporation of the solvent, fatty acids were directly quantified by GC-QTOF 149 

in the first subsample after silylation, while the second subsample was saponified and treated 150 
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as described above. Comparison of the amounts of fatty acids present before and after 151 

saponification enabled estimation of the percentage of FFAs. All the solvents (pesticide/glass 152 

distilled grade) and reagents (Puriss grade) were obtained from Rathburn and Sigma-Aldrich, 153 

respectively.  154 

 155 

2.4. Silylation 156 

Dry TLEs and standards were derivatized by dissolving them in 300 µL pyridine/bis-157 

(trimethylsilyl)trifluoroacetamide (BSTFA; Supelco; 2:1, v/v) and silylated in a heating block  158 

(50 °C, 1 h). After evaporation to dryness under a stream of N2, the derivatized residue was 159 

dissolved in ethyl acetate/BSTFA (2:1, v/v) (to avoid desilylation) and analysed by GC-QTOF. 160 

 161 

2.5. Gas chromatography-EI quadrupole time-of-flight mass spectrometry 162 

Accurate mass measurements were made in full scan mode using an Agilent 7890B/7200 163 

GC/QTOF system (Agilent Technologies, Parc Technopolis – ZA Courtaboeuf, Les Ulis, 164 

France). A cross-linked 5% phenyl-methylpolysiloxane (Macherey-Nagel; OPTIMA-5MS 165 

Accent, 30 m  0.25 mm, 0.25 m film thickness) capillary column was used. Analyses were 166 

performed with an injector operating in pulsed splitless mode set at 270°C. Oven temperature 167 

was ramped from 70°C to 130°C at 20°C min-1 and then to 300°C at 5°C min-1. The pressure 168 

of the carrier gas (He) was maintained at 0.69  105 Pa until the end of the temperature program. 169 

Instrument temperatures were 300°C for transfer line and 230°C for the ion source. Nitrogen 170 

(1.5 mL min-1) was used as collision gas. Accurate mass spectra were recorded across the range 171 

m/z 50–700 at 4 GHz with the collision gas opened. The QTOF-MS instrument provided a 172 

typical resolution ranging from 8009 to 12252 from m/z 68.9955 to 501.9706. 173 

Perfluorotributylamine (PFTBA) was used for daily MS calibration. Compounds were 174 
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identified by comparing their TOF mass spectra, accurate masses and retention times with those 175 

of standards. Quantification of each compound involved extraction of specific accurate 176 

fragment ions, peak integration and determination of individual response factors using external 177 

standards and Mass Hunter (Agilent Technologies, Parc Technopolis – ZA Courtaboeuf, Les 178 

Ulis, France) software. 179 

 180 

2.6. Standard compounds 181 

Phytol (12), fatty acids, most of the sterols and 2,6,10,14-tetramethylpentadecanoic acid 182 

(pristanic acid) (15) were purchased from Sigma-Aldrich (St. Quentin Fallavier, France). 3,6-183 

Dihydroxycholest-4-ene (10) (employed for sterol photooxidation estimates) was obtained from 184 

Maybridge Ltd. The synthesis of 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol 185 

(phytyldiol) (13) was described by Rontani and Aubert (2005). 4,8,12-Trimethyltridecanoic 186 

acid (4,8,12-TMTD acid) (16) was synthesized from isophytol (19) (Interchim, Montluçon, 187 

France) by a previously described procedure (Rontani et al., 1991). 3,7,11,15-188 

Tetramethylhexadecanoic acid (phytanic acid) (14) was produced in three steps from phytol 189 

(12) as described previously (Rontani et al., 2003). Cholestane-3,5,6-triol (11) (employed 190 

for sterol autoxidation estimates) was produced by oxidation of cholesterol (2) with 191 

H2O2/KI/H2SO4 (Li and Li, 2013). (8-11)-Hydroperoxyhexadec-(8-10)-enoic acids (Z and E) 192 

(30-35) were produced by Fe2+/ascorbate-induced autoxidation (Loidl-Stahlhofen and Spiteller, 193 

1994) of palmitoleic acid (23). Subsequent reduction of these different hydroperoxides in 194 

methanol with excess NaBH4 afforded the corresponding hydroxyacids. A standard of threo 195 

7,10-dihydroxyoctadec-8(E)-enoic acid  containing 10% of threo 7,10-dihydroxyhexadec-8(E)-196 

enoic acid (42) previously produced by Pseudomonas aeruginosa PR3 (Suh et al., 2011) was 197 

obtained from Dr. H.R. Kim (School of Food Science and Biotechnology, Kyungpook National 198 

University, Daegu, Korea). 199 
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 200 

2.7. Estimation of autoxidative, photooxidative and 10S-DOX degradation  201 

The role played by autoxidation, photooxidation and 10S-DOX oxidation in the degradation of 202 

palmitoleic acid was estimated based on the profiles of isomeric allylic hydroxyacids obtained 203 

after NaBH4-reduction as described previously by Rontani et al. (2018). 204 

 205 

3. Results 206 

 207 

3.1. Trophic environment at station L4 in 2018 208 

The main sterols in the filtered water samples: 24-norcholesta-5,22E-dien-3-ol (24-norsterol) 209 

(1), cholest-5-en-3-ol (cholesterol) (2), cholesta-5,22E-dien-3-ol (22-dehydrocholesterol) 210 

(3), cholest-5,24-dien-3-ol (desmosterol) (4), 24-methylcholesta-5,22E-dien-3-ol (epi-211 

brassicasterol) (5), 24-methylcholesta-5,24(28)-dien-3-ol (24-methylenecholesterol) (6), 24-212 

ethylcholest-5-en-3-ol (sitosterol) (7), 24-ethylcholesta-5,22E-dien-3-ol (fucosterol) (8) and 213 

4α,23,24-trimethyl-5α-cholest-22E-en-3-ol (dinosterol) (9), were quantified to estimate the 214 

nature and the amount of the algal material present in SPM samples across the 2018 time series. 215 

At 5 m, sterol concentrations showed the occurrence of two peaks of phytoplanktonic biomass 216 

at the end of April and in September (Table 1, Fig. 2A). In April, the sterol profile was 217 

characterized by the presence of high percentages of cholesterol (2) and 24-norsterol (1), while 218 

in September, cholesterol (2), brassicasterol (5), 24-methylenecholesterol (6) and dinosterol (9) 219 

were the most abundant. At 25 m, two peaks of phytoplanktonic biomass could be observed at 220 

the end of April and May (Table 2, Fig. 2B) with the percentages of cholesterol (2) and 24-221 

norsterol (1) again relatively abundant during these two events. A relatively high abundance of 222 

brassicasterol (5) was also observed at 25 m in May. 223 
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At 25 m, the concentration of phytol (chlorophyll phytyl side-chain) (12) followed 224 

logically the same trend as that of the sterols (Table 2). In contrast, we observed a small lag 225 

between the date of the highest concentration of phytol (12) (08/13/18) and total sterols 226 

