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The last decade has seen the emergence of multi-core and many-core processors replacing historical uni-processors in most of the applicative domains. There is no doubt that the next generation of aircraft will rely on these technologies raising major issues especially with regard to safety assessment. Indeed, currently, a processor is considered as a black-box component where any single internal failure leads to the loss of all executed software. Due to the numerous resources provided by such platform, position papers like the CAST-32A promote a finer analysis of the safety impact of internal component failures. Hence there is a necessity to open the box and see such a processor as a sub-system. We introduce a formal modeling framework capturing the main characteristics of software/hardware failure propagation. This framework is applied on a simplified UAV control use-case.

Introduction

The design of safety critical systems often relies on the respect of norms and standards. In aeronautics for instance, the ARP (Aerospace Recommended Practice) 4754 SAE (2010) defines a safety process and the expected relations with the development process. Even if those standards may differ from one applicative domain to another, they share a common approach. This approach basically considers that a system provides functions that are implemented as a set of items ranging from software, hardware, sensors to hydraulic components. Thus the designer must identify the possible failures of these components and design safety mechanisms ensuring that functions are maintained even in the presence of failures.

In particular, for computer-based systems, the safety experts must analyze the effect of the failures of the processor and its peripherals on the functions. The current approach sees a processor as an atomic component that can fail. Hence any internal failure is considered as impacting the whole processor and all functions implemented by the hosted software. Such an approach is usually performed on uni-processor since most of the time an internal failure indeed leads to the complete failure and only few functions are allocated. However, with the emergence of complex multi-and many-core processors, dedicated position papers like the CAST-32A Certification Authorities Software Team (2016) promote the use of finer analy-ses, focusing on the safety impacts of the failures of the these internal components. For instance, if a core has failed, the others can still continue their operations and not taking this into account would degrade the opportunities offered by those highly parallelizable components.

To address this issue, the paper introduces a formal modeling and analysis framework of a multi-core processor enabling the user to automate the safety analysis of internal failures. The paper is organized as follows: the section 2 provides the state-of-the-art failure mode and propagation identification methods as well as the main families of fault-tolerance mechanisms used to handle the internal failures of multi-core processors. The necessity to open the box and see the multi-core processor as a sub-system is exposed in the section 3. The section 4 proposes a generic and modular framework to model and analyze any multi-core. Eventually, the section 5 illustrates the framework on a UAV case study.

Related-work

As identified by the CAST-32A position paper Certification Authorities Software Team (2016), demonstrating that the safety consequences of the internal failures of a multi-core processor are contained within the equipment (so-called failure containment) is a major issue. Thus the authors of Certification Authorities Software Team (2016) propose to analyze the interactions between inter-nal components.

Failure modes identification

The identification of the failure modes of the internal components can be classically performed by a Failure Mode Effect Analysis (FMEA). This analysis identifies the effects of the failure modes of the low-level components (for instance listed in [START_REF] Rebaudengo | Evaluating the fault tolerance capabilities of embedded systems via bdm[END_REF]) on higher level components or systems. Up to now, there exist very few FMEA identifying the failure modes for a given platform. It can be explained by the indepth architecture knowledge needed to perform an FMEA and by the reluctance of chip makers to (legally) commit themselves to provide a detailed FMEA.

Methods like [START_REF] Villalta | Seu emulation in industrial socs combining microprocessor and fpga[END_REF] propose to emulate a component failure and observe the reaction of the platform. Nevertheless, the quality of the results highly depends on the capacity to ensure the completeness of such approach.

In this paper, the identification is based on the approach proposed by the authors of [START_REF] Paun | On the determinism of multi-core processors[END_REF]; [START_REF] Mutuel | Assurance of Multicore Processors in Airborne Systems[END_REF] that is a deduction of abstract failure modes from the functional services i.e a failure mode encodes the way a component fails to provide some services.

