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S U M M A R Y
Convection in the liquid outer core of the Earth is driven by thermal and chemical perturbations.
The main purpose of this study is to examine the impact of double-diffusive convection
on magnetic field generation by means of 3-D global geodynamo models, in the so-called
‘top-heavy’ regime of double-diffusive convection, when both thermal and compositional
background gradients are destabilizing. Using a linear eigensolver, we begin by confirming that,
compared to the standard single-diffusive configuration, the onset of convection is facilitated
by the addition of a second buoyancy source. We next carry out a systematic parameter survey
by performing 79 numerical dynamo simulations. We show that a good agreement between
simulated magnetic fields and the geomagnetic field can be attained for any partitioning of the
convective input power between its thermal and chemical components. On the contrary, the
transition between dipole-dominated and multipolar dynamos is found to strongly depend on
the nature of the buoyancy forcing. Classical parameters expected to govern this transition,
such as the local Rossby number—a proxy of the ratio of inertial to Coriolis forces—or the
degree of equatorial symmetry of the flow, fail to capture the dipole breakdown. A scale-
dependent analysis of the force balance instead reveals that the transition occurs when the
ratio of inertial to Lorentz forces at the dominant length scale reaches 0.5, regardless of the
partitioning of the buoyancy power. The ratio of integrated kinetic to magnetic energy Ek/Em

provides a reasonable proxy of this force ratio. Given that Ek/Em ≈ 10−4 − 10−3 in the
Earth’s core, the geodynamo is expected to operate far from the dipole–multipole transition.
It hence appears that the occurrence of geomagnetic reversals is unlikely related to dramatic
and punctual changes of the amplitude of inertial forces in the Earth’s core, and that another
mechanism must be sought.

Key words: Composition and structure of the core; Core; Dynamo: theories and simulations;
Magnetic field variations through time; Numerical modelling.

1 I N T RO D U C T I O N

The exact composition of Earth’s core remains unclear but it is
admitted that it is mainly composed of iron and nickel with a mixture
of lighter elements in liquid state, such as silicon or oxygen (see
Hirose et al. 2013, for a review). The ongoing crystallization of the
inner core releases light elements and latent heat at the inner-core
boundary (ICB), while the mantle extracts thermal energy from the
outer core at the core–mantle boundary (CMB). This combination
of processes is responsible for the joint presence of thermal and
chemical inhomogeneities within the outer core.

Convection with two distinct sources of mass anomaly is termed
double-diffusive convection (e.g. Radko 2013). A key physical pa-
rameter of double-diffusive convection is the Lewis number Le,
defined as the ratio of the thermal diffusivity κT to the chemical
diffusivity κξ . In the liquid core of terrestrial planets, Le reaches at
least 10−104 (e.g. Loper & Roberts 1981; Li et al. 2000).

Under double-diffusive conditions, the increase of the back-
ground density with depth does not necessarily imply the stability
of the fluid in response to perturbations. As shown in Fig. 1, three
configurations can be considered:

(i) The salt fingering regime, when the background thermal gradient
∇T0 is stabilizing and the mean compositional gradient ∇ξ 0 is
destabilizing.
(ii) The semi-convection regime, when ∇T0 is destabilizing and ∇ξ 0

is stabilizing.
(iii) The top-heavy convection regime (also known as double-
buoyant), when both ∇T0 and and ∇ξ 0 are destabilizing.

These three cases correspond to three quadrants in Fig. 1, which
is inspired by Ruddick (1983). Note that being located inside one of
these three quadrants does not necessarily guarantee that convection
occurs, since, for all configurations, the onset does not coincide
with the origin of the diagram: a critical contrast in temperature,
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Figure 1. Schematic overview of previous studies on double-diffusive con-
vection and dynamo action in terrestrial interiors, inspired by the regime
diagram of Ruddick (1983). The parameter space has two independent di-
rections, defined by the prescribed background temperature and composition
gradients, respectively. It is divided into four quadrants, since each gradient
can have a stabilizing or destabilizing effect on fluid motion. The verti-
cal and horizontal lines correspond to purely thermal and purely chemical
convection, respectively (in which case there exists a unique destabilizing
background profile). The publications that appear in the three quadrants of
dynamic interest are the following: Glatzmaier & Roberts (1996), Busse
(2002), Breuer et al. (2010), Manglik et al. (2010), Simitev (2011), Net
et al. (2012), Trümper et al. (2012), Takahashi (2014), Bouffard (2017),
Monville et al. (2019), Silva et al. (2019), Takahashi et al. (2019) and
Mather & Simitev (2021). Crosses denote dynamo studies, triangles linear
and weakly non-linear hydrodynamic studies and squares non-linear hydro-
dynamic studies.

or composition or both, is required to trigger convective motions.
In addition, this diagram does not account for the influence of
background rotation (see Monville et al. 2019, for the impact of
rotation on the onset in the salt fingers regime), or a magnetic field,
on the onset.

Double-diffusive convection has been extensively studied in
physical oceanography (e.g. Radko 2013), as heat and salinity pro-
vide two different sources of buoyancy for seawater, as well as in
stellar interiors (e.g. Spiegel 1972), where the molecular diffusivity
of composition is only a tiny fraction of the diffusivity of temper-
ature (e.g. Moll et al. 2016, and references therein). To our knowl-
edge, a limited number of studies have been devoted to the analysis
of double-diffusive convection in the context of Earth’s core, or
more generally in the context of the metallic core of terrestrial plan-
ets. They are listed in Fig. 1, with possibly several occurrences of
a given study when several of the aforementioned regimes were
considered. It appears that the top-heavy configuration has been
investigated the most; this is also the configuration we shall focus
on in this work.

Previous studies devoted to the top-heavy regime are listed in
the top-right quadrant of Fig. 1, starting with hydrodynamic, non-
magnetic studies. Considering the Le � 1 limit for a fluid filling a
rapidly rotating annulus, Busse (2002) theoretically predicted that

the addition of chemical buoyancy facilitated the onset of standard
thermal convection, in two ways. First by lowering the critical value
of the Rayleigh number required to trigger the classical spiralling
thermal Rossby waves of size and frequency proportional to E1/3

and E−2/3, respectively, where E = ν/�D2 is the non-dimensional
Ekman number, ν being the kinematic viscosity, � the rotation rate
and D the size of the fluid domain. Secondly, and more importantly,
by enabling a second class of instability. The latter is characterized
by a much lower onset, independent of E, a critical length scale of
the order of the size of the fluid domain, and a very small frequency,
proportional to E. Busse (2002) referred to this class of instability
as ‘nearly steady’ (i.e. slow) convection, and he argued that it could
facilitate ‘immensely’ convection in Earth’s core, though with sev-
eral caveats (see Busse 2002, for details). Simitev (2011) pushed
the analysis further for various Le, and stressed that the critical
onset curve for convective instability in a rotating annulus forms
disconnected regions of instabilities in the parameter space. In par-
ticular, the second family of modes (i.e. the slow modes) are stable
whenever the compositional gradient is destabilizing. Trümper et al.
(2012), Net et al. (2012) and Silva et al. (2019) studied the onset
of double-diffusive convection in a spherical shell geometry. In the
top-heavy regime with 3 ≤ Le ≤ 10, Trümper et al. (2012) con-
firmed that the addition of a secondary buoyancy source facilitates
the convective onset. Net et al. (2012) showed that the properties of
the critical onset mode, such as its drift frequency or its azimuthal
wave number, strongly depends on the fractioning between thermal
and compositional buoyancy. Using a linear eigensolver, Silva et al.
(2019) carried out a systematic survey of the onset of convection
in spherical shells for the different double-diffusive regimes. In the
top-heavy configuration with Le = 25, they showed that the convec-
tion onset is characterized by an abrupt change between the purely
thermal and the purely compositional eigenmodes depending on the
relative proportion of the two buoyancy sources. In addition, they
demonstrated that the onset mode features the same asymptotic de-
pendence on the Ekman number as classical thermal Rossby waves
over the entire top-heavy regime (top-right quadrant of Fig. 1),
thereby casting some doubt on the likelihood of the occurrence of
slow modes.

Trümper et al. (2012) performed a series of non-linear, moder-
ately supercritical, rotating convection calculations at constant Le
= 10, for different proportions of chemical and thermal driving. To
that end, they conducted a parameter survey, varying the chemical
and thermal Rayleigh numbers, to be defined below, while keep-
ing their sum constant. This way of sampling the parameter space,
however, does not guarantee that the total buoyancy input power
stays constant. This complicates the interpretation of their results,
for instance regarding the influence of compositional and thermal
forcings on the convective flow properties.

Let us now turn our attention to the few self-consistent dynamo
calculations in the top-heavy regime published to date (marked with
a cross in the top-right quadrant of Fig. 1). The first integration was
reported by Glatzmaier & Roberts (1996). This calculation was an
anelastic, double-diffusive extension of the celebrated Boussinesq
simulation of the geodynamo by Glatzmaier & Roberts (1995).
Glatzmaier & Roberts (1996) assumed enhanced and equal values
of the diffusivities, that is Le = 1. Consequently, that simulation
did not exhibit stark differences with the purely thermal convective
model, except that the dipole did not reverse over the course of
the simulated 40 000 yr. The second numerical investigation of
geodynamo models driven by top-heavy convection was conducted
by Takahashi (2014). His models were based on the Boussinesq
approximation with Le = 10 and relatively large Ekman numbers
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(E ≥ 2 × 10−4 ). In addition, Mather & Simitev (2021) identified a
few top-heavy Boussinesq dynamos with Le = 25 and E = 10−4, that
used stress-free mechanical boundary conditions and appeared to be
close to onset. Top-heavy dynamo simulations were also performed
by Manglik et al. (2010) and Takahashi et al. (2019) in the context
of modelling Mercury’s dynamo.

Double-diffusive models of the geodynamo are the exception
rather than the rule, essentially on the account of Occam’s razor.
Efforts carried out in the community since the mid-1990s have been
towards understanding the most salient properties of the geomag-
netic field using a minimum number of ingredients (e.g. Wicht &
Sanchez 2019, for a review). To that end, the codensity formalism
introduced by Braginsky & Roberts (1995) is particularly attrac-
tive: it assumes that the molecular values of κξ and κT can be
replaced by a single turbulent transport property. Consequently, the
mass anomaly field can be described by a single scalar, termed the
codensity, that aggregates the two sources of mass anomaly. This
approach has the benefit of (i) removing one degree of freedom
and (ii) mitigating the numerical cost by suppressing the scale sep-
aration between chemical and thermal fields when Le � 1. With
regard to Fig. 1, this amounts to restricting the diagram to either the
vertical or the horizontal line.

The codensity formalism was quite successful in reproducing
some of the best constrained features of the geomagnetic field and
its secular variation (e.g. Christensen et al. 2010; Aubert et al. 2013;
Schaeffer et al. 2017; Wicht & Sanchez 2019). Most geodynamo
models actually assume that the diffusivity of the codensity field
equals the kinematic viscosity, yielding a Prandtl number of unity. A
remarkable property of the geodynamo that remains to be explained
satisfactorily from the numerical modelling standpoint, is its ability
to reverse its polarity every once in a while, that is to go from a
dipole-dominated state to another dipole-dominated state through
a transient multipolar state (see e.g. Valet & Fournier 2016, for a
recent review of the relevant palaeomagnetic data). A possibility is
that the geodynamo has been, at least punctually in its history, in a
dynamic state that can enable the switch between dipole-dominated
and multipolar states to occur. A key question that follows is there-
fore: what are the physical processes that control the transition
between dipole-dominated dynamos and multipolar dynamos? This
has been analysed intensively numerically, starting with the system-
atic approach of Kutzner & Christensen (2002), who demonstrated
that a stronger convective driving led to a dipole breakdown, and
that for intermediate values of the forcing, the simulated field could
oscillate between dipolar and multipolar states.

Sreenivasan & Jones (2006) showed that an increasing role of
inertia (through stronger driving) perturbed the dominant Magneto–
Archimedean–Coriolis force balance to the point that it led to a less
structured and less dipole-dominated magnetic field. In the same
vein, Christensen & Aubert (2006) assumed that the transition is
due to a competition between inertia and Coriolis force. They in-
troduced a diagnostic quantity termed the local Rossby number RoL

= urms/�L, as a proxy of this force ratio. Here urms denotes the
average flow speed and L is an integral measure of the convective
flow scale. Based on their ensemble of simulations, Christensen &
Aubert (2006) concluded that the breakdown of the dipole occurred
above a critical value of about RoL � 0.12, in what appeared a
relatively sharp transition (see also Christensen 2010). If this rea-
soning gives a satisfactory account of the numerical data set, its
extrapolation to Earth’s core regime raises questions (e.g. Oruba &
Dormy 2014). Since the geomagnetic dipole reversed in the past,
the numerical evidence collected so far (see Wicht & Tilgner 2010,

for a review) suggests that the geodynamo could lie close to the
transition between dipolar and multipolar states. This implies that
RoL could be of the order of 0.1 for the Earth’s core. Geomagnetic
reversals should then reflect the action of a convective feature of
scale L of about 50 m (see Davidson 2013; Aubert et al. 2017). It is
very unlikely that such a small-scale flow could significantly alter a
dipole-dominated magnetic field.

