
HAL Id: hal-03423962
https://hal.science/hal-03423962

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-core processor: Stepping inside the box
Philippe Cuenot, Kevin Delmas, Claire Pagetti

To cite this version:
Philippe Cuenot, Kevin Delmas, Claire Pagetti. Multi-core processor: Stepping inside the box. ES-
REL 2021, Sep 2021, Angers, France. �hal-03423962�

https://hal.science/hal-03423962
https://hal.archives-ouvertes.fr


Multi-core processor: Stepping inside the box

Philippe Cuenot

IRT St-xupry,Toulouse, France. E-mail: philippe.cuenot@irt-saintexupery.com

Kevin Delmas

DTIS, ONERA, France. E-mail: kevin.delmas@onera.fr

Claire Pagetti

DTIS, ONERA, France. E-mail: claire.pagetti@onera.fr

The last decade has seen the emergence of multi-core and many-core processors replacing historical uni-processors
in most of the applicative domains. There is no doubt that the next generation of aircraft will rely on these
technologies raising major issues especially with regard to safety assessment. Indeed, currently, a processor is
considered as a black-box component where any single internal failure leads to the loss of all executed software.
Due to the numerous resources provided by such platform, position papers like the CAST-32A promote a finer
analysis of the safety impact of internal component failures. Hence there is a necessity to open the box and see
such a processor as a sub-system. We introduce a formal modeling framework capturing the main characteristics of
software/hardware failure propagation. This framework is applied on a simplified UAV control use-case.

Keywords: Dependability, Safety, Multi-core processor, MBSA.

1. Introduction

The design of safety critical systems often relies
on the respect of norms and standards. In aero-
nautics for instance, the ARP (Aerospace Rec-
ommended Practice) 4754 SAE (2010) defines a
safety process and the expected relations with the
development process. Even if those standards may
differ from one applicative domain to another,
they share a common approach. This approach
basically considers that a system provides func-
tions that are implemented as a set of items rang-
ing from software, hardware, sensors to hydraulic
components. Thus the designer must identify the
possible failures of these components and design
safety mechanisms ensuring that functions are
maintained even in the presence of failures.

In particular, for computer-based systems, the
safety experts must analyze the effect of the fail-
ures of the processor and its peripherals on the
functions. The current approach sees a proces-
sor as an atomic component that can fail. Hence
any internal failure is considered as impacting the
whole processor and all functions implemented by
the hosted software. Such an approach is usually
performed on uni-processor since most of the time
an internal failure indeed leads to the complete
failure and only few functions are allocated. How-
ever, with the emergence of complex multi- and
many-core processors, dedicated position papers
like the CAST-32A Certification Authorities Soft-
ware Team (2016) promote the use of finer analy-

ses, focusing on the safety impacts of the failures
of the these internal components. For instance, if
a core has failed, the others can still continue their
operations and not taking this into account would
degrade the opportunities offered by those highly
parallelizable components.

To address this issue, the paper introduces a
formal modeling and analysis framework of a
multi-core processor enabling the user to automate
the safety analysis of internal failures. The paper
is organized as follows: the section 2 provides
the state-of-the-art failure mode and propagation
identification methods as well as the main fami-
lies of fault-tolerance mechanisms used to handle
the internal failures of multi-core processors. The
necessity to open the box and see the multi-core
processor as a sub-system is exposed in the section
3. The section 4 proposes a generic and modular
framework to model and analyze any multi-core.
Eventually, the section 5 illustrates the framework
on a UAV case study.

2. Related-work

As identified by the CAST-32A position paper
Certification Authorities Software Team (2016),
demonstrating that the safety consequences of
the internal failures of a multi-core processor are
contained within the equipment (so-called failure
containment) is a major issue. Thus the authors
of Certification Authorities Software Team (2016)
propose to analyze the interactions between inter-

1



 2

nal components.