(09/17/18) at 5 m (Table 1). Concerning isoprenoid acids, a peak in phytanic acid (14) 227 

concentration was detected on 04/30/18 at both depths, while highest 4,8,12-TMTD acid (16) 228 

concentrations were observed in February and March at 5 m (Tables 1 and 2, Fig. 3). 229 

We also quantified the main saturated (SFAs), monounsaturated (MUFAs) and 230 

polyunsaturated (PUFAs) fatty acids (Tables 3 and 4). While SFAs appeared to be dominant 231 

and the percentage of MUFAs relatively constant at both depths across the 2018 time series, 232 

PUFAs were highly variable at both depths. SFAs were dominated by C16:0 (21) and C14:0 (20), 233 

MUFAs by C16:19 (palmitoleic acid) (22) and C18:19 (oleic acid) (24), and PUFAs by C20:5 (26) 234 

and C22:6 (27). The bacterially-derived C18:17 (cis-vaccenic acid) (25) and branched (iso and 235 

anteiso) C15:0 acids (BrC15:0) (28 and 29) were also detected.  236 

 237 

3.2. Biotic and abiotic degradation of lipid components of phytoplankton at station L4 in 2018 238 

 239 

3.2.1. Photooxidation 240 

Due to the higher solar irradiance available, it is perhaps not surprising that photooxidation 241 

processes acted more intensively at 5 m than at 25 m, although only the most reactive lipids 242 

(e.g. chlorophyll) appeared to be strongly affected by this process (Tables 1 and 2, Fig. 4). Thus, 243 

chlorophyll photooxidation estimates were highly variable at 5 m (ranging from 8% to 100%) 244 

(Table 1, Fig. 4) yet relatively consistent and low at 25 m (10%–26%) (Table 2). The 245 

photooxidation of MUFAs (reaching 2.4% and 2.0% at 5 m and 25 m, respectively) was very 246 

limited at both depths (Fig. 5), while 5-sterols appeared to be essentially unaffected.  247 

 248 
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3.2.2. Autoxidation 249 

3,7,11,15-tetramethylhexadec-3(cis/trans)-ene-1,2-diols (17) and 3,7,11,15-tetramethyl-250 

hexadec-2(cis/trans)-ene-1,4-diols (18) resulting from autoxidation of the chlorophyll phytyl 251 

side-chain could be identified in the different samples investigated, but were not quantified. 252 

Similarly, the detection of cis-hydroxyhexadecenoic acids (40 and 41, see appendix) provides 253 

evidence for autoxidation of palmitoleic acid (22), although this was relatively minor, reaching 254 

only a maximum of 14% and 16% in January at 5 and 25 m, respectively (Fig. 5). In contrast, 255 

autoxidation products of 5-sterols (i.e. -steratriols; Rontani, 2012) were not detected 256 

in any of the samples. 257 

 258 

3.2.3. Biotic degradation 259 

A clear dominance of 10-hydroxyhexadec-8(E)-enoic acid (36) was observed within the 260 

palmitoleic acid oxidation products in the sample collected on 04/30/18 at 25 m (Fig. 6B), and 261 

attributed to the involvement of a bacterial 10-dioxygenase enzyme (10S-DOX). Similar 262 

evidence for the involvement of this enzyme was also observed in the corresponding sample 263 

collected at 5 m, but in this case 8-hydroxyhexadec-9(E)-enoic acid (38) was also dominant 264 

(Fig. 6A). 10S-DOX degradation of palmitoleic acid (22) in these samples was estimated to be 265 

27% and 25% at 5 m and 25 m, respectively (Fig. 5A and 5B). Analysis of samples collected 266 

in 2019, albeit from 25 m water depth only, provides further indication of the seasonal nature 267 

of this bacterial activity at the L4 station (10S-DOX degradation of palmitoleic acid reaching 268 

6% in April; Rontani et al., unpublished data), although multi-annual studies are needed to 269 

confirm this. 270 

Quantification of the free fatty acid (FFA) content in the sample collected on 04/30/18  at 271 

5 m showed a very high proportion of free palmitoleic (22) and C20:5 (26) acids (76% and 74%, 272 

respectively). Interestingly, threo 7,10-dihydroxyhexadec-8(E)-enoic acid (42) could also be 273 
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identified in these samples by comparison of its accurate mass spectrum and retention time with 274 

those of a reference compound (Fig. S1). A slightly later eluting compound (Fig. S1), exhibiting 275 

the same mass spectrum as threo 7,10-dihydroxyhexadec-8(E)-enoic acid (42), was identified 276 

as a mixture of the erythro diastereoisomers of this diol (43). Such an elution order is in good 277 

agreement with the results of Hansel and Evershed (2009). 278 

 279 

4. Discussion 280 

4.1. Trophic environment at station L4 in 2018 281 

Sterols possess structural characteristics, such as double bond positions, nuclear methylation 282 

and patterns of side-chain alkylation, which are restricted to a few groups of organisms (for 283 

reviews see Volkman, 1986; 2003; Rampen et al., 2010). These lipids are thus often used to 284 

estimate phytoplanktonic diversity (e.g. Veron et al., 1998; Taipale et al., 2016). For example, 285 

24-norsterol (1) has previously been identified as a characteristic sterol in diatoms, both in 286 

culture of the centric diatom Thalassiosira antarctica (Rampen et al., 2007) and in the 287 

environment (e.g. Suzuki et al., 2005). The relatively high proportions of 24-norsterol (1) 288 

observed in our SPM samples collected on 04/30/18 at 5 m and 25 m (30% and 20% of total 289 

sterols, respectively) (Tables 1 and 2), along with relatively high values of the diatom fatty acid 290 

ratio ((C14:0 + C16:17 + C16 PUFAs)/C16:0) (Léveillé et al., 1997) and the diatom-specific C20:5 291 

FA (Tables 3 and 4), thus suggest a strong contribution from diatoms during this period. Indeed, 292 

our lipid data are consistent with previous taxonomic results of Cornwell et al. (2020), who 293 

showed that diatom biomass increased strongly (more than fourfold) between weeks 16 and 18 294 

of 2018 (corresponding to our 04/19/18 and 04/30/18 samples, respectively). In particulate 295 

matter, the (MUFAs + PUFAs)/SFAs ratio varies generally from 0.6 during the initial and lag 296 

phases of phytoplankton blooms to greater than 1.0 at high rates of organic production (Marty 297 
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et al., 1988; Mayzaud et al., 1989). The high values observed on 04/30/18 and 05/30/18 at 25 298 

m (1.7 and 1.2, respectively), accompanied by elevated values of C20:5 FA (Table 4), are thus 299 

also consistent with the occurrence of diatom blooms on these dates (Cornwell et al., 2020). 300 