According to Soderlund et al. (2012), the breakdown of the dipole
is rather due to a decrease of the relative helicity of the flow. In nu-
merical dynamo simulations, coherent helicity favours large-scale
poloidal magnetic field through the α-effect (see Parker 1955) at
work in convection columns and it therefore contributes actively
to the production and the maintenance of dipolar field (e.g. Olson
et al. 1999). Conversely, the dipolar field can promote a more heli-
cal flow, with the Lorentz force enhancing the flow along the axis
of convection columns, as shown by Sreenivasan & Jones (2011).
By measuring the integral force balance for dipolar and multipolar
numerical dynamos, Soderlund et al. (2012) noted that the Coriolis
force remained dominant, even in multipolar models. Accordingly,
they suggested that, in their models, the modification of the flow
structure was rather controlled by a competition of second-order
forces, with the ratio of inertia to viscous forces as the parameter
controlling the transition.

The role played by viscous effects was further stressed by Oruba
& Dormy (2014), who proposed that the transition from dipolar to
multipolar dynamos in the numerical data set was controlled by a
triple force balance between Coriolis force, viscosity and inertia.
A local Rossby number constructed using the viscous lengthscale,
E1/3 D, as opposed to the integral scale L discussed above, carries
the same predictive power in separating dipolar from multipolar
dynamo models (their Fig. 4). This argument was subsequently re-
fined by Garcia et al. (2017), who included the Prandtl number
dependence of the critical convective length scale when defining
the local Rossby number. From a mechanistic point of view, Garcia
et al. (2017) showed that the dipole breakdown was not necessar-
ily correlated to a decrease of the relative helicity, but rather to
a weakening of the equatorial symmetry of the flow. Introducing
the proportion of kinetic energy contained in this equatorially sym-
metric component, they demonstrated that the transition could be
satisfactorily explained by a sharp decrease of that quantity when
the refined local Rossby number exceeded a value of 0.2 (their fig.
3d). This would imply that the transition from a dipolar state to
a multipolar state would essentially be a hydrodynamic transition.
Discussing the implication of their results for the geodynamo, they
clearly stated that the role of inertia was presumably overestimated
in the numerical data set that had been investigated so far, stressing
the need for stronger field dynamos, where the magnetic field could
possibly have an active role.

The early numerical data set admittedly contained a majority
of dynamos operating at large Ekman numbers, and relatively low
magnetic Prandtl number Pm. In the dynamos studied by Soderlund
et al. (2012), the convective flow was not dramatically altered by
the presence of a self-sustained magnetic field. Since then, a large
number of simulations have been published with lower values of E
and comparatively larger values of Pm (Yadav et al. 2016; Schaef-
fer et al. 2017; Schwaiger et al. 2019; Menu et al. 2020). For those
strong-field dynamos, in the sense of a ratio of bulk magnetic energy
to bulk kinetic energy larger than one, the magnetic field has a sig-
nificant impact on the flow, and on the dipolar–multipolar transition.
Menu et al. (2020) reported simulations with a prevailing Lorentz
force, that remain dipolar way beyond the supposedly critical RoL

� 0.12 value. Given that Earth hosts a strong-field dynamo, it is

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/3/1897/6240159 by C

N
R

S user on 30 M
arch 2023



1900 T. Tassin, T. Gastine and A. Fournier

then worth investigating whether the competition between Lorentz
force and inertia may actually lead to the transition.

In order to shed light on this particular issue, and to further
strengthen our understanding of double-diffusive dynamos, we have
performed a suite of 79 novel dynamo models, comprising 44, 20, 15
simulations with top-heavy, purely thermal, purely chemical driv-
ing, respectively. The goal of this work is twofold: on the one hand,
we will follow an approach similar to that of Takahashi (2014) and
study to which extent the relative proportion of chemical to thermal
driving impacts the earth-likeness (in a morphological sense) of
the simulated magnetic fields. On the other hand, we will examine
whether this proportion has an impact on the dipolar to multipolar
transition. Takahashi (2014) reported a drop of the dipolarity when
the relative contribution of thermal convection to the total input
power exceeds 65 per cent. We will analyse whether this was a for-
tuitous consequence of the cases he considered, and whether we can
find a more general rationale to explain the transition, by careful
inspection of the force balance at work.

This paper is organized as follows: the derivation of the governing
equations and their numerical approximations are presented in Sec-
tion 2. The results are described in Section 3. We proceed by firstly
investigating the onset of convection for top-heavy convection. The
impact of the input power distribution on the Earth-likeness is then
explored. Finally we examine the transition between dipolar and
multipolar dynamos. Section 4 discusses the results and their geo-
physical implications.

2 M O D E L A N D M E T H O D S

2.1 Hypotheses

We operate in spherical coordinates (r, θ , ϕ) and consider a spherical
shell of volume Vo filled with a fluid delimited by the ICB, located
at the radius ri, on one side and by the CMB, located at the radius
ro, on the other side with ri/ro = 0.35. The shell rotates about the
ẑ-axis with a constant rotation rate �, where ẑ is the unit vector in
the direction of rotation. The equation of state

ρ = ρ0[1 − αT (T − T0) − αξ (ξ − ξ0)], (1)

describes how the density of the fluid ρ varies with temperature T
and composition ξ . In this equation, αT and αξ are the coefficients
of thermal and chemical expansion, T0, ρ0 and ξ 0 the average tem-
perature, density and composition of lighter elements in the outer
core.

The properties of the fluid, including its kinematic viscosity ν,
its magnetic diffusivity η, its specific heat Cp, its chemical and
thermal diffusivity (κξ , κT), its coefficients of thermal and chemical
expansion (αT, αξ ) are assumed to be spatially uniform and constant
in time. Due to the almost uniform density in the outer core, we
also assume a linear variation of the acceleration of gravity g with
radius. The physical and thermodynamic properties of the Earth’s
core relevant for this study are given in Table 1.

2.2 Governing equations

Convection of an electrically conducting fluid gives rise to a mag-
netic field B. The state of the fluid is then described by the velocity
field u, the magnetic field B, the pressure p, the temperature T
and the composition ξ . The equations governing the dynamics of
the flow under the Boussinesq approximation are cast in a non-
dimensional form. We adopt the thickness of the shell D = ro − ri

as reference length scale and the viscous diffusion time D2/ν as
timescale. A velocity scale is then given by ν/D. Composition is
scaled by ∂ξ = |∂rξ (ri )|D, pressure by ρ0 (ν/D)2, power by ν3ρ0/D
and magnetic induction by

√
ρ0μ0η�, where μ0 is the magnetic per-

meability of vacuum. Temperature unit is based on the temperature
gradient at ri, ∂T = |∂r T (ri )|D, or at ro, ∂T = |∂r T (ro)|D, de-
pending on the thermal boundary conditions. Under the Boussinesq
approximation, the equation for the conservation of mass is

∇ · u = 0. (2)

The dynamics of the flow is described by the Navier–Stokes equa-
tion, expressed in the frame rotating with the mantle

∂t u + u · ∇u = − 2

E
ẑ × u +

(
RaT

Pr
T + Raξ

Sc
ξ

)
r

ro
r̂

− ∇ p + 1

E Pm
[(∇ × B) × B] + ∇2u, (3)

where r̂ is the unit vector in the radial direction. The time evolution
of the magnetic field under the magnetohydrodynamics approxima-
tion is given by the induction equation

∂t B = ∇ × (u × B) + 1

Pm
∇2B with ∇ · B = 0. (4)

Finally, the evolution of entropy and composition are governed by
the similar transport equations

∂t T + u · ∇T = 1

Pr
∇2T + hT , (5)

and

∂tξ + u · ∇ξ = 1

Sc
∇2ξ + hξ , (6)

where hT is a volumetric internal heating and hξ a chemical volu-
metric source.

The set of eqs (2)–(6) is governed by 6 dimensionless numbers:
The Ekman number E expresses the ratio between viscous and
Coriolis forces

E = ν

�D2
,

the Prandtl (Schmidt) number between viscous and thermal (chem-
ical) diffusivities

Pr = ν

κT
and Sc = ν

κξ

and the magnetic Prandtl number between viscous and magnetic
diffusivities

Pm = ν

η
.

The thermal and chemical Rayleigh numbers

RaT = αT goD3∂T

νκT
and Raξ = αξ goD3∂ξ

νκξ

,

where go is the gravitational acceleration at the CMB, measure the
vigour of thermal and chemical convection. Note that the Lewis
number Le discussed in the Introduction is the ratio of the Schmidt
number to the Prandtl number,

Le = κT

κξ

= Sc

Pr
.

Table 2 provides estimates of these control parameters for the
Earth’s core. These non-dimensional number express the ratio of
characteristic physical timescales

E = τ�

τν

, Pm = τη

τν

and Le = τξ

τT
,
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Table 1. Physical and thermodynamic parameters of Earth’s outer core relevant for this study. The corresponding references are listed in the rightmost column,
which may comprise several entries if a bracket of values is provided.

Definition Symbol Value Reference (lower bound–upper bound)

Inner radius ri 1221.5 km Dziewonski & Anderson (1981)
Outer radius ro 3480 km Dziewonski & Anderson (1981)
Earth angular velocity � 7.29 × 10−5 rad · s−1

Gravitational acceleration at CMB go 10.68 m · s−2 Dziewonski & Anderson (1981)
Core density at CMB ρo 9 × 103 kg · m−3 Dziewonski & Anderson (1981)
Specific heat Cp (850 ± 80) J · kg−1 · K−1 Labrosse (2003)
Heating power from core Q 6 − 16 TW Buffett (2015)
Thermal conductivity at CMB kT 25 − 100 W · m−1 · K−1 Konôpková et al. (2016), Pozzo et al. (2013), Zhang et al. (2020)
Thermal diffusivity κT (0.3 − 1.4) × 10−5m2 · s−1 Estimated using values of kT, ρo and Cp.
Coefficient of thermal expansion αT (1.3 ± 0.1) × 10−5K−1 Labrosse (2003)
Kinematic viscosity ν 10−6m2 · s−1 Roberts & King (2013)
Magnetic diffusivity η 0.5 − 2.9 m2 · s−1 Pozzo et al. (2013), Konôpková et al. (2016)
Estimated magnetic field strength Brms 4 × 10−3T Gillet et al. (2010)
Superadiabatic composition contrast 
ξ 0.02 - 0.053 Badro et al. (2007), Anufriev et al. (2005)
Chemical diffusivity κξ (3 × 10−9 – 4.2 × 10−7) m2 · s−1 Loper & Roberts (1981), Li et al. (2000)
Coefficient of chemical expansion αξ 0.6 − 0.83 Braginsky & Roberts (1995), Labrosse (2015)
Estimated flow velocity urms (0.3 − 2.0) × 10−3m · s−1 Finlay & Amit (2011)

Table 2. Dimensionless control parameters. The two rightmost columns provide estimates of these pa-
rameters for Earth’s core and the values spanned by the simulations computed in this study. Earth’s core
values were estimated thanks to Table 1.

Name Symbol Definition Core This study

Ekman E ν/�D2 10−15 10−5–10−4

Thermal Rayleigh RaT αT goD3∂T/νκT 1026−1028 106−1010

Chemical Rayleigh Raξ αξ goD3∂ξ/νκξ 1030−1033 107−1012

Magnetic Prandtl Pm ν/η (3.4−20) × 10−7 0.5–5
Thermal Prandtl Pr ν/κT 0.08–0.25 0.3
Schmidt Sc ν/κξ 2–300 3
Lewis Le κT/κξ 9–4000 10

Table 3. Characteristic timescales for the Earth’s core. The values were
estimated thanks to Table 1.

Name Symbol Definition Core

Typical rotation time τ� 1/� 4 hr
Turnover time τ adv D/urms 30−250 yr
Magnetic diffusion time τη D2/η 105−106 yr
Thermal diffusion time τT D2/κT 109−1010 yr
Viscous diffusion time τ ν D2/ν 1011 yr
Chemical diffusion time τ ξ D2/κξ 1011–1013 yr

where τ� = 1/� is the typical rotation time, τν = D2/ν the viscous
diffusion time, τη = D2/η the magnetic diffusion time, τT = D2/κT

the thermal diffusion time and τξ = D2/κξ the chemical diffusion
time.