2.1. Failure modes identification

The identification of the failure modes of the in-
ternal components can be classically performed
by a Failure Mode Effect Analysis (FMEA). This
analysis identifies the effects of the failure modes
of the low-level components (for instance listed in
Rebaudengo and Reorda (1999)) on higher level
components or systems. Up to now, there exist
very few FMEA identifying the failure modes for
a given platform. It can be explained by the in-
depth architecture knowledge needed to perform
an FMEA and by the reluctance of chip makers to
(legally) commit themselves to provide a detailed
FMEA.

Methods like Villalta et al. (2018) propose to
emulate a component failure and observe the re-
action of the platform. Nevertheless, the quality
of the results highly depends on the capacity to
ensure the completeness of such approach.

In this paper, the identification is based on the
approach proposed by the authors of Paun et al.
(2013); Mutuel et al. (2017) that is a deduction of
abstract failure modes from the functional services
i.e a failure mode encodes the way a component
fails to provide some services.

2.2. Failure propagation

Most of approaches like Brindejonc and Roger
(2014); Jean et al. (2012) identify the data-paths
where collisions may occur, called interferences,
and analyze their safety consequences. The au-
thors of Brindejonc and Roger (2014) base their
identification on a brute-force enumeration of (ini-
tiator, target) combinations; whereas the authors
of Bieber et al. (2018) use a more compact enu-
meration based on clustered interferences called
interference classes. Our framework is clearly in-
spired by the notion of interference but adapts it
for failure propagation analysis.

Standard formalisms like fault trees or Markov
chains described in Villemeur (1992) could
be used, but Model-Based Safety Assessment
(MBSA) presented in Bozzano et al. (2003) has
emerged as an alternative to these formalisms
since it offers better modeling opportunities (see
Dassault Falcon 7X Rauzy et al. (2007) for in-
stance). ALTARICA introduced by Arnold et al.
(1999); Prosvirnova (2014) is one of the most
famous MBSA language whose semantics defined
in Rauzy (2002) is founded on the mode au-
tomata. Numerous industrial-used mod- elers and
analyzers (like Dassault (2014) (2014)) are based
on ALTARICA. These are the reason why we
chose AltaRica and mode automata to develop our
framework.

2.3. Fault-tolerance mechanisms

Eventually, the designer must integrate safety
mechanisms to ensure fault-tolerance to face in-
ternal hardware failures. Multi-core processors are
composed of several complex components, among
which the hardware memory protection the so-
called Memory Management Units (MMU) and
Peripheral Access Management Units (PAMU).
As identified by Paun et al. (2013), MMUs and
PAMUs failures may have a huge impact on the
functions and as such must be carefully modeled
and analyzed. That is why the modeling of MMUs
and PAMUs was closely addressed both in the
framework formalization and in the use-case.

Most of the failure containment approaches rely
on an executive layer i.e a piece of software man-
aging the applications access to the multi-core
processor resources. A popular example of this
strategy is the Integrated Modular Avionic plat-
forms where a processor hosts several partitions
(sets of software) for which the executive layer
must prevent any interference. The framework
integrates these segregation insurances as mod-
eling assumptions (e.g. simultaneous transactions
on the interconnect has no safety effects).

Approaches like Esposito et al. (2017); Es-
posito and Violante (2017) use the massive re-
source of the multi-core processor to implement
software-based fault-tolerance patterns. These
patterns do not impact the way failures spread
in the multi-core processor but enhance the soft-
ware resilience to platform service failures. In our
framework, such software resilience is handled
through dependency modeling.

3. General overview of the approach

Given a system and some failure conditions (com-
binations of functional failures leading to poten-
tial severe outcomes), the safety experts must
verify that an architecture – i.e an interconnec-
tion of physical components (e.g. processors, sen-
sors, actuators) and software components (e.g.
application, hypervisor) that ensure the system’s
functions – fulfills the safety objectives. This is
achieved as follows: 1) identify the failure modes
of each component, 2) model the failure propa-
gation within the system, 3) and assess the safety
objectives.

The usual approaches to analyze the safety im-
pacts of hardware failures are depicted by the
figure 1. Each function is associated with the
physical resources (software and hardware items)
that implement it. This association encodes the
dependencies, i.e the minimal sets of items needed
by the function to be performed properly. In par-
ticular, a uni-processor is represented as one hard-
ware item and is considered as a dependency of
a function if some software implementing it is
executed on the uni-processor.