Interestingly, Widdicombe et al. (2010) previously observed a shift in phytoplankton 301 

composition at the L4 station between late March and early May from a winter community 302 

(dominated by centric and benthic diatoms) towards a community dominated by Chaetoceros 303 

spp., Thalassiosira spp. (potential sources of 24-norsterol, Rampen et al., 2007) and 304 

Skeletonema  costatum. 305 

On the basis of the relatively high abundance of brassicasterol (5) in the 25 m sample 306 

collected in May (Table 2, Fig. 2), a significant contribution of Phaeocystis could be inferred 307 

(Nichols et al., 1991), as is frequently the case at the L4 station during April/May (Widdicombe 308 

et al., 2010).   309 

Dinoflagellates are important primary producers in the oceans (Kokke et al., 1982), 310 

differing from other classes of marine algae with respect to the dominance of 4-methylsterols 311 

among their sterols. Dinosterol (9), for example, which is the major sterol in several 312 

dinoflagellates (Shimizu et al., 1976; Kokke et al., 1982), is often employed as tracer for the 313 

contribution of these organisms in the marine environment (Robinson et al., 1984). The 314 

significant proportion of this sterol in the 09/17/18 sample at 5 m (Fig. 2), along with relatively 315 

elevated concentrations of the C22:6 FA (produced in high proportion by several dinoflagellates, 316 

Peltomaa et al., 2019) (Table 3), thus suggests an important contribution of dinoflagellates to 317 

this bloom event, consistent with the results of Cornwell et al. (2020), who identified a peak in 318 

ellipsoid-shaped dinoflagellates between weeks 36 and 38 (Sept 2018) at 10 m water depth.  319 

The lag between the highest concentrations of phytol (12) (08/13/18) and sterols 320 

(09/17/18) at 5 m (Table 1), can be attributed to the presence of a bloom of cyanobacteria (well-321 

known to contain very low proportions of sterols; Volkman, 2003) at the end of August, as also 322 
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supported by the observations of Cornwell et al. (2020), who showed the presence of a single 323 

biomass maximum of Synechoccocus at the L4 station during the same period.   324 

Pelagic crustaceans assimilate the chlorophyll phytyl chain when feeding herbivorously 325 

(for a review see Rontani and Volkman, 2003). Phytanic acid (14), which arises from 326 

hydrogenation and terminal oxidation of phytol (12), is an important lipid in species of Calanus 327 

(Blumer and Cooper, 1967; Avigan and Blumer, 1968; Prahl et al., 1984). Classical oxidative 328 

metabolism of this isoprenoid acid (Mize et al., 1969) aff ords pristanic (15) and 4,8,12-TMTD 329 

(16) acids, which have also been detected in diff erent Calanus species (Avigan and Blumer, 330 

1968; Prahl et al., 1984). These three isoprenoid acids may also be produced during the 331 

biodegradation of phytol (12) by marine bacteria (Rontani et al., 1999). The high concentrations 332 

of phytanic acid (14) observed at the end of April at 5 m and 25 m (Fig. 3) therefore strongly 333 

suggests the presence of a high proportion of copepods, evident also from a high proportion of 334 

cholesterol (2) in these samples (Fig. 2). Indeed, herbivorous crustaceans use common dietary 335 

algal sterols such as epi-brassicasterol (5) or 24-methylenecholesterol (6) to synthesize 336 

cholesterol (2) via dealkylation and reduction (Grieneisen, 1994; Behmer and Nes, 2003). The 337 

weak proportion of desmosterol (4) (an intermediate in the conversion of dietary phytosterols 338 

to cholesterol (2) by copepods; Goad 1978) observed in the April samples likely reflects the 339 

highly efficient conversion of phytosterols to cholesterol (2) by copepods, with little 340 

accumulation of desmosterol (4) (Cass et al., 2011). The presence of a high proportion of 341 

copepods inferred from the sterol composition in April further aligns with the results of 342 

Cornwell et al. (2020) who conducted a 1-year intensive study of the copepod Oithona similis 343 

at the L4 station over the 2017–2018 season. Thus, increasing abundances of O. similis were 344 

identified during the same period as the elevated cholesterol levels in our SPM samples (i.e. 345 

between weeks 15 and 19 of 2018) (Cornwell et al., 2020), together with an increase in fecal 346 

pellets in the phytoplankton community (phytoplankton net, 20 µm mesh size) (Widdicombe, 347 
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personal communication). Indeed, increased copepod grazing and feeding on diatoms are 348 

common occurrences during the spring bloom at L4 (e.g. Bautista and Harris (1992), Harris et 349 

al. (2000)). 350 

In summary, biomarker analysis of the SPM samples provide valuable background 351 

information about the trophic environment at L4 during 2018. Specifically, elevated 352 

contributions from diatoms and Phaeocystis could be identified during the spring, along with 353 

copepods. On the other hand, the late summer/autumn biomarker pool provides evidence for an 354 

environment dominated by dinoflagellates, with some contribution from cyanobacteria. These 355 

lipid data are also in very good agreement with recent and long-term studies of trophic 356 

environments at L4 (e.g. Cornwell et al 2020, Atkinson et al 2015, Widdicombe et al 2010, 357 

Eloire et al 2010). 358 

   359 

4.2. Biotic and abiotic degradation of lipid components of phytoplankton at station L4 in 2018 360 

 361 

4.2.1. Photooxidation 362 

Due to the presence of chlorophylls, which are very efficient photosensitizers (Foote, 1976; 363 

Knox and Dodge, 1985), unsaturated lipid components of phytoplankton are susceptible to Type 364 

II photosensitized oxidation (i.e. involving singlet oxygen (1O2)) processes (Rontani and Belt, 365 

2020). The efficiency of these processes is strongly dependent on: (i) the residence time of cells 366 

within the euphotic layer (Zafiriou et al., 1984; Mayer et al., 2009), and (ii) the physiological 367 

state of phytoplanktonic cells (Merzlyak and Hendry, 1994; Nelson, 1993). Indeed, 1O2 368 

production can exceed the quenching capacities of the photoprotective system (and thus induce 369 

cell damage) only when the photosynthetic pathways are not operative as is the case of 370 

senescent or highly stressed cells (Nelson, 1993).  371 
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Based on its high specificity and widespread occurrence in the environment (Cuny and 372 

Rontani, 1999), 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol (phytyldiol) (13) 373 

produced during Type II photosensitized oxidation of the chlorophyll phytyl side-chain 374 

(Rontani et al., 1994), was proposed previously as a specific and stable tracer of chlorophyll 375 

photodegradation (Cuny et al., 2002). The molar ratio phytyldiol (13)/phytol (12) is often 376 

referred to as the Chlorophyll Phytyl side-chain Photodegradation Index (CPPI) and provides a 377 

useful semi-quantitative estimate for photodegradation of all chlorophylls with a phytyl side-378 

chain in the marine environment (Cuny et al., 2002). Interestingly, in our SPM samples, the 379 

highest chlorophyll photo-oxidation estimates at 5 m mirror the two bloom events and are 380 

strongly anti-correlated to the concentration of phytol (12) (and therefore of chlorophyll) (Fig. 381 