Earth’s outer core evolves on a broad range of timescales, as
one can glean from the inspection of Table 3. In particular, even
if the evolution of temperature and composition are governed by
similar transport equations (see eqs 5 and 6), thermal diffusion
is much more efficient than chemical diffusion, which causes the
Lewis number to greatly exceeds unity (see Table 2). This implies
that the typical lengthscale of chemical heterogeneities is possibly
several orders of magnitude smaller than the length scale of thermal
heterogeneities. The values of the control parameters spanned by
the simulations presented in this work are discussed in section 2.6.

2.3 Boundary conditions

The inner core is growing and is ejecting light elements because of
its crystallization, which in principle yields coupled boundary con-
ditions for temperature and composition (e.g. Glatzmaier & Roberts
1996; Anufriev et al. 2005). For the sake of simplicity, thermal and
chemical boundary conditions are considered as decoupled here, as
in for example Takahashi (2014). We consider two different setups
to explore the impact of varying the thermal boundary conditions:

(i) Fixed fluxes: thermal and composition fluxes are imposed at both
boundaries with{

∂r T (ri ) = −1,

∂rξ (ri ) = −1,

∂r T (ro) = 0,

∂rξ (ro) = 0.
(7)

(ii) Hybrid: temperature is fixed at the ICB while the temperature
flux is imposed at the CMB, the boundary conditions on chemical
composition are the same as in the previous setup{

T (ri ) = 0,

∂rξ (ri ) = −1,

∂r T (ro) = −1,

∂rξ (ro) = 0.
(8)

No-slip mechanical boundary conditions are used at both bound-
aries. The mantle is assumed to be insulating, such that the magnetic
field at the CMB has to match a source-free potential field. The in-
ner core is treated as a rigid electrically conducting sphere which
can freely rotate around the ẑ-axis (e.g. Hollerbach 2000; Wicht
2002). Its rotation is a response to the viscous and magnetic torques
exerted by the outer core on the inner core. The conductivity of the
inner core is assumed to be equal to that of the outer core, and its
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moment of inertia is calculated by using the same density as the
liquid outer core.

2.4 Numerical approach

We solve the system of eqs (2)–(6) using the open-source geody-
namo code MagIC1 (Wicht 2002; Gastine et al. 2016). This code has
been validated against a benchmark for double-diffusive convection
initiated by Breuer et al. (2010).

The solenoidal vectors u and B are decomposed in poloidal and
toroidal potentials{

u(r, t) = ∇ × ∇ × [W (r, t)r̂] + ∇ × [Z (r, t)r̂] ,

B(r, t) = ∇ × ∇ × [G(r, t)r̂] + ∇ × [H (r, t)r̂] ,

where r is the radius vector. The new unknowns are then W, Z, G,
H, T, ξ and p.

Each of these scalar fields is expanded in spherical harmonics
to maximum degree and order �max in the horizontal direction. The
spherical harmonic representation of the magnetic poloidal potential
G reads

G(r, θ, ϕ, t) �
�max∑
�=0

�∑
m=−�

G�m(r, t)Y m
� (θ, ϕ),

where G�m(r, t) is the coefficient associated to Y m
� , the spherical

harmonic of degree � and order m. The non-linear terms are cal-
culated in physical space. The open-source SHTns library2 (see
Schaeffer 2013) is used to compute the forward and inverse spectral
transforms on the unit-sphere.

In the radial direction, MagIC uses either a finite difference
scheme, or a Chebyshev collocation method (see Boyd 2001). The
finite difference grid, whose number of points is denoted by Nr, is
regularly spaced in the bulk of the domain and follows a geometric
progression near the boundaries (see Dormy et al. 2004). When
the collocation approach is selected, Chebyshev polynomials are
truncated at degree N and the Nr collocation points rk are defined
by

∀k ∈ [[1, Nr ]],

⎧⎪⎪⎨⎪⎪⎩
rk = 1

2
[(ro − ri )xk + ro + ri ]

xk = cos

[
(k − 1)π

Nr − 1

]
.

(9)

Due to the particular choice of spatial grid given by the equation
above, the transforms between physical grid and Chebyshev repre-
sentation are carried out by fast discrete cosine transform (see Press
et al. 1992, chapter 12). This discretization yields a point densifi-
cation close to the boundaries which could impose severe time step
restrictions when the magnetic field is strong (see Christensen et al.
1999). To mitigate this effect, we adopt the mapping proposed by
Kosloff & Tal-Ezer (1993) and replace xk in eq. (9) by

∀k ∈ [[1, Nr ]], Xk = arcsin(αxk)

arcsin(α)
with α ∈]0, 1],

where α is the mapping coefficient. To maintain the spectral con-
vergence of the simulation α has to verify

α ≤ αmax =
{

cosh

[ | ln(ε)|
Nr − 1

]}−1

, (10)

where ε is the machine precision.

1https://magic-sph.github.io/
2https://bitbucket.org/nschaeff /shtns

α
α

α

α

Figure 2. Minimal grid spacing 
rmin between two radial points as a func-
tion of the number of collocation points Nr for a regularly spaced grid, the
grid used when finite differences are used, the collocation grid with the map-
ping by Kosloff & Tal-Ezer (1993) with a mapping coefficient αmax (eq. 10)
and the standard Gauss–Lobatto grid.

Fig. 2 shows the minimum grid spacing 
rmin as a function of
Nr for a regular grid, the finite difference grid with geometrical
clustering near the boundaries, and two collocation grids, with α →
0 (Gauss–Lobatto grid) and α = αmax. Because 
rmin ∼ N−2

r when
using the classical Gauss–Lobatto grid, adopting the mapping by
Kosloff & Tal-Ezer (1993) yields a possible increase of 
rmin by a
factor 2−3 when Nr � 100. The time step size could in principle rise
by a comparable amount, should it be controlled by the propagation
of Alfvén waves in the vicinity of the boundaries (Christensen et al.
1999). Using the finite difference method enables even larger grid
spacing and hence possible additional gain in the time step size.
This speed-up shall however be mitigated by the fact that Nr has
to be increased by a factor 1.5–3 when using finite differences to
achieve an accuracy comparable to that of the Chebyshev collocation
method (see Christensen et al. 2001; Matsui et al. 2016).

G�m is then expanded in truncated Chebyshev series

G�m(rk, t) �
√

2

Nr − 1

N−1∑ ′′

n=0

G�mn(t)Tn(rk), (11)

with

G�mn(t) �
√

2

Nr − 1

Nr∑ ′′

n=1

G�m(xk, t)Tn(xk),

where the double primes on the summations indicate that the first
and the last indices are multiplied by one half (see Glatzmaier
1984). In the above equations, Tn(xk) is the n-th order Chebyshev
polynomial at the collocation point xk defined by

Tn(xk) = cos[n arccos(xk)] = cos

[
πn(k − 1)

Nr − 1

]
.

Further details on spherical harmonics and Chebyshev polynomials
expansion can be found in Tilgner (1999) and Christensen & Wicht
(2015).

Once the spatial discretization has been specified, the set of
eqs (2)–(6) complemented by the boundary conditions (see eqs 7
and 8) forms a semi-discrete system where only the time discretiza-
tion remains to be expressed. As an example, the time evolution of
the poloidal potential for the magnetic field G�m(rk) (see eq. 11) can
be written as an ordinary differential equation⎧⎨⎩

dG�m

dt
(rk, t) = E[u, B] + I[G�m],

G�m(xk, t0) = G0
�m(xk),

(12)
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Double-diffusive geodynamo models 1903

where G0
�m(rk) is the initial condition, E a non linear-function of u

and B and I a linear function of G�m. The above equation serves
as a canonical example of the treatment of the different contribu-
tions: the non-linear terms are treated explicitly (function E) while
the remaining linear terms are handled implicitly (function I). In
MagIC, several implicit/explicit (IMEX) time schemes are used to
time advance the set of eqs (2)–(6) from t to t + δt:

(i) A combination of a Crank–Nicolson for the implicit terms
and a second-order Adams–Bashforth for the explicit terms called
CNAB2 (see Glatzmaier 1984).
(ii) Two IMEX Runge–Kutta: PC2 (see Jameson et al. 1981) and
BPR353 (see Boscarino et al. 2013).

CNAB2 has been commonly used in geodynamo models since
the pioneering work of Glatzmaier (1984). IMEX Runge–Kutta
schemes have been rarely used in the context of geodynamo mod-
els (Glatzmaier & Roberts 1996), rapidly rotating convection in
spherical shells (Marti et al. 2016) or quasi-geostrophic models of
2-D convection (Gastine 2019). For IMEX Runge–Kutta schemes,
s substages are solved to time-advance eq. (12) from t to t + δt

Gi
�m(rk) = G�m(rk, t) + δt

i∑
j=0

(
aE

i, jE j + aI
i, jI j
)
, (13)

where i ∈ [[0, s]], Gi
�m is the intermediate solution at substage i,

E j = E[B, u](t + cEj δt) and I j = I[G�m](t + cIj δt). G�m(rk, t + δt)
is then given by

G�m(rk, t + δt) = G�m(rk, t) + δt
s∑

j=0

(
bE

j E j + bI
j I j
)

(14)

In the above equations, the matrices aI and aE and the vectors
bI , bE , cE and cI form the so-called Butcher tables of the IMEX
Runge–Kutta schemes given in Appendix A. Since the last lines
of aE,I are equal to bE,I for PC2 and BPR353, the last operation
to retrieve G�m(rk, t + δt) (eq. 14) is actually redundant with the
last substage (see Ascher et al. 1997). IMEX Runge–Kutta schemes
require more computational operations to time advance the set of
eqs (2)–(6) from t to t + δt than CNAB2. However, they allow larger
time step sizes that compensate for this extra numerical cost (Marti
et al. 2016) and they are more accurate and stable. Since BPR353
is a third-order scheme, it is particularly attractive to ensure an
accurate equilibration of the most turbulent runs.

2.5 Simulation diagnostics

For each diagnostic quantity f, we adopt in the following overbars
for time averaging and angle brackets for spatial averaging

f̄ = 1

tavg

∫ t0+tavg

t0

f (t) dt and 〈 f 〉V = 1

V

∫
V

f (r, t) dV,

where tavg corresponds to the averaging time.

2.5.1 Integral quantities and scales

The magnetic Em and kinetic Ek energies are given by

Em(t) + Ek(t) = 1

2

[∫
Vo+Vi

B2(r, t)

E Pm
dV +

∫
Vo

u2(r, t) dV

]
,

where Vi is the inner core volume. By multiplying the Navier–Stokes
eq. (3) by u and the induction eq. (4) by B, we obtain the following

power balance:

d

dt
(Ek + Em) (t) = PT (t) + Pξ (t) − Dν(t) − Dη(t).

In the case of double-diffusive convection, the energy is provided
by chemical and thermal buoyancy power Pξ and PT defined by⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pξ (t) = Vo

〈
Raξ

Sc
ξ (r, t)

r

ro
ur (r, t)

〉
Vo

PT (t) = Vo

〈
RaT

Pr
T (r, t)

r

ro
ur (r, t)

〉
Vo

and dissipated by viscous and Ohmic dissipations Dν and Dη given
by ⎧⎪⎪⎨⎪⎪⎩

Dν(t) = Vo

〈
[∇ × u(r, t)]2

〉
Vo

Dη(t) = (Vo + Vi )

〈
[∇ × B(r, t)]2

E Pm2

〉
Vo+Vi

.

Once a statistically steady state has been reached, the input buoy-
ancy powers should compensate the Ohmic and viscous dissipations.
Following King et al. (2012), to assess the consistency of the numer-
ical computations, we measure the time-average difference between
input and output powers 
P


P = 100 × PT + Pξ − Dν − Dη

PT + Pξ

.

We made sure that this difference remained lower than 1.5 per cent
for all the simulations reported in this study. This value is below the 2
per cent threshold considered as sufficient to ensure the convergence
of integral diagnostics (see King et al. 2012; Gastine et al. 2015).
For each simulation, the total convective power Ptot and the relative
thermal convective power P%

T are defined by

P tot = PT (t) + Pξ (t) and P%
T = PT (t)

PT (t) + Pξ (t)
× 100. (15)

P%
T hence vanishes for a purely chemical forcing and is equal to

100 per cent for a purely thermal forcing.
Following Christensen & Aubert (2006) and Schwaiger et al.