As promoted by Certification Authorities Soft-



3

dependencies

FunctioniFunctioniFunctioni

Hardware
items

Software
items

Fig. 1. Current
practice

dependencies

FunctioniFunctioniFunctioni

Hardware
items

Software
items

Software allocationSoftware allocationSoftware allocation

Processor item model

Fig. 2. Adapted
practice

ware Team (2016), we propose to further refine the
model of a processor with the approach of figure
2 where the processor is modeled as a dynamic
system. This system is composed of several ele-
ments and software dependencies with the proces-
sor item are expressed via an allocation.

3.1. Service-based modeling approach

We consider the first level design as described
in most processors data-sheets, such as the NXP
T1042 Freescale (2016) design of the figure
3, where atomic components are the cores, the
caches, the interconnect and peripherals.

In addition to the hardware components, we
also consider that the platform provides high level
services to the software. Part of those services can
be implemented with an execution layer. In any
case, the platform is configured in a certain way
and this configuration provides an allocation i.e a
description of how the software items are mapped
on the processor and how the services are used
by the software. We abstract the platform as a
provider of four generic services, similar to those
identified in Mutuel et al. (2017):

• execute: executes a piece of software on
some core. For instance, in the figure 3,
Core4 offers this service to any software
executing on it;

• load: retrieves some data from a location
and transfer it to some core. For instance
in figure 3, Core1 asks to load a data
stored in Bank1;

• store: writes some data to a given loca-
tion from some core. For instance, Core3
asks to store a value in the Platform
Cache.

• copy: transfers data from one location to
another.

DDR Memory

Core1 Core2 Core3 Core4

MMU1 MMU2 MMU3 MMU4

Cache1 Cache2 Cache3 Cache4

Interconnect

Bank1 Bank2 Bank3

DDR Controller Platform
Cache

PAMU1

D
M

A
1

P
C

Ie
1

P
C

Ie
2

PAMU2

D
M

A
2

E
th

er
n

et

read store execute

!

!

!

!

Fig. 3. Abstract representation of the NXP T1042

Based on these services, the authors of Brinde-
jonc and Roger (2014); Bieber et al. (2018) have
also distinguished different kinds of components:

• Initiators: smart initiators execute soft-
ware and initiate store/load transactions
(i.e cores). Non smart initiators initiate
copy transactions (e.g. DMA).

• Targets process store, load and copy
transactions (e.g. Bank, PCIe).

• Transporters route store, load and copy
transactions (e.g. interconnect, MMU).

We will consider in the remainder of this paper
that a copy can be seen as series of loads and
stores. Note that an execute does not interact with
any other resource than the local core; whereas
load/store generate transactions linking initiators
to targets.

Definition 3.1 (Transaction). A transaction
starts from an initiator and follows pre-defined
path(s). A load transaction follows a path from the
initiator to the target and the data comes back to
the initiator. We assume for simplifying the model
and due to lack of space that the paths used for
the request and the data are the same. A store
transaction follows a path from the initiator to the
target (for the request and the data).

Example 3.1. The load of Core1 follows the path
Core1 → MMU1 → Cache1 → Interconnect →
DDR Controller → Bank1.

3.2. Failure modes of atomic components
and services

As stated in the section 2, failure modes are de-
rived from pragmatic reasoning. In the remainder
of the paper we consider: 1) err: the component



4

Family FM Comments Concrete FM

Core err mis-execution and corruption of
load/store transactions

Register corruption by SEU

lost no software execution OPCODE corruption

Memory err load/store a corrupted data Memory area corruption
lost no load/store service DDR controller stalled

Interconnect err corruption of the transactions Internal queue corruption
lost transactions are not dispatched Internal queue overflow

Fig. 4. Atomic component failure modes

does not provide a proper service, 2) lost: the
component does not provide the service.

These abstract failure modes and the link with
concrete failure modes (partially extracted from
ESA-ESTEC Requirements & Standards Division
(2009)) are summarized in the table 4.