4) (R2 = 0.81, n = 14), indicating that photooxidation processes act before and after the blooms 382 

on old or senescent cells, but not on healthy cells during the blooms.  383 

Unsaturated fatty acids, which generally predominate in the photosynthetic membranes 384 

of algae (Woods, 1974), may also be strongly affected by Type II photosensitized oxidation 385 

processes in senescent phytoplanktonic cells (Rontani and Belt, 2020). The photodegradation 386 

rates of these compounds logically increase with their degree of unsaturation (Rontani et al., 387 

1998), rendering PUFAs, in particular, very reactive towards these processes (Frankel, 1998; 388 

Rontani et al., 1998). Based on the correspondence between the lowest proportions of PUFAs 389 

and the highest chlorophyll photooxidation estimates at 5 m (Fig. 4), the involvement of Type 390 

II photosensitized oxidation processes in PUFA degradation would be expected, yet no PUFA 391 

photooxidation products were detected. This is possibly due to: (i) the instability of the 392 

polyunsaturated hydroperoxides formed, or (ii) the involvement of intermolecular cross-linking 393 

reactions leading to the formation of compounds with macromolecular structures (Neff et al., 394 

1988), which are not readily analyzed by gas chromatography. Exceptionally, for the sample 395 

collected on 01/22/18 at 5 m, where chlorophyll photooxidation % and the proportion of PUFAs 396 
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were both low (Fig. 4), PUFA degradation seems to result from autoxidation processes (see 397 

section 4.2.2).  398 

Type II photosensitized oxidation of 9 MUFAs produces similar proportions of 9- and 399 

10-hydroperoxides with an allylic trans-double bond (Frankel et al. 1979; Frankel, 1998), 400 

which can subsequently undergo stereoselective radical allylic rearrangement to 11-trans and 401 

8-trans hydroperoxides, respectively (Porter et al. 1995). In contrast, MUFA autoxidation 402 

results mainly in the formation of 9-trans, 10-trans, 11-trans, 11-cis, 8-trans and 8-cis 403 

hydroperoxides (Frankel, 1998). Autoxidative processes can be readily characterised after 404 

NaBH4-reduction due to the formation of cis allylic hydroxyacids, which are specific products 405 

of these degradation processes (Porter et al., 1995; Frankel, 1998). The contribution of 406 

hydroxyacids resulting from autoxidative processes may be distinguished from that arising from 407 

photooxidative processes according to the proportions of cis-hydroxyacids detected and the 408 

water temperature (Frankel, 1998; Marchand and Rontani, 2001). The results obtained here 409 

showed only a very weak photooxidation of palmitoleic acid (22) (the main MUFA present in 410 

the samples) at both depths (Fig. 5). 411 

Finally, as important unsaturated components of biological membranes, 5-sterols are 412 

also susceptible to photooxidative degradation during the senescence of phytoplankton 413 

(Rontani and Belt, 2020). However, their photodegradation is generally slower than that of 414 

MUFAs due to steric hindrance between the sterol 5 double bond and 1O2 (Beutner et al., 415 

2000). The failure to detect photooxidation products of 5-sterols is therefore consistent with 416 

the very weak photodegradation of MUFAs (Tables 3 and 4). During the time series 417 

investigated, Type II photosensitized oxidation thus seems to have acted most intensively only 418 

on the more reactive lipids (i.e. chlorophyll and PUFAs).  419 

 420 

4.2.2. Autoxidation 421 
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3,7,11,15-tetramethylhexadec-3(cis/trans)-ene-1,2-diols (17) and 3,7,11,15-tetramethyl-422 

hexadec-2(cis/trans)-ene-1,4-diols (18) were previously proposed as indicators of radical-423 

mediated oxidative degradation of the chlorophyll phytyl side-chain in the environment 424 

(Rontani and Aubert, 2005), and were indeed detected in the current water column samples. 425 

Unfortunately, despite the high specificity and widespread occurrence of these diols in the 426 

environment, the formation of several additional labile oxidation products during the 427 

autoxidation of the phytyl side-chain (Rontani et al., 2003) prevented semi-quantitative 428 

estimation of chlorophyll autoxidation.  429 

Although more intense than photooxidation, autoxidation of palmitoleic acid (22) was 430 

relatively low during the time series (Fig. 5). It may be noted that the autoxidation percentages 431 

(ranging from 0 to 16%) are clearly in the low range previously observed in polar, tropical and 432 

temperate regions (for a review see Rontani and Belt, 2020). Highest autoxidation (14.2 and 433 

16.2% at 5 and 25 m, respectively) was observed in January (Fig. 5), suggesting that 434 

autoxidative processes also likely played an important role in the degradation of PUFAs at that 435 

time (Fig. 4). Indeed, PUFAs such as C20:5 (26) are autoxidized at a rate more than one order of 436 

magnitude faster than MUFAs in senescent diatom cells (Rontani et al., 2014). It was proposed 437 

previously that the induction of autoxidative processes in phytodetritus derives likely from the 438 

cleavage of photooxidative hydroperoxides (Girotti, 1998; Rontani et al., 2003) so it might be 439 

expected that high rates of autoxidation would correspond to high rates of photooxidation. This 440 

is clearly not the case in January, when the autoxidation state of MUFAs was the highest (Fig. 441 

5) and chlorophyll photooxidation (%) was the lowest (Fig. 4), probably because the intensity 442 

of autoxidative processes depends not only on the quantity of photochemically-produced 443 

hydroperoxides present in the cells, but also on conditions favouring their homolytic cleavage 444 

(e.g. the presence of LOXs or redox-active metal ions, heat or light; Sheldon and Kochi, 1976; 445 

Schaich, 2005).  446 
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Autoxidation of 5-sterols is generally slower than that of MUFAs in senescent diatom 447 

cells (Rontani et al., 2014). Since the extent of MUFA autoxidation was relatively low in the 448 

SPM samples (Fig. 5), the very weak autoxidation of sterols was as expected. Therefore, as 449 

seen for Type II photosensitized oxidation, autoxidation seems to have acted mainly on the 450 

most reactive lipids (i.e. chlorophyll and PUFAs). 451 

  452 

4.2.3. Biotic degradation 453 

Type II photosensitized oxidation and free-radical induced oxidation of 9 MUFAs such as 454 

palmitoleic acid (22) produce (after NaBH4-reduction of hydroperoxyacids) equal proportions 455 

of the major 9-E and 10-E isomeric allylic hydroxyacids (36 and 37) (Frankel, 1998). The strong 456 

predominance of 10-hydroxyhexadec-8(E)-enoic acid (36) observed in the SPM samples 457 

collected on 04/30/18 (Fig. 6) can thus be attributed to the involvement of a specific biotic 458 

oxidation process. A similar dominance of this isomer among palmitoleic acid (22) oxidation 459 

products was observed previously in sea ice and in sinking particles in the Canadian Arctic 460 

