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Abstract

We develop here a particular version of the partial regularity theory for the Magneto-Micropolar
equations (MMP) where a perturbation term is added. These equations are used in some special cases,
such as in the study of the evolution of liquid cristals or polymers, where the classical Navier—Stokes
equations are not an accurate enough model. The incompressible Magneto-Micropolar system is
composed of three coupled equations: the first one is based in the Navier-Stokes system, the second one
considers mainly the magnetic field while the last equation introduces the microrotation field representing
the angular velocity of the rotation of the fluid particles. External forces are considered and a specific
perturbation term is added as it is quite useful in some applications.
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1 Introduction

Micropolar equations were introduced in 1966 by Eringen [6] and were first studied mathematically in 1997
by Galdi & Rionero [§]. Some very recent results concerning the regularity of the solution to this system
were obtained in [9) [I7] (see also the references there in). In this article we will consider a slightly more
general framework by introducing a magnetic field, some external forces and a perturbation term. We will
develop here the e-regularity criterion which was not, to the best of our knowledge, treated before for this
type of problem. The incompressible 3D-Magneto-Micropolar (MMP) system studied in this article is of the
following form

U =AU —(U-VYU+(B-V)B-Vp+iVAG+F —div(Uea+acl),
OB =AB—(U-V)B+ (B-V)U +G,
@ = AG + Vdiv(@) — & — (U - V)& + LV AT,

div(U) = div(F) = div(B) = div
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LU (0,2) = Up(x), B(0,z) = Bo(x), 3(0,2)=Co(z), = €R3and div(Uy) = div(By) = 0.

Here U denotes the fluid velocity field, B is the magnetic field, &J is the field of microrotation representing
the angular velocity of the rotation of the fluid particles and p is the scalar pressure. The quantities F' and
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G represent external forces (assumed divergence free) and they are given as well as the initial data ﬁo, By
and .

The perturbation @ which appears in the first equation above in the term div(ﬁ Qa+axU ) is a given
divergence free vector field and the presence of this particular type of perturbation is mainly inspired by
quantitative studies for the rate of possible blow-up for the Navier-Stokes equations (see in particular the
article [2]), see also the book [16l Section 12.6] for other interesting applications of this type of perturbation.
As pointed out in the Remark below, the assumptions over @ will have some impact in the general set
of hypotheses needed in order to perform our computations.

Now, in order to simplify the computations we introduce the Elsasser formulation, which was initially
used for the Magnetohydrodynamics equations (MHD) see [7]: indeed, by a suitable change of variables we
will obtain a more symmetric problem and if we define 4 = U+ B b=U — B f F+Gand§ g= F— G
then for all z € R3 we can write

It is worth to remark here that as long as we want to perform a generic study for the functions & and l;, this
previous system presents a simpler framework and thus, for the rest of the article we will focus ourselves in

this formulation. We remark also that since div(@) = div(b) = 0, then we can deduce from (1.1) that the
pressure p satisfies the equation

-, -,

2Ap = —div((b- V)@) — div((@ - V)b) — div(div((T +b) ® @+ a ® (@ +

<

)); (1.2)

=,

and we see from this expression that the pressure p is only determined by the couple (i, b) (recall that @ is
given) and we will see how to exploit this relationship later on.

We are interested here in studying some properties of (local) weak solutions of the system (1.1)) and in
order to fix the notation we consider now  a bounded subset of |0, +0o[xR? of the form

Q =Ja,b[xB(zg,r), with 0<a<b< 400, zo € R¥and 0 <7 < +o0. (1.3)

and we will say that (i, b,&) € L L2 N L?HL(Q) satisfies the MMP equations (1.1) in the weak sense if for
all @, ¢,1¢ € D(Q) such that div(F) = div(¢p) = 0, we have

Note that if (#, b, @) are solutions of the previous system, then due to the expression 1' there exists a
pressure p such that (1.1)) is fulfilled in D'.



Based in the classical Navier-Stokes problem, we can study at least two main regularity theories for
the MMP equations: the local regularity theory (also known as the Serrin criterion, see [I8], [21]) and the
e-regularity criterion (also known as the partial regularity theory, based in the seminal work of Caffarelli,
Kohn and Nirenberg [4], see also [10] and [IT}, 12} [13]).

As said previously, in this article we want to develop a particular version of the e-regularity criterion
for the system 1) and we need to impose some assumptions over the functions #, b and & as well as some
hypothesis over pressure p and from now on we will always assume that we have the following controls

i,b,& € LL2 N LAHN(Q),
peLL()NLFINQ),  aell,(Q), &eLXQ), (1.4)
Fige L),

where Q is a subset of R x R3 of the form (1.3)).

Remark 1.1 The conditions over i, l;, @ and f, g are rather classical in the setting of equations arising from
fluid dynamics. Note that the connection between the perturbation term d and the pressure p is explicitly
given in the relationship above, thus if we assume the local integrability condition a € L?’E(Q) (which
appears naturally in some recent results, see [2]), then following our computations we need to impose the

3 5
condition p € L, () N L} LL(Q) for the pressure. Observe that conditions of the form L{LL(Y) for the
pressure were also considered in the setting of the Navier-Stokes equations, see [22]. Finally note that the
(LS )10c information is usually asked in regularity theory, but in this work we only assume it for the variable

& (not for @ nor for b) and this will be crucial to study the term Vdiv(@) which appears in the micropolar
equation . See also Remark below, where alternative and more general assumptions are given for
the variable &.

Remark 1.2 We do not claim here any optimality on the space ngc(Q) related to the perturbation term
and we believe that it is perhaps possible to consider a slightly more general perturbation term by asking
a € L (Q) for m > 5, however, as far as we can see, this will introduce some quite difficult technical
problems and will probably induce some extra hypotheses over the pressure. On the other hand, if we assume
some additional information (say @ € L?HL(SY)), then we can relax the hypotheses on the pressure and work

3
only with p € L}, (Q).
Once this local framework is clear, we can now introduce a special class of weak solutions:

Definition 1.1 (Suitable solutions) Let (@, b,&,p) be a weak solution over Q) for the perturbed magneto-
micropolar equations which satisfies the local hypotheses stated above. We say that (4,b,d,p) is
a suitable solution if the distribution p given by the expression
po= =o(aP + o] + |8%) + A(@? + b + &%) — 20V @ @* + |V @ b + |V @ &%)
. | . .
—div <(|b|2 + 2p)ii + (|i]* + 2p)b + 5(!ﬂ|2 + |b|2)@) + 2Vdiv(@) - & — 2|@|?
- I o
+(VAD) - (u+b)+§(V/\(u+b)) “W+2(f+3) - (+b) (1.5)
+div((T+b) @d+a® (T+0b)) - (T+Db),
is a non-negative locally finite measure on Q.

Remark 1.3 It is worth noting here that the local hypotheses stated in guarantee that each one of the
terms in the previous expression is meaningful.



The main purpose of this article is to prove the following theorem which gives a gain of regularity in space
and time variables for suitable solutions.

Theorem 1.1 Let € be a subset of the form . Let (, 5,(25,])) be a weak solution on ) of the magneto-
micropolar equations . Assume that

1) (4, g,cfﬁ,p,f,g', d) satisfies the conditions ,
2) (i, g,d}',p) is suitable in the sense of Deﬁm'tion

- S 10 10
3) we have the following local information on f and g: 1qf € Mtfx’m and 1qg € ./\/ltfm’Tb for some indexes
TarTo > 5o with 0 < o < 15.
There exists a positive constant €* which depends only on 1, and T, such that, if for some (tg,xo) € €2, we
have

1 - . - -
limsup// V@il +|V @b+ |Veddeds < €,
" J Jlto—r2 to+r2[x B(zo,r)

r—0

then (@, b, &) is Holder reqular (in the time and space variables) of exponent o in a neighborhood of (to, o)
for some small o in the interval 0 < a < %
Some remarks are in order here.

e Following standard procedures it is possible to construct Leray-type weak solutions for the problem
(1.1). However we are only interested here to study the local behavior (for some points of the subset
Q) of the solutions of such equations.

3
e The hypothesis over the pressure p (i.e. p € L;,(€2)) is useful to give a sense to the quantities div(p)

and div(pl;) that are present in the definition of the measure p given in 1) It is worth noting that
in the setting of the classical Navier-Stokes equation this hypothesis can be removed and a generic
pressure p € D’ can be considered. See [5] for the details.

e Some additional hypothesis over the external forces f and g are stated in Morrey spaces. We will see
in the computations below that this functional framework is particularly well suited to the study of
the regularity for this type of equations.

The plan of the article is the following: in Section [2] we recall some notation and useful facts about
our framework. In Section [3| we establish a first gain of regularity under some particular hypotheses stated
in terms of Morrey spaces. The rest of the article (Sections and @ is devoted to the proof of these
hypotheses.

2 Notation and functional spaces

For 1 < p,q < +oo we characterize the Lebesgue space LP(]0,+oo[, L4(R?)) as the set of measurable
functions f : [0,+oo[xR?® —s R3 such that Hﬂ\Lng = </0+00 I1£(t, -)||qut>p < 400 with the usual
modifications when p = 400 or ¢ = +00. We also define the space LP(][0, —|—oo[,H8(1R3)) with 1 < p < +oc0
and s > 0 as the set of distributions such that ||ﬂ’L§H; = </0+<>0 (¢, -)||Hsdt)p < 400 where H*(R?)

is the usual homogeneous Sobolev space. See the books [15] and [16] for details about these functional spaces.

We recall now the notions of parabolic Holder and Morrey spaces and for this we need first to consider
the homogeneous space (R x R, d, ;) where d is the parabolic (quasi)distance given by d((t,z), (s,y)) =

4



|t — s|% + |z — y| and where p is the usual Lebesgue measure du = dtdz. Associated to this distance, we
define homogeneous (parabolic) Hélder spaces C%(R x R3 R?) where 0 < o < 1 by the usual condition:

. G(t,x) — J(s,y
1Bl = sup APLDZPEW (2.1)

(tax)#(5.) (|t — s[5 4o — y|)

and this formula studies Hélder regularity in both time and space variables. Now, for 1 < p < ¢ < +0o0,
parabolic Morrey spaces M?'? are defined as the set of measurable functions @ : R x R?® — R3 that belong
to the space (LY ,)ioc Such that |8l azpa < 400 where

1Pl ppa = sup ( / / tm|pdxdt> : (2.2)
' 20 ER3 tHER,r>0 t—to|<r? (zo,r

These spaces are generalization of usual Lebesgue spaces, note in particular that we have ./\/lp — f,x' See
[1] for more details on these spaces. We refer the readers to the book [16] for a general theory concerning
the Morrey spaces and Holder continuity applied to the analysis of PDEs from fluid mechanics. Here are
some useful fact concerning Morrey spaces:

Lemma 2.1 (Holder inequalities)

1) If f,7: R x R¥ — R3 are two functions such that f € MR x R3) and § € LS (R x R3), then for
all 1 < p < q < +o0 we have || f - Gl ppa < Cll fll a7 25, -

2) If f, R x R? — R3 are two functions that belong to the space ./\/lpq(R x R3) then we have the
inequality | f - gl 23 < ClF N pepa 1 aeps-

t,x

3) Moregenemlly, let 1 <pg<qg<+4+00,1<p; <q1 <+00 and 1 < py < gg < +00. [f +172_p10
cmd —|— - , then for two measurable functions f G :RxR3 — R3 such that f € ./\/lpl’q1 and g €

./\/lpz’qQ, we have the following Hélder inequality in Morrey spaces || f - Gl pgro-a0 < Hf”Mfl’“ 1l pgp2:92

Lemma 2.2 (Localization) Let Q be a bounded set of R x R3. If we have 1 < pg < p1, 1 <po<qo < q1 <
+00 and if the function f: R x R3 — R3 belongs to the space MR x R3) then we have the following

localization property H]leHMiog;qO < CH]IQfHngl < C’HfHMf}z,qL

3 A parabolic gain of regularity: the first step

The proof of Theorem is essentially based in the following regularity result for parabolic equations which
is stated here in the framework of (parabolic) Morrey spaces:

Proposition 3.1 For 5, T [0, +00[xR3 — R3 two wvector fields, we consider the following equation
87 = AT+ ® + o(D)V,
(3.1)
(0,2) =0,

where o is a smooth function on R\ {0}, homogeneous of ezponenﬂ 1 and o(D) is the Fourier multiplier
operator of symbol o (acting component-wise).

Lie. o(A) = Ao (€) for all A > 0.



Assume that we have & € MG™ and U e MPST with 1 < po < qo < q1 where we have &= = 232,

q0
q% = 1_Ta, and 0 < a < 1. Then the function U equal to 0 for t <0 and to

(t,z) = /t et (B(s,-) + o(D)U(s,-))ds fort >0,
0

is a solution of equation that is Holderian of exponent « in the sense of .

See [16], Proposition 13.4] for a proof of this result, see also [14].