Functions are affected by the load/store trans-
actions failures, which result from atomic compo-
nent failures. For instance in the figure 3, if Core1
asks to load a data from Bank1 and if MMU1 is
lost, the load service to Bank1 is no more pro-
vided to Core1. Similarly, if Core3 asks to store a
value in the Platform Cache and if Cache3 is err
then an erroneous value is stored in the Platform
Cache, corrupting its content. The table 5 details
the service failure modes.

4. Modeling framework

The framework is a library of reusable compo-
nents formalized with the mode automata Rauzy
(2002). Such a formalization enables us to: 1) be
generic and formal, 2) implement the following
definitions as a library of components coded with
ALTARICA, 3) use the existing tools to perform
automatic safety assessments.

4.1. Failure modes and interface

The dynamic dysfunctional behavior of each
atomic component (initiator, target and trans-
porter) is encoded as a mode automaton. To en-
code the failure propagation, each component in-
put (resp. output) represents the current status of
a transaction. The failure modes are given as a set
F including ok.

Example 4.1. The abstract failure modes of sec-
tion 3.2 are Fole = {ok , err , lost}

Type FM Comments

store err erroneous value or wrong destination store
lost no value stored

load err erroneous data load
lost no data load

execute err mis-execution of the software
lost no software execution

Fig. 5. Services failures

Definition 4.1 (Transactions). Let T be the set
of targets, then a (load/store) transaction is a par-
tial function r : T → F that gives the observed
service failure modes for a subset of targets.

In the sequel, RF denotes the set of partial
functions T → F . Let f : X → Y be a partial
function, expr i be the expression producing some
y ∈ Y when x satisfies cond i then f is defined as
follows:

f(x) =

{
expr1 if cond1

· · ·
exprn if condn

Example 4.2. For the T1042 of figure 3 we have
T = {Bank1(B1), Bank2(B2), Bank3(B3), Plat-
form Cache(PC), PCIe1, PCIe2, Ethernet}.

Let us consider the load of a data from Bank1
by Core1. The transaction follows the path Core1
→ MMU1 → Cache1 → Interconnect → DDR
Controller → Bank1. If all atomic components
are ok, the transaction is r(x) = ok if x = B1.
However if, as shown by the figure 6, the MMU1
fails, no value is available, hence the transaction
is r(x) = lost if x = B1

The store transaction, when Core3 asks to store
a value in the Platform Cache and when every-
thing is ok, is r(x) = ok if x = PC. If the
Interconnect is erroneous, it becomes r(x) =
err if x = PC. By doing so, the atomic compo-
nent Platform Cache switches its internal failure
mode to err. The corruption of Platform Cache is

Core1 (ok)

loadO: Bank1 → lost

loadI: Bank1 → lost

MMU1 (lost)

loadO: Bank1 → lost

loadI: Bank1 → ok

Bank1 (ok)

loadO: Bank1 → ok

Fig. 6. Failed load transactions



5

Initiator

component
state (s)

impact
function (γ)

impact
function (γ)

loadI: RF

loadO:RF exeO: F

storeO: RF

storeI: RF

Fig. 7. Initiator component

innocuous until a core performs a load resulting
in an erroneous data.

4.2. Initiator

Due to lack of space, we only show the case of
a smart initiator (see figure 7). The inputs and
outputs associated to the mode automaton are:
1) exeO provides the failure mode of the initia-
tor; 2) loadI provides the result of all possible
load transactions seen by the initiator; 3) loadO
is the resulting load transactions provided to the
software; 4) storeI provides the list of the targets
the software wishes to write to; 5) storeO is store
transactions sent by the initiator.

As stated before, each atomic component is
modeled with a mode automaton Rauzy (2002)
introduced by the definition4.2.