(Amiraux et al., 2017; Rontani et al., 2018), and also in estuaries of diverse latitudes (Galeron 461 

et al., 2018). Its occurrence has previously been attributed to the involvement of specific 462 

bacterial dioxygenase activity and to a 10S-DOX enzyme, in particular. Indeed, a 10S-DOX 463 

enzyme capable of converting palmitoleic acid (22) to 10(S)-hydroperoxyhexadec-8(E)-enoic 464 

acid (30) (reduced to the corresponding hydroxyacid during NaBH4-reduction) was previously 465 

isolated from the bacteria Pseudomonas aeruginosa 42A2 (Guerrero et al., 1997; Busquets et 466 

al., 2004) and, more  recently, found in other genera of marine bacteria, namely 467 

Pseudoalteromonas, Shewanella and Aeromonas (Shoja Chaghervand, 2019). The involvement 468 

of 10S-DOX enzymatic activity in these SPM samples is further supported by detection of threo 469 

7,10-dihydroxyhexadec-8(E)-enoic acid (42) (Fig. S1), formed from the specific action of 470 

7S,10S-hydroperoxide diol synthase (linked to the 10S-DOX enzymatic activity) (Estupiñán et 471 
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al., 2014; 2015) on 10(S)-hydroperoxyhexadec-8(E)-enoic acid (30) (Fig. 7). It may be noted 472 

that isomerization of the latter by hydroperoxide isomerases (Fig. 7), which are well known to 473 

produce erythro allylic 1-4 diols (Jernerén et al., 2010), may explain the observed formation of 474 

the erythro 7,10-dihydroxyhexadec-8(E)-enoic acids (43) (Fig. S1). 475 

Martinez et al. (2010) previously suggested that fatty acids bind to bacterial 10S-DOX 476 

via their carboxyl groups at a fixed position relative to the catalytic site. This enzyme, localized 477 

in the periplasm (Martinez et al., 2013), should thus be mainly active on FFAs and therefore 478 

contribute to the detoxification of these deleterious fatty acids (Monfort et al., 2000; Desbois 479 

and Smith, 2010) in the bacterial environment (Martínez et al., 2010). The very high proportions 480 

of FFAs (and most notably of palmitoleic acid (22)) measured in the SPM samples exhibiting 481 

the highest 10S-DOX activity certainly supports this hypothesis. Further, the trophic level in 482 

April 2018 was characterised by: (i) the dominance of diatoms (notably of Thalassiosirales) 483 

and (ii) the presence of a very high copepod activity (see Section 4.1). 484 

Interestingly, an oxylipin-based chemical defence against copepods was observed 485 

previously in the diatom Thalassiosira rotula (Pohnert 2000; 2002), being initiated by 486 

phospholipases acting immediately after cell damage. This lipase activity leads to the 487 

preferential release of free MUFAs and PUFAs, the latter converted further by lipoxygenases 488 

to reactive defensive metabolites such as the antiproliferative PolyUnsaturated Aldehydes 489 

(PUAs) (Fig. 8), which are well-known to inhibit egg cleavage in copepods (Miralto et 490 

al.,1999). In contrast, free MUFAs, which are not affected by lipoxygenases, are released intact 491 

outside of wounded diatoms. These compounds (dominated by palmitoleic acid (22) in diatoms, 492 

Pedersen et al., 1999) exhibit a strong bactericidal action towards marine Gram-negative 493 

pathogens (Desbois et al., 2009; Desbois and Smith, 2010). The strong 10S-DOX bacterial 494 

activity observed in SPM samples in April (Fig. 5) can therefore be attributed to a detoxification 495 

strategy allowing bacteria associated to diatoms grazed by copepods to survive the release of 496 
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bactericidal free palmitoleic acid (22) (Fig. 8). 10(S)-Hydroperoxyhexadec-8(E)-enoic and 497 

threo 7,10-dihydroxyhexadec-8(E)-enoic acids (30 and 42) resulting from 10S-DOX and diol 498 

synthase activities, respectively, may be then transported from the periplasmic space of bacteria 499 

to the external medium (Martinez et al., 2013). 500 

9- and 10-hydroperoxyacids with an allylic E double bond can undergo highly 501 

stereoselective allylic rearrangement to 11-E and 8-E hydroperoxides, respectively (Fig. 7), the 502 

extent of which increases with time (Porter et al., 1995). A lower proportion of the 8-E isomer 503 

observed in the SPM sample collected on 04/30/18 from 25 m depth (10-E/8-E = 4.5 vs 10-E/8-504 

E = 1.2 at 5 m) (Fig. 6) thus suggests an involvement of the 10S-DOX activity at 25 m and an 505 

aging of material collected from a shallower 5 m depth. The highest abundance of the copepod 506 

O. similis at 25 m observed by Cornwell et al. (2020) likely indicates a strong alteration of 507 

diatoms and thus an enhanced production of FFAs, which in turn supports an induction of the 508 

bacterial 10S-DOX activity at this depth. The ascent of planktonic and bacterial material from 509 

25 m to 5 m can be facilitated by the presence of a high proportion of Transparent Exopolymer 510 

Particles (TEPs) in the shallower SPM, formed abiotically from dissolved precursors released 511 

by phytoplankton and bacteria (Passow, 2000) and composed mainly of surface-active 512 

polysaccharides (Mopper et al., 1995). Due to their positive buoyancy, TEPs can provide a 513 

means for the upward flux of bacteria and phytoplankton in the marine environment (Azetsu-514 

Scott and Passow, 2004). 515 

Allylic rearrangement of hydroperoxides in biological membranes is strongly sensitive to 516 

the hydrogen atom donor properties of their surrounding molecules (Porter et al., 1994; 1995). 517 

In algal membranes containing a high proportion of PUFAs, which are good hydrogen atom 518 

donors, allylic rearrangement should be weak (Fig. 7). In contrast, in bacterial periplasm 519 

containing only SFAs and MUFAs (both weak hydrogen atom donors), the rearrangement 520 

should be favoured (Fig. 7). The extent of the allylic rearrangement of the different 521 
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hydroperoxides present in each sample therefore reflects the composition of the organisms 522 