Failure propagation

Most of approaches like [START_REF] Brindejonc | Avoidance of dysfunctional behaviour of complex cots used in an aeronautical context[END_REF]; [START_REF] Jean | Ensuring robust partitioning in multicore platforms for ima systems[END_REF] identify the data-paths where collisions may occur, called interferences, and analyze their safety consequences. The authors of [START_REF] Brindejonc | Avoidance of dysfunctional behaviour of complex cots used in an aeronautical context[END_REF] base their identification on a brute-force enumeration of (initiator, target) combinations; whereas the authors of [START_REF] Bieber | A model-based certification approach for multi/many-core embedded systems[END_REF] use a more compact enumeration based on clustered interferences called interference classes. Our framework is clearly inspired by the notion of interference but adapts it for failure propagation analysis.

Standard formalisms like fault trees or Markov chains described in [START_REF] Villemeur | Reliability, availability, maintainability and safety assessment[END_REF] could be used, but Model-Based Safety Assessment (MBSA) presented in [START_REF] Bozzano | Esacs: an integrated methodology for design and safety analysis of complex systems[END_REF] has emerged as an alternative to these formalisms since it offers better modeling opportunities (see Dassault Falcon 7X Rauzy et al. (2007) for instance). ALTARICA introduced by [START_REF] Arnold | The altarica formalism for describing concurrent systems[END_REF]; [START_REF] Prosvirnova | AltaRica 3.0: a Model-Based approach for Safety Analyses[END_REF] is one of the most famous MBSA language whose semantics defined in [START_REF] Rauzy | Mode automata and their compilation into fault trees[END_REF] is founded on the mode automata. Numerous industrial-used mod-elers and analyzers (like Dassault (2014) (2014)) are based on ALTARICA. These are the reason why we chose AltaRica and mode automata to develop our framework.

Fault-tolerance mechanisms

Eventually, the designer must integrate safety mechanisms to ensure fault-tolerance to face internal hardware failures. Multi-core processors are composed of several complex components, among which the hardware memory protection the socalled Memory Management Units (MMU) and Peripheral Access Management Units (PAMU). As identified by [START_REF] Paun | On the determinism of multi-core processors[END_REF], MMUs and PAMUs failures may have a huge impact on the functions and as such must be carefully modeled and analyzed. That is why the modeling of MMUs and PAMUs was closely addressed both in the framework formalization and in the use-case.

Most of the failure containment approaches rely on an executive layer i.e a piece of software managing the applications access to the multi-core processor resources. A popular example of this strategy is the Integrated Modular Avionic platforms where a processor hosts several partitions (sets of software) for which the executive layer must prevent any interference. The framework integrates these segregation insurances as modeling assumptions (e.g. simultaneous transactions on the interconnect has no safety effects).

Approaches like Esposito et al. (2017); Esposito and Violante (2017) use the massive resource of the multi-core processor to implement software-based fault-tolerance patterns. These patterns do not impact the way failures spread in the multi-core processor but enhance the software resilience to platform service failures. In our framework, such software resilience is handled through dependency modeling.

General overview of the approach

Given a system and some failure conditions (combinations of functional failures leading to potential severe outcomes), the safety experts must verify that an architecturei.e an interconnection of physical components (e.g. processors, sensors, actuators) and software components (e.g. application, hypervisor) that ensure the system's functions -fulfills the safety objectives. This is achieved as follows: 1) identify the failure modes of each component, 2) model the failure propagation within the system, 3) and assess the safety objectives.

The usual approaches to analyze the safety impacts of hardware failures are depicted by the figure 1. Each function is associated with the physical resources (software and hardware items) that implement it. This association encodes the dependencies, i.e the minimal sets of items needed by the function to be performed properly. In particular, a uni-processor is represented as one hardware item and is considered as a dependency of a function if some software implementing it is executed on the uni-processor.

As promoted by Certification Authorities Soft- 2016), we propose to further refine the model of a processor with the approach of figure 2 where the processor is modeled as a dynamic system. This system is composed of several elements and software dependencies with the processor item are expressed via an allocation.

Service-based modeling approach

We consider the first level design as described in most processors data-sheets, such as the NXP T1042 Freescale (2016) design of the figure 3, where atomic components are the cores, the caches, the interconnect and peripherals.