Definition 4.2 (Mode automaton).
A mode automaton is a 8-uplet M = 〈E , I,O,
S, sI , δ, σ, dom〉 where :

• E is a finite set of events;
• I (resp. O ) is the set of input (resp. output)

identifiers;
• S is the finite set of states and sI ∈ S is the

initial state;
• dom is the domain function associating to

each input and output its possible values. Let
X ⊂ I ∪ O, we introduce dom(X) =∏

x∈X dom(x) the Cartesian product of the
domains of X . A valuation V ∈ dom(X)
associates a value to each element in X and
we denote V [x] the value of x;

• δ is a partial function called transition func-
tion dom(I) × S × E → S giving the next
state reached from a given state and a given
valuation of inputs when an event occurs;

• σ is a total function called output function
dom(I) × S → dom(O) giving the valua-
tion of output according to a given state and
valuation of inputs.

Definition 4.3 (Initiator). The initiator is mod-
eled with a mode automaton where I, O, dom
and σ are defined as shown by the figure 7; E =
{em}m∈F where em is the event associated to the
failure mode m; S = F and the initial state is
sI = ok ; γ is an impact function γ : RF × F →
RF that encodes the effect of the initiator’s failure

component
state (s)

impact
function (γ)

store: RFload: RF

Fig. 8. Target component

mode on the load/store services; F , δ and γ must
be defined by the user.

Example 4.3 (Core). Let us consider a core with
the abstract failure mode Fole and the following
transition δ and impact γ functions:

δ(V, s, em) =

{
lost if s �= lost ∧m = lost
err if s = ok ∧m = err

γ(r, s) =

{
r3 if s = err
r2 if s = lost
r otherwise

Let V [storeI ] = r and r(x) = ok if x =
PC, then according to the definition of the core:
1) If the core is ok, then V [storeO ] = r. 2) If
the core is lost, then V [storeO ] = r2 where
r2(x) = lost if x = PC. 3) If the core is err, then
V [storeO ] = r3 where r3(x) = err if x = PC.

4.3. Target

The target is the final destination of a store and the
first element of a load. A target can be affected by
the reception of an erroneous store, thus an instan-
taneous event ε is needed to model the change of
the target’s failure mode.

Definition 4.4 (Target). A target component t ∈
T is modeled as a mode automaton where I, O,
dom are defined as shown by the figure 8; E =
{em}m∈F ∪ {ε}; S = F and the initial state is
sI = ok ; σ(V, s) = load 
→ r where r(x) =
s if x = t; F and δ must be defined by the user.

Example 4.4 (Memory). Let B be a memory
bank with the abstract failure mode Fole, let r
be the incoming store transaction V [store]. Let
us suppose that an erroneous store modifies the
state s of B from ok to err and conversely that a
correct store restores the state from err to ok . The
transition function δ is:

δ(V, s, e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

err if e = eerr ∧ s = ok
lost if e = elost ∧ s �= lost
err if e = ε ∧ s = ok

∧r(B) = err
ok if e = ε ∧ s = err

∧r(B) = ok

4.4. Transporter

The intermediate components, called transporters,
route the service transactions. Their impact is



6

component
state (s)

impact
function(γ)

impact
function(γ)

merge

merge

filter

filter

/

loadI: Rn
F

loadO: RF

storeO: RF

/

storeI: Rm
F
m

n

Fig. 9. Transport component

threefold: 1) change the failure mode of a trans-
action due to a local failure mode; 2) merge the
received transactions; 3) filter the received trans-
actions to ensure partitioning.

The transporter’s interface (see figure 9) is com-
posed of 1) loadI is a set of load transactions;
2) loadO is the result of the merging and filtering
of loadI; 3) storeI is a set of store transactions;
4) storeO is the result of the merging and filtering
of storeI .

Definition 4.5 (Transporter). A transporter is
modeled with a mode automaton where I, O,
dom and σ are defined as shown by the figure 9;
E = {em}m∈F where em is the event associated
to the failure mode m; S = F and the initial state
is sI = ok ; transaction merging denoted merge ,
filtering denoted filter and γ are user defined.