We will apply this proposition to our system but, as we only assume the controls over a
subset €2 of the form , we need to localize our framework and for this we first fix the point (o, zo) €
considered in the hypotheses of Theorem [I.1] and then for a small enough radius 0 < v < 1, we consider the
parabolic ball

Q:(to, 7o) =]to — t%, to + t*[x B(x0, v), (3.2)

such that Qs(tg, xg) C Q (these parabolic balls will be denoted by @, for simplicity). Note here that since
by we have Q =]a, b[x B(zo,r) with 0 < a < b < +00 and zy € R3, then the condition Qs.(to, o) C Q
guarantees the fact that ¢y — t2 > 0 and thus the time interval Jtq — t2, ¢ + t?[ does not contain the origin:
this condition is important in order to obtain a system of the form for which the initial data is such
that ¥(0,2) = 0. Now, we construct an auxiliary non-negative function ¢ : R x R®> — R such that
¢ € C°(R x R?), supp(¢) C] — 15, 15[xB(0, }) and such that ¢ =1 on ] — g4, &z[xB(0, §) and for a fixed
R > 0 such that

iR <, (3.3)

t—to x—xo

we define the localizing function n by n(t,x) = gi)( 5 TR ) (remark that we have supp n C Qr) and
we define the vector U = n(d + b+ @). As we can observe, we have the identity U=1aT+b+d over a
small neighborhood of the point (to,zp) and the support of the variable U is contained in the parabolic
ball Qr(to, o) C Q«(to,xo) C Q. Moreover, this localization forces the property Z](O, ) = 0, we can thus
consider the following problem:

U = AU + B+ VS — div(B),

- (3.4)
U, z) =0,
where the vector B is given by
B = (8tn—A77)(ﬁ+5+cU)—22(6m)(82-(ﬁ+5+c3))—n<(5-ﬁ)ﬁ+(ﬁ-ﬁ)5 (3.5)
i=1
- div R A L - -
+ (Vn) (_A)dw(b®u+u®b+(u+b)®a+a®(u+ )) +n(V Ad) +n(f+9)
. N 1 - 1o .
+ <(ﬁ+b)®d‘+d®(ﬁ+ )) -Vn—(vn)dzv(w)—n<w+2((*+ ) V)cU—l—ZV/\(fH— )>,
the scalar function 3 is given by
S div . (> L, - = L=
B:ndw(w)—n(_A)dw(b®u+u®b—|—(u+b)®a+a®(u+b)), (3.6)
and the tensor B is given by
B=n@® (i+b)+ (d+b) ®a). (3.7)



Indeed, in order to verify that we have the equation (3.4)) with the terms (3.5)), (3.6) and (3.7) above, we
compute 04 and we have

We use now the identity

3
NA(T+b+@) = AW +b+@) — A +b+@) —2> (9m) (@@ + b+ @)

to obtain the expression

which is the first step to obtain an equation of the form (3.4). We need now to organize the expression above
in a suitable manner and for this we need to rewrite three particular terms, indeed, since we have the identities
n(Vp) = V(np) = (Vn)p, ndiv(@®d) = div(n(@®i)) — (@®d)-Vn and nVdiv(@) = V(ndiv(d)) — (Vn)div(J),
we obtain

o = AL?+(8m—An>(ﬁ+5+w>—22(81-17)(@(%5%))—n((l?ﬁ)m(ﬁﬁﬂ?)+2(ﬁn>p

We recall now that, from the expression (1.2) and using the fact that div(@) = div(b) = 0, we have the

-,

following identity for the pressure p = %% div (5@ G+a@b+ (M+b)@i+a® (i+ )) so we can finally

2(=4)

7



write

(=4)
+ ((ﬁ+b)®a+6®(ﬁ+ )>-Vn—(Vn)div(aU)—n(o?—i—2((11’—|—b) V)LU—|—4V/\(U—H))>
- div - = - L ~
+ V(ndw(w)n(_A)dw(b®u+u®b+(u+b)®a+a®(u+b))>

which is 1) as announced with the terms g, £ and B given in 1) 1) and 1) respectively.

Once we have deduce the equation (3.4), in order to obtain the conclusion of the Theorem it is
enough by Lemma [3.1] to verify that we have

Be M'Z?Q;qo and B,B ¢ ME};“,

where 1 < pg < qo < q1 with q% = 2_?0‘, CILI = 1_?0‘ and 0 < a < 1—12 In the next proposition we will prove

that under some extra hypothesis over the quantities 1, E,LU (that will be proven in the next sections) the
terms B, § and B belong to the suitable Morrey spaces mentioned above.

Proposition 3.2 Let R{, Ry be positive numbers such that
0<R< Ry <Ry <4R, (3.9)

where R is fized by the condition above. Let (, I;,(D',p) be a suitable solution for the equations MMP
over Q). Assume that we have the following pointS'

1) L1gs, @, Lo, b, 1gp, wEM?TO for B> 70> 2 (recall that 0 < o < &),

2) 1o, V @i, 19, V@b, 1o, Voo € Myp with L =L 4+ 1

12

8) 1Qp,div(d) € M5’5,

4) 1oy, d, ]lQR2b, 1g,,w € M7, with § > 1 is such that % % <1 =,

5) For all 1 <i,j <3 we have

:0;

]lQR2 (—A) bia]) Mt x

0;0;
( ) Mtx? ]]‘QR ( — (uZaJ) Mtx? and ]lQR

20,
A) 2(-4)

with po < p < +00 and qp < q1 < g < +00.
Ta — 10 Tb 5
6) ]lQR fE/\/lt7 ]lQngEMtfz for 7o, 76 > 5722
If moreover a € Lt,x(Q): then we have that the term B defined in belongs to the Morrey space ./\/lfgt’qo

with 1 < pg < g and % < qo < 3 where q% = Q_Ta with 0 < a < % and the terms 8,B defined in and

, respectively, belong to the Morrey space /\/lff’z’ql with qil = PTO‘

8



Remark 3.1 Note that, since qo = %, N > % and % = % —l—% then we easily obtain qo < 7 < 7.
5

Moreover, since q1 = 12 we have q1 < 19 < 171 Remark also that since 0 < a < % we can set 1—21 > 19 and
% >T.

Note that the conclusion of this proposition is exactly the input needed to apply Proposition from
which we will obtain the wished gain of regularity.

Proof of the Proposition In order to prove this proposition, and for the time being, let us take
for granted the assumptions 1) - 6) above and let us prove that the quantities B, 5 and B belong to the
announced Morrey spaces.

e For 5. Wewrite,f0r1<po§gand%<qo<3whereq%:%TaWith0<a<%:

3
1Bl o < 1@ — An)(@+ 5+ @) om0 +23 1@m)(@i(it + 5+ E))] o
s T ~— y L Z:1 y L

(1) (2)

+ n((z?ﬁ)mw 6)5)‘ (3.10)
M
(3)
- d - - L
+ ||( 17)( w dw(b®u+u®b—|—(u+b)®a+a®(u+b))>
(—A) M'ZO q0
()
+ (Y AG) | pgpoo + [In(F + §)||Mgo,qo+H<(U+E)®a+a®(a+*)> ﬁn' .
= a Mo
5 6
(5) (6) o
—d 1 s = ]_ = =,
+  [[(Vn)div(@)|| \poso +{|1 | &G+ (@4 D) - V)E + =V A (i + D)
t,x 2 4 Mp() a0

~~

(®)

For the first term of 1} since we have 1g, @, 1gg, 5, Lgg W€ M?;O for 7y > 5 and since we have

the support property supp (0yn — An) C Qr, it follows by Lemma (as we have 1 < py < % < 3 and
o < 3 < T()) that

@i = An)(@+ B+ D)l o0 < Cllan (@ +5+3) | pqguso < [Lan, (@+5+3) i <+,

where we used the information available in the point 1) of the Proposition

For the second term of (3.10]), using Holder’s inequality in Morrey spaces (see the third point of Lemma
we have [[(90) (D(@+5+@)) [ ygro0 < Lo dinll yypr.|Londi(i+b+ @) g2 where 1+ < o

and q% + q% = L. Since % < qo = % < 3, we have that g2 can be chosen such that ¢o < 7 = 5‘1720

q0
and thus using Lemma (recall that R < Rp) and the point 2) of Proposition we obtain
1(0im) (0 (w + b+ Q)”Mfgﬂo < COllgg, V& (i+b+ @’)HMi,;l < +o0.

For the term (3) of 1} since 1 < pg < % and % < qo < 3, by Lemma (recall that R < Ry < Ry),
by the Holder inequalities in Morrey spaces and using the information of points 2)-4), we have:

H” (@-ya+ @ V) Hw%qo <C HnQR (@-ya+ @ V) HM (3.11)

< O (Iqu,Bllygps Ian, ¥ @l s + Lo, @l ygpsllLan, V @ Bl o ) < +o0,

9



where we have + + L < L but since + = 232 and L = L 4 1 the previous conditions is equivalent
0 T = do 90 5 T 10 ' 5
to % + % < 1_T°‘, which is exactly the condition stated in the point 4) of the Proposition

For the term (4) of (3.10)), due to the symmetry of the information available in the point 5) of the
Proposition it is enough to study the following term for 1 < 4,5 < 3 and due to the support
properties of the function 7, we obtain

‘ 0;0;

(=4)
where we applied Lemma [2.2] with pg < p and qo < q.

0:9;
*(=4)

0;0;

) (-4)

< 400,
Mg

Po-90
M

aiij CH]IQR

CH]lQR

azbj albj

P0-90
M

For the terms (5), (8 ) and (6) of (3.10)) can be treated in the same manner, indeed, by the assumption
2) of Proposition (3.2 we have

[1(FA8) |y < Clllar, Yo ypm <+000  [(F)div(@)] e < Cllay, V& o < +o0,

where we used Lemma with pg < g < 2 and qp < 71 (see Remark . By essentially the same
arguments, using the point 6) of Proposition (and since pg < g < 7 and 74,7y > 5°- = (o) W

have [|n(f + Dl pgpos0 < C(HHQRIfII .t ||]1Q319|| ) < Foo.

z ,z

For the term (7) of (3.10), as we have the same information over @ and b we only need to study (for
1 <i,j,k < 3) the terms of the form [|u;a;0n|| o0 and we have
t,x

lwiajonll oo < CllLaruiajlygpom < CllLQn,will vz 1Tan, asll y2m

A

CllQp,uill g0 LR, a5l poe < o0,

Where we used the Holder 1nequaht in Morrey spaces, Lemma - with 2 < 6 and 7 < 6 by Remark
, the point /) of Proposition and the fact that /\/l LGJ

For the term (9) of (3.10) we easily deduce |[nd]| \poa0 < ClLgy,, 5.r0 < 400 (by Lemma [2.2] since
t,x

Wl g2

po < 3 and qo < 79). Due to the symmetry of the information avallable for the terms 4, b and & and

following the same ideas displayed in (3.11)), we have ||n((@ + b) - V)&|| , ;pr0.90 < +o00. Finally, since by
t,x

t,x
by Lemmawe obtain [[nV A (i +B)|| yposo < C([Tgn, VAT 2 +[Tan, VA em) < +00. We
s T t,x t,x

thus have:

the point 3) of Propositionwe have 1¢,,, VAT and 1gg, VAL € M>™ | and since po < 2 and qo < 71,

- 1= -
Hn <¢U+ (@+b)-V)d+ -V A (*+b))H < +00.
4 Mpo,qo
For . By the expression 1) we have, for 1 < pg < g and q; = & with 0 < a < %,

divdiv (—» - - -

181 \gpo-ar < [[ndiv(@D)]| pyrowar + |17 (0@ U+ URb+ (0 +b)@d+d® (U + )) . (3.12)
t,x t,x (—A) MP() q1

6 12
Since by the point 8) of Proposition we have 1¢, div(&) € M;,° and since po <8 £ and q; < %
(see Remark [3.1)), then, by Lemma [2.2[we have for the first term fo the right-hand side above:

Indiv (@)l o < Cllgm, div(@)| ypon < Clllqy, din(@)]

10



For the second term of the right-hand side of (3.12)), we use the point 5) of Proposition and

due(9 go the symmetry of the information available, it is enough to study, for 1 < 4,5 < 3 the term
”Uﬁ(uibj)HMgo,ql, and we write

0,0,
<C H]IQRQ(_A)(Uibj)

0,0,
<C H]IQRQ(_A)(Uibj)

0;0;
H L) < +00,

A (uib;)

‘ P0,q1 ’ P0o-91 ’ p.q
M M My

where we applied Lemma [2.2] with pg < p and q1 < q.

e For B. By 1D we need to study the quantity |[B|| , po.s1 = [[n(a@® (T+b)+ (T+b) ®@)|| \4p0-m1 , for the
t,x t,x
sake of simplicity we only study ||n@ @ || ,,eo.s1 as the other terms can be treated in the same manner.
t,x
We thus have

73 ® il ygpom < Cllar, @@l g, < Clllon,@lpzs Man, Tl yes,

t,x

where we used the Hoélder inequalities in Morrey spaces with q% = % + %. Since by the point 4) of

Proposition the index 0 > 1 can be chosen big enough such that ¢’ < 6, thus we have by Lemma
Ind ﬁHM;’&’“l < C||]1QR2 C_i”/\/lf;f H]IQRQ ﬁ”mfg < 400,

. 6,6
since M, = L?,a:'

We have proven that B € ./\/lﬁf’om’qO and 3,B € /\/l';?m’ql where 1 < pg < qo < q1 with q% =2 1 _ l-a g
0<a< %, and thus the proof of Proposition is finished. |

4 Local Energy Inequality and Useful estimates

In order to obtain some of the assumptions stated in Proposition [3.2] we will exploit the information given
by the local energy estimate that can be deduced from the structure of the equation . We know from
the work of Scheffer [19, 20] that the use of a special test function is particularly helpful to obtain good
estimates. We will use the following function:

Lemma 4.1 Let 0 < p <1 and 0 <r <. Let ¢ € C3°(R x R3) be defined by the formula

s—t y—=x s—1
¢(S,y):r2w< p2 ) P) >9( 2 )9(4T2+t5)(x_y)7 0<r<g§15 (41)

where w € C°(R x R3) is non-negative function supported on the parabolic ball Q1(0,0) and is equal to 1 on
Q%(0,0) (see formula ), 0 is a non-negative smooth function such that § =1 on ] — o0, 1] and § =0 on

12, +00[ and g.(-) is the usual heat kernel. Then, we have the following points

1) the function ¢ is a bounded non-negative function, and its support is contained in the parabolic ball Q,,,
and for all (s,y) € Qr(t,z) we have the lower bound ¢ > %

2) for all (s,y) € Q,(t,x) with 0 < s < t+r? we have ¢(s,y) < %,
8) for all (s,y) € Q,(t,x) with 0 < s <t +r? we have ﬁqS(s,y) < 7%,
(0, + A)g(s,y)| < C.

See the book [16, Section 13.9] for a proof of this lemma. See also the Appendix B of [10].