(2019), we introduce two quantities to characterize the typical flow
lengthscale. The integral scale L already discussed in the introduc-
tion is obtained from the time-averaged kinetic energy spectrum

L = π
2Ek(t)∑

�

�u�(t) · u�(t)
,

where u� · u�/2 is the kinetic energy contained in spherical har-
monic degree �, while the dominant lengthscale �̂ is defined as the
peak of the poloidal kinetic energy spectra (Schwaiger et al. 2019,
2021)

�̂ = argmax�

[
E�

k,p(t)
]
,

where E�
k,p is the contribution of spherical harmonic degree � to the

total poloidal kinetic energy.
In order to explore the impact of the equatorial symmetry of the

flow on the dipole–multipole transition, we consider the relative
equatorially symmetric kinetic energy ζ introduced by Garcia et al.
(2017)

ζ = E s,NZ
k

ENZ
k

, (16)
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1904 T. Tassin, T. Gastine and A. Fournier

Figure 3. Distribution of the dipolar fraction fdip for the 79 numerical
simulations of this study. Multipolar simulations are defined as having fdip

< 0.5, and they will be marked by a cross in subsequent figures. Dipolar
simulations ones will be displayed using a circle. The vertical dashed line
marks the fdip = 0.5 limit between dipolar and multipolar simulations.

where ENZ
k is the kinetic energy contained in the non-zonal flow and

E s,NZ
k the kinetic energy contained in the equatorially symmetric part

of the non-zonal flow.
We measure the mean convective flow amplitude either by the

magnetic Reynolds number Rm or by the Rossby number Ro defined
by

Rm =
√

2Ek(t)Pm = τη

τadv
, Ro =

√
2Ek(t)E = τ�

τadv
,

where τadv = D/urms is the characteristic turnover time and urms the
root mean square flow velocity. Following Christensen & Aubert
(2006), we define a local Rossby number by

RoL = Ro
D
L

.

The dipolar character of the CMB magnetic field is quantified
by its dipolar fraction fdip, defined as the ratio of the axisymmetric
dipole component to the total field strength at the CMB in spherical
harmonics up to degree and order 12.

Fig. 3 shows the statistical distribution of fdip for the simulations
reported in this study. Two distinct groups of numerical simulations
separated by a gap at fdip ≈ 0.5 are visible in this figure. A magnetic
field is considered as dipolar when fdip > 0.5 and multipolar other-
wise. This bound differs from the original threshold of fdip = 0.35
considered by Christensen & Aubert (2006), but it is found to better
separate the two types of dynamo models contained in our data set.
Note that the same bound of 0.5 was recently chosen by Menu et al.
(2020) in their study. The magnetic field amplitude is measured by
the Elsasser number �

� =
√

2Em .

Finally, transports of heat and chemical composition are quanti-
fied by using the Nusselt Nu and the Sherwood Sh number defined
by (see Goluskin 2016, chapter 1)

Nu = 
T0


T
and Sh = 
ξ0


ξ
,

where 
T , 
ξ are the temperature and composition differences
between the ICB and the CMB, and the subscript 0 stands for the
background conducting state. For both the fixed fluxes and hybrid
configurations (recall Section 2.3), we obtain a background compo-
sition contrast given by


ξ0 = η(η + 2)

2(η2 + η + 1)
, (17)

where η = ri/ro is the radius ratio. The background temperature
drop 
T0 depends on the imposed boundary conditions. For the
fixed flux setup, it reads


T ff
0 = η(η + 2)

2(η2 + η + 1)
= 
ξ0, (18)

while it becomes


T hyb
0 = 1

η
, (19)

for the hybrid setup.
Table 4 gives the definition of most of these integral diagnostics

and provides estimates for Earth’s core, along with the bracket of
values obtained in the numerical data set presented here.

2.6 Exploration of parameter space

We compute 79 simulations varying the Ekman number, the mag-
netic Prandtl number, the thermal and the chemical Rayleigh num-
bers. The properties of this data set are listed in Table A1. The less
turbulent simulations have been initialized with a strong dipolar
field and a random thermochemical perturbation. Their final states
have been used as initial conditions for the more turbulent simu-
lations, in order to shorten their transients. Three different Ekman
numbers are considered in this study: 10−4, 3 × 10−5 and 10−5.
RaT has been varied between 0 and 6 × 1010 and Raξ between 0 and
1.9 × 1012 to study the influence of the convective forcing and span
the transition between dipole-dominated and multipolar dynamos.
We adopt Pr = 0.3 and Sc = 3 (i.e. Le = 10) for a better com-
parison with previous studies (e.g. Takahashi 2014) and to mitigate
the computational cost associated with large Lewis numbers. Pm
varies between 0.5 and 7, depending on the Ekman number, in order
to maintain Rm > 100. The numerical models were integrated for
at least 20 per cent of a magnetic diffusion time τ η for the most
turbulent (and demanding) ones, and for more than one τ η for the
others, in order to ensure that a statistically steady state has been
reached.

3 R E S U LT S

3.1 Onset of top-heavy convection

Fig. 4 shows the location of the 79 computed numerical simulations
for the three considered Ekman numbers in the parameter space
(GT , Gξ ) defined by

GT = 1 + GrT E4/3 and Gξ = 1 + Grξ E4/3,

where GrT(ξ ) corresponds to the thermal (chemical) Grasshof num-
ber,

GrT = RaT

Pr
and Grξ = Raξ

Sc
.

Adding 1 to GrT(ξ )E4/3 in the above equations allows us to use
logarithmic scales in the top row of Fig. 4.

We determine the onset of convection using the open-source soft-
ware SINGE3 which computes linear eigenmodes for incompress-
ible, double-diffusive fluids enclosed in a spherical cavity (see Scha-
effer 2013; Vidal & Schaeffer 2015; Kaplan et al. 2017; Monville
et al. 2019). For a fixed RaT (Raξ ), the code solves the generalized

3https://bitbucket.org/vidalje/singe
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Double-diffusive geodynamo models 1905

Table 4. Output parameters of the numerical simulations and their estimates for Earth’s core.

Name Symbol Definition Earth’s core This study References

Relative thermal convective power P%
T see eq. (15) 20−70 % 0−100 % Lister & Buffett (1995) -

Takahashi (2014)
Rossby Ro urms/�D (1.7−12) × 10−6 0.002− 0.1 Table 1
Local Rossby RoL urms/�L 4.7 × 10−5 − 0.09 0.009−0.45 Davidson (2013) - Olson &

Christensen (2006)
Relative equat. symmetric kinetic energy ζ 0.78−0.9 0.65−0.96 Aubert et al. (2017)
Magnetic Reynolds Rm urmsD/η (0.2−9) × 103 102−6 × 103 Table 1
Elsasser � B2

rms/μ0ηρo� 6.7−39 0.3−3 × 102 Table 1
Dipolarity parameter fdip 0.6−0.7 0.1−1 Gillet et al. (2015)

ξ
ξ

Figure 4. Linear onset of top-heavy convection in (1 + GrTE4/3, 1 + Grξ E4/3) parameter space, where GrT, Grξ and E are the thermal Grasshof, chemical
Grasshof and Ekman numbers, respectively, for the three Ekman numbers E considered in this study: 10−4 (left-hand column), 3 × 10−5 (centre column) and
10−5 (right-hand column). Critical curves correspond to the edges of the gray shaded areas. Dark grey areas were obtained for fixed-flux boundary conditions
and light gray areas for hybrid boundary conditions, the latter present only for E = 3 × 10−5 and E = 10−5. The bottom panels (d), (e) and (f) show zoomed-in
insets of upper panels (a), (b) and (c). The edges of the gray areas, which define the critical curves, connect discs whose colour defines the critical azimuthal
wavenumber mc. The top row (in logarithmic scale in both directions) also features the location of the 79 simulations computed in this study. Circles (resp.
crosses) represent dipolar (resp. multipolar) simulations. Circles and crosses with gray (resp. black) edges correspond to fixed-flux (resp. hybrid) boundary
conditions. Simulations (∗) and (∗∗) are reference simulations discussed in detail in the text (see also Table A1).

eigenvalue problem formed by the linearized Navier–Stokes and
transport equations. It seeks eigenmodes f of the form

f (t, r, θ, ϕ) = f̂ (r, θ ) exp[i(mϕ − ωt)],

where f̂ is a function of r and θ , m is the azimuthal wave number
and ω the complex angular frequency. Starting at a specific (RaT,
Raξ ), the critical mode is determined by varying one of the Rayleigh
numbers (keeping the other fixed) in order to obtain an ω with a
vanishing imaginary part. The onset mode is then characterized by
its critical chemical and thermal Rayleigh numbers (Rac

ξ , Rac
T ),

its critical azimuthal wave number mc and its (real) angular drift
frequency ωc. Connecting the (Rac

ξ , Rac
T ) pairs that we collected

with SINGE gives rise to the critical curves plotted in Fig. 4. In
each panel, the intersection of these curves with the x-axis (resp. y-
axis) corresponds to the critical Rayleigh number for purely thermal
(resp. chemical) convection. Underneath the critical curves, the
grey-shaded areas are regions of the parameter space where thermal
and chemical perturbations are unable to trigger a convective flow.

We note that the shape delimited by the critical curves in the
bottom row of Fig. 4 is not rectangular, as would be the case if the
two sources of buoyancy were independent. Instead, we observe a
decrease of the critical Gc

ξ when Gc
T increases for the three different

Ekman numbers. As previously reported by Busse (2002), Trümper
et al. (2012) and Net et al. (2012), and discussed in Section 1,
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1906 T. Tassin, T. Gastine and A. Fournier

this demonstrates that the addition of a second buoyancy source
facilitates the onset of convection as compared to the single diffusive
configurations.

Starting from Gc
T = 0 and following the critical curve for each

Ekman number, mc grows until one reaches the upper right ‘corner’
of the onset region and then decreases to a value comparable to the
starting Gc

T = 0 mc value when Gc
ξ tends to zero. We observe that mc

is nearly constant on the vertical branches, while it increases much
faster on the horizontal ones, as already reported by Trümper et al.
(2012).

As can be seen in Figs 4(e) and (f), the shaded shape is much
wider with fixed-flux boundary conditions than with hybrid bound-
ary conditions. This comes from the difference in the temperature
contrasts of the background conducting states. An adequate way to
compare both setups resorts to using diagnostic Grasshof numbers

G̃rT = GrT 
T0, G̃rξ = Grξ
ξ0, (20)

that are based on the temperature (composition) contrasts 
T0 (
ξ 0)
of the reference conducting state instead of the control thermal
(chemical) Grasshof numbers GrT (Grξ ) (see Johnston & Doering
2009; Goluskin 2016). Using eqs (18) and (19), the temperature
difference between ICB and CMB for the conducting states for both
setups reads


T hyb
0


T ff
0

= 2(γ 2 + γ + 1)

γ 2(γ + 1)
≈ 10.23 ,

which is in good agreement with the actual ratio of critical Gc
T

observed in panels (e) and (f) of Fig. 4.
The analysis of the onset of double-diffusive convection becomes

even more straightforward if one adopts the formalism introduced
by Silva et al. (2019). This framework rests on two parameters: first,
the diagnostic effective Grasshof number

G̃rc =
√(

G̃r c
T

)2 + (G̃r c
ξ

)2
, (21)

and second the Grasshof mixing angle � such that

cos � = G̃r c
T

G̃rc

, sin � = G̃r c
ξ

G̃rc

. (22)

The pair (G̃rc, �) can be interpreted as the polar coordinates of the
critical onset mode in the (G̃rT , G̃rξ ) Cartesian parameter space. A
mixing angle � = 0 hence corresponds to purely thermal convec-
tion, while � = π /2 corresponds to purely chemical convection.
Fig. 5 shows the critical effective Grasshof number G̃rc, the critical
azimuthal wave number mc and the critical angular drift frequency
|ωc|, multiplied in each instance by their expected asymptotic de-
pendence on the Ekman number for purely thermal convection, as
a function of the Grasshof mixing angle �. Adopting a diagnos-
tic effective Grasshof number conveniently enables the merging of
the onset curves associated with the two sets of thermal boundary
conditions (fixed-flux and hybrid).

The onset curves can be separated into two branches: (i) From
� = 0 up to � ≈ π /16, the onset mode almost behaves as a pure
low-Pr thermal mode with little change in mc E1/3 and a large drift
speed; (ii) a sharp transition to another kind of onset mode, remi-
niscent of the Pr � 1 convection onset, is observed for � � π /16.
The latter is characterized by a smaller drift frequency, a higher
azimuthal wavenumber and a lower effective Grasshof number G̃rc.
The critical azimuthal wavenumber reaches its maximum for � ≈
π /16 before gradually decreasing to reach a value comparable to
that expected for purely thermal convection towards � = π /2.

πππππππ

ω

π

Figure 5. (a) Critical effective Grasshof number multiplied by E4/3 as a
function of the Grasshof mixing angle �. (b) Critical azimuthal wavenumber
mc multiplied by E1/3 as a function of �. (c) Critical drift frequency ωc

multiplied by E2/3 as a function of �. Symbol colours correspond to the
Ekman number, open-symbols to hybrid boundary conditions and filled
symbols to fixed-flux boundary conditions.