Example 4.5 (Interconnect). Let N be an inter-
connect with the abstract failure mode Fole that
receives store transactions from two sources and
load transactions from two targets. Then, the mode
automaton of N is the one of the definition 4.5
where δ and γ are defined in example 4.3; filter
accepts all targets; merge takes for each target
the worst mode among the possible ones accord-
ing to the order < such that ok < lost < err . The
definition of merge and filter are:

filter(r) = r
merge<(f1, f2) = (x → max<(f1(x), f2(x)))

4.5. Platform modeling

Since each atomic component is a mode automa-
ton, the platform itself is the parallel composition
(denoted ‖) and the connection of those com-
ponents. The definitions of these operations can
be found in Rauzy (2002). By default the failure
events of each component are considered as inde-
pendent. Such an assumption may not be justified
for some of the internal components, for instance
due to their location on the chip. That is why com-
mon cause failure events can be defined to model
such dependencies. Thus the user of the modeling

DDR Controller

Bank1 Bank2 Bank3

loadO storeI

loadI1 loadI2 loadI3storeO

Fig. 10. DDR model

framework should motivate the independence as-
sumptions to ensure the representativeness of the
analysis results.

Example 4.6 (DDR Memory). Let us illustrate
the case of DDR Memory
composed of three banks. Its mode automaton
is DDR = B1‖B2‖B3‖DDRController depicted
on the figure 10 where the connections are the
arrows between atomic components; B1, B2, B3
are three targets as described in the example 4.4
and DDRController is a transporter derived from
the example 4.5.

5. Experiments

The use case is a quad-copter evolving within
a predefined zone. The UAV is composed of
two functions: 1) FDIR computing & process-
ing safety actions i.e cut the power of motors;
2) TRAJECTORYCONTROL controlling the drone
trajectory while remaining in the predefined zone.

The failure condition FC1 defined below could
lead to a potential in-flight or on-ground collision.
According to the CAST-32A, the safety effects of
the internal failures of the multi-core processor
must be contained within its equipment. So we
must demonstrate that no single internal failure of
the multi-core processor leads to FC1 and that the
failure is handled within the equipment.

FC1 : TRAJECTORYCONTROL.fail ∧ FDIR.fail

5.1. Platform modelling

The designed physical architecture, given by
the figure 11, is composed of the following
items: TRAJECTORYCONTROL is implemented
by SNAV ; FDIR is implemented by three soft-
ware: SMON monitoring drone’s state, SREC
computing the safety actions to perform and SFTS
emitting a signal to the switch to prevent cut-off
when not asked by SREC ; the Motors (piloted
by PCIe1); the Sensors (acquired by PCIe1); and
an equipment E containing the Switch (piloted
by PCIe2) cutting off the power if no signal is



7

Sensors MCP Motors

Switch

Hardware items

SNAVSFTSSMONSREC

Software items

Fig. 11. RPAS Physical architecture

Software load store execute

SFTS Platform Cache Platform Cache Core1

SMON Bank3 Bank3 Core2

SNAV Bank1 Bank2 Core3

SREC Bank3 Platform Cache Core4

Fig. 12. Service usage

received from SFTS and the NXP T1042 used to
execute software.

The dependencies between functions and phys-
ical items are as follows: FDIR needs that sensors
and switch work properly and that SFTS ,SMON
and SREC are not erroneous. TRAJECTORYCON-
TROL relies on SNAV , sensors and motors.

The dependencies between software and ser-
vices are shown in the table 12. SFTS load cut-off
order from the Platform Cache (called PC). Let
us assume that SFTS is lost if the execute service
is lost. SFTS is erroneous (unintended signal to
the switch) if the load value of platform cache is
corrupted or if the execute service is erroneous.
Concerning SNAV , SMON and SREC , if the load
service is erroneous or if the execute service is
erroneous then the software stores an erroneous
data. If the load or execute service is lost then the
software does not store any data.

To provide some space partitioning, the targets
reachable by each MMU/PAMU are only those
the hosted software is expected to access. PCIe
devices are only accessible through DMA transfer,
so DMA1 copies PCIe1 to B1 and B2, B2 to
PCIe1, and PC to PCIe2.