4) moreover, for all (s,y) € Q,(t,x) with 0 < s < t+r? we have

Now, with the help of this function we have the local energy inequality:

11



Proposition 4.1 Let (, 5,(15,p) be a weak solution of the MMP equation over a subset ) of the form
and assume that ¢ is the function given in . Then the local energy inequality for the MMP equation
s given by

L+ R+ e <2 [ [ (9@ + 90 + 19 @ a)el(s,)duds
<T

+2/ / [(div(d (s,z)dzds + 2/ / (s,z)dxds
<T R3 <T ]Rd

< /<T/ (Orp + A)(|)* + |b|2 + &2 (s, z)dxds + /<T /RS (| + 2p) §¢}(s,x)dxds (4.2)
/ / ’b|2+2p (s, dmds+/ V/\w U+b)](8,12)dxd5
<7 JR? <T R3
+2/<T /R3 f (ptl) + g - (be)](s x dxds+2/<T /R3 [div (& ng) )](S,x)‘dxds

+/<T /RS [ (¢(u+b))] 5, ) dxds—k/q /RS{ V) (6(ii + b)) - ](s z)dxds

5 P8 Folls, ads + 5 | _ [ A G+ D) (69 s,

Proof. In order to deduce the local energy inequality announced, we multiply the three first equations of
the system 1) by o, ¢b and ¢ respectively and we integrate in the space variable to obtain

@i+ (¢i0)dz = / <Aﬁ(5-€)aﬁp+§6m+f %dw((u+b)®c‘i+a®(ﬁ ))> (6i0)
R3 R3

aib - (pb)dz = / <A6-(ﬁﬁ)6—ﬁp+;ﬁm+g—dw((mz?)@am@(m*))) (¢b)dz,
R3 R3

0 - (6F)dz = / (Amﬁdz'v@)—a—1((ﬁ+*)-6)w+16A(a+3> - (6@)da
R3 R3 2 4

Recalling that we have the generic identity 9;¢ - (¢¢) = %3,5(]6]2(;5) — %5’]28@ as well as the formulas
1 = 2. 7 = ]_ - —

/ AE-(qﬁé)dmz/ ]5]2A¢dx—/ IV @ & ¢dx and/ [(8~V)d]-(¢d)da::—/ |d|*¢ - Vdx which

R3 2 Jrs R3 R3 2 Jps

are valid for any (smooth) divergence free vector field & we obtain after some integration by parts and after
an integration in the time variable:

/[(]ﬁ\Q—i—\52+\w|2)¢](r,x)da:+2/ /[(WM\MW@BMWwy?)(ﬁ](s,x)dms
R3 <r JR3

+2/ / [(div(&))%¢) (s, x dmds+2/ / (s, z)dxds
s<t JR3 <7 JR3

< [ [@w A0yt + i + (5. s + / / (1 + 2p)B - F](s, ) dads

<7 JR3 <7 JR3

/ / (162 + 2p) @ (s,x dmds+/ (V A@) - [¢(@ + b)|(s, x)dxds
<r JR3 <r R3

+2 /<T /R3 G- (o)) (s, z)dzds — 2/<T /R3 [div(B) (Ve - D)|(s, z)dxds

/ / dzv +h)Ra+a® (i —1—5)) [6(@ + b)) (s, z)dads
<r JR3
/<T /R3 \G12(T + b) - V| (s, 2)dads + = /<T /]R’ |- (¢&) (s, x)dzds,

12



—

since

u,
div ((ﬁ th®a+a(d+ E)) - [¢(@ + b)]dx can be rewritten as
R3

for the last line above we will use the identity /
R3
for divergence free vector fields, and using the bilinear structure of the terms, we have

/Rg div (i +5) ©a+ae (@+1) (6@ +hlde = /R [[(a- V(@ + 5] - (qﬁ(ﬁ—l—l;))}dz

and we finally obtain

/[<u|2+|b|2+|w|>1<mdx+2/ L9 @+ 19 052 + 9 © 5)el(s,2)duds
<T

—|—2/<T /R3 [(div(& (s x)d:nds+2/<T /RS[|(I)’| ?|(s, x)dzxds
/ / (D16 + A) (]2 + B2 + [&])] (s, 2 dxds—i—/ / (|7 + 2p)5 - V](s, ) dwds
<T <7

IN

-,

/ / (6] + 2p)@ (s,x dxds—i—/ (VAG) - [¢(T + b))(s, x)dzds
<7 JR3 <T RB

+2/<T/R3 [+ (&) + G - ()] (s, w>dxd3+2/<T/Rg

+/<T /R [ b)) - (¢(a+z3’))] (s,2)

/ _ /R \ ) - V(s z)dzds + = / _ R3 [V A (@ +b)] - (¢@) (s, z)dzds,

[div(3) (Ve - D)) (s, 1‘)’ dxds

and this ends the proof of Proposition

and a are divergence free vector fields, we easily see that the quantity

[(Z-V)d] - (¢p&)dx = — /RS[(E- V)(¢€)] - d dz which is valid

dxds —|— - {((ﬁ—% b) - ﬁ) (p(a + E)) . c_i] (s, z)dzds

Once we have obtained this inequality, we will make use of the properties of the test function ¢ given in
Lemma[41]in order to obtain suitable controls that will be used in the next section. Indeed, by introducing
some scaled quantities it would be possible to exploit the previous inequality (4.2) to deduce by an inductive

argument some stability of this scaled quantities in terms of Morrey spaces.

In this sense we have the following definition.

Definition 4.1 (Scaled Quantities) Let v > 0. For all (t,x) € R x R3, we consider the following scaled

functions:
iy (t,2) = vid(v’t,yz), by(t,z) = (vt yz), &(t, ) = 1&(v*t, vz)
py(t,2) = Vp(Vtyx),  fr(tx) =V F(YPtyr) and  §,(t,x) = Gt yT).

13



Now we define the following invariant quantities with respect of the previous scaling:

1 1 -
Alta)= s [ s pPay arttir) = [[ G )Pdyds
t—r2<s<t+r2 T JB(z,r) r r(t,x)

=

1 - 1 -
Bita)= s - / B(s, ) Pdy Bo(t) = / / 1V ® (s, y)|2dyds
t—r2<s<t+r2 T J B(z,r) r(t,z)
1 o
C(te)= sup L / (s, y)[2dy / / 3(s,y)[2dyds
t—r2<s<t+r2 T JB(z,r) r(t,x)

r(t, @) ) // i(s,y)*dyds Gr(t,x) = 2// 16(s,y)[Pdyds
t:r T T(t,l‘)
() = — // (s,y)>dyds
r 7‘
// ]dw (s,9)|*dyds r(tz) = — // 3(s,y)|*dyds
r(t,x) r - (
Foltz) = // (s, ) #dyds 6.(t.0) =5 [[ gt ¥ duds
Qr(t,x) r7 r(t,z)
() = — // p(s,y) 2dyds
T 7‘

Remark 4.1 From the definition above we easily deduce the identities (TAT)% = |[ullLsor2(q,) (rar)% =

g 2 -
WHLgH;(QT) and r3 PP = ||pl| 3 and similar identities for the variables b and &.
t,x
As announced, we will use these quantities to deduce two main estimates, which are stated in Proposition
and Proposition In the next lemma we prove some useful relationships between some of the previous
terms given above.

Lemma 4.2 For any small 0 < r < 1 such that Q, C Q and under the general hypotheses stated in ,
there exists an absolut constant C, such that

l\.’)\»—A
wh—t

1 1
N < CA+a))t, (P <COB+8) and of <CC +)3.

Proof. We only detail the proof of the first estimate as the two others follow the same arguments.
Thus, by the expression of ), given in the Definition and Holder’s inequality, we have the esti-
1

mate \} = 2 ||| 13,@Q) < c-L 7 HuHL1 . Now, using an interpolation inequality we have the control

t,x

2 3
|| (¢, ')HL%(BT) < ||a(t, -)]122(3 ||(t, )Hzﬁ( B and applying the Holder inequality with respect to the time

variable, we obtain ||| 10 For the L7L% norm of i, we use the classical

2
B S < Nl ze0 2 (0 HUIILzLG @

Gagliardo-Nirenberg inequality (see [3]) to obtain ||| ;276 (g,) < C (||§ ® 1l 212(q,) + HﬁHL;’OLg(Q,«)) and
using Young’s inequalities we have

3 -
H,L_[HL%(Q ) < CHUHLOOLE <||V ®u||L2L2 + ”UHE?OL%(QT)> < C (HUHLgOL%(QT) + ||V & u”LfL%(QT)) .
t,x T

Noting that [|@]|zer2(0,) = T?Ar and |V ® Ul 2120, = =2 ar, we finally obtain )\3 < C(A, + ar)% and
Lemma 4.2 is proven. [ |
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4.1 A first estimate

We give now the first general inequality that bounds all the terms given in the Definition

Proposition 4.2 (First Estimate) Under the hypotheses of Theorem for 0 <r < £ <1, we have

r2 2 1
Ar+ By + Cp + ap + Br + e + W + 12, <C S(A, + B, +C)+C%a3(,4p+6p+ﬁp)

p 1 p? 2 1 p? 11 1
—2[3,)2(8 + A, +ozp)+C—73p3(A +ap)5+077,?(.,43+8p2)

NI

2
+ C%Pﬁ (B, + B,)% +

e 1 . 1
+ 0L (A, ant + 6P, + 50 ) + CoW Bl (4.3
1 N\ (PE p\, L 1
+ O (Ap+ap)? +(By + 5))2 2 (a5 +85) x pellaliLs (o)

2 1 1 2 1
P 3 3 1 1 p 12
+ i ((Ap+ )t + (B, + %) + (0, + 8,)3C5.

Remark 4.2 Note that the hypothesis & € Lf‘;c(ﬂ) s crucial at this step. It can be relaxed assuming for
ezample & € LYLL(Q) with %) -1- % — % > 0 where 2= < 19 < & and 0 < a < 15 is the exponent of the
expected Hélder regularity.

Proof. It is worth noting here that the structure of this estimate follows closely the one of the local energy

inequality given in (4.2)) and in order to deduce this control, we will start estimating the terms of the
right-hand side of (4.2)).

e Indeed, by the point 4) of Lemma and using the quantities introduced in Definition we have,
for the first term of the right-hand side of (4.2)):

te? 2 2 tho? 2 2
/ (006 + AG) ([P + B2 + 3] )d:cds</ / (2 + B2 + |@[2)dads
t B,

7"2

p2(A + B, +Cp).

e For the second term of the right-hand side of (4.2]) we have:

t+p? oL t+p? oL t+p? oo
/ / [(|@)? + 2p)b - V] dxds</ / 2(b- Vo) dxds—i—C/ / p|[b||V p|dxds, (4.4)
t B, t B, t—p2 JB,

and we will study the two previous terms separately. For the first term of the right-hand side above
we introduce the quantity (|@|?), as the average

—»2
= a(t, d 4.5
()0 = (Bl fo, 1E 0 (45)

and since b is divergence free, for any test function ¢ compactly supported within B(x, p), we have

/ (]6\2)1;(5‘ V)dz = 0. Then, since the test function ¢ is supported in the parabolic ball Q, (by
B(z,p

Lemma and using Holder’s inequality, it follows that

/tt+p/ Eﬁqbdxds—/tw/ |@? — (|@?),)(b - V)¢dads

t+p2 ) t+p? ) ) -
[ e ey doas < / I = (1)l . 5, Vs,
P
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where we used the fact that |Vl p~ < r% (by the point 3) of Lemma . Thus, by the Poincaré
inequality and using the Holder inequality (in space and time variable), we obtain
C t+p? 5 . C t+p?
S<1n p IV ([i(s, )Pz, 165, ')||L3(Bp)d5§ 2, 1]l 25, IV @ @l 25, 165, )| L3 (5, ds

c, . >
< sldlcerz IV @iz, q,) IBlzs @, <C A2apCp,

; - 1
since by the Deﬁnitionwe have @l zs12(0,) < Cp3 il oo r2(q,) < C’pE.A%, Vel g, < p%aﬁ
- 1 ”
and [0l 3 (q,) < p%CS. Using the second inequality of the Lemma (4.2 we obtain

N

t+p p 1 p 1
/ / V)odrds < O3 ARad (B, +5,)% < CL0F (A, + By + By). (4.6)
¢ B,
and this control ends the study of the first term of the right-hand side of (4.8]). For the second term

of (4.8), we simply write (using the properties of the function ¢ given in Lemma as well as the
quantities given in Definition and Lemma |4.2)):

t+p2 C a2 51 p*. 2 1
/t / Pl oldzds < Slpl, 3 o Bl < S POGIGH < CLPI(B, + 6,5 (47)
With estimates (4.6) and (4.7)), coming back to (4.4) we finally obtain
ot 2 P 3 p* 2 1
/ / (1 +2)8 - Volduds < CL703 (Ap + B, + B,) + CLPI (B, +B,)5 (438)
t B,

The third term of (4.2)) can be treated in a completely symmetric manner and we have the estimate:
tet 2 P> 4 P> 2 1
/t /B (B2 + 2p)it- Foldads < CL 63 (By + Ay + ) + CL3P3 (A, + ).
P

For the fourth term of (4.2) we have
t+p? . t+p? ., t+p? .,
/ (V AD) - (67 + B)]dads = / / (¥ A&) - (¢i0)dads + / / (VA D) - (¢h)dads,
t—p? JB, t B, B,

and due to the symmetry of the information available it is enough to study one of the terms above.
We thus write, by the properties of the function ¢ given in Lemma

t?t C, - C -
/t | @ na)- s < 198Gl 0 00, < TI9 €3l 001z, @
P
C C 1 1 p i3
< ;I|V®wIIL2 @ PNl ez, < (1) 2p(pAp)2 = C7 7 Ap,

where we used the fact that ||@l|;2 (q,) < Cplltl|Lsr2(q,) and the DeﬁnitionH Thus, with the second
term involving (V A @) - (¢b) we finally obtain the estimate:

t+p? - p? L1 1
/ / (VA®) - [¢(if + b)|dads < 077,? (A2 +B3). (4.9)
t B,



For the term related with f, g in 1' we have by the properties of the function ¢ given in Lemma

t+p?

t+p? .
/ / 7 (o) + - (9)deds < € / Fllal + 19118l deds
t B,

*HfH 1 HUH A+ gl 10 H H
0o Qo) L% (Qp) L (Q 5@
Recalling the control ||| 10 < C([[ullpser2(q,) + IV @ uHLz ,)) and since we have the identities
t,x P
- [T P S 4 "
il 20,) = 0243 9 1l 0,y = p25h, P35 = 7] g and pGpTs = I, we
o L (Qp) (Qp)

obtain:

e
10

/fp /B (6T) + 7 (d)b)]dxds<0’0< FIO (A, +a,)b +G9(B +Bp)5>.