In addition to the hardware components, we also consider that the platform provides high level services to the software. Part of those services can be implemented with an execution layer. In any case, the platform is configured in a certain way and this configuration provides an allocation i.e a description of how the software items are mapped on the processor and how the services are used by the software. We abstract the platform as a provider of four generic services, similar to those identified in [START_REF] Mutuel | Assurance of Multicore Processors in Airborne Systems[END_REF]:

• execute: executes a piece of software on some core. For instance, in the figure 3, Core4 offers this service to any software executing on it; • load: retrieves some data from a location and transfer it to some core. For instance in figure 3, Core1 asks to load a data stored in Bank1; • store: writes some data to a given location from some core. For instance, Core3 asks to store a value in the Platform Cache. • copy: transfers data from one location to another. We will consider in the remainder of this paper that a copy can be seen as series of loads and stores. Note that an execute does not interact with any other resource than the local core; whereas load/store generate transactions linking initiators to targets.

Definition 3.1 (Transaction). A transaction starts from an initiator and follows pre-defined path(s). A load transaction follows a path from the initiator to the target and the data comes back to the initiator. We assume for simplifying the model and due to lack of space that the paths used for the request and the data are the same. A store transaction follows a path from the initiator to the target (for the request and the data).

Example 3.1. The load of Core1 follows the path

Core1 → MMU1 → Cache1 → Interconnect → DDR Controller → Bank1.

Failure modes of atomic components and services

As stated in the section 2, failure modes are derived from pragmatic reasoning. In the remainder of the paper we consider: 1) err: the component Functions are affected by the load/store transactions failures, which result from atomic component failures. For instance in the figure 3, if Core1 asks to load a data from Bank1 and if MMU1 is lost, the load service to Bank1 is no more provided to Core1. Similarly, if Core3 asks to store a value in the Platform Cache and if Cache3 is err then an erroneous value is stored in the Platform Cache, corrupting its content. The table 5 details the service failure modes.

Modeling framework

The framework is a library of reusable components formalized with the mode automata [START_REF] Rauzy | Mode automata and their compilation into fault trees[END_REF]. Such a formalization enables us to: 1) be generic and formal, 2) implement the following definitions as a library of components coded with ALTARICA, 3) use the existing tools to perform automatic safety assessments.

Failure modes and interface

The dynamic dysfunctional behavior of each atomic component (initiator, target and transporter) is encoded as a mode automaton. To encode the failure propagation, each component input (resp. output) represents the current status of a transaction. The failure modes are given as a set F including ok. In the sequel, R F denotes the set of partial functions T → F. Let f : X → Y be a partial function, expr i be the expression producing some y ∈ Y when x satisfies cond i then f is defined as follows:

f (x) = expr 1 if cond 1 • • • expr n if cond n Example 4.2.
For the T1042 of figure 3 we have

T = {Bank 1 (B 1 ), Bank 2 (B 2 ), Bank 3 (B 3 ), Plat- form Cache(PC), PCIe 1 , PCIe 2 , Ethernet}.
Let us consider the load of a data from Bank 1 by Core 1 . The transaction follows the path Core1 → MMU1 → Cache1 → Interconnect → DDR Controller → Bank1. If all atomic components are ok, the transaction is r(x) = ok if x = B 1 . However if, as shown by the figure 6, the MMU 1 fails, no value is available, hence the transaction is r

(x) = lost if x = B 1
The store transaction, when Core3 asks to store a value in the Platform Cache and when everything is ok, is r(x) = ok if x = PC. If the Interconnect is erroneous, it becomes r(x) = err if x = PC. By doing so, the atomic component Platform Cache switches its internal failure mode to err. The corruption of Platform Cache is 

Initiator

Due to lack of space, we only show the case of a smart initiator (see figure 7). The inputs and outputs associated to the mode automaton are: 1) exeO provides the failure mode of the initiator; 2) loadI provides the result of all possible load transactions seen by the initiator; 3) loadO is the resulting load transactions provided to the software; 4) storeI provides the list of the targets the software wishes to write to; 5) storeO is store transactions sent by the initiator.