(bacteria or phytoplankton) present. The strong allylic rearrangement of 10S-523 

hydroperoxyhexadec-8(E)-enoic acid (30) to 8-hydroperoxyhexadec-9(E)-enoic acid (32) 524 

observed in the SPM sample collected at 5 m on 04/30/18 (Fig. 6A) thus provides further 525 

evidence for 10S-DOX activity in the bacterial periplasm. Interestingly, in the same samples, 526 

the rearrangement of 9-hydroperoxyhexadec-10(E)-enoic acid (31) (produced abiotically in 527 

senescent algae) to the corresponding 11-hydroperoxyhexadec-9(E)-enoic acid (33) appeared 528 

to be only very weak (Fig. 6A). 529 

 530 

5. Conclusions 531 

Selected lipids (sterols and fatty acids) and their biotic and abiotic oxidation products were 532 

quantified in SPM samples collected mainly in 2018 from two depths (5 m and 25 m) at the 533 

marine time series station L4 located in the western English Channel. The sterol and fatty acid 534 

composition was typical of mixed trophic communities at L4 throughout 2018, with a seasonal 535 

evolution from mainly diatoms and copepods in spring to dinoflagellates in late 536 

summer/autumn, consistent with recent and long-term taxonomic studies. 537 

Abiotic lipid autoxidation and photodegradation were both found to be relatively minor, 538 

acting mainly on the most reactive lipids. A slightly greater influence of abiotic degradation, 539 

however, was found at 5 m compared to 25 m, likely due to higher irradiance and ascent of 540 

older planktonic/bacterial material from deeper to shallower waters. 541 

In contrast, significant biotic degradation was evident in samples collected at the end of 542 

April. In particular, we observed a strong predominance of certain hydroxyacids linked to 543 

specific biotic oxidation process involving bacterial dioxygenase (10S-DOX) activity. This 544 

contribution from 10S-DOX in samples at the end of April was accompanied by a relatively 545 

high proportion of FFAs, likely resulting from a chemically-induced defense mechanism by 546 
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diatoms during times of increased zooplankton (copepod) activity. Since FFAs (dominated by 547 

palmitoleic acid in diatoms) exhibit a strong bactericidal action towards marine pathogens such 548 

as bacteria, the strong 10S-DOX bacterial activity observed in the April SPM samples points to 549 

a detoxification strategy by bacteria against the production of bactericidal free palmitoleic acid 550 

(22). We thus propose that this enzyme could be employed by bacteria to detoxify FFAs 551 

released by wounded diatoms in the presence of copepods.  552 
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FIGURE CAPTIONS 988 

 989 

Figure 1. Map of the study area with location of the L4 station investigated. 990 

 991 

Figure 2. Time series of sterol concentrations in SPM samples collected at 5 m (A) and 25 m 992 

(B) from January to December 2018 at the L4 station.     993 

 994 

Figure 3. Time series of acyclic isoprenoid acid concentrations in SPM samples collected at 5 995 

m (A) and 25 m (B) from January to December 2018 at the L4 station.     996 

 997 

Figure 4. Time series of the proportion of the main classes of fatty acids (SFAs, MUFAs and 998 

PUFAs) (A), phytol (12) concentration (µg L-1) (B) and chlorophyll photooxidation estimate 999 

(%) (C) in SPM samples collected at 5 m from January to December 2018 at the L4 station.     1000 

 1001 

Figure 5. Time series of biotic and abiotic degradation percentage of palmitoleic acid (22) in 1002 

SPM samples collected at 5 m (A) and 25 m (B) from January to December 2018 and at 25 m 1003 

from January to December 2019 (C) at the L4 station.     1004 

 1005 

Figure 6. Partial ion chromatograms (m/z 199.1518, 213.1675, 329.1968 and 343.2125) 1006 

showing the presence of palmitoleic acid (22) oxidation products in silylated TLEs in SPM 1007 

samples collected at 5 m (A) and 25 m (B) on 04/30/18 at the L4 station. 1008 

 1009 

Figure 7. Formation and degradation pathways of 10S-hydroperoxyhexadec-8(E)-enoic acid 1010 

(30). 1011 

 1012 
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Figure 8. Conceptual scheme showing the defense system of diatoms during copepod grazing 1013 

and the involvement of FFA detoxification in associated bacteria. (PUA = polyunsaturated 1014 

aldehydes, 7,10-DS = 7,10-diol synthase, 10S-DOX = 10S-dioxygenase, 10S-HPHA = 10S-1015 

hydroperoxyhexadecen-8(E)-enoic acid, 7,10-DiOHHA = 7,10-dihydroxyhexadecen-8(E)-1016 

enoic acid). 1017 

 1018 

Supplementary material 1019 

 1020 

Figure S1. Partial ion chromatograms (m/z 225.1670, 315.2171, 327.1807 and 417.2808) of 1021 

silylated TLE of the SPM sample collected on 04/30/18 at 25 m (A) and standard threo 7,10-1022 

dihydroxyhexadec-8(E)-enoic acid (42) TMS derivative (B).  1023 
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Table 1. Concentrations of sterols and acyclic isoprenoid compounds and chlorophyll photooxidation estimates in spm samples collected at 

station L4 during the time series 2018 at 5 m. 

  

  

01/25 

 

02/18 

 

03/25 

 

04/19 

 

04/30 

 

 

05/14 

 

05/30 

 

06/25 

 

07/16 

 

08/13 

 

09/17 

 

10/17 

 

11/26 

 

12/10 

 

24-Norcholesta-5,22E-dien-3-ol (24-norsterol)a 

 

137.1 

 

74.9 

 

156.4 

 

45.8 

 

996.0 

 

62.2 

 

136.9 

 

143.4 

 

109.0 

 

178.6 

 

155.3 

 

174.6 

 

81.5 

 

68.9 

Cholesta-5,22E-dien-3-ol (22-dehydrocholesterol)a 46.9 98.1 152.4 29.4 249.5 40.9 103.7 58.6 203.8 269.1 442.3 192.8 127.8 96.9 

Cholest-5-en-3-ol (cholesterol)a 224.6 196.1 279.4 70.6 791.9 97.9 221.1 500.7 588.9 426.3 679.3 506.5 157.8 211.3 

24-Methylcholesta-5,22E-dien-3-ol (brassicasterol)a 109.2 185.8 312.3 55.9 323.7 51.7 273.6 278.8 323.0 349.3 932.4 340.7 158.1 119.7 

Cholest-5,24-dien-3-ol (desmosterol)a 41.3 77.6 198.7 27.4 128.1 50.8 92.1 368.4 196.2 99.6 348.7 116.0 61.8 79.3 

24-Methylcholesta-5,24(28)-dien-3-ol (24-

methylenecholesterol)a 

80.2 248.6 132.2 7.9 336.5 38.7 119.0 479.8 281.4 163.5 1173.6 159.9 103.0 60.7 

24-Ethylcholest-5-en-3-ol (sitosterol)a 48.5 23.1 39.6 4.1 47.2 5.6 36.9 60.6 97.8 74.3 156.6 82.7 31.1 45.2 

24-Ethylcholesta-5,22E-dien-3-ol (fucosterol)a nde 13.8 55.5 nd nd 5.0 23.2 38.3 57.1 nd 71.0 19.3 8.2 nd 

4α,23,24-Trimethyl-5α-cholest-22E-en-3-ol (dinosterol)a 10.7 nd nd 1.2 42.8 17.9 35.0 30.3 38.3 52.0 827.0 29.1 12.1 12.2 