For the sixth term of (4.2) we have, by the properties of the function ¢ given in Lemma by the
Holder inequalities and by the Definition

t+p” . C 15
/t | Jiv@)(Fo- )6, )| dwds < Sdiv@)1z 0191120 < 3 PW) 2% 151250
P

from which we obtair%
t+p? N p3 1
/ / |div(@5)(& - V)gldrds < C5Wi |G| L ()
t B, r b
For the seventh term of (4.2]) we need to study the following quantity

/ N /
t B,

By symmetry of the available information over the vector fields # and 5, it is enough to consider the

@)@+ ) (00 + ) (5.2

dzds. (4.10)

t+p?
term / qﬁu)‘ dxds and we write, by the Holder inequalities:
t+p?
L. /B (@ 9y - (6m)| deds < g ) I¥ @120 722 (@)
P
. ~ S 1 = : "
but since we have ||a||ng(Qp) < llallzs () (pap)2 =V ®“‘|L§E(Qp) and since we have ||u||L§,m(Qp) =

1
p%)\g < C’pg(.Ap + ozp)% (by Lemma [4.2)) we obtain:

t+p = 1 1 1
/ / (@~ V)il - (90)| duds < OLab (A, + )bt (o
¢ B,

Performing the same computations for the remaining terms of (4.10) we have

t+p? 3 >

/ / dxds < C’ ( 2+ B5)
t By

1 1 1.

X ((-Ap +ap)2 + (B, + By) 2>p6 HaHL?,x(Q)

@ )+ B (6 + ) (52

2Note that for the term &, a LP LZ-norm can be used here instead of the L{° L-norm. See Remarks and
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t+p? .
e The eighth term of . is / / [ i+b)- )(gzb( +)) - } (s,z)dzds and again, it is enough to
t B,

study the following generic term which contains the term (U . ﬁ) (qbﬂ') - a and we have

t+p . - —
L[| 9 -a] s < 11 0, (990231, 0 + 92,9 © 2 c0,) W0,
P

c .. c, .
<”UHL3 (Qp) ﬁPHUHLng(Q,,)+7”UHL31{;(QP HCLHLG (Qp)

2 1 (C 1 C 1\ L 0> p 1 11,
P+ 0 (Stoan)t + S o) ) il o) < € (5 + ) o (ot ) ol o

where we used the properties of the function ¢ given in Lemma the Definition and the Lemma,
Thus, considering the remaining terms we can write

/tw /B{ (@ + ﬁ)(¢(ﬁ+“)).d]da;ds < C((Ap+ap)é+(5p+ﬁp);) (fi+f) (o 181

1.4
xpsllalirs (-

t+p?
e For the ninth term of 1.} we have to consider the quantity / / [163]2 (i + b) V¢|(s, z)dxds which
tf

has the same structure of the first term of the right-hand side of . and thus, by the same arguments
we obtain

t+p 1 1
/ / ) - Voldads < <? Cp2 V% ((Ap +ap)2 + (B, + Bp)i) .
t B,

t+p?
e The last term of (4.2)) is given by the expression / V A (4 + b)] (¢d)dzds and we remark that
By

it is of the same structure of the term , SO we obtaln
t+p? o p 1 1
/t /B IV A (@ +b) - )+ (90)|dzds < C"—(ap + 5,)2C5.
P

Once we have estimated all these terms, in order to obtain (4.3)) it is enough to gather them: doing so we
obtain an uniform estimate with respect to the radius » and to end the proof we remark that the left-hand
side of the energy inequality is controlled (using the quantities given in Definition 4.1)) by the left-hand side

of (3). m
4.2 A second estimate

The control obtained in the previous section is crucial but it is not enough to our purposes as we need to
obtain a deeper control over the pressure. For this

Lemma 4.3 For some 0 < 0 < % and for a parabolic ball Q, of the form , we have the following
estimate on the pressure

1 = -
< Oos |lall L= 2 @u) I8l 2 1 @1y + Co> (10l 2y + Wl r2a ) Nl e @uy + o2 lPl g .3

Pl 3
|| ||Lt2,z(QU) * t t (@)

Remark 4.3 For the time being we assume the controls of the right-hand side of the previous estimate. We
will see later on, by a suitable change of variables, how to recover the information over the balls Q, C 2.
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Proof. First, we introduce a smooth function 7 : R3 — [0, 1] supported by the ball By such that n = 1
on the ball Bz and n = 0 outside the ball Bs. By a straightforward calculation we have the identity
5 5

—A(np) = —nAp + (An)p — 2 Zf‘:l 0;((0;m)p) and we thus have

H (An)p

(—nAp)
Ipll 3 A

<
L2,(Qs) — H (—=4)

+

(4.11)

CAJ

L4 (Qq)

3
L2

t,x

3
Lt2,a: (QU)

(a) (b) (c)

e For the first term of (4 above, we use the expression of the pressure given in which allows us
to write 2Ap = —dw((b V) i) — div((i@ - V)b) — div(div((G+b) @ d+ad @ (T +b))) and due to the fact
that div(i@) = div(b) = div(@) = 0, we obtain the expression

3 3
- Z 0;0;(uibj) + Z 0;0; ((u; + by)aj + a;(u; + bj)),

ig=1 ig=1
from which one gets
H (—nAp) 10:0; (uib;) H n0;0j ((u; + bi)aj + a;(u; + b;)) (4.12)
(=8) N0~ 52l A i @n) (=4) 1l @)

(a.1) (a.2)

In order to study the term (a.1) above, we introduce the quantity ; ; = w;(b; — (b;)1) where (b;)1

is the average of b; over the ball of radius 1 (recall the definition (4.5)) and since u is divergence
3 3

free we have the identity Z 0;0;(u;b; Z@ 0;4; ;. Noting now that we also have the identity
7.7 1 ,j 1
T}@iajﬂi7j = 8i8j(nili,j) — a,((ajn)uw) — 83((8177)&173) + 2(6,-8]-77)&1',]-, we obtain
Hn&@j(uibj) ‘ 0:0;(nthi ;) ‘ 9i ((9jm)4i,5) (4.13)
3 — 3 .
(—4) LZ,(Qo) (=4) L, (Qo) (—A) Lt%,,(Qa)
9; ((9im)th; ;) LC H (9:0;m) i 5
, 3 :
S RS =4 liek@)
The first term of the right-hand side above is easy to control, indeed denoting by R; = \/% the

usual Riesz transforms on R3, by the boundedness of these operators in Lebesgue spaces and using the
support properties of the auxiliary function 7, we have (recalling that £l; ; = u;(b; — (bj)1)):

[e3

i (ts-) < IRiR; (ki) () 5

L3 (B,) L3
Cllui(t, M 2syllbi () — (bi)llLs sy < CllU®, )2y IV @ bt )l L2(By)

N o) < i) 3

IN

where we used Holder and Poincaré inequalities in the last line. Now taking the L3-norm in the time
variable of the previous inequality we obtain

H 0;0;
(=4)

The second and the third term of the right-hand side of (4.13) are treated in a similar manner., so

we will only consider one of them. Since 0;n vanishes on B3z U B and since B, C B1 C Bz, with
5 5 2 5

nik; ;

1, _» -
3 < Coslldl perz @IV @bz (o) (4.14)
L{4(Qo) 7
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the integral representation of the operator (_‘9—2) we have for the second term of (4.13]) the inequalities

(taking into account only the space variable):

0; 0;
———((9m)h; ;) (¢, < Co? || —= ((9;m) ;) (¢, -
[ @msaea], - <or|Zgtemse]
<cf LY (@)t (8 ) dy <Oyt sy (415)
{2<lyl<2y [T =¥l Lo (B)

—

< Colfuilt, )| 2oy llbs(t, ) = (billzaesy < Co? [t )| 2y IV © b(E, )| L2(8y):

where we used the same ideas as previously. Taking the L3-norm in the time variable, we obtain

0; 7o - 1 -
|2 < 003 le 20 Pl zascany < O Nl craan Bllzimy @y (416)

3
Lt2,z (QU)

(since o < o5 as we have 0 < o < %) For the last term of 1j we recall that the convolution

kernel associated to the operator ﬁ is %, and thus following the same ideas we have the inequality

H (0:0jm)Nij
(—A)

S — =
3 < Cosllillpserz IV @bz ()- (4.17)
LE,I(QU) ’

Thus, gathering the estimates (4.14)), (4.16|) and (4.17) and coming back to (4.13) we finally obtain

T]aiaj(uibj) 1.0, -
V== |2, SCo Nl bl 22 i11(qu)- 4.18
o= |25 3 a = O iz 00 Bl (119
We study now the term (a.2) of (4.12). Due to the symmetry of the quantity

n0;0j ((u; + b;)a; + a;(uj + bj)) it is enough to treat one term of the form 70;0;(u;a;) for which we use
as before the identity naiﬁj(uiaj) == Bzﬁj(n(ulaj)) — 81((@ )(UZCLJ)) — 81((81 )(UZCL])) -+ 2(818]1’])(11,10,])

and we have

Hnaiaj(uiaj) ‘ 9;0;(n(uia;)) +’ 9i((9jm) (uiay))
(=A) Lt%z(Qg) B (—=4A) L,?Z(QU) (—-4) L%I(Qg)
9;((9in) (uiay)) (0:9;m) (uiay)
| Lgl(Qg)”H 5 i,

For the first term of the right-hand side above, introducing the Riesz transforms and using the support
properties of the localizing function n we have:

‘ 9,0 (n(uia;))

(=4)
now taking the L2-norm in the time variable and applying the Holder inequalities (in space and then
in time) we have

‘ 9:0;(n(u;a;))
(—4A)

= [|[RiR;j(n(uias))ll

3 rhsy S el g,

L2(Bs)

2 o < Clluillzrs@ullaslicsrz @y < Clluill 21 gy llaill Los @iy (4.20)
t,x o
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where in the last estimate we used the local inclusion between Lebesgue spaces. Now, just as before
(when studying (4.13))), the second and the third term of (4.19)) can be treated in a similar manner and
we will just study the second term and we have, following the same ideas displayed in (4.15)):

’ 2i((05m)(uia;))

(—4)
and with an integration in the time variable applying the Holder inequalities it comes

‘ 9i((9;m) (uiay))

(=4)
For the last term of (4.19) we proceed in a similar manner noting that the convolution kernel associated
to the operator ﬁ is % and due to the support properties of the localizing function n we can write

s < Co?||uiazllpi(py) < 002||u,-||L6(31)||&j||Lg(Bl) < CUQHWHHl(Bl)||aj||L6(Bl),

s < CPluillzmgnlaslsrs @ (4.21)
L{(Qo)

Hm L35 < Co? uiaj|| 11 (p,) from which we easily deduce the estimate
(0:05m) (uiay) 2
— A < Co||uill 2 1 gy laill s zs @v)- (4.22)
H (_A) ng(Qo) ¢ LtHa%(Ql) J LtL.r(Ql)
Thus, gathering the estimates (4.20]), (4.21) and (4.22) and coming back to the inequality (4.19) we
obtain: 810 )
Noioj(uia; 2|~ —
— N < Colldll g2 g ol Lo s (@u)-
H (—A) Lt%,z(Qa) LHL(Q1) I LY LG (Q1)

Now, considering the terms of the form 70;0;(b;a;) we have

H n0;0; ((w; + bz‘)_ai;- a;i(uj + bj))

% (Q ) < CU (Hu||L2H1(Q1 + ”bHL2H1 Ql )HCLHLGLG Ql) (423)
Lt,z o

With the previous estimates for the terms (a.1) and (a.2) given in (4.18) and (4.23)), respectively, and
coming back to the expression (4.12)) we obtain

o
(=4)

1 -
< Cos i psor2 (@) lloll p2
3 s LyHL(Q
L@ PRy (4.24)

21 7 o
+ 0o (1) 1211 (g0 + 100 22612 @) 1]l Lo L8 -

e We can now study the term (b) of (4.11]) and we have (proceeding just like in (4.15)) with the kernel of

the operator = ) and the support properties of 7n): H(A” ‘L%(Ba) < Co? Pl sy < CUZHPHL%(Bl)
and taking the L3-norm in the time variable it comes
An)p
[t IPRE=E I (4.25)
LZ,(Qo) Ly (Q1)

e The last term of (4.11)) can be easily treated by following the same ideas displayed previously and we

obtain 8.((8
‘ @m) | < ooy (4.26)
(—=4) L2.(Qo) L7 ,(Q1)
To end the proof of the Lemma, it is enough to use the estimates (4.24]), (4.25) and (4.26) in (4.11)) to
obtain the wished inequality. |

Now, using a scaling argument and the control given in the last lemma, we have the following proposition.
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Proposition 4.3 (Second estimate) With the quantities defined in Deﬁm’tz’on under the hypotheses
of Theorem and for 0 <r < § <1, we have the estimate

S o((2Y bt o (7Y (b s 5d) g r\' p3
pheo((2)aisi+ (L) (o +0) 100+ () 7)) (127)
Proof. Set 0 = % and consider the following functions

pp(t,x) = p(p°t, px), ip(t,x) = ii(pt, px), by(t,x) =b(p’t,px) and  G,(t,x) = d(p’t, po),

thus, by Lemma and using the rescaled function above we obtain

1
r 3 _§ - _g —
HPH ! an < C((p) (P 2[4l o L2 ()P 2Hb||L§H;(Q,)))

r 2 _3., 4 _3 .7 _5,5 r 2 _ 10
+(5) (P ¥ 2o + 0 Wz o H g o + (=) 0 Flnl g
P i e ’ p t (Qp)

Now, recalling that, by the Definition (see also Remark we have the notation 7“3737? = || pH ! @’

=

13 S 14 S 1 > .
p2AS = |ldlpor2(q,). PEop = H“”LfH;(Qp) and p2f; = HbHLfH;(Qp)v thus we can write

r% 2 r % 11 r 2 11 1 1 r 2 2
p3 p p ’ P

and we obtain (as p —% <pZsince0<p<1)

2 1 1 % 1 1 3 2
7>ﬁ§0<(f)A3/35+<;) <a,§+ g)uaHLG Qp)+<;> 73,?),

which is the desired estimate. [ |

[

5 Inductive Argument

Once we have obtained the estimates and (| it is possible to perform an inductive argument in
order to obtain a (local, parabolic) Morrey mformatlon over the variables i, b and @.