The Ekman dependence is almost perfectly captured by the
asymptotic scalings E−1/3 and E−2/3 for the critical wavenumber mc

and the drift frequency ωc. The case of mixing angles � ≥ 7π /16
with E = 10−4 constitutes an exception to this rule with a sharp drop
to a constant critical wavenumber mc = 2 (see the small kink in the
upper left part of Fig. 4d). The dependence of G̃rc on the Ekman
number shows a more pronounced departure from the leading-order
asymptotic scaling Grc ∼ E−4/3. As shown by Dormy et al. (2004)
for differential heating (see e.g. their Fig. 5), the higher-order terms
in the asymptotic expansion of Rac

T as a function of the Ekman
number are still significant for E > 10−6 (see also Schaeffer 2016).
Given the range of Ekman numbers considered for this study, it is
not surprising that the asymptotic scaling for Grc is not perfectly
realized yet.
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In summary, the onset of double-diffusive convection in the top-
heavy regime takes the form of thermal-like drifting Rossby waves,
the nature of which strongly depends on the fraction between chem-
ical and thermal forcings. This confirms the results previously ob-
tained by Silva et al. (2019, their fig. 9).

3.2 A reference case

We will now focus on the simulation marked by an asterisk (∗) in
Table A1 and in Fig. 4 to highlight specific double-diffusive con-
vection features. This simulation corresponds to RaT = 3.4 × 108,
Raξ = 4.8 × 1011, E = 10−5 and Pm = 0.5 with hybrid bound-
ary conditions. The thermal convective power amounts on average
for 46 per cent of the total input power. Since the local Rossby
number RoL reaches 0.11, this simulation is expected to operate
in a parameter regime close to the transition between dipolar and
multipolar regimes (RoL ≈ 0.12) as put forward by Christensen &
Aubert (2006). This high value of RoL also indicates the sizeable
role played by inertia in the force balance of this simulation. Fig. 6
shows 3-D renderings of several fields extracted from a snapshot
taken over the course of the numerical integration: (a) temperature
perturbation, (b) composition, (c) zonal velocity and magnitude of

the velocity vector and (d) radial magnetic field and magnitude of
the magnetic field vector. We chose the radius of the inner and outer
spheres of these renderings to place ourselves outside thermal and
compositional boundary layers. Convection is primarily driven by
the chemical composition flux at the ICB. Because of the contrast
in diffusion coefficients (Le = 10), compositional plumes develop
at a much smaller scale than that of thermal plumes (see Figs 6a
and b). Having Le = 10 also induces a chemical boundary layer
much thinner than the thermal one, as illustrated by the Sherwood
number Sh being five times larger than the Nusselt number Nu in
this case (44.8 versus 8.0, see Table A1). The emission of a thermal
plume is likely triggered by an impinging chemical plume. Accord-
ingly, one would expect temperature fluctuations to be enslaved
to compositional fluctuations, which may explain the outstanding
spatial correlation between temperature and composition notable in
Figs 6(a) and (b). This correlation was already reported by Trümper
et al. (2012) for predominantly thermal convection.

In typical dipole-dominated dynamos, the velocity field features
extended sheet-like structures that span most of the core volume
(see Yadav et al. 2013; Schwaiger et al. 2019). Because of the
strong forcing that characterizes the reference simulation, the con-
vective flow is organized on smaller scales, which likely reflects

Figure 6. 3-D renderings of a snapshot of simulation (∗) (see Table A1). On each panel, the inner and outer spherical surfaces correspond to dimensionless
radii r = 0.57 and r = 1.5, respectively. The z-axis displayed in panel (a) corresponds to the axis of rotation. (a) Temperature perturbation. (b) Composition.
(c) Velocity. The outer surface shows the zonal velocity uϕ , while the inner surface, the equatorial cut and the two meridional cuts display the magnitude of
the velocity field, |u|. (d): Magnetic field. The outer surface shows the radial field Br, while the inner surface, the equatorial cut and the two meridional cuts
display the magnitude of the magnetic field, |B|. All fields are dimensionless.
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Figure 7. Hammer projection of the dimensionless radial magnetic field at the CMB truncated at the spherical harmonic degree �max = 341 (a) and at spherical
harmonic degree �max = 13 (b) for the numerical simulation (∗) shown in Fig. 6. It corresponds to the same snapshot as in Fig. 6. The dashed lines in panel(b)
correspond to negative values of the radial magnetic field.

the sizeable amplitude of inertia. The magnetic field is dominated
by its axisymmetric dipolar component (see Fig. 7a), despite the
supposed proximity of the simulation with the dipolar–multipolar
transition zone. Inspection of Table A1 indicates that this snapshot-
based observation can in fact be extended to the entire duration
of the simulation (close to half a magnetic diffusion time), as the
average dipolar fraction fdip is equal to 0.77.

The radial magnetic field features intense localized flux patches
of mostly normal polarity in each hemisphere, with a few reverse
flux patches paired with normal ones, mostly at high latitudes. Those
fluid regions hosting a locally strong magnetic field are character-
ized by more quiescent flows, as can be seen in the equatorial planes
of Figs 6(c) and (d) in the vicinity of the outer boundary. In a global
sense, our reference simulation can be qualified as a strong-field
dynamo since the ratio of the magnetic energy Em to kinetic energy
Ek is slightly larger than unity, Em/Ek = 1.36.

Fig. 7 shows a comparison between the radial component of the
magnetic field at the CMB (left-hand panel) and its representa-
tion truncated at spherical harmonic degree �max = 13 (right-hand
panel). The truncated field presents several key similarities with the
geomagnetic field at the CMB, such as a significant axial dipole and
patches of reverse polarity in both hemispheres.

3.3 Earth-likeness

For a more quantitative assessment of the Earth-likeness of the
dynamo models, we employ the rating of compliance χ 2 introduced
by Christensen et al. (2010). This quantity is derived from four
criteria based on the magnetic field at the CMB truncated at the
degree � = 8

(i) The relative axial dipole energy AD/NAD, which corresponds to
the ratio of the magnetic energy in the axial dipole field to that of
the rest of the field up to degree and order eight.
(ii) The equatorial symmetry O/E corresponding to the ratio of the
magnetic energy at the CMB of components that have odd values
of (� + m) for harmonic degrees between two and eight to its
counterpart in components with � + m even.
(iii) The zonality Z/NZ, which corresponds to the ratio of the zonal
to non-zonal magnetic energy for harmonic degrees two to eight at
the CMB.
(iv) The flux concentration factor FCF, defined by the variance in
the squared radial field.

Table 5. Time-average of the rating parameters defined by Christensen et al.
(2010) for Earth and the simulation (∗) (see Table A1).

Name Earth’s value Simulation (∗)

AD/NAD 1.4 2.69
O/E 1.0 1.75
Z/NZ 0.15 0.25
FCF 1.5 1.46

To evaluate these quantities for the Earth, Christensen et al.
(2010) used different models based on direct measures such as
gufm1 model by Jackson et al. (2000) and IGRF-11 model (from
Finlay et al. 2010), as well as archeomagnetic and lake sediment
data (model CALS7K.2 from Korte et al. 2005) and a statistical
model for palaeofield (see Quidelleur & Courtillot 1996). These
models allow to estimate the evolution of the mean value of the
Gauss coefficients and their variances. Finally, they obtained the
values given in Table 5 for the four rating parameters.

These values are used to determine the rating of compliance
between numerical dynamo models and the geomagnetic field χ 2

expressed by

χ 2 =
∑
ψk

⎧⎪⎨⎪⎩ ln(ψk) − ln(ψ⊕
k )

ln
[√

Var
(
ψ⊕

k

) ]
⎫⎪⎬⎪⎭

2

,

where ψ k ∈ {AD/NAD, O/E, Z/NZ, FCF}, Var(ψ⊕
k ) is the variance

of ψ⊕
k and the exponent ⊕ stands for the Earth core. The agreement

between simulation and Earth is termed by Christensen et al. (2010)
as excellent if χ 2 < 2, as good when 2 ≤ χ 2 ≤ 4, as marginal wen
4 < χ 2 ≤ 8 and non-compliant when χ 2 > 8. We adopt the same
classification in the following. According to Table 5, the relative
axial dipole power (AD/NAD) and the equatorial symmetry (O/E)
of the reference simulation (∗) are too large in comparison with
the reference geomagnetic values, which penalizes the overall com-
pliance of the simulation. Nevertheless, the simulation remains in
excellent agreement with the geomagnetic field with χ 2 = 1.5.

Based on this rating of compliance χ 2, Christensen et al. (2010)
propose a representation to classify the different numerical dynamos
according to the ratio of three different timescales: the rotation pe-
riod τ�, the advection time τ adv and the magnetic diffusion time
τ η. Those can be cast into two dimensionless numbers: the mag-
netic Reynolds number Rm defined by τ η/τ adv and the magnetic
Ekman number Eη defined by τ�/τη = E/Pm. Fig. 8 shows our
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Eη

Figure 8. Compliance parameter χ2 as a function of the magnetic Ekman number Eη and of the magnetic Rayleigh number Rm for three different setups:
purely chemical convection (left-hand panel), double-diffusive convection (centre panel) and pure thermal convection (right-hand panel). Dashed lines mark
the limits of the Earth-like domain defined by Christensen et al. (2010) and the black symbol

⊕
marks the approximate position of the Earth’s dynamo in

this representation. The significant size of the error bars is due to the wide range of estimates for urms and η (see Table 2). The triangles correspond to the
simulations provided by Christensen et al. (2010) with Pr = 0.3 or Sc = 3.

(a) (b) (c)

Figure 9. Compliance parameter χ2 as a function of the input power Ptot and of the relative thermal buoyancy power P%
T for the three different Ekman numbers

considered in this study. The different colours correspond to the compliance quality defined by Christensen et al. (2010). The dashed lines mark a tentative
extrapolation of the transition between dipolar and multipolar dynamos in this parameter space.

numerical simulations plotted in the parameter space (Eη, Rm). For
comparison purposes, the simulations by Christensen et al. (2010)
with Pr = 0.3 or Sc = 3 (triangular markers) have been added to
our 79 dynamo models. To single out the effect of the diffusivities,
the purely chemical, the double-diffusive and the purely thermal
simulations have been plotted separately. The black symbol marks
the approximate position of Earth’s dynamo in this representation
(see Tables 1 and 4). Christensen et al. (2010) posited the existence,
in this parameter space, of a triangular wedge (delimited by dashed
lines in Fig. 8), inside which the numerical dynamos yield Earth-like
surface magnetic fields (those from our data set are shown in Fig. 8
with dark blue and blue disks for Excellent and Good ratings, re-
spectively). Below the wedge, weakly supercritical dynamos feature
too dipolar magnetic fields, on the account of the modest value of
the magnetic Reynolds number. Conversely, a significant increase
of the input power at a given Eη yields small-scale convective flows,

which possibly lead to the breakdown of the axial dipole (multi-
polar simulations displayed with crosses in Fig. 8). We observe in
Fig. 8 that the upper boundary of the wedge actually depends on the
value of P%

T : while several purely chemical simulations are already
multipolar below Rm � 500, the transition to multipolar dynamos
is delayed to Rm > 1500 for the purely thermal ones. Although all
those dynamo models that possess a good or excellent semblance
with the geomagnetic field at the CMB lie within the boundaries
of the original wedge, having a pair (Eη, Rm) that lies within this
wedge cannot be considered as a sufficient condition to produce
an Earth-like magnetic field, since the wedge includes a number of
simulations with marginal or poor semblance.

To further discuss the impact of P%
T on the morphology of the

magnetic field at the CMB, Fig. 9 shows χ 2 in the parameter space
(Ptot, P%

T ) for the three different Ekman numbers considered here.
The dashed lines mark the tentative boundaries between dipolar
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Figure 10. The dipolar fraction fdip as a function of the local Rossby number
RoL. Geophysical range of fdip based on the COV-OBS.x1 model by Gillet
et al. (2015). Black markers correspond to simulations with P%

T = 100 %,
while white ones correspond to simulations with P%

T = 0 %. The horizontal
dashed line marks the limit between dipolar and multipolar dynamos adopted
in this study (see Section 2.5 for details). The vertical dashed line marks the
expected limit between dipolar and multipolar dynamos according to Chris-
tensen & Aubert (2006). Vertical and horizontal black segments attached
to each symbol represent one standard deviation about the time-averaged
values.

and multipolar simulations in term of Ptot. The dipole–multipole
transition is delayed to larger input power Ptot at lower Ekman num-
bers. Decreasing E indeed enables the exploration of a physical
regime with lower Ro prone to sustain dipole-dominated dynamos
(see Kutzner & Christensen 2002; Christensen & Aubert 2006). The
input power required to obtain multipolar dynamos is multiplied by
roughly 300 when decreasing E from 10−4 to 10−5. For each Ekman
number, the width of the dipolar window strongly depends on P%

T

since the actual input power needed to reach the transition is an or-
der of magnitude lower for pure chemical convection than for pure
thermal convection. Simulations with P%

T = 40 % are found to be-
have similarly to purely thermal convection. We further observe that
Earth-like dynamos can be obtained for any partitioning of power
injection with the best agreement obtained close to the dipole–
multipole transition. This is a consequence of the way we have sam-
pled the parameter space, mainly adopting one single Pm value for
each Ekman number. Magnetic Reynolds numbers Rm ∼ O(1000)
conducive to yield Earth-like fields are then attained at strong con-
vective forcings. Adopting larger Pm values at more moderate chem-
ical and thermal Rayleigh numbers could hence produce Earth-like
fields further away from the dipole–multipole transition (see Chris-
tensen et al. 2010). Additional diagnostics are hence required to
better understand why the dipole–multipole transition depends so
strongly on the nature of the convective forcing.