Total sterolsa 

 

Phytolb 

698.6 

 

4.67 

917.9 

 

9.47 

1326.6 

 

13.65 

242.2 

 

0.13 

2215.7 

 

23.37 

370.7 

 

0.72 

1041.4 

 

5.93 

1958.9 

 

5.17 

1895.6 

 

0.52 

1612.7 

 

40.75 

4786.2 

 

20.57 

1621.6 

 

0.28 

741.2 

 

2.54 

693.3 

 

2.13 

Phytyldiolb 0.11 0.13 0.10 0.02 0.60 0.07 0.07 0.17 0.04 0.37 0.12 0.14 0.06 0.04 

Phytanic acida 41.6 58.0 113.1 26.8 160.1 31.1 79.2 57.1 26.8 98.8 101.5 95.3 37.8 33.7 

Pristanic acida 2.3 7.7 16.7 5.4 25.9 5.1 5.8 9.8 3.6 14.3 13.1 6.0 2.2 2.3 

4,8,12-TMTD acida 5.5 46.2 82.2 11.7 16.1 9.0 10.4 7.5 4.5 19.6 23.8 20.0 6.9 7.1 

CPPIc 0.018 0.011 0.006 0.115 0.021 0.078 0.009 0.026 0.060 0.007 0.005 0.392 0.019 0.016 

Chlorophyll photooxidation estimate (%)d 

 

 

28.5 18.6 10.3 86.7 31.7 75.0 15.5 37.9 65.3 12.7 8.2 99.8 29.3 25.5 

a (ng L-1) 
b (µg L-1) 
c Chlorophyll Phytyl side-chain Photooxidation Index (molar ratio phytyldiol/phytol). 
d Estimated with the empirical equation: chlorophyll photodegradation % = (1 - [CPPI + 1]-18.5) x 100 (Cuny et al. 2002). 
e Not detected 

 



Table 2. Concentrations of sterols and acyclic isoprenoid compounds and chlorophyll photooxidation estimates in spm samples collected at 

station L4 during the time series 2018 at 25 m. 

  

  

01/25 

 

02/18 

 

03/25 

 

04/19 

 

04/30 

 

 

05/14 

 

05/30 

 

06/25 

 

07/16 

 

08/13 

 

09/17 

 

10/17 

 

11/26 

 

12/10 

 

24-Norcholesta-5,22E-dien-3-ol (24-norsterol)a 

 

38.6 

 

46.2 

 

84.6 

 

88.2 

 

284.1 

 

67.4 

 

344.5 

 

79.2 

 

160.6 

 

120.7 

 

104.1 

 

120.0 

 

90.6 

 

58.4 

Cholesta-5,22E-dien-3-ol (22-dehydrocholesterol)a 51.9 51.7 69.1 82.0 173.5 62.7 312.2 102.1 251.3 190.5 161.8 132.7 200.8 87.9 

Cholest-5-en-3-ol (cholesterol)a 227.7 182.0 150.0 171.4 511.0 131.0 692.3 168.5 362.4 288.9 259.4 325.4 360.6 203.2 

24-Methylcholesta-5,22E-dien-3-ol (brassicasterol)a 100.0 78.2 65.8 70.2 130.2 53.5 803.2 121.5 208.7 249.9 91.1 125.0 201.0 84.8 

Cholest-5,24-dien-3-ol (desmosterol)a 23.6 20.8 25.2 184.3 195.6 140.8 227.5 40.9 66.2 106.5 36.8 45.1 94.9 18.3 

24-Methylcholesta-5,24(28)-dien-3-ol (24-

methylenecholesterol)a 

55.5 145.2 47.4 217.7 95.5 16.6 328.6 207.9 133.3 54.5 45.2 42.6 95.3 38.6 

24-Ethylcholest-5-en-3-ol (sitosterol)a 22.0 14.2 14.6 10.2 11.9 7.8 69.2 15.3 46.4 39.6 24.0 27.1 42.2 19.0 

24-Ethylcholesta-5,22E-dien-3-ol (fucosterol)a 7.3 nde 5.7 2.4 2.1 1.8 20.1 9.6 16.3 6.4 nd nd 9.3 nd 

4α,23,24-Trimethyl-5α-cholest-22E-en-3-ol (dinosterol)a 5.2 1.4 3.0 1.3 9.5 12.1 150.1 7.6 31.4 16.4 11.8 13.0 12.8 5.3 

Total sterolsa 

 

Phytolb 

545.0 

 

8.53 

539.7 

 

8.38 

465.4 

 

2.83 

871.5 

 

2.82 

1414.9 

 

12.40 

493.8 

 

14.20 

2948.8 

 

42.17 

753.5 

 

26.92 

1276.7 

 

11.97 

1072.4 

 

16.03 

735.9 

 

6.44 

836.8 

 

7.21 

1114.7 

 

14.75 

515.5 

 

6.85 

Phytyldiolb 0.06 0.12 0.06 0.04 0.16 0.18 0.34 0.48 0.16 0.12 0.08 0.14 0.10 0.10 

Phytanic acida 41.9 54.6 33.8 33.4 243.9 77.3 143.6 67.1 65.4 69.4 50.9 79.2 61.6 45.2 

Pristanic acida 2.5 3.5 1.5 8.6 54.4 10.1 17.6 14.1 12.2 6.6 12.2 10.8 6.8 4.0 

4,8,12-TMTD acida 6.5 7.3 6.9 30.5 55.3 60.1 21.0 19.2 18.9 32.5 14.9 26.6 13.8 10.8 

CPPI (%)c 0.006 0.012 0.016 0.011 0.011 0.010 0.016 0.014 0.011 0.006 0.010 0.016 0.005 0.012 

Chlorophyll photooxidation estimate (%)d 

 

 

10.4 19.6 26.0 17.8 17.8 16.9 11.8 23.3 18.2 10.2 16.7 25.0 9.6 20.0 

a (ng L-1) 
b (µg L-1) 
c Chlorophyll Phytyl side-chain Photooxidation Index (molar ratio phytyldiol/phytol). 
d Estimated with the empirical equation: chlorophyll photodegradation % = (1 - [CPPI + 1]-18.5) x 100 (Cuny et al. 2002). 
e Not detected 

 



Table 3. Fatty acid concentrations (µg L-1) in spm samples collected at station L4 during the time series 2018 at 5 m. 