Proposition 5.1 Let (i, g,cﬁ,p) be a suitable solution of the magneto-micropolar equations over the
subset ). Under the general assumptions of Theorem. there exists a positive constant €* which depends

only on Tq, Ty, Te = min{7,, 7} > 57 > 3 with 0 < a < 12 and on 1y such that if (to, o) € Q and
]. = — — —
limsup// IV@i?+|Veb?+ |V e d*deds < €, (5.1)
r—0 to—r2,to+r2[x B(zo,r)

then there exists a parabolic neighborhood Qr, of (to,zo) with 0 < Ry < 4R such that
lgn @€ MR, g, be MPP, g, &€ M. (5.2)
Note that the conclusion of this proposition is exaclty the first hypothesis of the Proposition

Proof. Recalling that from the global hypothesis of Theorem we have a local control over the set €,
thus as we want to obtain a local information and since we assumed Qg (to, zo) C © and by the definition of
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Morrey spaces, we only need to prove that there exists a radius R; small enough such that for all 0 < r < R
and for all (t,x) € QRr, (to, o) we have the following control

- _3
// @ + [B® + |@[3dyds < or° ). (5.3)
Qr

In order to obtain this estimate, we will implement an inductive argument using the averaged quantities
introduced in the Definition Indeed, using the Lemma [4.2] we can write

// @l + ‘5‘3 +|5Pdyds = r* (A + ¢+ 0,) < Or (A + By +Cr + o + B, + ’Yr)%'
Qr

Then in order to obtain the control (5.3) for all small 0 < r < Ry, and all point (¢,z) € QRg,, it is enough

to show the estimate: o(1_ 5
Ar+ B+ Cr g + By <2070

Let us introduce the following quantities:

1 10
m(Ar+Br+Cr+ar+Br+%+Wr) and H, =r0oH,. (5.4)

r T o

A, =

Note that the introduction of the quantity W, in the first term above is reminiscent from the estimate
(4.3]) obtained previously. Thus to prove ([5.3) we only need to show that there exists 0 < k < 1 and some
0 < Ry < R such that for all n € N and (¢,z) € Qg,, we have

App, < C, (5.5)

and the idea is to use an inductive argument that ensures that we have these estimates above for all radius
of the following type k™R; > 0. Remark that due to the definition of the quantity A, given in (5.4), we
will also obtain some information over the gradients of @, b and & (see Corollary below).

In order to simplify the arguments, we shall need to introduce the following quantities

1

= 73 5
?”5(1_%)

1 7 7
B’r = (041" + ﬁr + Tr + W’r‘)7 PT‘ 7)7’7 DT - 3 — 5 (‘7.‘7}0 + grlo)’ (56)

Tc

for some 7, > 0 such that 2 4 % - % > (0. Our starting point is the estimate 1) obtained previously:

2 2
Ar 4 By +Cp + i + B+ Y + Wiy + 1°H, < C;—z(AerBp+Cp)+0%a,%(Ap+Bp+Bp)
) )
p2 2 1 p2 1 p2 2 1 p2 1 1 1
+ C LBy + 5 +C T3 63 (By + Ap + ) +C 2525 (A + )% +C o (A7 + B7)
3) ) ) (©)
= 1T 1 e
O\ (Ap+ap)z +G,° (B, + B,)2 | +C 2V 1611 £ge, () (5.7)

(7) ®

i ,02 p % % 1.,
+(By+B)7 ) ( 3+ 7 ) (@F +83) x pelallg, (o

N|=

+C ((Ap +ap)

2 2

1 P 1,4
+ (Bp+5p)2) +C 7(ap+ﬁp)ch .

o=

11
Civp ((-Ap + ap)

(10) (11)

+C

%w‘b
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Multiplying both sides of the inequality 1) by ﬁ, using the formula 1) we obtain in the left-hand
0

side '

) (AT+BT+CT+05T+§T +/YT‘+WT‘+T2HT‘) :AT‘+H7“

2(1-2
r 0

Now we will study each term of the right-hand side above multiplied by ﬁ:
r 70

e For the term (1) above we have, using the definition of the quantity A, given in (5.4):

10

1 <7“2 1 2 5 r\ 7o
—_— (Ap+Bp+Cp)> <—————p A, = <) A,
2(1-2) \ p? F20-2) p? p

T 70

e For the term (2) of (5.7)), by the definition of A, and B, given in (5.4) and (5.6)) respectively, we can

write
1 (P 1 (pPnt 2a-2) P\ T A b
ro o r T
e For the term (3) of (5.7), using the expressions of A, and P, given in (5.4) and (5.6) respectively, we
have
1 p? 2 1 1 p% 3-5) 2, 21-5), \1 p\A— 70 2 L
gy (P ) < i SRR A = () pla)

e The term (4) of can be treated in the same manner as the term (2) and we obtain

1 p? 3 P\ 1
-5 (72 3(3p+Ap+ap)> < (;) A,B}.
oo

e The term (5) of (5.7)) can be treated in the same manner as the term (3) and we obtain

1 p2 2 1 p 4—}_& 2 1
g (Pl et) = (1) P rial
”" T

e By the definition of A, and B, given in (5.4) and (5.6) respectively, the term (6) of (5.7) can be

rewritten as follows

1 p211 1 1 p211,i1 p3—%oill
) (r%? (A2 +l’>’3)> T <B,§p( Az < (—) " p7 AZBL.
T 70

1 e 1 e 1 3-10 5_5 1
5(1-5) (i <.7:p10(.,4p+ap)2 _|_gp10(3p_|_ﬂp)2>) <C (g) 0 p2+70 rchAg_
r 0

e For the term (8) of (5.7) we use the definition of B, given in (5.6) to obtain:

1
20-3)

r 70

PP~ P\ 1L
EWi @l ) < (2) 7 o " BEI@] 155 .

Remark 5.1 Note that, following Remark if we assume & € LYLL(Q) with % —1- % — % >0

10 10 1
(which is possible since L} > 10 > 2=), then the previous bound is (£)" 70 p7o~ " 1B} 1617 L3 02)-
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[N

1 1 5y 1 5y 1
e Since we have (a% +385) <CBj, (A, +a,)2 < C,o(1 TO)APQ and (B, + Bp)% < C,o(1 TO)AE, thus for

the term (9) of (5.7) we write

1 . . 2
2(1_s)<(Ap+aP)z +(Bp+5p)2> <ﬁ2 +§

382« ohila (1=2) A2
(ap +B5) x PGHGHng(m < 7_5)@ ' AZ)
P

20-2

2 1 1
p p 5 1 =2
x <T’2 + T) BPQpG ||aHz7§,’I‘(Q)7

from which we deduce:
e It Ay
= <<r) +(7) )pm "A By, @)
° T?e term 5(10)10f (5.7) is treated a5s folllows: recalling that -, 5§ P;p by (5.6) and since we have
C2 < p(l_%)Ag, (A, + ap)% < p(l_%)Ag and (B, + Bp)% < p(l_%)AE by 1) then we can write

1 2 11 1 1 4-10 1
(” C22 ((Apmp)a +(Bp+5,,)2)> gc(ﬁ) " A,B3.

TQ(I—%) r2 r

1 1 _5y 1
e The last term of 1) is easy to estimate as we have (o, + Bp)% <CBj and C; < p(1 TO)AE, then we

have ) .
1 P 11 p\3—7 5 1 1
2(15)<r(0‘p+ﬁp)20p2> < (;) " poA;BS.

rom

Once we have all these estimates for the right-hand side of (5.7 we finally obtain the following control

7o P\ 1o 1 P42 2 1
A, +H,<C <p> Ap+(;) °ApB3+<;) "P3AZ

PV L (2R 5t adp N
+C (;) + (;) p7 CAFBidlLs () + (;) proA;Bj
10 10
P\3 "7 24525 1 p\i—7 0 L1
+ <;) CpT o eDyAS + (;) “ o Bildre ) |- (5.8)

Now, we study the estimate for the pressure (4.27) which is given by the control

2 2
2 P 11 r\ 3 1 1 . r\3 2
PTSSC/”((T)AEﬁEJr(p) <a3+5p2)HaHng(Qp)+<p) 7»,;),

and in the same spirit as before, we will introduce the quantity P, = ﬁﬂn given in () in the
7.2 0

left-hand side above. To this end, we will first rise the inequality above to the power % and then we will

1 and we have

multiply both sides by Tao5y
r2 0
P——p < (O adsi+ (5) (o + 5 Y, oo (D) P
= e S g ) AE ) B )l e, 5) )

We remark now that we have (by the definition of A, given in (5.4))):

3 15
2 3-8

1 3 P\ 33 3
' (A,B))T = (;) 7 (ABy)7.

u_)(f)Apﬁp < r(ll_)@)

rz T
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Note that we also have (by the definition of B, given in (5.6)))

AV ST 3% ggpt o
_ < 279 2 7
30-3) <p) <ap +ﬁ”> ”aHLG L(Qp) C( ) p? *Bplldllfs g,

r

15

1
and finally we have by the definition of P, given in 1' ﬁ <£> P, = (B) 2 270 P,. Then, gathering
7“2 0

all these estimates we have
P\3 2 s <p>§—zlfo s g
Prsc((T) (4,8 + (° o Bl o) Pl ) (5.9)

Now we fix 0 < k < 1 such that r = kp. Then, we define a new expression that will help us to set up the
inductive argument

ol

15

©,(t,z) = A,(t,s) + H,(t,5) + (/wo_%Pr(t,x)) . (5.10)

We will see how to obtain from (5.8)) and (5.9) a recursive equation in terms of ®, from which we will deduce
(5.5). Indeed, we have the following lemma.

Lemma 5.1 For all (t,z) € Q2g, (to, o), for all0 < r < & and for all p small enough we have the inequality

O,(t,x) < -0O,(t,x) + ¢,

N

where € is a small constant that depends on the information available on the forces f, g and the perturbation

—

a.

Proof. We will use the estimates (5.8) and (5.9) obtained previously. Indeed, introducing the quantity
K= % we easily obtain:

1515 $ 10 0y, 1 10, 2 1

@, = A, +H,+ (k0 2P,)  <C( k0A,+r0 'AB]+rm 'PIAS
(Y) )

10 2+i_£ 1

10 10_g 5 5 1 1 10_g
+ (HTO _|_K/TO ) pTO 6A2BpHa||L6 _’_K;TO TOAPQBS +K/TO p 0 TCDpAp2
e X )

4

R RTTe % ST JE S P d
+KrT0pTo BpHWHL;’j’z(Q) +C |k o (Apo)4+;<; I BpHaHng(Qp)+Pp (5.11)

[\

(6) RS

We will now study each one of the previous terms.

e The first term above can be easily treated as we obviously have A, < @, thus we write
10 10 _4 1 10 10_4 1
koA, +rk0 ABj <k0®,+r0 O,B;.
e For the term (2) of ([5.11)) we write, by the Young inequalities

) < /{71'34< 10(%7TO)A + K (%7

10 _ 10 _ 11
KO 4P:”A2 = KT 4</<;5 0 2)P

K (Ap + P )

p

ol
D=
ol

X ms(%f%)A

) < KO,
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10 Q74

For the term (3) of 1} we obtain by the Young inequalities (and noting that we have k0 ~ < k70
since 0 < K < 1):

10 10

10 O3\ 5.5 13~
(/{To + K70 >pm 6A,§Bg”aHL?I(Q)

0_y4 5_5 1 1,
Crmo o7 8 (k' Ap) (7 'B,) 3 15 (o)

IN

5

10 5_5 . 10_g 5_5 5
< Crmopm 9Opdlls o)+ Cr™ “po *Bplldllrs (o)

The term (4) of (5.11)) is treated as follows:

10 5 10 _

10 5 10_g 5
<k0p0@,+ K0 poB,.

10_3 5 1 10_g 5 3

11 5
K7 Pp AZB2 <k Cpr(k2A,)2(k 2B,)

ol

For the term (5) of (5.11]) we simple write:

10 5 4 1 10 5 5 10 5 5
0_3 24512 3 0_3 2453 03 2455
K70 p R D,A; <k™ °p R (Df) +A,) <KW “p R (Drz) +0,).

The term (6) of (5.11]) needs no particular treatment.

[ ]
ol

15_15
For the last term of (5.11)), using the fact that </<;T0 2 Pp> < ©, by the definition of @, given in

(5.10)), we write:

45 21 3 45 g 15 _ 3 3 % 30 _ 14
K270 2 (ApBy)a + k20 | p2o 2 Bldl ] +P, < Ok ©,B,+
40 _ 19 -2 10_2
+K70 BPHGHLQZ(Q‘,)""‘WO 3®p>7

Gathering all these estimates we observe that from (5.11f) we can write

10 10 o945 _5 30 10_2

el 0_y4 1 5.5 10_3 30_14 o_z
P SCOlRO K B +r+r0p0 Oldlls )tk TpTT 0 e+ KO TB, + K 0, (512)

10_g i_% o 10_g 5 10_3 945 _5_ o
+C( k7 “po Bp”aHLgm(Q)"i_/iTo poB,+ kK70 "pT 0 Dy

R 2108 12
+rp0 B [Enge ) 0 Bylldllzs g, ) (5.13)

We claim now that we have, for the term ([5.12)) above the following control

5 5

10 10_ 4 1 10 5_5 10_3 945 5 30 _14 10_2
C K70 _‘_I{/TO BFQ’ +K/+K/TOPTO 6||CLHL?,Z(Q)+KITO p T Te _|_KITO Bp—'I_K/TO 3 S

| =

Indeed, we recall that k = £ < 1 is a fixed small parameter and that 0 < p < 1 is also a small parameter.