3.4 Breakdown of the dipole

The physical reasons which cause the breakdown of the dipole in
numerical models remain poorly known. Several previous studies
suggest that the dipole may collapse when inertia reaches a sizeable
contribution in the force balance (see Sreenivasan & Jones 2006;
Christensen & Aubert 2006).

Christensen & Aubert (2006) introduced the local Rossby num-
ber RoL as a proxy of the ratio between inertia and Coriolis force
and found no dipole-dominated dynamos for RoL > 0.12 (see Chris-
tensen 2010). Fig. 10 shows fdip as a function of RoL for the 79 simu-
lations computed in this study. The vertical line marks the threshold

ζ

Figure 11. The dipolar fraction fdip as a function of the relative fraction of
equatorially symmetric kinetic energy ζ for the 79 simulations computed in
this study. Geophysical range of fdip based on the COV-OBS.x1 model by
Gillet et al. (2015). Geophysical estimates of ζ are based on the study of
Aubert (2014). Black markers correspond to simulations with P%

T = 100 %,
while white ones correspond to simulations with P%

T = 0 %. The horizontal
dashed line marks the limit between dipolar and multipolar dynamos adopted
in this study (see Section 2.5 for details). Vertical and horizontal black
segments attached to each symbol represent one standard deviation about
the time-averaged values.

value of RoL = 0.12 put forward by Christensen & Aubert (2006),
while the horizontal line corresponds to fdip = 0.5, the boundary
between dipolar and multipolar dynamos adopted in this study. To
single out the effect of partitioning the input power between chem-
ical and thermal forcings, the symbols have been colour coded
according to P%

T . Each subset of models with comparable P%
T ex-

hibits the same decrease of fdip with RoL as reported by Christensen
& Aubert (2006). However, the dipole–multipole transition occurs
at lower RoL when P%

T decreases. For P%
T ≥ 40 %, the transition

happens close to RoL = 0.12 while it happens around RoL = 0.05
for P%

T = 0 %. In addition, the dynamo models with P%
T ≥ 40 %

are clearly separated in two groups of simulations with either fdip ≥
0.5 or fdip < 0.3, while the dipole–multipole transition is much more
gradual for pure chemical forcing. RoL hence fails to capture the
transition between dipolar and multipolar dynamos, independently
of the transport properties of the convecting fluid.

Following Christensen & Aubert (2006), Garcia et al. (2017) also
envision that the increasing role of inertia would be responsible for
the dipole breakdown. They however define another parameter to
characterize it. They suggest that the transition is related to a change
in the equatorial symmetry properties of the convective flow. To
quantify it, they introduce the ratio ζ previously defined in eq. (16).
Fig. 11 shows fdip as a function of ζ . Geophysical estimates for ζ are
based on the study of Aubert (2014). The decrease of the relative
equatorial symmetry ζ goes along with a gradual weakening of the
axisymmetric dipolar field. Below ζ = 0.7, no dipolar dynamos are
obtained while conversely the models with ζ ≥ 0.85 are all dipolar.
However, this parameter has little predictive power to separate the
dipolar solutions from the multipolar ones over the intermediate
range 0.7 ≤ ζ ≤ 0.85.

Another way to examine the dipole–multipole transition resorts to
looking at the force balance governing the outer core flow dynamics
(see Soderlund et al. 2012, 2015). To do so, we analyse force balance
spectra following Aubert et al. (2017) and Schwaiger et al. (2019).
Each force entering the Navier–Stokes eq. (3) is hence decomposed
into spherical harmonic contributions. The spatial root mean square
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ξξ

Figure 12. Force balance spectra as a function of the spherical harmonic degree � for a dipolar (a) and a multipolar (b) simulations with E = 10−5 and
P%

T ≈ 46 %. Thick lines correspond to the time average of each force, while the shaded regions represent one standard deviation about mean. The abscissa
of the markers corresponds to the dominant lengthscale �̂ for each simulation. A circle corresponds to a dipolar simulation while a cross corresponds to a
multipolar one. Both simulations are referenced as simulations (∗) and (∗∗) in Table A1.

FRMS of a vector F reads

FRMS(t) =
√〈

F2(r, t)
〉
Vo\δ

, (23)

where δ represents the thickness of the viscous boundary layer and
Vo\δ the outer core volume that excludes those boundary layers. By
using the decomposition in spherical harmonics, the above expres-
sion can be rearranged as

F2
RMS(t) = 1

Vo\δ

�max∑
�=0

∫ ro−δ

ri +δ

�∑
m=−�

|F�m(r, t)|2r 2dr,

We define the time-averaged spectrum F� as a function of the har-
monic degree � for the force F by the relation

F� =
√√√√ 1

Vo\δ

∫ ro−δ

ri +δ

�∑
m=−�

|F�m(r, t)|2r 2dr . (24)

Fig. 12 shows the time-averaged force balance spectra for one
dipolar and one multipolar dynamo with E = 10−5 and PT % �
46 %. For both panels, the spherical harmonic at which the poloidal
kinetic energy peaks �̂ is indicated by filled markers.

The left panel corresponds to the force balance of the reference
case (∗) which is in excellent agreement with the geomagnetic field
in terms of its low χ 2 value (recall Section 3.2). Its spectra feature a
dominant quasi-geostrophic balance between Coriolis and pressure
forces up to � ≈ 60 accompanied by a magnetostrophic balance at
smaller scales. The difference between pressure and Coriolis forces,
forming the so-called ageostrophic Coriolis force (long dashed line),
is then balanced by the two buoyancy sources (short dashed line)
at large scales and by Lorentz force (irregular dashed line) at small
scales. This forms the quasi-geostrophic Magneto–Archimedean–
Coriolis balance (QG-MAC) devised by Davidson (2013) and ex-
pected to control the outer core fluid dynamics (see Roberts & King

2013). This hierarchy of forces is similar to the one observed in
geodynamo models that use a codensity approach (e.g. Aubert et al.
2017; Schwaiger et al. 2019). The breakdown of buoyancy sources
reveals a dominant contribution of chemical forcings which grows
at small scales. The QG-MAC balance is perturbed by a sizeable
inertia, which reaches almost a third of the amplitude of Lorentz
force below � ≈ 20, while viscous effects are deferred to more than
one order of magnitude below. Because of the strong convective
forcing, the force separation is hence not as pronounced as in the
exemplary dipolar cases by (Schwaiger et al. 2019, their fig. 2).

By increasing the input power by a factor 4 while keeping P%
T con-

stant, we obtain a numerical model (∗∗) (see Table A1 and Fig. 4c)
where dynamo action yields a multipolar field. As compared to the
dipole-dominated solution, the amplitude of each contribution is
hence shifted to higher values. Most notable changes concern the
prominent contribution of the chemical buoyancy for the degree � =
1 and the ratio of inertia to Lorentz force. The former comes from a
pronounced equatorial asymmetry of the chemical fluctuations. The
development of strong equatorially asymmetric convective motions
has been observed by Landeau & Aubert (2011) and Dietrich &
Wicht (2013) with a codensity approach and flux boundary con-
ditions. Below � ≈ 20, inertia reaches a comparable amplitude
to Lorentz force, while the smaller scales are still controlled by
magnetic effects. This differs from the multipolar dynamo model
described by Schwaiger et al. (2019), where inertia was significantly
larger than Lorentz force at all scales forming the so-called quasi-
geostrophic Coriolis–Inertia–Archimedian balance (e.g. Gillet &
Jones 2006). Here the situation differs likely because of the larger
Pm, which enables a stronger magnetic field (see Menu et al. 2020).
At the dominant lengthscale �̂, the ratio F�

i /F�
L is around 1 for

the multipolar model, while it is less than 0.5 for the dipolar one.
To examine whether the dipole–multipole transition is controlled
by the ratio of inertia over Lorentz forces, we hence focus on the
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Figure 13. Time-averaged force balance spectra at the dominant length-
scale �̂ as a function the total buoyancy power Ptot for numerical models
with E = 10−5 and 30 % ≤ P%

T ≤ 60 % . The dynamo models (∗) and (∗∗)
correspond to simulations referenced in Table A1. The horizontal and verti-
cal segments attached to each symbol correspond to one standard deviation
about the time-averaged values.

force balance at the dominant lengthscale �̂, in contrast to previous
studies, which analysed ratio of integrated forces (Soderlund et al.
2012, 2015; Yadav et al. 2016).

Fig. 13 shows the time-averaged force balance at �̂ for the sim-
ulations with E = 10−5 and 30 % ≤ P%

T ≤ 60 % . The dynamics
at �̂ is primarily controlled by the geostrophic balance between the
Coriolis force and the pressure gradient. The other contributions

grow differently with Ptot: viscosity and inertia increase continu-
ously while Lorentz force at �̂ hardly increases beyond Ptot ≈ 3 ×
1010. The dipole–multipole transition occurs when inertia reaches a
comparable amplitude to Lorentz force at �̂ (crosses).

The relevance of this force ratio for sustaining the dipolar field
has already been put forward by Menu et al. (2020), using models
with a purely thermal forcing and Pr = 1. By considering turbulent
simulations with large Pm, they show that strong Lorentz forces at
large scale prevent the collapse of the dipole by inertia. As a result,
they report dipole-dominated simulations with RoL which exceeds
the limit of 0.12 proposed by Christensen & Aubert (2006). Here,
we quantify the contribution of inertia at the dominant convective
lengthscale by dividing the amplitude of inertia F �̂

i by the amplitude
of Coriolis F �̂

C and Lorentz F �̂
L forces.

Fig. 14(a) shows our simulations in the parameter space defined
by the amplitude ratios (F �̂

i /F �̂
L , F �̂

i /F �̂
C ). Each simulation is charac-

terized by the proportion of thermal convection P%
T and the nature

of its thermal boundary conditions. Increasing the input power of
the dynamo leads to a growth of inertia, such that the strongly driven
cases all lie in the upper right quadrant of Fig. 14(a). The transition
from dipolar to multipolar dynamos occurs sharply when F �̂

i /F �̂
L

exceeds 0.5 over a broad range of F �̂
i /F �̂

C ranging from 0.03 to 0.08.
This indicates that the transition is much more sensitive to the ratio
of inertia over Lorentz force than to the ratio of inertia over Coriolis
force. The transition for purely chemical simulations (white sym-
bols) is reached at lower values of F �̂

i /F �̂
C and is more continuous

than for the thermal ones (black symbols). This confirms the trend
already observed in Fig. 10, where fdip shows a much more gradual
decreases with RoL when P%

T = 0 %.
Fig. 14(b) shows fdip as a function of F �̂

i /F �̂
L . In contrast to the

previous criteria, the ratio F �̂
i /F �̂

L successfully captures the tran-
sition between dipole-dominated and multipolar dynamos which
happens when F �̂

i /F �̂
L � 0.5, independently of the buoyancy power

Figure 14. Ratio of inertia to Coriolis force at the dominant lengthscale F �̂
i /F �̂

C (left-hand panel) and the dipolar fraction fdip (right-hand panel) as a function of

the ratio of inertia to the Lorentz force at the dominant lengthscale F �̂
i /F �̂

L . Black markers correspond to simulations with P%
T = 100 %, while white markers

correspond to simulations with P%
T = 0 %. Horizontal dashed line marks the limit between dipolar and multipolar dynamo according to Section 2.5. Vertical

dashed line marks the limit between dipolar and multipolar dynamo in term of F �̂
i /F �̂

L ratio. Vertical and horizontal black segments attached to the symbol
correspond to one standard deviation about the time-averaged values.
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fraction. The simulation, which singles out in the upper right quad-
rant of Fig. 14(b), is an exception to this criterion. This numerical
model corresponds to P%

T ≈ 47 % with RaT = 6.8 × 1010, Raξ =
9.6 × 1011 with hybrid boundary conditions. Although it features
F �̂

i /F �̂
L > 0.5, its magnetic field is on time-average dominated by an

axisymmetric dipole (fdip = 0.69). This dynamo however strongly
varies with time with several drops of the dipolar component below
fdip = 0.5 (see Fig. A1 in the appendix). Although the numerical
model has been integrated for more than two magnetic diffusion
times, the stability of the dipole cannot be granted for certain.