  

  

01/25 

 

02/18 

 

03/25 

 

04/19 

 

04/30 

 

 

05/14 

 

05/30 

 

06/25 

 

07/16 

 

08/13 

 

09/17 

 

10/17 

 

11/26 

 

12/10 

 

C12:0 

 

0.16 

 

0.08 

 

0.18 

 

0.24 

 

0.31 

 

0.24 

 

0.24 

 

0.55 

 

0.17 

 

0.29 

 

0.43 

 

0.36 

 

0.13 

 

0.11 

C14:0 1.38 1.87 2.49 3.54 6.83 6.08 4.09 5.72 2.15 14.71 5.56 2.92 1.65 1.39 

BrC15:0 0.20 0.20 0.44 0.63 0.54 0.52 0.71 0.60 0.38 1.32 1.66 0.58 0.21 0.26 

C15:0 0.46 0.44 0.81 0.48 1.40 0.75 1.13 1.09 0.54 0.76 0.84 1.20 0.29 0.69 

C16:4 nda 0.86 0.53 nd 1.36 nd 2.29 nd nd 3.77 0.52 nd 0.30 nd 

C16:17 1.06 1.95 2.80 2.15 8.39 9.03 1.82 4.69 1.99 6.56 6.58 1.78 1.62 0.90 

C16:0 4.80 4.17 6.95 9.27 11.18 15.88 9.33 10.23 6.58 25.69 16.72 9.19 3.35 6.97 

C18:4 nd 1.94 3.40 1.53 2.24 1.82 2.24 0.86 0.35 2.14 2.59 0.67 0.84 0.18 

C18:19 0.84 1.78 3.04 2.25 2.62 3.70 2.66 3.16 1.14 8.10 3.15 2.13 0.79 0.79 

C18:17 0.23 0.45 0.97 1.23 0.73 1.00 0.60 0.82 1.15 2.49 4.07 0.61 0.31 0.34 

C18:0 3.10 1.58 2.46 1.69 3.53 2.03 2.22 2.51 2.08 3.63 3.00 2.70 0.99 5.38 

C20:5 nd 3.68 1.91 0.94 4.34 2.02 2.34 1.54 0.75 2.20 1.88 nd 0.78 nd 

C22:6 nd 1.07 1.44 nd 2.46 nd 3.78 1.20 0.60 7.39 4.37 nd 0.45 nd 

Total fatty acids 12.20 20.07 26.81 23.96 45.93 43.07 33.45 32.94 17.87 79.05 51.40 22.12 11.69 17.00 

SFAs (%) 82.6 41.6 49.7 66.2 51.8 59.2 53.0 62.8 66.6 58.7 54.9 76.5 56.5 87.0 

MUFAs (%) 17.4 20.8 23.1 23.5 25.6 31.9 15.2 26.3 23.9 21.7 26.9 20.4 23.3 11.9 

PUFAs (%) nd 37.6 21.2 10.3 22.8 8.9 31.8 10.9 9.5 19.6 12.2 3.1 20.2 1.1 

Diatom fatty acid ratiob 0.5 1.1 0.8 0.6 1.5 1.0 0.9 1.0 0.6 1.0 0.8 0.5 1.1 0.3 

(MUFAs+PUFAs)/SFAs 

 

0.2 1.4 1.0 0.5 0.9 0.7 0.9 0.6 0.5 0.7 0.8 0.3 0.8 0.2 

               
a Not detected 
b (C14:0 + C16:17 + C16 PUFAs)/C16:0 
c ( iso and anteiso C15:0)/C15:0 

 



Table 4. Fatty acid concentrations (µg L-1) in spm samples collected at station L4 during the time series 2018 at 25 m. 

  

  

01/25 

 

02/18 

 

03/25 

 

04/19 

 

04/30 

 

 

05/14 

 

05/30 

 

06/25 

 

07/16 

 

08/13 

 

09/17 

 

10/17 

 

11/26 

 

12/10 

 

C12:0 

 

0.12 

 

0.01 

 

0.44 

 

0.36 

 

0.07 

 

0.27 

 

0.55 

 

0.74 

 

0.60 

 

0.42 

 

0.36 

 

0.51 

 

0.10 

 

0.29 

C14:0 1.52 1.31 1.61 2.42 3.05 4.86 9.81 9.03 2.31 3.66 1.51 2.34 1.98 1.37 

BrC15:0 0.25 0.19 0.25 0.04 0.21 0.34 1.29 0.62 0.52 0.70 0.52 0.66 0.27 0.28 

C15:0 0.53 0.43 0.57 0.57 0.36 0.65 1.99 0.78 0.67 0.49 0.69 1.18 0.47 0.55 

C16:4 nda 0.05 nd nd 0.55 0.50 0.53 0.71 0.38 1.68 0.41 nd 0.42 0.28 

C16:17 1.46 1.38 0.86 2.10 3.31 6.67 5.73 8.71 2.50 2.85 2.00 1.65 2.33 1.26 

C16:0 3.30 3.04 5.10 8.18 3.74 10.32 16.26 10.16 4.24 5.07 3.77 6.27 2.91 3.75 

C18:4 nd 0.53 0.21 0.75 1.13 1.43 5.19 1.99 0.57 1.45 0.39 0.75 0.97 0.47 

C18:19 0.84 0.99 0.49 1.30 1.80 2.23 7.63 3.40 0.82 1.56 1.43 1.53 0.86 0.89 

C18:17 0.26 0.27 0.25 0.77 0.39 0.80 1.93 1.11 1.11 1.52 0.74 0.56 0.50 0.35 

C18:0 1.46 1.57 2.17 3.22 0.20 1.57 2.74 1.18 1.24 0.81 1.61 1.73 0.63 2.52 

C20:5 nd 1.85 0.16 0.50 3.59 2.69 5.96 3.92 1.19 1.88 1.17 0.81 1.07 0.39 

C22:6 nd 0.36 nd nd 2.04 1.21 11.22 2.14 1.26 4.34 1.19 0.92 0.59 0.22 

Total fatty acids 9.73 12.00 12.05 20.22 20.46 33.53 71.95 44.69 17.42 27.23 15.81 18.91 13.24 12.69 

SFAs (%) 73.7 54.7 83.6 73.2 37.4 53.7 45.4 50.4 55.1 41.0 53.6 67.1 48.0 69.0 

MUFAs (%) 26.3 22.0 13.3 20.7 26.9 28.9 21.3 29.6 25.4 21.7 26.4 19.8 27.9 19.7 

PUFAs (%) 0 23.3 3.1 6.1 35.7 17.4 33.3 20.0 19.5 37.3 20.0 13.1 24.1 11.3 

Diatom fatty acid ratiob 0.9 0.9 0.5 0.6 1.9 1.2 1.0 1.8 1.2 1.6 1.0 0.6 1.6 0.8 

(MUFAs+PUFAs)/SFAs 0.4 0.8 0.2 0.4 1.7 0.9 1.2 1.0 0.8 1.4 0.9 0.5 1.1 0.5 

 
a Not detected 
b (C14:0 + C16:17 + C16 PUFAs)/C16:0 
c ( iso and anteiso C15:0)/C15:0 

 



Retention time (min)

22.7 22.9 23.1 23.3 23.5 23.7 23.9 24.1 24.3 24.5 24.7 24.9 25.1

Retention Time (min)
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