Moreover we recall that due to the hypothesis 1) we have limsupB, < € where € > 0 is also very small.
p—0

1
Then all the terms of the form %, k%p® with a,b > 0 and Kk~ ‘B, or K °Bj with ¢ > 0 can be made very

0 5 5
small. Note that the size of the perturbation term, reflected in the quantity 7 p7 ©[[d@l|Ls (o) can be

easily absorbed as p can be Ver?; small gwe5have % — % >0 as % <71 < 171) We remark that since p is
small, we have that the term H%_3p2 70 7e can also made small as we have 2 + T% - % > 0. Finally note
that % — % > 0 since we have the upper bound % > 79 > %
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By essentially the same arguments if p > 0 is small enough, we have the following control for ([5.13]):

10_g 5_5 5 10_g 35 10_3 9 +i,i 2
C(kmo "p S BylldllLs ) +k™ pOBy+K Tp D,
10

0_4 10 _4 L1 40 _q9 "
+K70 pTo Bp2 ||WHL§’?E(Q) + K70 BpHaH%gI(QP)) <é,

where € > 0 can be made small (remark that the quantity ||| Lge (@) can easily be absorbed for p small

enough as we have 12 — 1 > 0 since 79 < 1. Note that the condition & € LY LL(Q) with lg 1-— % -2 > 0
stated in Remark [4 W111 give a similar result See also Remark - 1| for thls particular point). With these
last observations, then from the 1nequahty -, we obtain @, < @ + € which is the conclusion
of the Lemma |5_._J_l [ |

With this lemma at hand, we continue the proof of the Proposition 5.1} Indeed, for any radius p such
that 0 < p <R <1 (and since we have Qr(tg, zo) C 2) by the set of hypotheses (1.4) we have the bounds
HUHLOOLE(Qp(tO7$O)) HuHLooLz(Q) < 400, HV ® uHLz (Qp(tozo) S HV ® uHng Q) < +o00 (and the same
<p]l 3 < +oo. Then, by the Definition we have the

3 <
L (Qp(to,m0)) Lf,z(ﬂ)

uniform bounds sup {p.Ap, P, PBo, 0Boys 0C 0, Py P, P°H p, p273,,} < 400 from which we can deduce by
0<p<R
the definition of the quantities A,(to, o), H,(to, o) and P,(to, o) given in (5.4) and (5.6)), the uniform

bounds

estimates for b and @) and ||p||

_10 _ 1o
sup p3 0 A,(to, ro) < 400,  sup p2 o H,(to, z0) < +00,

0<p<R 0<p<R
and sup p 2 70'P,(tg,x0) < +o0.
0<p<R

Note now, that there exists a 0 < kK < % and a fixed 0 < pg < R small such that, by , the quantities
A,,, H,, and P,, are bounded: indeed, recall that we have 79 > % > 5 (where 0 < a < ) and this
implies that all the powers of p in the expression above are positive. As a consequence of this fact, by -
the quantity @, is itself bounded. Remark also that, if pg is small enough, then the inequality - ) holds
true and we can write ©,,,(to, 20) < 3O, (to, o) + €. We can iterate this process and we obtain for all
n>1,

n—1

1 .
7®P0(t0>x0) + EZ 2_]7

an
J=0

and therefore there exists N > 1 such that for all n > N we have @ n , (to,xo) < 4e from which we obtain
(using the definition of ®, given in (5.10))) that

@n"pg (t07 ZL‘()) S

1 1 1
AanO(thxO) < gC, H,{Npo(to,wo) < gc and PHN (to,l‘o) < 330

This information is centered at the point (¢g, xo), in order to treat the uncentered bound, we can let %K,N £0
to be the radius R; we want to find, thus for all points (¢,x) € Qg, we have that Qr, C Qar, (to, o), which
implies
3_10
AR, (t,z) <27 70 Agp, (to, 7o) < 8Aag, (to, o) < 8A .~ ,(to, z0) < C,

_10
Hg, (t,) <2 ™ Hag, (to, z0) < Hag, (to, 70) < Hyn ,(t0, 20) < C,

and Pp, (t,z) < 25_%(1+%)P231(t0,:r0) < 32P2g, (to,z0) < 8P,n,(to,z0) < C. Having obtained these
bounds, by the definition of @, , we thus get Og, (t,2) < C. Applying Lemma and iterating once more,
we find that the same will be true for kR; and then, for all K"R;, n € N. Since by definition we have
Aing, (t,x) < Oynpg, (t,z) we have finally obtained the estimate Ang, (t,z) < C and the inequality is
proven which implies Proposition [
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Corollary 5.1 Under the hypotheses of the Proposition we have
I, VeTeMT, 1o, VObe M, 10, Ve®&eMT and lg, div(@) € M;T, (5.15)

1 _ 1
where;—TOﬂL

[

Proof. Indeed, from the general notation given in Definition we have

<// |V®u\2dyds+// Vb dyds+// Vo] dyd8+// |div ()] dyds> = (ap+Br+7+W,),

and by the definition of A, given in (5.4) we obtain

1 - S oo = 9 PR 2(1-52)
- |V ® d|“dyds + |V ® b|*dyds + |V ® &|“dyds + |div (D) |*dyds | < r™ 0’ A,.
s T ka QT‘

But since the quantity A, is bounded for 0 < r < 1 small enough (by the estimate (5.5))), we can thus write:

o _ - > _10 _2
// !V®ﬁ!2dyds+// \V®b|2dyds+// |V®Q[2dyd5+// \div(@)[2dyds < Cr* 7 = or° ),
QT ” Q’l‘ QT‘

since we have 711 = % + % and by the definition of Morrey spaces fiven in 1) this condition expresses the

fact that each term of the left-hand side above belongs locally to the Morrey space M?;l |
Remark 5.2 From the Corollary[5.1, we can easily deduce that
I, VATEMT, 1, VAbEMPT and 1g, VAGE M.

t,x

We have proven the points 1), 2) of the hypotheses of Proposition (recall that the point 6) is given for
free, due to the hypotheses on the external forces) and we still need to prove the points 3), 4) and 5). In
order to achieve this task, we will need different arguments that are displayed in the next section.

6 More estimates

Let 0 < a < 5 be a parameter, we define the parabolic Riesz potential L, of a locally integrable function

fiR xR3 — R3 by
Lo(f)(t,z) // (s y)dyds. (6.1)
RS ( |7f—5|2+|90—y|)

Then, we have the following property

Lemma 6.1 (Adams-Hedberg inequality) If 0 < a < g 1 <p<qg<+4oo and f € /\/ltm, then for
A=1-— % we have the following boundedness property in Morrey spaces:

— —

1£a()l kot < £l pps

See a proof of this fact in the book [16, Corollary 5.1]. We will use this result in the next result to obtain
the hypothesis 4) of the Proposition

Proposition 6.1 Let (i, E,LU,p) be a suitable solution of the system over ). Then for some radius
Ry > 0 such that Ry < Ry, we have (with % + ?10 < 1_T°‘)

. 3,6 > 3,6 - 3,6
]lQR2u € me, ]lQR2b S Mt,x’ and ]lQR2w € ./Vlt’z,
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Proof. For a point (g, zo) C §2 we consider the radii
0<Ry<R<R<R; <4R,

(recall ( . ) and the associated parabolic balls Qr, C Qr C Qi C Qr, C Q4r. Consider now o, -
R x R? — R two non-negative functions such that ¢, € C5°(R x R?) and such that

¢=1 over Qr,, supp(¢) CQpr and ¢ =1 over Qp supp(h) C Qg (6.2)
Since Ry < R < tg, we have ¢(0,-) = 1(0,-) = 0 and we also have the identity ¢t = ¢.

With the help of these localizing functions we will study the evolution of the variable V= o (T + b+ W)
and we obtain the system

oY =AV+N,
. (6.3)
V(07 x) = O,
where, following the same computations of we have
3
N = (06— Ad) (i +b+T) =2 (2:i0)(0(i + b+ F)) — ¢<(5 V)i + (@ 6)6)
=1
~26Vp + G(V A &) + o(f+ ) — & (div(@+b) 0 d+d @ (+1))) (6.4)

Now we will perform some computations over the term qgﬁp that contains the pressure. Indeed, as we have
the identity p = ¢p over @5, then over the smaller ball Q 32 (recalling that ¢ = 1 over Qg, by 1) since

Qr, C Qp), we can write —~A(pp) = —pAp + (AY)p — 228 ) from which we deduce the identity
SdA) V(AR - TOE
ity 59 Ly Y005 .

= 3
2(_VA) (Z ¥ [0;05 (uibj + (u; + bi)aj + a;(uj + ly))]) ; (6.6)

ij=1
and introducing the function 1) inside the derivatives we obtain

3 =

2 “3(-A ><

+ 3@'@(%‘ + bi)az) — 0;((0;9) (ui + bs)aj) — 9;((8:) (u; + bi)az) + (9;0;9) ((ui + b)ay)
+ 9,05 (Yai(u; + b;)) — %i((959)ai(uj + bj)) — 8;((Dsp)ai(u; + by)) + (8:0;9) (ai(u;j + bj)))

10 (Yuibs) — 9;((99)uiby) — 05 (i )uibs) + (9,054 (uiby) (6.7)
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Now for the first terms of each line above we use the identities (recall that ¢i) = ¢):

_ v _ [ Vo;| - V0,0;
¢maiaj(¢uibj) = | o, —A)] (¢u;by) + A )(tb uibj)

Ry _ _V90; | - V0,0; -
Ry, biag) = |8, TORE | (4 b)) + T (s + b)a)

r 7 -

émaiaj(lzai(uj +b5)) = |9, (_A) (Yai(uj + bj)) + (V_afi (¢(uj +bj)a;),

and with this lengthy and tedious formulation for the first term of 1 , we come back to the term N given

in (6.4) to obtain

3
(00— A3 (@ +T+3)-23 OO +T+2)) ~5( G- V)i + (@ D) (63)
1 =1 ) .
(3)
3 = 3 San. 3 ca
—{(Z 6.l ity + 3 TGy = 3 s (DO Dud) + 0y (@)
i,j=1 7,7=1\ , i,5=1 6) )
(4) 5)
T9.9. _ 9.9, 3 -
- o)) + (| 7?fﬂ]<w<ui+bi>aj>+(v_af§< blus+bay) = 3 12 @ + by
(8) I=t (11)
() (10)
00+ )~ @)+ 09s)] ) + ({3 V2B g+ 0) + 2 Bl + b))
(12) (13)
(14) (15)
- (fz)[ai((ajw)ai(uj +0;)) + 0;((950)ai(uj + by)) — (8:0;9) (ai(u; +bj))]> +2¢V(((_AX1))p)
L=l (16) (17) (18) T

l

A (UG X0/0) R P T S
_4;¢(_A)}+M+¢(f+g) d)(dw(( +bh)Rd+ad® (d+ )))

1
‘—V—‘(QO) (21) (22) o
= L1 s s 1
+¢(de(w)—w—2((u+b)-V)w+4V u+b) Z/\/k

(24)

With this expression of N , we obtain that the solution of the equation 1' is given by

t 24 24 t
V= / et =IAN (s, -)ds = ZV’“ = Z/ eU=)AN (s, )ds
0 k=1 k=1"0
and we will study each term of this expression with the following lemma:

Lemma 6.2 Under the general hypotheses of the Theorem[1.1], for all k =1,...,24 we have
]lQR2Vk S Mt::p

for some o close to Ty such that 19 < o.
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Proof. Fortunately many of the terms above share a similar structure as we have essentlally the same
information over the variables , b and &. Recall that we have proven so far the estimates and -

e For Vl, recalling that elt=s) A/\/1 = g¢_s * /\/1 where g; is the usual 3D heat kernel, we have

t —
100,000 = |tan, [ [ ar-slo = 905~ A8+ T+ s 0)dyds.

Thus, by the decay properties of the heat kernel as well as the properties of the test function ¢ (see
(3)), we have

o 1 L7 o
[Lop,Vi(t,z)| < Clg,, // T 3 ‘HQR(Uerer)(s,y)) dy ds.
RJR? ([t — 5|2 + & — y])

Now, recalling the definition of the Riesz potential given in and since Qr, C Qp We obtain the
pointwise estimate|lqy, Vi(t,z)| < Clg. Lo(|lg, (d+ b+ w)|)(t x) and taking Morrey Mt . norm we
obtain

-

”]IQR ﬁl(t7x)‘|,/\/13vf’ < CH]IQR['Q(‘]IQR(@ +b+ )’)HML’“’

a

Now, for some 2 < ¢ < we set A =1 — % and we define 3 = § and 0 < 10 < { (remark that a < ¢).
Thus, by Lemma [2.2] and by Lemma We can write:

—

Ignlalllon(@+5 +w>|>|ng;5 < ClLa(lop(@+B+@)I

< Clgy (i + b+ &)l pea < CllLgy, (@ + b+ @) 370 < +00,

8
where in the last estlmate we applied again Lemma - 2.2 (noting that a < 3 and ¢ < 79) and we used
the estimates over @, b and & available in 1.)

-

e For V, we write (9;0)(9;(@ + b + &) = 8;((0:;0) (i + b+ &)) — (02¢)(@ + b+ &) and we have

3
LQp, Valt,2)| <)

=1

t
1y, /0 et=29,((0:d) (@ + b+ &))ds

t (6.9)
+']1QR2 /0 U)X (D24) (T + b+ @) ds

Remark that the second term of the right-hand side of (6.9)) can be treated in the same manner as the
term V; so we will only study the first term: by the propertles of the heat kernel and by the definition
of the Riesz potential £ (see (6.1))), we obtain

t t
Ap = ‘11% /0 =20, ((0:0) (i1 + b+ @)) ds| = ‘HQRQ / / Oig1—s(@ = 9)(9:) (T + b + &) (s, y)dyds

1o, (T4 b+d)(s,y Lo,
<011QR2// 105 A )|dydsgC]IQRQ(El(]llQR(u+b+w)|))(t,:n).
RS (|t — 5|7 + |z — y[)!