As stated before, each atomic component is modeled with a mode automaton [START_REF] Rauzy | Mode automata and their compilation into fault trees[END_REF] introduced by the definition4.2.

Definition 4.2 (Mode automaton).

A mode automaton is a 8-uplet M = E, I, O, S, s I , δ, σ, dom where :

• E is a finite set of events; 

δ(V, s, e m ) = lost if s = lost ∧ m = lost err if s = ok ∧ m = err γ(r, s) = r 3 if s = err r 2 if s = lost r otherwise Let V [storeI ] = r and r(x) = ok if x = PC, then according to the definition of the core: 1) If the core is ok, then V [storeO] = r. 2) If the core is lost, then V [storeO] = r 2 where r 2 (x) = lost if x = PC. 3) If the core is err, then V [storeO] = r 3 where r 3 (x) = err if x = PC.

Target

The target is the final destination of a store and the first element of a load. A target can be affected by the reception of an erroneous store, thus an instantaneous event ε is needed to model the change of the target's failure mode. The transporter's interface (see figure 9) is composed of 1) loadI is a set of load transactions; 2) loadO is the result of the merging and filtering of loadI; 3) storeI is a set of store transactions; 4) storeO is the result of the merging and filtering of storeI. Example 4.5 (Interconnect). Let N be an interconnect with the abstract failure mode F ole that receives store transactions from two sources and load transactions from two targets. Then, the mode automaton of N is the one of the definition 4.5 where δ and γ are defined in example 4.3; filter accepts all targets; merge takes for each target the worst mode among the possible ones according to the order < such that ok < lost < err . The definition of merge and filter are:

filter (r) =r merge < (f 1 , f 2 ) = (x → max < (f 1 (x), f 2 (x)))

Platform modeling

Since each atomic component is a mode automaton, the platform itself is the parallel composition (denoted ) and the connection of those components. The definitions of these operations can be found in [START_REF] Rauzy | Mode automata and their compilation into fault trees[END_REF]. By default the failure events of each component are considered as independent. Such an assumption may not be justified for some of the internal components, for instance due to their location on the chip. That is why common cause failure events can be defined to model such dependencies. Thus the user of the modeling 

Experiments

The use case is a quad-copter evolving within a predefined zone. The UAV is composed of two functions: 1) FDIR computing & processing safety actions i.e cut the power of motors; 2) TRAJECTORYCONTROL controlling the drone trajectory while remaining in the predefined zone.

The failure condition FC1 defined below could lead to a potential in-flight or on-ground collision. According to the CAST-32A, the safety effects of the internal failures of the multi-core processor must be contained within its equipment. So we must demonstrate that no single internal failure of the multi-core processor leads to FC1 and that the failure is handled within the equipment. FC1 : TRAJECTORYCONTROL.fail ∧ FDIR.fail

Platform modelling

The designed physical architecture, given by the figure 11, is composed of the following items: TRAJECTORYCONTROL is implemented by S NAV ; FDIR is implemented by three software: S MON monitoring drone's state, S REC computing the safety actions to perform and S F T S emitting a signal to the switch to prevent cut-off when not asked by S REC ; the Motors (piloted by PCIe 1 ); the Sensors (acquired by PCIe 1 ); and an equipment E containing the Switch (piloted by PCIe 2 ) cutting off the power if no signal is The dependencies between functions and physical items are as follows: FDIR needs that sensors and switch work properly and that S F T S ,S MON and S REC are not erroneous. TRAJECTORYCON-TROL relies on S NAV , sensors and motors.

The dependencies between software and services are shown in the table 12. S F T S load cut-off order from the Platform Cache (called PC). Let us assume that S F T S is lost if the execute service is lost. S F T S is erroneous (unintended signal to the switch) if the load value of platform cache is corrupted or if the execute service is erroneous. Concerning S NAV , S MON and S REC , if the load service is erroneous or if the execute service is erroneous then the software stores an erroneous data. If the load or execute service is lost then the software does not store any data.

