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Abstract. We have already addressed the issue of static point clouds
geometry compression (G-PCC) by using Tree-Structured Point-Lattice
Vector Quantization (TSPLVQ) [6]. Dynamic 3D point clouds are char-
acterized by up millions of moving 3D positions and color attributes.
Efficient point cloud (PC) compression is then fundamental. Temporally
successive PC frames are very close, it however remains a challenging
problem for coding as the PCs have varying numbers of points without
explicit correspondence information. This paper improves and extends
the prior work, which provided a new hierarchical geometry representa-
tion based on adaptive TSPLVQ. Firstly, a more robust Rate-Distortion
optimization process is introduced in order to perform efficient and ac-
curate rate-aware splitting decisions when building and coding the tree
structure. Secondly, we focus on the compression of the geometry of dy-
namic point clouds (G-DPCC) and, the model enables to exploit the
temporal dependencies of the 3D content. Exactly, TSPLVQ is a top-
down method and permits to represent the PC geometry by using a
scalable tree, so when quantizing the dynamic geometry of a given PCs
sequence, the successive trees are represented as a trunk common for the
3D sequence, and branches added for each frame. Next, the trunk is first
coded, followed by the branches that are differentially coded. Experi-
mental results demonstrate that our method is able to bring significant
improvement in terms of the overall compression performance compared
to the state-of-the-art MPEG standard.

Keywords: 3D dynamic point cloud · G-PCC · differential compression.

1 Introduction

Among various newly acquired content types, 3D PC appears to be one of the
most efficient representation of immersive media content, establishing a conver-
gence between real and virtual realities and enabling more sophisticated immer-
sive experience applications.
The development of even more precise capturing devices and the increasing re-
quirements to realistically represent and to vividly render the 3D scenes, in-
evitably not only induce thousands up to billions of points, but also cause
high complexity in the scattered random spatial distribution, which brings great
challenges to the storage consumption and transmission system. Thus, more
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advanced compression techniques are in urgent demand to make PC useful in
practice.
The Moving Picture Experts Group (MPEG) led the process of building an open
standard for point cloud compression (PCC) [4]. The standard adresses two main
classes of solutions dealing with PCC: V-PCC which takes advantage of the usage
of well-known 2D video technologies by projecting the point characteristics onto
2D frames, and a second class called G-PCC, for geometry-based compression
of static PCs. G-PCC and V-PCC are both appropriate for the context of this
paper, due to the large potential of improvements of compression techniques to
store and transmit this type of data. Both G-PCC and V-PCC are based on con-
ventional models, such as octree decomposition [11], triangulated surface model
and region-adaptive hierarchical transform [15], [16]. Other explorations related
to the V-PCC are relied on incorporating state-of-the-art technologies from both
2D video coding and computer graphics. To compare the compression solutions,
MPEG provided quality evaluation metrics for PCC leading to the selection of
the point-to-point and point-to-plane as baseline metrics [22].
In the present paper, our work is mainly related to G-PCC. Many solutions
for PC geometry compression have been explored using the octree structure to
partition the whole PC into smaller voxel volumes in order to better structure
and represent the 3D PC [21] [20]. A lossless intra encoder of voxelized PCs is
introduced in [14] that views the PC geometry as an array of bi-level images
using a dyadic decomposition instead of the popular octree decomposition.
Some dynamic PC compression methods are specially designed for immersive 3D
human body compression. Thanou et al. [23] introduced a compression frame-
work for a dynamic 3D PC sequence, where they designed a novel approach for
motion estimation and compensation for geometry and color attribute. Simi-
larly, Nguyen et al. [13] proposed graph wavelet filter banks to compress moving
human body sequences. Mekuria et al. [12] introduced a generic compression
method for real-time 3D tele-immersive video, which is suitable for mixed real-
ity applications. In their works, the octree structure is adopted in intra frames,
and a prediction method is performed for inter coding by splitting the octree
voxel space into macroblocks. In [5], authors focused on voxel-to-image projec-
tion methodology, where the video blocks are readily tiled into an image for
efficient color compression through a traditional video codec. Recently, Guarda
et al. extended in [8] the deep-learning coding approach to point cloud coding
using an autoencoder network design.
Inspired by the formulation of quantization in [18, 19], we proposed in [6] to
significantly expand it by using new quantization tools, different rate-distortion
optimizations and several practical adaptations to the case of G-PCC.
The present paper builds on the proposed work in [6] to introduce a more acu-
rate rate computation based on the entropic cost estimation of the tree for the
purpose of efficient 3D PC geometry coding. Firstly, we improve the TSPLVQ
using two splitting schemes (2×2×2 or 3×3×3) of a cubic Voronöı cell, by adapting
the distortion versus rate trade-off. Thus, the purpose of our method is to reduce
more the amount of data of a 3D point set while preserving as much information
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as possible by considering the distortion in the rendered 3D content from the
decoded PC. It is therefore better for rate-distortion optimization during the
TSPLVQ procedure. Secondly, we also extend our method to the compression of
the geometry of dynamic point clouds (G-DPCC) where we apply a process of
comparison between successive PC frames inside each temporal segment of the
PCs sequence in order to exploit temporal redundancies.