Taking the Morrey M?g norm we obtain [|Az| 3.0 < CllLgy, (L1(|Lg, (@ + b+ ) pg3.0- Now, for
) t,o v t,x
some 4 < g <5 we define A =1 — %, noting that 3 < % and 0 < 10 < %, by Lemma we can write

1L0n, (€110 (@ +B+ DN pge < ClEr(Log(@+F+DNI, 3.4 < Cllg(@+5+3)]y0

Cllqp, (@+5+3)| o0 < +00,

IN

from which we deduce that ||1¢,, ]_}QHMS,U < +00.
t,x

32



For the term 173 we have

[Log Vs(t.2)| = 'n% / t [ e =) [ (- 9+ @ )] (s,
< Clo, EQ(‘nQ_«Ev)m(a )| ) (),

from which we deduce

10n,Vallngs < € [tan 2 (1an@ Dil)|| . +C[tan 2 (as@ D) . ©10)

As we have completely symmetric mformatlon on i and b it is enough the study one of these terms
and we will treat the first one. We Set now 3— <qg<g3 2and A=1-— —q Since 3 < = and 0 <0< {,

applying Lemma [2.2] and Lemma [6.1] we have

-

e, gz(w D)0 <oHnQR L2 (1t0n @ D) a1 < C[ton®- 1] s

Recall that we have % < 79 < 0 < 10 and by the Holder inequality in Morrey spaces (see Lemma

we obtain

H]IQR(b : v)ﬁHM%,q S H]IQRSZ)HMS,TO ]lQRgv ® ﬁ M?,Tl < +OO7
where 1 1= 7 —|— = + . Note that the condltlon 1 - <70 <0 <10 and the relatlonshlp = +é
are compatlble w1th the fact that 2= < ¢ < 2 Applymg exactly the same ideas in the second term of

6.10) we obtain H]IQRQV;J,HMa,o < +oo.
t,x

The term Vy is the most technical one. Indeed, we write

I V”}(m ) (s.)

3
|]]‘QR V4| < Z 1Qr, // dyds < Z Lgp, L2 (‘ [GZ_), (v_a a)] (Yuiby)

)

(It =s]2 + |z —y))?

ij=1 i,j=1
and taking the /\/l »-norm we have [[1g,, V4HM30' < Z” 1 H]IQR2£2 (’ [(E, N } (Yu;by) DHM“' If
t,x
we set 1 = + 5 and A =1 — @ then we have 3 < —/\ and o0 < ¥ = 1(?1070 and by Lemma and
Lemma We obtain:
_ vaa [ vaa
]IQRQEQ ( ¢7 ( ) wul )H 3 S C ]IQR2£2 (' ¢7 ( ) ¢Uz >H i q
o L A
_V0; | -
< oll|s, Yo% (Yuibj) :
(_A) M%,q
- t,x

We will study this norm and by the definition of Morrey spaces (2.2)), if we introduce a threshold
t= LBR?, we have

3 3
- V@@ 2 1 _ 68@6‘ B 2
o, (¢Uz ) < sup 513/ o, —AJ (wuibj) dxdt
( ) Mt%’q ({vj) T ( 2‘1) Qr(f,j) ( )
o s (6.11)
+ sup 13/ P, Vi, (Yuibj)| dxdt.
tz) r°1720) JQ, (1) (-
<7
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Now, we study the second term of the right-hand side above, which is easy to handle as we have vt < r
and we can write

[SI[3Y

3
- Vaa :

V88
ey

(=4)

(Yub i) dadt < C b,

(Yu;bj)

)

2
Lux

sup /
()R xRS 21=3) Jo, 17)

and since ¢ is a regular function and % is a Calderén-Zydmund operator, by the Calderén commu-

_ Saa. 3
tator theorem (see the book [15]), we have that the operator |¢, %] is bounded in the space Lf@,
L

and we can write (using the support properties of 1 given in (6.2)) and the information given in (5.2))):

|

where in the last line we used Holder inequalities in Morrey spaces and we applied Lemma

- V@@

* TR (Yuiby) < C|yuidy H < Oy, uibj|

3 2
Lt,z

3.3
MZ2

x

< CH]]'QRl ﬁHij ||]1QR1b||M?:§ < CH]IQR1 ﬁ”Mng H]IQRIbHMf’;O < 400,

The first term of the right-hand side of (6.11)) requires some extra computations: indeed, as we are
interested to obtain information over the parabolic ball Q,(t,Z) we can write for some 0 < r < t:

V9,0
(=4)

V9,0,
(=4)

- V88

¢7 (_ ) &7 (57 ((H_]IQQT)J}uibj)ﬂ (612)

<wuz )): Qr (ﬂQzﬂ/}Uz )+]1Qr

3
and as before we will study the L7, norm of these two terms. For the first quantity in the right-hand
side of (6.12)), by the Calderén commutator theorem, by the definition of Morrey spaces and by the
Hoélder inequalities we have

(NI

Lo, [‘5’ (v_aj)] (1, Yuib;)

2 5(1-5) 2
< CH]IQQT’(/}qu || <Cr 0 H]lQRluiij 3 7
M

370
22
t,x

3
Lg tm
y T

<— C ( S)H QR]UH )H QR] Hd 3,70
M?:I Mt:z

3
2

V9,0,
(=4)

:ﬂQr &7 CHQ2T¢”h )

1 3 o 3
sup ———— dadt < C| g, il|? 5. [|1o,. b||? 5. < +oo.
w e I, T 182, Pl

o<r<r

We study now the second term of the right-hand side of (6.12)) and for this we consider the following

operator:
_ V8,8; _

and by the properties of the convolution kernel of the operator (7—1& we obtain

I—-1 1 o) — b
T(f)(@)] < Clg, () / (- 10.) W)Ly, W W)I6) ~ Sw)]

R3 |9C—ZJ|4
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b (see ), the

Recalling that 0 < r < v = R—2R2

integral above is meaningful if |z —y| > 7 and thus we can write
V,0;
(=4)

1o, |6 {ont | (@=1auiusy)| | <Cltg, [ T 10, )0 100, (il
2

_ 4 3
LZ, 3 |$ y| Lt%z

2 3 3
<o [ paltenlublc ol <Cr g ublty
( o 19 |4 @ @™ “m L 0

with this estimate at hand and using the definition of Morrey spaces, we can write

3
_ V0 . ’ —8 5(1-2) 3
1 2l ((I-1 bj)| dwdt < /|1 bill? 5 -
Joon 1o |7 Cat | (= B it ot < ot Stguunl g
_3 3
< o0 |1y, uibjl 4
MZ?

_3 _3
where in the last inequality we used the fact that % = % + %, which implies r‘%ﬁ(l 7o) — rP=3g),

Thus we finally obtain

nlw

1 _ V90, - 3 L3
_ — b < 211 2 2 .
(835 715(1_2%) QT({7E) ]lQT [QS’ (—A) ((]I ]]‘QQT)wu’Lb]) dmdt —_ CH]]'QRluHM?:;'() H]]'QRlban:;'() < “I’OO
0<r<e

We have proven that all the term in (6.11)) are bounded and we can conclude that [[1¢gy, A Mo < +o0.

For the quantity )75, based in the expression we write

IRiR;j(¢uib;) (s, y)|
gy, Vs(t, )| < 0;1 //R3 T —— dds<C’lellQR L1 (|RiR;j (dusby)|) (¢, x),

where we used the decaying properties of the heat kernel (recall that R; = \/% are the Riesz trans-

47’0 +5

forms). Now taking the Morrey /\/li’g norm and by Lemma (with v = , p =3, ¢ =19 such

that £ >3 and £ > ¢ which is compatible with the condition 79 < o) we have

3
1LQn, Vslluse < O IMap, L1 (IRiR;(Suiby)])
' i,j=1

P g
vV

,
MY,

Then by Lemma ﬂ with A =1 — TO—/Z (recall % < 79 < 10 so that v > 2)) and by the boundedness
of Riesz transforms in Morrey spaces we obtain:

MQp, L1 (IRiR;(Guibj)|) | pa < ClL1 (|RiR;(duib))]) |

< O||RiR(dusb; 3
MP <C| j(ou J)HMQ&

P g
2)\’2)\
x T

< ||]1QR1u’lb ” 30 < C||]1QRIU||M3 TOH]IQRleMf‘ 7 < +00.

t:t

The quantities Vs and V; based in the corresponding terms of . can be treated in a very similar
fashion since their inner structure is essentially the same. We thus only treat here the term Vs and
following the same ideas we have

PSR (0 uib (5, )|
\t—s\z+|x—y|>

PV 0;
(=4)

[Lqp, Vel < C Z 1Qg, //

1,j=1

( ﬂl})uz

3
dyds = C Z Lgp, Lo (

1,5=1
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For 2 < ¢ < , define A =1 — —, we thus have 3 < % and 0 < 10 < {. Then, by Lemmaand
Lemma We can write

PV 0;
(=4)

]IQR2E2 (6J1[))uibj <C ]1Q32£2 ( g@b)u@

Y

M,

() (=4)

M7
but since the operator ‘WA is bounded in Morrey spaces and since 2 < ¢ < < 1 one has by Lemma
[2.2] and by the Holder inequalities

PV O;
(—A)

@ity < |tanuits] 3. < Clltan byl g 5 < Cllan,Tlp ol on Hlag:

M2

from which we deduce ||1¢ Ry 1_}6H e < Foo. The same computations can be performed to obtain that
E t,x

Qr, Vill gz < oo

The quantity Vs based in 1@' is treated in the following manner: we first write

e )

Weset 1 <v<3 21/<q<5”and)\—1——thuswehave3<>\anda<10< , then, by Lemma
and by Lemma we can write

—

3
H]IQRQVSHM?; <C Z

i.j=1

¢ (0:0;9) (uib;)

[><l

(=4)

M

t,x

$ 5 V(0.0
1y, (ﬁz ¢( A) (9:0;) (usb ))HM?‘G < C |1y, <£2 O ay (0:05) (uibs) >‘M§,§
B S A 5V
< O|omy@dd)udy)|  <C|brm@out)|| < Clbgy @) uty)| - (6.13)
e M e

5v
where in the last estimate we used the space inclusion LYL3° C Mty > . Let us focus now in the L™
norm above (i.e. without considering the time variable). Remark that due to the support properties
of the auxiliary function ¢ given in (6.2) we have supp(9;0;¢) = Qr, \ Q 7 and recall by (6.2) we have
supp ¢ = Q & where R < R < Ry, thus by the properties of the kernel of the operator % we can
write

-V . 1 _
“b(_A)(aiajw)(uibj) < C /Rs ’x_y’g]IQR(Q?)]IQRl\QR(Z/)(az‘aﬂﬂ)(uz‘bj)(vy)dy‘
1 5B -
< of [ g (0110, 10,()(O05) i) )y (610

and the previous expression is nothing but the convolution between the function (9;0;1)(u;b;) and a
L*°-function, thus we have

=

¢(_VA)<aiajw><uibj><t,-> < CJ(0:0;9) (wibi) (V11 < Cllgp (wib))(t)e,  (6.15)

LOO

and taking the L”-norm in the time variable we obtain

—

v/ _
qu(—A)(a"ajw)(uibj)

< COllggp,uibjliny, < Clllgg, dll y0llTQp, bll .70 < +o0,
LYL ’ ’
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where we used the fact that 1 < v < % < 3 and we applied Hélder’s inequality. Gathering together
all these estimates we obtain [|1¢gy, ﬁS”M&” < +00.
t,x

The terms 1_}9, e ,]718 are studied in the following lemma.

Lemma 6.3

1) The quantities Vo and Vi4 based in the corresponding terms of can be treated in the same way
as the term V4

2) The terms V10 and V15 are controlled as V5
3) The terms V11, V12, V16 and V17 are controlled as V6
4) The terms V13 and V18 are controlled as Vg.

E’roof. _'Following the estimates given previously for the terms 174,)75, 176 and ]78, all the terms
Vg, -+, Vig can be controlled by the quantities H]IQRlﬁﬂM?;O, H]IQRleMi,;O or ||]1QR1aHHMi,;O. It is
enough to observe that we have ||]lQR1c?HMi,;O < C’||]1QR15[||M?’,§ = ||EL'||L§,§(Q) < +oosince 2= < 79 < 6,
which is possible if 0 < a < 1—12 [ |

The quantity Vig based in can be treated in the same way as the term Vs. Indeed,

by the same arguments displayed to deduce 1} we can write (recall that 1 < v < %)

¢ ((Ag)p)

\Y
m and if we study the L*-norm in the space variable of this
LYL®

term, by the same ideas used in (6.14])-(6.15]) we obtain H&%((Azﬁ)p)(i, )HL < O(AY)p(t, )| <
Cl[Lgp, p(t, )| zv- Thus, taking the L”-norm in the time variable we have

Qr, V1ol e = C

-

(=4)

<l

Iar, rollygs < C |6 =5 (ADD)|| < Cllignplley, < Clllgqpl 3 < +oo.

LyLge

3
L2
t

The study of the quantity 920 follows almost the same lines as the terms ﬁg and ]79. However instead

of (6.14)) we have

o,
6

V(@) <c

]1 ~  _
lz—y|>(R—R) 7
/R3 |xy_ y|3 ]IQR($)]1QR1\QE(Q)(a@w)p(t,y)dy s

and thus we can write:
Vo,
(—4A)

¢ ((2)p) < Clgp,pllzy, < Clllgg,pll 3 < +o0.

LyLg

H]]'QR2V2OHM:2:;’ < t%

For the term ]}21 based in can be treated in the same manner as 172 and we easily obtain
L@, Varll pgs.0 < +00

The study of the quantity Vo is easy to handle, indeed, we have

<y, // O(f +3)(s,y)] dyds
w ([t — 5|2 + |z — y|)3

¢
Lop, Vool < ‘]IQRz/O =926(F + §)ds

< C]lQR2£2(]lQR3 |f+ g‘)(tvx)’

. 3, . = 7o .
and taking the Morrey M7y norm we obtain [|1q,, VggHMs o < ClLgp, Lo(Llgn, |f + g|)”Mf;§’ then if
Weset%<q<fand>\:1 @wethushave3<19\ and 0 < 10 < {. NowbyLemmaand
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=]

Lemmawe have [[1gy, L2(Mqp, |F + 3| poe < CllL2(ln, [F+ 3D

W8t S Oltan 7 +3l .