To provide some space partitioning, the targets reachable by each MMU/PAMU are only those the hosted software is expected to access. PCIe devices are only accessible through DMA transfer, so DMA 1 copies PCIe 1 to B 1 and B 2 , B 2 to PCIe 1 , and PC to PCIe 2 .

We assume that: 1) the sensors, switch and motors have been selected for their high availability and integrity thus their failures are not considered in the assessment, 2) PAMU 1 , Interconnect, Bank 1 , Bank 2 , Bank 3 , PCIe 1 , PCIe 2 , Platform Cache, DMA 1 are protected by error correction code, so we consider only loss failures, but they can still be corrupted by an erroneous store. 3) the other caches, the Ethernet controller, DMA 2 and PAMU 2 are deactivated.

Safety objective assessment

Thanks to CECILIA-OCAS Dassault (2014), we computed automatically the smallest combinations of physical failures (so-called minimal cutsets) leading to FC1. If the multi-core processor is considered as a black box, then a fail-erroneous triggers both an erroneous trajectory and switch management (since monitoring software are erroneous), so the system does not fulfill the failure containment requirement. But when considering the refined model, the results (table 13) show that single internal failures of the multi-core processor do not trigger FC1. Moreover, the safety actions are performed by the switch, so the safety effect of any internal failure is contained within the equipment E. It may be surprising since some internal components, like the Interconnect, are involved in the processing of all load/store services. So let us explain the absence of single point of failure. To trigger the FC1, TRAJECTORYCONTROL and FDIR must fail, so 1) one of the services requested by S NAV must fail; 2) one of the services requested by S F T S , S MON or S REC must fail erroneous. Note that a loss of S MON , S REC or S F T S does not lead to FC1 since the switch does not receive signal from S F T S and cuts off motors.

The analyzer proved that a single failure among the considered internal failures cannot trigger both a failure (lost or erroneous) of the services requested by S NAV and a fail-erroneous of the services requested by S F T S , S MON or S REC . This results from 1) the resource partitioning between S NAV and the other software (memories, cores, MMU), 2) the fault containment ensured by MMU and PAMU, 3) the loss-tolerance of FDIR, 4) the the absence of fail-erroneous for resource shared by all software (interconnect, DMA, . . . ). 

Conclusion

Multi-core processors will be used in the next generation of safety-critical systems and before being embedded must be analyzed. We have introduced a modeling framework offering a comprehensive and generic description of most of the multicore processor internal components. The proposed framework has been formally defined using mode automata to benefit from off-the-selves modelers and analyzers. We illustrated the framework on a remotely piloted aircraft system integrating the NXP T1042 and demonstrated how the framework can support safety assessment such as the demonstration of fault containment. The proposed framework does not benefit from the last state-of-the-art version of the Altarica 3.0 language providing useful structural and behavioral modeling features. This choice was motivated by the availability of a graphical representation of the model and its simulation on older version of Altarica. Nevertheless the formalization provided here can be easily transposed to Altarica 3.0. On the modeling aspect, the framework does not handle some classic dynamic features like interruptions and reset procedures that might be needed to model some reconfiguration mechanisms. The introduction of modeling patterns encoding these mechanisms will be addressed by future work. Furthermore, we do not addressed the problematic of instantaneous events conflict i.e when two instantaneous events must be triggered at the same logical time-step. To solve this problem, we are currently developing framework features enabling the analyst to define an event scheduler.
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  Definition 4.5(Transporter). A transporter is modeled with a mode automaton where I, O, dom and σ are defined as shown by the figure9; E = {e m } m∈F where e m is the event associated to the failure mode m; S = F and the initial state is s I = ok ; transaction merging denoted merge, filtering denoted filter and γ are user defined.
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  Example 4.6 (DDR Memory). Let us illustrate the case of DDR Memory composed of three banks. Its mode automaton is DDR = B 1 B 2 B 3 DDRController depicted on the figure 10 where the connections are the arrows between atomic components; B 1 , B 2 , B 3 are three targets as described in the example 4.4 and DDRController is a transporter derived from the example 4.5.
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