2 Static Point Cloud Compression by TSPLVQ

Our prior work in [6] is at the crossroads of static G-PCC, vector quantization
of 3D data and rate-distortion optimization driven compression. The TSPLVQ
approach, based on the embedding of truncated cubic lattices, permits hierar-
chical description of the 3-D PC through an unbalanced tree structure where at
each node a cube is associated. The tree growing structure is achieved by using
an iterative process such as, at each loop the best choice has to be done, be-
tween the node (namely its associated cube) to split and according to two cube
splitting schemes (2×2×2 versus 3×3×3) to better map the PC splitting. This
choice is based on a rate-distortion criterion, the optimization is then performed
locally, where the Lagrange multiplier λ controls the trade-off between rate and
geometric distortion. The rate considered in [6], is either a constant cost of node
splitting (8 bits if the splitting is 2×2×2, 27 bits if the splitting is 3×3×3), or a
basic entropy estimation taking into account the entropy of the population in
relation to node points.

2.1 Optimized estimation of the tree rate cost

Entropy coding is critical for source compression and exploit statistical redun-
dancies. Theoretically, the entropy bound of the source symbol (e.g., splitting
bitstream in our case) is closely related to its probability distribution, and ac-
curate rate estimation plays a major role in rate-distortion optimization driven
compression.
We propose to use a more accurate estimation of the entropic cost of the node
splitting during the tree growing process, where exactly, for each node splitting
are computed: the increase in rate calculated in terms of entropic encoding cost
of the node splitting, and the decrease in geometric distortion.