We assume that: 1) the sensors, switch and mo-
tors have been selected for their high availability
and integrity thus their failures are not consid-
ered in the assessment, 2) PAMU1, Interconnect,
Bank1, Bank2, Bank3, PCIe1, PCIe2, Platform
Cache, DMA1 are protected by error correction
code, so we consider only loss failures, but they
can still be corrupted by an erroneous store. 3) the
other caches, the Ethernet controller, DMA2 and
PAMU2 are deactivated.

5.2. Safety objective assessment

Thanks to CECILIA-OCAS Dassault (2014), we
computed automatically the smallest combina-
tions of physical failures (so-called minimal cut-
sets) leading to FC1. If the multi-core processor
is considered as a black box, then a fail-erroneous
triggers both an erroneous trajectory and switch
management (since monitoring software are erro-
neous), so the system does not fulfill the failure
containment requirement. But when considering
the refined model, the results (table 13) show that
single internal failures of the multi-core processor
do not trigger FC1. Moreover, the safety actions
are performed by the switch, so the safety effect of
any internal failure is contained within the equip-
ment E. It may be surprising since some internal
components, like the Interconnect, are involved in
the processing of all load/store services. So let
us explain the absence of single point of failure.
To trigger the FC1, TRAJECTORYCONTROL and
FDIR must fail, so 1) one of the services re-
quested by SNAV must fail; 2) one of the services
requested by SFTS , SMON or SREC must fail
erroneous. Note that a loss of SMON , SREC or
SFTS does not lead to FC1 since the switch does
not receive signal from SFTS and cuts off motors.

The analyzer proved that a single failure among
the considered internal failures cannot trigger both
a failure (lost or erroneous) of the services re-
quested by SNAV and a fail-erroneous of the ser-
vices requested by SFTS , SMON or SREC . This
results from 1) the resource partitioning between
SNAV and the other software (memories, cores,
MMU), 2) the fault containment ensured by MMU
and PAMU, 3) the loss-tolerance of FDIR, 4) the
the absence of fail-erroneous for resource shared
by all software (interconnect, DMA, . . . ).

Minimal cutsets Effect

SNAV SFTS SREC SMON

{C1.err, B1.lost} lost err none none
{C1.err, MMU3.lost}
{C1.err, B2.lost}
{C1.err, C3.lost}
{C1.err, PCIe1.lost}
{C4.err, B1.lost} lost err err none
{C4.err, MMU3.lost}
{C4.err, B2.lost}
{C4.err, C3.lost}
{C4.err, PCIe1.lost}
{C2.err, B1.lost} lost err err err
{C2.err, MMU3.lost}
{C2.err, B2.lost}
{C2.err, C3.lost}
{C2.err, PCIe1.lost}
{C1.err, C3.err} err err none none

{C3.err, C4.err} err err err none

{C2.err, C3.err} err err err err

Fig. 13. Minimal cutsets of FC1



8

6. Conclusion

Multi-core processors will be used in the next gen-
eration of safety-critical systems and before being
embedded must be analyzed. We have introduced
a modeling framework offering a comprehensive
and generic description of most of the multi-
core processor internal components. The proposed
framework has been formally defined using mode
automata to benefit from off-the-selves modelers
and analyzers. We illustrated the framework on
a remotely piloted aircraft system integrating the
NXP T1042 and demonstrated how the framework
can support safety assessment such as the demon-
stration of fault containment.

The proposed framework does not benefit from
the last state-of-the-art version of the Altarica 3.0
language providing useful structural and behav-
ioral modeling features. This choice was moti-
vated by the availability of a graphical representa-
tion of the model and its simulation on older ver-
sion of Altarica. Nevertheless the formalization
provided here can be easily transposed to Altar-
ica 3.0. On the modeling aspect, the framework
does not handle some classic dynamic features
like interruptions and reset procedures that might
be needed to model some reconfiguration mecha-
nisms. The introduction of modeling patterns en-
coding these mechanisms will be addressed by
future work. Furthermore, we do not addressed
the problematic of instantaneous events conflict
i.e when two instantaneous events must be trig-
gered at the same logical time-step. To solve this
problem, we are currently developing framework
features enabling the analyst to define an event
scheduler.