DY
t,x

B>

but since g < % < % < Tq, Ty, by Lemma W we obtain

0, |7+ 811 po. < C (10 I, s + M, 0 ) <405,
thus, gathering all the estimates above we have [[1g,, ]_)22“/\43,6 < H00.
t,x

—. —.

For the quantity Vas of we first note that the quantity ¢div((@ +b) ® @ + @ ® (i + b)) can be
decomposed as ¢0;(ujay) with 1 < ,7,k < 3 (and other similar terms with b; instead of u;) and thus
we have:

t
< ‘HQRQ/O /RS Dige—s(x — y)[pujar] (s, y)dyds

‘HQRQ /Ot /RS gi-s(z — ) [00i(ujar)] (s, y)dyds

)

1o, [ [ d8eate - 0@ s s

and by the same arguments as in the previous lines we obtain

H]IQRQ /ot /R3 g—s (2 — y)[09; (ujar)](s, y)dyds

=0 (I, £1/Tggusan] | o
Mt,’z ' (616)

+ 1Lqn, LolTogusarl [ ve )-

For the first term of the right-hand side above we set p = 2, ¢ = 6(j:$ and A = 3300_70.
0 +570

Note that £ > 3 and § > o (if ¢ > 79 > 5 is close enough to 79) and thus, by the
Lemma [2.2| and by Lemma [6.1, we have |]]lQR2£1|]lQRuj'ak|||Mf,;z < COlLilgpujarll|l »g¢ <
’ t,z

Cllgyujar ‘Mf’q = C’||]1QR1ujak| , 6 and by the Holder inequalities in the Morrey spaces we
T M '6+70

t,x
obtain [[Lgp, ujarll , s < [Lep, ujll yyoro [Ln, akll e = Men, usll yyrollarlizs , ) < +oo-
o , , :

t,x

For the second term of the right-hand side of l ,we fix pg=2and A\ = % and we have £ > 3 and
% > 0. Thus, by the same arguments as above we can write

IN

@R, L2lgpusar/ll e Cliafoguarlll 5 4

B
,T

< Cllgpujarlampes = Clilr, wjarl p22

IN

Cllon, ujakll 5 om < Lon,ujll yemollarliss, @) < +oo.

t,x

Applying these estimates to all the terms of the form ¢d;(ujax) and $9;(bjar) we finally obtain that
||]1QR2V23”M5”;’ < +o0.

For the last term Vay given by the corresponding quantity in , we have
t
100 Vatl = [tor, [ [ oo )6 Faiv(a) - & -3(@+D: 9y
(a) (c)

1
4

N~

VA (ﬁ+5)>’, (6.17)

and we will study each of the previous term separately. Indeed, for the term (a) above, proceeding in
a similar fashion as in (6.9)), we have (for 1 <i < 3):

’]IQR2 / / gt—s(z — ) [00idiv(D)](s, y)dyds| < Clqp, (L1(|1gdiv(@)])(t, ) + La2(|1g,div(@)])(t, x)) -
0 JR3
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Then, we only weed to study the quantities in the right-hand side above: ||]lQR2[,1(|]lQRdw( )’)HMJ o

and H]IQRQEQ(\]IQRdw( )|)”M“ For the first term we fix p = 2, ¢ = X and A = %, we thus have
2>3and { =10 > o and by Lemma and by Lemma we have H]lQRzﬁl(]lQRdw( ))HM:zo <

CHﬁl(\ﬂQRd’W( GI, 2.4 CH]lQRdW( )Hw;g < C||]lQRd7’U( I pe2

(and by the Corollary and its conclusion ) For the second term we set p,q¢ = 2 and )\ =
1 and by the same arguments we have ][1QR2£2(]1QRdzv( )DHMSO < CHEQ(\]IQRdw(_')])H ?

C|1gdiv(d )HM22 < C|1g,div(d)

271 < +o0, since 1p > 19 > D

q

4 S
HMg 7 < +oo and thus the term (a) is bounded in the Morrey
space /\/lmC

For the term (b) we proceed just as for the term V; and we have

"

< CH]IQRQ £2<‘1QRQDHM§W-
Mz -

Setting p,g = 2 and \ = %, we have H]lQRzﬁg(\]lQRcD’DHMf,; < C'||E2(|]IQRJJ’\)||

C’H]IQRwHMs 70 < 400 (since we have )

Due to the symmetric information available for the variables i, b and @ it is easy to see that the term
¢) of (6.17) can be treated as the term Vs while the term (d) of (6.17) can be studied as Vs.
With all these remarks we finally obtain that |1, Vaal| 3.0 < +o0.

t,x

ot S OBl e <

t,x

With all these estimates Lemma [6.2] is now proven. [

End of the proof of Proposition We have proven that 1g, (U + b+ W) € Mf;’ for 79 < o with
o very close to 79 (say 0 = 7o + €). But this is not enough to ensure the condition 1 5 —|— = < ;O‘ stated in
Proposition[6.1] In order to obtain this relationship, we will iterate the arguments above. Indeed cons1der1ng
the information 1q, (7 + b+ @) e ./\/l3 70+ and reapplying Lemma We will obtain 1q, (T +b+ @) €

M3 1 where Ry < Ry and 07 = 0 + € = 19 + 2¢ and we can repeat these arguments until obtaining
]lQR (G+b+@) € M3 " where 0, = 79+ (n + 1)e such that i + % < =2 with Ry < Ry. As we can see, at
each iteration we have to consider smaller parabolic balls and without fear of confusion we can set § = o,
with the corresponding radius to be Ry. We thus have 1¢, @ € Mfg and 1, b€ M?f with § + 710 < =
and the proof of Proposition [6.1] is finished. [

Remark 6.1 Note that by iteration the value of 6 can be made big enough.

We have obtained the hypotheses 1), 2), 4) of the Proposition and with these results at hand we will
now study the hypothesis 5).

Corollary 6.1 Consider the general hypotheses of Theorem . Then, for Re such that Ry < R1 < R
and for 1 <1i,j <3 we have

0;0; 0;0; 0;0;
]lQR ( Aj)( ) Mt:):? ]lQjo(uiaJ) Mtx? and ]lQR ( A) (b a’]) Mt:r’

with pg < p < 400 andq1<q<+oowherel<p0<fand5<q1 L<17umth<oz<12

Proof. Recall that from (|1.2) we have the expression p = Z 2(&_%
ij=1

which corresponds with the terms that we want to study and consequently we only need to prove that we

(uibj + (UZ + bi)aj + ai(u]‘ + bj)),
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have Lgg,p € M Thus introducing suitable localizing functions ¢ and v as in 1’ and following the
computations made in . and ( we have

O gap (A 0:0))
= <¢< )) ") 22¢

(-4)
3 5 - —_ —

- 3 (aa (Busby) + (01050) (wiby) —[0:( (D5 )uiby) + O3 (OsiDyuiy) (6.15)
=t (@) (i2) (itd)

+0i0; (P (ui + bi)a;) + (0:0;) ((wi + bi)a;) —[0:((9) (wi + bi)a;)0; ((0i)) (ui + bi)ay)]

-~

(4) (i1) (4i7)

+0;0;(vai(u; + b)) + (2:0;9) (ai(u; + b)) =[0:((9j3)ai(u; + b;)) + 0;((9))as(u; + bj))])
X! (i) (i)

(i) (v)

=

and we will prove that each one of these terms belong to the space M 2 (we are considering here p = g
and q = —) Fortunately, many terms of (6 share a common structure.

e For the term of the form (i) we write:

b _
| o0ty < Cllagubsl gy < Clionul g llan bl g <+

6
M2 B
where we used the boundedness of the Riesz transforms in Morrey spaces as well as the Holder inequal-
ities (and we considered ¢’ = 11 which is possible by Remark [6.1)). We consider now the terms of the

form (_%Z)aiaj(zﬁuiaj) and we write by the same arguments as above

1y = Cllgg,uias]
T

H m@@j(%iag‘)

wiH S CllLQn, uill ygs 5 Men, 4l a0 < +00,

6
5 x

M;

where §" = 66.

e For the terms of the form (i7), we first have

H¢ 0,5) (s il <0H( i)(aaﬂp)(uz 0|, <CH( i)(aajw)(uz )

t,x

m"“

11 11 11
where we used the space inclusion L,° LY° C Mf’ "2 . Following the same ideas displayed in formulas

- -, due to the support properties of the auxiliary functions we obtain

H(:ﬁ(aiajw)(wbﬂ

u  Sllopubill y < CllﬂQRzﬁHLfnggHllQRQbHLfgL% < oo,

Lt5 L t z
as by interpolation we have [[u 2 ¢ : < || HLOOL2 ||u||L2L6(Q) The terms of the form
_ L® L3
%(8 0j1)(uja;) are treated in exactly the same fashion as we have HaH 2 gg( o < CHaHLo

e The term of the form (iii) can be studied in exactly the same manner as the terms of the form (u)
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e For the term (iv), by the same arguments we obtain

=

e The term (v) can be treated in the same manner as the previous point.

6 11
M3 H LZLL
t

x

%Lgo < CHHQRQPHL:;L < ClLgg,pl 5 < +oo.

t

5
Remark 6.2 The condition p € L? LL(Q) is needed here in order to treat these two previous terms. If
we have some additional information over the perturbation term (e.g. @ € L?H(Q)) then these terms

3
can be controlled by the information p € L{,(Q).

1

6 11
We have proven so far that all the terms of (6.18) can be controlled in the Morrey space M/ ? and this
ends the proof of the Corollary [ |

=

In order to obtain Proposition (and thus Theorem we only need to verify the hypothesis 3) i.e.

6 15

1qp,div(@) € M7, . Recall that in the Corollary |5.1{ we have obtained that 1¢, div(d) € M? 71 but this
is not enough to our purposes. In order to treat thls condition we have:

6 15

Proposition 6.2 Under the general hypotheses of Theorem we have 1q,, div(@d) € MZ:’F.

Proof. We first apply the divergence operator in the equation satisfied by & (see ) to obtain
1 oo
Odiv (&) = 2Adiv(&) — div(J) — idiv(((ﬁ—i— b) - V)ad).

Considering the localizing function ¢ as in (6.2) if we define W = &dzv(d}) we obtain the system W =
2AW + W with W(0, -) = 0 where W = (0:¢p — 2A¢ — ¢)div(W) — 4ZZ 10:0)(9idiv(5)) — Fodiv((T - V)@D),
and we have

3

t _ 1 - -
W(t, z) = / 2(t=s) <(at¢ 206 — §)div(@D) =4 (9,0)(Didiv()) —5 ¢div (@ V)3) >ds (6.19)
0 — N
(W) =1 (W2) (Ws)
6 15
Now we will prove that each one of these term belong to My, ? . Indeed:

e For the first term W; we write, following the same arguments as in :

5,15 < C(H]IQRQ'CI(UIQRQDHM%% + H]lQRQ,Cg(]]lQRcU\)HMf 15 ). (6.20)

H]IQRQ)/Vlth iy

,T t,x

For the first term above we set p = %, q= % and \ = 1—10 and by Lemma we obtain

en, L1(ep@DIl | o1 < Clllqn, L1(1Lex D] s
t T

For the second term of 1) we fix p = g, q= %2 and \ = % thus by Lemma we have

H]IQR2£2(|]1QR“7DHM§,% < ”]IQRQc?(’]lQR‘DDH

< C”nQleHM%% < CH]IQle‘|Mf’;O < +o0.

t,x

Mt%% < CH]IQRl(BHMt%;Lf < CH]IQMQHM?ZO < +o00.

e For the term W, of (6.19) we write for all 1 <14 < 3:

[ s = ) [(0:0)0i0(3) 5.1y s]n% | [, dsate = wl@8)ain@) s, s

Hian, [ [ oede @@ s lduds). (620
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The last term above can be studied just as YW, while for the first term of the right-hand side of (6.21))

we write:

Hn% / t [ gl wl@id)ain(@) s, s

15 .

o1 < C||Lan, L2110, div@))|

8.
M;,a; Mtd,:c
Taking again p = g, q= % and A = %, applying Lemma we obtain
[10r, L2(apdiv@)], 5.5 < Clltgn,div@)l 2 < Map 0@y < 400 (622)

6
55
M,

x

Now, we study the last term of (6.19)). For 1 < i < 3 we write

t —_ —
< [tar, [ [ 20dlo— )él(a 9)a)duds

~~

(a)

‘ﬂQRQ /0 t /R L Bs(z — Y)¢di[(@ - V&) dyds

+[1s, | [ ala = @ Dy

)

and we remark that in order to study the last term above it is enough to consider, for 1 <[, 5,k < 3,
the quantities

t t
o, [ [ dacde @ ueists| |ty [ [ oo - 0000 wn)nds

(0) (c)

Following the computations performed above, we have for the term (a):

< OllLqp, L2(ILq, (@ - V)J))|

1

3]

)

o

6
E =)
2 M

,T

§
:
M

and fixing p = g, q= 1(}%‘;0 and A = 110(2:3100, by Lemma we have

I, L2t (@93 g 1 < Cla, @ Dl ¢ tug < Clayilpullla, Vol e < +oc,

t,x

6
MP,
where we used the Hélder inequalities for Morrey spaces and Lemma in the last estimate.

For the term (b), we write

Jtar, [ [ 5ec ~ 000w

pr < CH]lQRQ52(\]1623%%!)\%?;%,

x

and applying the same arguments as in ((6.22]) we have

H]lQRQ52(I1QEUjWk\)\IMtg,15 < Cllgpuwsl

2

< C|1g,u;w
g s 11qQsu; kHMt%;o

< Ol g [ L, Dl g3 < +o0.

For the term (c), by the same ideas displayed in the study of first term of (6.20)) we have:

15 < CH]]'QRZ El(‘]lQEujkaH

L VR < g ujwsll
t 5T
<

t -
[0, [ [ et~ (@08 ) )

CH]IQRijkHM 10 = CH]]‘QR1 ﬁHMf’vg”]lQleHMf:g < +oo.

3
5
t,x
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15
2

6
We have thus proven that all the terms of (6.19) belong to the Morrey space My, *: the proof of the
Proposition [6.2] is complete. |

We have now all the hypotheses of the Proposition and thus Theorem follows. [

Acknowledgements. We would like to thank Jiao He for fruitful discussions.
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