At this level of process, our objective is to code the PC geometry stored in
its 3D volumetric representation, this is referred as the voxelization. Considering
this geometry, a voxel V in the 3D representation at (i, j, k) position, corre-
sponds also to a node (nj) in the tree structure, is set to 1, e.g., V (i, j, k) = 1,
if it is occupied (contains one or more PC points) and split, and V (i, j, k) = 0
otherwise. Each splitting scheme partitions the 3D cube associated to a node nj
either into 8 or 27 embedded smaller cubes (so children nodes of nj). For each
branch connecting nj to its child, one bit is used, let’s define it as the split-
ting state. Splitting state is a bitstream associated with each voxel node. Each
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voxel node is divided into several voxels (children) depending on the quantiza-
tion scheme being considered (namely, 2×2×2 or 3×3×3) and every leaf node has
in turn an associated voxel value (1 or 0). Note also that each node indicates by
a position index where it lies inside its parent’s splitted 3D cube (for instance
when considering 2×2×2 splitting case, the position index are simply listed from
1 up to 8). If after a loop, a leaf node undergoes splitting (namely, its corre-
sponding cube splitting), we update the splitting state of its parent node. The
splitting state determines using 0s and 1s the children nodes that are split, e.g.
a given splitting by 2×2×2, could have splittingstate = 01001101. So children
nodes with position index 1, 4, 5, 7 are split and children nodes with position
index 0, 2, 3, 6 are not split. At each level of quantization step, every splitting
state has associated occurency probability which gives how likely the splitting
state occurs in the tree. In other words, the occurency probability of a splitting
state is the ratio between the number of time this splitting state occurs in the
tree, and the number of splitted nodes. We can then approximate the actual rate
of every splitting state by computing its entropy.
For instance, the rate R(sj), used to calculate λ score in equation (4) in [6], is
equal to the entropy of the splitting states of the tree nodes at the j−th loop
in the TSPLVQ growing tree sj .
The splitting states entropies of the tree nodes has to be updated dynamically
after each loop of the TSPLVQ splitting process, by taking into account of the
incrementing and decrementing of the splitting states counters.
In order to count and to store the probabilities of all the splitting states, we use
a hash table. Advantage of this strategy is that splitting state of any length can
be dynamically stored in the table to avoid storing all the possible combinatories
of all the splitting states (28 for 2×2×2 splitting and 327 for 3×3×3 splitting). Due
to this, we are able to run a hybrid quantization method using 2×2×2 and 3×3×3
in competition with each other and locating probability occurency of any state
becomes fast due to hashing.

2.2 Final Bit-stream and attribute Compression

In the tree, each occupied leaf node corresponds exactly to one representant
point which 3D location is set to the average value of the initial cloud points
contained within the cube associated to the leaf. The mean colour is used to
represent the colour information of all the cloud points inside the leaf cell. To
further compress the corresponding reproduction vectors position and colour at
the leaves level, we propose in this work to perform range coding by using Lem-
pel–Ziv–Markov chain algorithm (LZMA) [3] for a lossless compression.
In other context, we could consider the cubes centers, instead of the mean points
coordinates, to represent the input PC position and colour using the optimized
TSPLVQ. In this case, we do not need to encode any explicit geometry infor-
mation at nodes level, only build the tree structure by using recursive splittings
described arithmetically in the bit stream when scanning the tree at different lev-
els. Thus to encode the PC geometry : either we proceed progressively by using
the scalable descriptions obtainable at the tree nodes (for instance by scanning
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Fig. 1: Extract of TSPLVQ-based G-DPCC merging process for 2 successive
frames. Common trunk is in black, the differential branches are in red and yellow.

Fig. 2: Illustration of the inverse similarity curve for the 300 frames of ”Loot”
sequence: each stroke is a frame and minima local values are in blue.

its successive depth levels), the PC points in each leaf node are then represented
by the corresponding center point, either we consider directly and only the final
positions and colours associate to the tree leaves.

3 Geometry-based Dynamic Point Cloud Compression
(G-DPCC) by TSPLVQ

We extend the previous work, destined to static PC compression, to dynamic
PC compression where successive PC frames are close.

3.1 G-DPCC based on trunks and branches representations

A PC sequence of length T frames is defined as a T-tuple of 3D point clouds P
= (P1, P2, ..., PT ). Each element of this tuple is a PC sub-sequence, namely a 3D