References

Arnold, A., G. Point, A. Griffault, and A. Rauzy
(1999). The altarica formalism for describing
concurrent systems. Fundamanta Informati-
cae 40(2-3), 109–124.

Bieber, P., F. Boniol, Y. Bouchebaba, J. Brunel,
C. Pagetti, O. Poitou, T. Polacsek, L. Santinelli,
and N. Sensfelder (2018). A model-based cer-
tification approach for multi/many-core embed-
ded systems. In ERTS 2018.

Bozzano, M., A. Villafiorita, O. Åkerlund,
P. Bieber, C. Bougnol, E. Böde, M. Bretschnei-
der, A. Cavallo, C. Castel, M. Cifaldi, et al.
(2003). Esacs: an integrated methodology for
design and safety analysis of complex systems.
In Proc. ESREL, pp. 237–245.

Brindejonc, V. and A. Roger (2014). Avoidance of
dysfunctional behaviour of complex cots used
in an aeronautical context. In 19eme Congrès
de Maı̂trise des Risques et Sûreté de Fonction-
nement.

Certification Authorities Software Team (2016,
November). Multi-core Processors - Position
Paper. Technical Report CAST 32-A.

Dassault (2014). Cecilia OCAS framework. Das-
sault.

ESA-ESTEC Requirements & Standards Division
(2009, March). Space product assurance :
Failure modes, effects (and criticality) analy-
sis (FMEA/FMECA). Noordwijk, The Nether-
lands: ESA-ESTEC Requirements & Standards
Division.

Esposito, S. and M. Violante (2017). On the con-
solidation of mixed criticalities applications on
multicore architectures. Journal of Electronic
Testing 33(1), 65–76.

Esposito, S., M. Violante, M. Sozzi, M. Ter-
rone, and M. Traversone (2017). A novel
method for online detection of faults affect-
ing execution-time in multicore-based systems.
ACM Transactions on Embedded Computing
Systems (TECS) 16(4), 94.

Freescale (2016). T1042/T1022 QorIQ Integrated
Multicore Communications Processor Prelimi-
nary Datasheet DS1176.

Jean, X., D. Faura, M. Gatti, L. Pautet, and
T. Robert (2012). Ensuring robust partitioning
in multicore platforms for ima systems. In
Digital Avionics Systems Conference (DASC),
2012 IEEE/AIAA 31st, pp. 7A4–1. IEEE.

Mutuel, L., X. Jean, V. Brindejonc, A. Roger,
T. Megel, and E. Alepins (2017). Assurance of
Multicore Processors in Airborne Systems.

Paun, V.-A., B. Monsuez, and P. Baufreton (2013).
On the determinism of multi-core processors.
In French Singaporean Workshop on Formal
Methods and Applications.

Prosvirnova, T. (2014). AltaRica 3.0: a Model-
Based approach for Safety Analyses. Ph. D.
thesis, Ecole Polytechnique.

Rauzy, A. (2002). Mode automata and their
compilation into fault trees. Rel. Eng. & Sys.
Safety 78(1), 1–12.

Rauzy, A., J. Gauthier, and X. Leduc (2007). As-
sessment of large automatically generated fault
trees by means of binary decision diagrams.
Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Relia-
bility 221(2), 95–105.

Rebaudengo, M. and M. S. Reorda (1999). Evalu-
ating the fault tolerance capabilities of embed-
ded systems via bdm. In VLSI Test Symposium,
1999. Proceedings. 17th IEEE, pp. 452–457.
IEEE.

SAE (2010). Aerospace Recommended Practices
4754a - Development of Civil Aircraft and Sys-
tems.

Villalta, I., U. Bidarte, J. Gómez-Cornejo,
J. Jiménez, and J. Lázaro (2018). Seu emula-
tion in industrial socs combining microproces-
sor and fpga. Reliability Engineering & System
Safety 170, 53–63.

Villemeur, A. (1992). Reliability, availability,
maintainability and safety assessment. John
Wiley & Sons.