4 S U M M A RY A N D D I S C U S S I O N

Convection in the liquid outer core of the Earth is thought to be
driven by density perturbations from both thermal and chemical
origins. In the vast majority of geodynamo models, the difference
between the two buoyancy sources is simply ignored. In planetary in-
teriors with huge Reynolds numbers, diffusion processes associated
with molecular diffusivities could indeed possibly be superseded by
turbulent eddy diffusion (see Braginsky & Roberts 1995). This hy-
pothesis forms the backbone of the so-called ‘codensity’ approach
which assumes that both thermal and compositional diffusivities are
effectively equal. This approach suppresses some dynamic regimes
intrinsic to double-diffusive convection (Radko 2013).

The main goal of this study is to examine the impact of double-
diffusive convection on the magnetic field generation when both
thermal and compositional gradients are destabilizing (the so-called
top-heavy regime, see Takahashi 2014). To do so we have computed
79 global dynamo models, varying the fraction between thermal and
compositional buoyancy sources P%

T , the Ekman number E and the
vigor of the convective forcing using a Prandtl number Pr = 0.3 and
a Schmidt number Sc = 3. We have explored the influence of the
thermal boundary conditions by considering two sets of boundary
conditions for temperature and composition.

Using a generalized eigenvalue solver, we have first investigated
the onset of thermosolutal convection. In agreement with previous
studies (Busse 2002; Net et al. 2012; Trümper et al. 2012; Silva
et al. 2019), we have shown that the incorporation of a destabilizing
compositional gradient actually facilitates the onset of convection
as compared to the single diffusive configurations by reducing the
critical thermal Rayleigh number. The critical onset mode in the top-
heavy regime of rotating double-diffusive convection is otherwise
similar to classical thermal Rossby waves obtained in purely thermal
convection (Busse 1970).

To quantify the Earth-likeness of the magnetic fields produced by
the non-linear dynamo models, we have used the rating parameters
introduced by Christensen et al. (2010). Using geodynamo models
with a codensity approach, Christensen et al. (2010) suggested that
the Earth-like dynamo models are located in a wedge-like shape
in the 2-D parameter space constructed from the ratio of three
typical timescales, namely the rotation rate, the turnover time and
the magnetic diffusion time. Here, we have shown that the physical
parameters at which the best morphological agreement with the
geomagnetic field is attained strongly depend on the ratio of thermal
and compositional input power. In particular, we obtain 6 purely
compositional multipolar dynamo models that lie within the wedge
region of Earth-like dynamos (recall Fig. 8a). This questions the
relevance of the regime boundaries proposed by Christensen et al.
(2010).

We have then used our set of double-diffusive dynamos to exam-
ine the transition between dipolar and multipolar dynamos. We have

assessed the robustness of several criteria controlling this transition
that had been proposed in previous studies. Sreenivasan & Jones
(2006) suggested that the dipole breakdown results from an increas-
ing role played by inertia at strong convective forcings. Christensen
& Aubert (2006) then introduced the local Rossby number RoL as
a proxy of the ratio of inertial to Coriolis forces. They suggested
that RoL ≈ 0.12 marks the boundary between dipole-dominated
and multipolar dynamos over a broad range of control parameters.
Our numerical dynamo models with P%

T ≥ 40 % follow a similar
behaviour, while the transition between dipolar and multipolar dy-
namos occurs at lower RoL (≈0.05) when chemical forcing prevails.
A breakdown of the dipole for dynamo models with RoL < 0.1 was
already reported by Garcia et al. (2017) using Pr > 1 under the
codensity hypothesis (their Fig. 1).

Using non-magnetic numerical models, Garcia et al. (2017) fur-
ther argued that the breakdown of the dipolar field is correlated
with a change in the equatorial symmetry properties of the convec-
tive flow. They introduced the relative proportion of kinetic energy
contained in the equatorially symmetric convective flow, ζ , and sug-
gested that multipolar dynamos would be associated with a lower
value of this quantity. However, our numerical data set shows that
multipolar and dipolar dynamos coexist over a broad range of ζ

(0.70−0.85, recall Fig. 11), indicating that this ratio has little pre-
dictive power in separating dipolar from multipolar simulations.

While neither RoL nor ζ provide a satisfactory measure to char-
acterize the dipole–multipole transition, the analysis of the force
balance governing the dynamo models has been found to be a more
promising avenue to decipher the physical processes at stake (Soder-
lund et al. 2012, 2015). By considering a spectral decomposition of
the different forces (e.g. Aubert et al. 2017; Schwaiger et al. 2019),
we have shown that the transition between dipolar and multipolar
dynamos goes along with an increase of inertia at large scales. The
analysis of the force ratio at the dominant scale of convection has
revealed that the dipole–multipole transition is much more sensitive
to the ratio of inertia to Lorentz force than to the ratio of inertia to
Coriolis force. The transition from dipolar to multipolar dynamos
robustly happens when the ratio of inertial to magnetic forces at
the dominant lengthscale of convection exceeds 0.5, independently
of P%

T and the Ekman number. This confirms the results by Menu
et al. (2020) who argued that a strong Lorentz force prevents the
demise of the axial dipole, delaying its breakdown beyond RoL ≈
0.12 (their figs 3 and 4).

Providing a geophysical estimate of the ratio of inertial to mag-
netic forces at the dominant scale of convection in the Earth’s core
is not an easy task. Recent work by Schwaiger et al. (2021) sug-
gests that the dominant scale of convection should be that at which
the Lorentz force and the buoyancy force, both second-order actors
in the force balance, equilibrate. Extrapolation of this finding to
Earth’s core yields a scale of approximately 200 km, that corre-
sponds to spherical harmonic degree 40. This is far beyond what
can be constrained through the analysis of the geomagnetic secular
variation. Estimating the strength of both Lorentz and inertial forces
at that scale is hence out of reach.

We can however try to approximate the ratio of these two forces
by a simpler proxy, namely the ratio of the total kinetic energy Ek

to total magnetic energy Em. To examine the validity of this ap-
proximation, Fig. 15 shows fdip as a function of the ratio Ek/Em for
our numerical simulations complemented with the codensity sim-
ulations of Christensen (2010) that have Pr �= 1. We observe that
the dipolar fraction fdip exhibits a variation similar to that shown in
Fig. 14(b) for the actual force ratio. The transition between dipolar
and multipolar dynamos is hence adequately captured by the ratio
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Figure 15. Dipolarity parameter fdip as a function of the kinetic to magnetic energy ratio Ek/Em. The triangles correspond to those simulations by Christensen
(2010) with Pr �= 1. The horizontal dashed line marks the fdip = 0.5 limit between dipolar and multipolar dynamos. The vertical dashed line corresponds to
Ek/Em = 0.9. Vertical and horizontal black segments attached to the symbols correspond to one standard deviation about the time-averaged values for fdip and
Ek/Em, respectively.

Ek/Em (Kutzner & Christensen 2002). All but one of the numerical
dynamos of our data set become multipolar for Ek/Em > 0.9, inde-
pendently of E, P%

T , and the type of thermal boundary conditions
prescribed. Using the physical properties from Table 1 leads to the
following estimate for the Earth’s core

Ek

Em
= μ0ρo

u2
rms

B2
rms

≈ 10−4 − 10−3 � O(1).

Christensen (2010) and Wicht & Tilgner (2010) argued that convec-
tion in the Earth’s core should operate in the vicinity of the transition
between dipolar and multipolar dynamos in order to explain the re-
versals of the geomagnetic field. This statement, however, postulates
that reversals and the dipole breakdown are governed by the same
physical mechanism. The smallness of Ek/Em for Earth’s core indi-
cates that it should operate far from the dipole–multipole transition,
contrary to the numerical evidence accumulated up to now. The
palaeomagnetic record indicates that during a reversal or an excur-
sion, the intensity of the field is remarkably low, which suggests
that the strength of the geomagnetic field could decrease by about
an order of magnitude. This state of affairs admittedly brings the
ratio Ek/Em closer to unity, yet without reaching it. So it seems that
the occurrence of geomagnetic reversals is not directly related to
an increase of the relative amplitude of inertia. Other mechanisms
proposed to explain geomagnetic reversals rely on the interaction
of a limited number of magnetic modes, whose nonlinear evolu-
tion is further subject to random fluctuations (e.g. Schmitt et al.
2001; Pétrélis et al. 2009). In this useful conceptual framework,
the large-scale dynamics of Earth’s magnetic field is governed by
the induction equation alone. The origin of the fluctuations that
can potentially lead to a reversal of polarity is not explicited and

it remains to be found, but evidence from mean fields models by
Stefani et al. (2006) suggests that the likelihood of reversals in-
creases with the magnetic Reynolds number. In practice, these fluc-
tuations could very well occur in the vicinity of the convective length
scale, and have either an hydrodynamic, or a magnetic, or an hydro-
magnetic origin, depending on the process driving the instability.
Shedding light on the origin of these fluctuations constitutes an in-
teresting avenue for future numerical investigations of geomagnetic
reversals.
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A P P E N D I X A : T I M E S C H E M E

We provide in this appendix the matrices aI and aE and the vectors bI , bE , cE and cI of the two IMEX Runge–Kutta schemes that we resorted
to for this study. These vectors and matrices can conveniently be represented using Butcher tables (Butcher 1964).

BPR353: (Boscarino et al. 2013)
Implicit component

cI AI

bI =

0 0
1 1/2 1/2

2/3 5/18 −1/9 1/2
1 1/2 0 0 1/2
1 1/4 0 3/4 −1/2 1/2

1/4 0 3/4 −1/2 1/2

Explicit component

cE AE

bE =

0 0
1 1 0

2/3 4/9 2/9 0
1 1/4 0 3/4 0
1 1/4 0 3/4 0 0

1/4 0 3/4 0 0

PC2: (Jameson et al. 1981)
Implicit component

cI AI

bI =

0 0
1 1/2 1/2
1 1/2 0 1/2
1 1/2 0 0 1/2

1/2 0 0 1/2

Explicit component

cE AE

bE =

0 0
1 1 0
1 1/2 1/2 0
1 1/2 0 1/2 0

1/2 0 1/2 0

A P P E N D I X B : N U M E R I C A L S I M U L AT I O N S

Table A1. Control parameters and simulation diagnostics for the 79 numerical simulations computed for this study. Simulations computed using the finite
difference method in radius are marked with a superscript f (the others were computed using the Chebyshev collocation method in radius). Simulations with
hybrid boundary conditions are marked by an H in the first column. Simulations are sorted by growing Ekman number and then by growing magnetic Reynolds
number. The averaging and running times tavg and trun are expressed in units of magnetic diffusion time τη .

RaT Raξ (Nr, �max) Pm α tscheme tavg trun Rm RoL � fohm χ2 ζ fdip P%
T Nu Sh

( × 108) ( × 109) ( × 10−2)

E = 1 × 10−5, Pr = 0.3, Sc = 3
H 0.1 10 (97, 133) 1.0 0.935 BPR353 1.80 1.80 176 1.5 2.4 0.66 20.1 0.80 0.91 32 1.8 10.6

3.1 0 (97, 170) 1.0 0.935 BPR353 2.79 3.09 196 0.9 3.4 0.79 12.6 0.92 0.94 100 2.0 1.0
0 100 (193, 213) 1.0 0.975 BPR353 0.29 0.29 444 4.9 2.7 0.51 3.4 0.76 0.69 0 1.0 26.6

H 0.8 120 (257, 256) 1.0 0.990 BPR353 0.20 0.37 514 4.3 14.1 0.74 1.8 0.69 0.80 40 4.5 28.1
0 270 (320, 256)f 1.0 None BPR353 0.47 0.95 685 7.2 5.5 0.54 7.9 0.73 0.33 0 1.0 36.2
0 400 (380, 256)f 1.0 None BPR353 0.16 0.20 880 8.7 5.4 0.49 14.5 0.74 0.24 0 1.0 41.0

46 0 (109, 170) 1.0 0.940 BPR353 0.38 0.90 763 5.5 23.5 0.75 2.4 0.71 0.77 100 7.3 1.0
H 1.7 240 (321, 256) 1.0 0.992 BPR353 0.17 0.28 760 6.7 18.2 0.70 2.2 0.70 0.75 44 6.1 35.3
H 3.4 480 (384, 341)f 0.5 None BPR353 0.46 0.67 580 10.5 9.2 0.65 1.5 0.71 0.77 46 8.0 44.8 (∗)

100 0 (129, 213) 1.0 0.932 BPR353 0.26 1.29 1213 10 21.7 0.67 0.8 0.72 0.71 100 10.5 1.0
H 6.8 960 (380, 256)f 0.5 None BPR353 1.54 1.88 843 15.3 10.3 0.60 1.9 0.73 0.69 47 11.0 55.3 (x)