point set Pt = pti | i = 0, 1, 2, ..., nt such as
∑T

t=1 nt = N , where the frame pi(n)
is represented by its geometric coordinates and features vector (e.g. colour). Our
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proposed G-DPCC method consumes P as input, and produces S and D as
outputs, defined respectively as M-tuple of trunks and N-tuple of corresponding
branches. Exactly, the model firstly applies separately the optimized TSPLVQ
method on each individual PC of P in order to represent its geometry by using
a tree. Then the model aims at segment the P into temporal segments homo-
geneous in geometry (i.e. sub-sequences). The geometry homogeneity measure
is based on the comparison between pairs of successive frames trees because
(nearly) similar frames geometry content will produce close trees: the bigger
their common tree part (namely common trunk), the higher their similarity in
geometry. When quantizing the dynamic geometry of a given PCs sequence, the
successive corresponding trees share a common trunk and they differentiate by
their respective branches added to the trunk (as shown in Fig.1).
Our goal is then to get temporal segment where the frames all share a common
trunk that is large enough, we proceed by using a greedy approach: we start
by computing the common trunk between two first frames, next we compute
the similarities (the similarity measure is detailed after in the 3.2) between the
resulting common trunk and a third frame which is added to the segment if
its similarity with the trunk is high enough, and the greedy process continues
with the next frame tree. The process stops when the new frame tree similarity
drops, then a new segment is created. When encoding the dynamic PC geometry
of a given temporal segment, first its trunk is coded, next the branches of the
successive frames trees are coded by using a differential approach (where only
the differences between the trees are coded).

3.2 Watershed-based similarity measure for the segment design

We heuristically compute the common trunk by analyzing the structured trees
corresponding to the PCs from the first to the last frame, by extracting the sim-
ilarities between each pair of consecutive frames. This heuristic method requires
to find the best size of the segment in order to better represent the corresponding
PCs frames by a single common trunk. To do that, we propose to exploit the
idea of watershed technique [9] which is able to detect valleys (i.e minimum local
values) of a curve presenting in our case the similarity function Fsim applied to
the successive PCs trees sequence.

Fsim = 1−
∑D

i=1 w(ni)∑S
j=1 w(nj)

where,

w(ni) =
1∑D

i=1 b
di
i

w(nj) =
1∑S

j=1 b
dj

j

Where w is a similarity weight calculated, for each node ni in the D and nj in
the S, in function of the splitting scheme bi and depth di in the tree structure.
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Note that bi equals to 2 if the chosen splitting scheme is 2×2×2 and equals to 3
otherwise with 3×3×3.
The idea consists of adapting the watershed algorithm to our objective. Because
we aim at find the minima local values of the similarity curve in function of
successive sequence frames instead of maxima local values (as shown in Fig. 2),
so we invert the curve before using the algorithm. The positions of time-varying
valleys determines the borders of each segment in the sequence. A smoothing
filter is used in order to avoid an over-segmentation. For that purpose, a Savitzky-
Golay (SavGol) filter [7] is applied on the similarity curve since it is the best for
retaining the small scale features for the original curves.

Table 1: Comparison of symmetric PSNR and Bitrate metrics results between
the optimized TSPLVQ based on Point-to-Point distortion and MPEG

reference model.

Point Cloud Number of points MPEG G-PCC Our approach
Number of points PSNR Bitrate (bpov) Number of points PSNR Leaves cost (bpov) Tree nodes cost (bpov)

Soldier 1089091 20065 52,79 0.029 73103 58.86 0.0002 0.1473
LongDress 857966 15685 52.78 0.031 48869 59.74 0.0002 0.0418
Loot 805285 14828 52.78 0.029 47616 60.08 0.0003 0.0444
Redandblack 757691 13832 25.40 0.032 45034 60.08 0.0003 0.3203

4 EXPERIMENTAL RESULTS

For Static PCC performance evaluation, we used our optimized TSPLVQ, relied
on Point-to-Point geometry distortion, to encode 3D PCs. We compared our
approach against the MPEG octree-based reference test model (lossy G-PCC
model) [10]. All parameters in the G-PCC test model are kept unchanged for fair
comparisons. We selected four static PCs from people object dataset: Soldier,
LongDress, Loot and LongDress suggested by MPEG-3DG group [24] as a
test dataset. The performance is then measured in terms of the point-to-plane
symmetric PSNR metric given in [17].