300 0 (129, 256) 0.5 0.962 BPR353 0.30 1.22 1235 17.4 12.4 0.58 19.2 0.65 0.23 100 16.7 1.0
H 13 1900 (408, 256)f 0.5 None PC2 0.16 0.24 1252 19.7 13.8 0.57 21.2 0.68 0.20 47 14.2 68.2 (∗∗)

600 0 (129, 256) 0.5 0.962 BPR353 0.22 0.43 1640 21.6 21.4 0.61 11.6 0.65 0.32 100 20.9 1.0
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Table A1. Continued
RaT Raξ (Nr, �max) Pm α tscheme tavg trun Rm RoL � fohm χ2 ζ fdip P%

T Nu Sh
( × 108) ( × 109) ( × 10−2)

E = 3 × 10−5, Pr = 0.3, Sc = 3
0 0.5 (49, 106) 2.0 0.779 CNAB2 1.37 1.55 113 1.2 0.4 0.30 52.3 0.89 0.86 0 1.0 4.0

H 0.015 0.5 (49, 133) 2.0 0.779 CNAB2 1.95 2.33 154 1.3 1.1 0.47 24.0 0.93 0.90 44 1.3 4.6
H 0.1 1.1 (49, 133) 1.0 0.779 CNAB2 2.15 4.39 98 2 0.4 0.31 36.5 0.88 0.88 21 1.4 6.3
H 0.1 1.1 (129, 213) 2.0 0.960 BPR353 0.15 3.11 178 1.7 1.6 0.48 10.7 0.85 0.86 22 1.4 6.4

0.1 1.4 (129, 170) 2.0 0.960 BPR353 0.35 1.79 193 1.8 2.0 0.51 13.4 0.83 0.89 19 1.5 7.2
0 2 (65, 133) 2.0 0.848 CNAB2 1.81 2.26 204 2.2 1.6 0.43 8.5 0.79 0.86 0 1.0 8.2

0.5 0 (49, 133) 2.0 0.779 CNAB2 1.62 1.71 255 1 6.6 0.68 8.9 0.96 0.88 100 1.7 1.0
0 4 (97, 133) 2.0 0.975 CNAB2 1.24 1.42 288 3.3 2.0 0.38 2.3 0.78 0.60 0 1.0 11.2

H 0.2 4 (97, 133) 2.0 0.930 CNAB2 1.04 1.32 307 2.9 4.4 0.54 3.4 0.78 0.81 20 2.0 11.5
1 0 (49, 106) 1.0 0.779 CNAB2 5.96 6.41 180 1.9 4.1 0.69 10.8 0.92 0.93 100 2.1 1.0
1 0 (49, 106) 2.0 0.864 CNAB2 0.79 1.18 281 1.4 20.6 0.81 3.4 0.81 0.78 100 2.4 1.0
0 8 (97, 133) 2.0 0.975 CNAB2 1.91 5.45 385 4.6 3 0.41 2.6 0.77 0.67 0 1.0 14.8

0.1 1.1 (97, 133) 1.0 0.935 CNAB2 1.30 1.77 164 2.0 9.2 0.79 5.0 0.77 0.80 86 2.2 9.2
H 0.5 5.5 (129, 170) 2.0 0.960 CNAB2 1.21 1.21 373 3.3 8.4 0.62 2.3 0.76 0.81 35 2.4 13.4

0.1 1.1 (97, 133) 2.0 0.935 CNAB2 1.61 1.89 317 1.8 27.8 0.79 5.9 0.75 0.65 87 2.3 8.9
0.05 5.5 (65, 133) 2.0 0.864 CNAB2 1.63 1.81 342 3 12.8 0.69 2.2 0.72 0.80 39 2.2 12.9

1 11 (97, 133) 1.0 0.935 CNAB2 1.10 1.30 297 5.7 3.5 0.51 4.0 0.78 0.82 39 3.1 17.9
1 11 (145, 170) 2.0 0.960 CNAB2 1.08 1.23 541 4.9 11.4 0.59 1.5 0.75 0.76 39 3.2 17.4
0 20 (97, 133) 2.0 0.975 CNAB2 1.04 1.06 581 6.7 5.5 0.43 5.6 0.76 0.44 0 1.0 20.0

3.7 0 (49, 133) 1.0 0.779 CNAB2 1.31 1.41 328 5 12.4 0.71 2.8 0.74 0.84 100 4.0 1.0
3.7 0 (81, 133) 2.0 0.900 CNAB2 0.88 1.02 613 4.4 36.7 0.72 3.7 0.73 0.70 100 4.0 1.0
1.7 20 (145, 170) 2.0 0.970 CNAB2 0.83 1.08 738 7.1 12.5 0.54 1.7 0.76 0.65 40 4.0 21.3
5 0 (97, 133) 2.0 0.864 CNAB2 0.89 1.06 726 5.7 38.6 0.69 2.8 0.72 0.71 100 4.6 1.0

2.3 27 (129, 133) 2.0 0.960 CNAB2 1.07 1.07 857 8.3 14.7 0.53 1.7 0.76 0.63 41 4.6 23.3
0.2 30 (109, 256) 2.0 0.948 BPR353 1.02 1.10 837 8.4 20 0.57 1.5 0.73 0.70 40 4.0 23.0

H 0.4 8 (97, 170) 2.0 0.962 BPR353 0.95 1.09 755 6.9 42.4 0.68 4.2 0.69 0.63 84 4.2 17.3
3 35 (129, 170) 2.0 0.962 CNAB2 1.13 1.13 976 9.5 16.4 0.52 1.8 0.76 0.59 42 5.2 25.2

H 0.3 35 (129, 213) 2.0 0.962 BPR353 0.43 0.51 949 9.7 24.5 0.57 1.6 0.73 0.67 48 4.6 24.2
0 100 (193, 213) 2.0 0.970 BPR353 0.13 0.18 1378 12.5 12.4 0.40 26.0 0.68 0.16 0 1.0 31.5

12 0 (129, 170) 2.0 0.960 CNAB2 0.94 1.02 1237 11 37.5 0.59 2.5 0.73 0.66 100 6.8 1.0
7 70 (193, 170) 2.0 0.983 CNAB2 0.87 1.22 1579 13.9 19 0.44 27.2 0.69 0.15 47 7.2 31.1
9 100 (193, 256) 2.0 0.983 PC2 0.10 0.30 1765 14.8 27 0.49 12.2 0.72 0.27 45 8.2 33.1

H 0.9 100 (193, 213) 2.0 0.983 PC2 0.12 0.16 1790 17.4 26.5 0.47 26.3 0.71 0.15 51 7.3 32.6
40 0 (97, 213) 2.0 0.960 CNAB2 0.34 0.38 2521 19.5 50 0.50 22.2 0.71 0.17 100 11.0 1.0
68 0 (129, 170) 1.0 0.960 BPR353 0.59 0.59 1671 23.5 33 0.53 7.4 0.71 0.26 100 13.0 1.0

E = 1 × 10−4, Pr = 0.3, Sc = 3
0.013 0.045 (49, 85) 5.0 None CNAB2 1.09 1.78 175 1.1 1.6 0.32 10.1 0.98 0.82 40 1.2 2.8

0 0.1 (65, 106) 5.0 None CNAB2 1.17 1.31 161 1.3 3.2 0.47 4.9 0.81 0.88 0 1.0 3.8
0.02 0.09 (49, 85) 5.0 None CNAB2 2.54 7.73 180 1.2 7.2 0.62 4.3 0.86 0.86 36 1.3 4.0
0.1 0 (65, 106) 5.0 None CNAB2 1.86 2.16 363 1.3 34.7 0.67 11.9 0.90 0.63 100 1.7 1.0
0 0.5 (49, 85) 5.0 None CNAB2 1.65 1.99 378 3.9 4 0.32 1.8 0.79 0.58 0 1.0 7.6

0.047 0.33 (65, 85) 5.0 None BPR353 0.50 3.64 345 2.6 14.8 0.58 2.8 0.78 0.75 37 1.6 6.9
0.08 0.19 (65, 106) 5.0 None CNAB2 1.10 1.18 334 1.8 31 0.69 3.8 0.81 0.71 67 1.7 6.0

0 0.7 (49, 85) 5.0 None CNAB2 2.02 2.43 438 4.7 4.8 0.31 2.8 0.78 0.52 0 1.0 8.6
0.07 0.5 (97, 106) 5.0 None BPR353 0.35 1.70 438 3.4 18.9 0.56 3.0 0.78 0.71 40 1.8 8.1

0 1 (65, 106) 5.0 None CNAB2 1.06 1.33 522 5.6 5.5 0.31 8.1 0.77 0.35 0 1.0 9.9
0.14 0.34 (65, 106) 5.0 None CNAB2 1.08 1.09 482 3.1 38.6 0.64 3.8 0.78 0.68 70 2.0 7.7
0.19 0 (65, 106) 5.0 None CNAB2 1.14 1.36 469 2.3 60.1 0.69 5.0 0.80 0.64 100 2.0 1.0
0.12 0.52 (81, 106) 5.0 None BPR353 0.89 2.24 516 3.8 27.1 0.58 3.3 0.78 0.69 56 2.0 8.6
0.027 1.1 (65, 106) 5.0 None CNAB2 2.11 2.44 580 5.9 7.7 0.34 6.3 0.78 0.36 10 1.9 10.4
0.027 1.1 (65, 106) 5.0 None CNAB2 1.14 1.30 570 5.7 8.8 0.37 2.9 0.79 0.54 11 1.9 10.3
0.1 0.69 (65, 106) 5.0 None CNAB2 1.12 1.45 533 4.2 22.8 0.55 3.4 0.78 0.69 44 2.0 9.1

0.049 1 (65, 106) 5.0 None CNAB2 1.05 1.16 573 5.4 11.1 0.41 2.5 0.79 0.60 20 1.9 10.1
0.049 1 (65, 133) 5.0 None BPR353 0.13 1.38 566 5.4 11.2 0.42 2.2 0.78 0.61 20 1.9 10.1

0 1.4 (65, 106) 5.0 None CNAB2 1.32 1.61 615 6.5 7 0.31 16.6 0.75 0.23 0 1.0 11.0
0.14 1 (65, 106) 3.0 None BPR353 0.33 2.10 412 5.7 11.8 0.50 2.5 0.79 0.74 45 2.3 10.6
0.14 1 (81, 106) 5.0 None BPR353 0.37 1.72 655 5.5 24.7 0.51 3.3 0.77 0.66 46 2.3 10.5
0.14 1 (81, 133) 7.0 0.909 BPR353 0.42 2.36 896 5.2 40.6 0.52 4.3 0.77 0.62 46 2.3 10.4

0 2 (97, 170) 5.0 0.935 BPR353 0.88 2.98 750 7.2 8.7 0.32 39.4 0.72 0.10 0 1.0 12.4
0.3 0 (61, 170) 5.0 None CNAB2 0.16 1.24 616 3.6 72.6 0.66 4.7 0.76 0.62 100 2.4 1.0

0.21 1.5 (81, 133) 5.0 0.909 BPR353 0.32 2.74 813 6.8 32 0.51 3.9 0.77 0.63 49 2.7 12.0
0.3 3 (97, 170) 5.0 0.935 BPR353 0.28 2.13 1144 9.6 30.2 0.44 6.8 0.79 0.44 43 3.3 14.6
0.9 0 (81, 170) 5.0 0.909 BPR353 0.34 2.08 1244 9.8 74.9 0.54 6.9 0.74 0.56 100 3.8 1.0
0.4 6 (97, 213) 5.0 0.935 BPR353 0.29 1.85 1576 12.8 30.6 0.38 42.7 0.72 0.09 35 4.0 17.4
5 0 (73, 213) 5.0 0.889 BPR353 0.33 1.49 3363 23.5 130 0.39 17.7 0.75 0.25 100 7.4 1.0

20 0 (129, 170) 5.0 0.960 CNAB2 0.12 0.39 6160 45.1 297 0.36 21.9 0.76 0.21 100 10.5 1.0
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A P P E N D I X C : S I M U L AT I O N x

In this appendix we provide in Fig. A1 the detailed time evolution of the dipolar fraction fdip and of the magnetic to kinetic energy ratio Em/Ek

of the anomalous simulation that appears for instance in the top-right quadrant of Figs 14(b) and 15. This simulation is marked with a (x) in
Table A1.

Time (τη)

Figure A1. Time evolution of the dipolar fraction fdip and of the magnetic to kinetic energy ratio Em/Ek for the simulation (x) of Table A1. The horizontal
dashed line corresponds to the boundary between dipole-dominated and multipolar dynamos (fdip = 0.5). Time is scaled by the magnetic diffusion time.
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