A selection of results is presented in Table 1. The analysis of the PSNR met-
ric of the four PCs, Soldier, LongDress, Loot and Redandblack, shows that
our method when considering the leaves cost only, obviously outperforms the
reference model on all the testing point clouds in term of PSNR and Bitrate.
Considering these 4 points clouds, the reference model has an average bitrate of
0.03 bpov (bits per occupied voxel) and an average PSNR of 45.93 dB while our
method has an average bitrate of 0.0002 bpov and an average PSNR of 59.90 dB.
It is worth observing that the entropy cost of the built trees of all PCs, arith-
metically encoded, is greater than the reference model. Moreover, we should take
into consideration the colour information that also has to be transmitted, it is
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Fig. 3: RD curves showing the performance of the different steps of the opti-
mized TSPLVQ. (first row: Soldier and RedandBlack; second row: Loot and
LongDress). Distortion is computed using the Point-to-Point geometric distor-
tion [6] and the rate is the entropic cost of the splitting scheme.

why we add this information to the leaves, when we consider the leaves cost in
Table 1.
We compute RD curves for each sequence of the test PCs. We compared both
rate-distortion driven TSPLVQ: the adaptive TSPLVQ [6] and the rate-adaptive
TSPLVQ. The performance comparisons in term of rate and distortion between
the 2 methods are reported in Fig. 3. The optimized method outperforms the
previous TSPLVQ on all PCs providing a maximal decrease in distortion, and a
minimal increase in rate.
In Fig. 4, we show examples on the four selected 3D objects. These particular
examples show that our method produces more points than the reference model
at lower bitrates. The MPEG G-PCC model does not show details in complex

Table 2: Comparison between the G-DPCC method and V-PCC reference
model.

Methods Attributes Rendering PC sequence: Loot PC sequence: Soldier
Number of frames average bpov Number of frames average bpov

V-PCC (V9.0) colored raw points 300 (30 fps) 0.93 300 (30 fps) 0.81
G-DPCC (+LZMA) colored raw points/ tree structure 300 (30 fps) 0.58 300 (30 fps) 0.80
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Soldier RedandblackLongdress

(a)

Loot

(b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Rendering results for original PCs (first row: compressed PCs using
MPEG lossy PCC; second row: (a), (b), (c), (d) and using our optimized
TSPLVQ; third row: (e), (f) (g), (h)).

regions. It also leads to halo artifacts and the resulting PC requiring therefore
a post-processing. For instance, for the Soldier PC, the MPEG reference model
cannot show details in complex and smooth regions inducing a great loss of vi-
sual details (see Fig. 4 (a), (b), (c), (d)) while with our method using a lower
bitrate for the leaves (0.0002 bpov), reasonable quality was achieved on all PCs,
as shown in Fig. 4(e), (f), (g), (h). Hence, the optimized method can preserve
the details and the global look of the original PC.
In addition, we could obtain very close rendering to the original PC when we pro-
duce more points thanks to the proposed multiscale approach with low bitrate.
Our visual rendering seems qualitatively very close to the original rendered PCs
compared to the reference test model. The benefits of the optimized method over
the reference model in terms of both objective and subjective quality are easily
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observable.

For dynamic PCC performance evaluation, we used our G-DPCC method to
encode 3D point clouds. We compared our approach against the MPEG V-PCC
(V.9.2) reference test model (lossy model) [2]. Here we show the compression
performance of the compression of dynamic point cloud sequences, such as Loot
ans Soldier sequences [1]. These PC sequences are composed of a 10s point cloud
sequence of a human subject at 30 frames per second. Each point cloud frame
has approximately 1 million points, with geometry positions and RGB color at-
tributes. Table 2 shows that our method outperforms the V-PCC model on the
Loot and Soldier PCs in term of Bitrate. The V-PCC reference model has an
average bitrate of 0.93 bpov (bits per occupied voxel) for Loot PC sequence,
while our method has an average bitrate of 0.58 bpov. The gain of our proposed
G-DPCC over the V-PCC (V9.0) model is 37% and 1.2% for Loot and Soldier
PC sequences respectively.

5 CONCLUSION

In this paper, we proposed a novel framework to compress static and dynamic
point cloud geometry efficiently. Our methods take advantage of well-established
principles that have been paramount to reach promising levels of static/dynamic
PC compression performance.
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