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A Trainable Spectral-Spatial Sparse Coding Model for Hyperspectral Image Restoration

Hyperspectral imaging offers new perspectives for diverse applications, ranging from the monitoring of the environment using airborne or satellite remote sensing, precision farming, food safety, planetary exploration, or astrophysics. Unfortunately, the spectral diversity of information comes at the expense of various sources of degradation, and the lack of accurate ground-truth "clean" hyperspectral signals acquired on the spot makes restoration tasks challenging. In particular, training deep neural networks for restoration is difficult, in contrast to traditional RGB imaging problems where deep models tend to shine. In this paper, we advocate instead for a hybrid approach based on sparse coding principles that retains the interpretability of classical techniques encoding domain knowledge with handcrafted image priors, while allowing to train model parameters end-to-end without massive amounts of data. We show on various denoising benchmarks that our method is computationally efficient and significantly outperforms the state of the art.

Introduction

Hyperspectral imaging (HSI) enables measurements of the electromagnetic spectrum of a scene on multiple bands (typically about a hundred or more), which offers many perspectives over traditional color RGB imaging. For instance, the high-dimensional information present in a single pixel is sometimes sufficient to identify the signature of a particular material, which is of course infeasible in the RGB domain. Not surprisingly, hyperspectral imaging is then of utmost importance and has a huge number of scientific and technological applications such as remote sensing [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF][START_REF] Goetz | Three decades of hyperspectral remote sensing of the Earth: A personal view[END_REF][START_REF] Manolakis | Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms[END_REF], quality evaluation of food products [START_REF] Elmasry | Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review[END_REF][START_REF] Feng | Application of hyperspectral imaging in food safety inspection and control: A review[END_REF][START_REF] Liu | Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications[END_REF], medical imaging [START_REF] Akbari | Hyperspectral imaging and quantitative analysis for prostate cancer detection[END_REF][START_REF] Fei | Chapter 3.6 -Hyperspectral imaging in medical applications[END_REF][START_REF] Lu | Medical hyperspectral imaging: A review[END_REF], agriculture and forestry [START_REF] Adão | Hyperspectral imaging: A review on UAV-Based sensors, data processing and applications for agriculture and forestry[END_REF][START_REF] Lu | Recent advances of hyperspectral imaging technology and applications in agriculture[END_REF][START_REF] Mahesh | Hyperspectral imaging to classify and monitor quality of agricultural materials[END_REF], microscopy imaging in biology [START_REF] Gowen | Recent applications of hyperspectral imaging in microbiology[END_REF][START_REF] Studer | Compressive fluorescence microscopy for biological and hyperspectral imaging[END_REF], or exoplanet detection in astronomy [START_REF] Gonzalez | Supervised detection of exoplanets in highcontrast imaging sequences[END_REF].

Information contained in hyperspectral signals is much richer than in RGB images, but the price to pay is the need to deal with complex degradations that may arise from multiple sources, including sparse noise with specific patterns (stripes), in addition to photon and thermal noise [START_REF] Kerekes | Hyperspectral imaging system modeling[END_REF][START_REF] Rasti | Noise Reduction in Hyperspectral Imagery: Overview and Application[END_REF]. As a consequence, HSI denoising is a crucial pre-processing step to enhance the image quality before using data in downstream tasks such as semantic segmentation or spectral unmixing [START_REF] Keshava | Spectral unmixing[END_REF]. A second issue is the lack of large-scale collection of ground-truth high-quality signals and the large diversity of sensor types, which makes it particularly challenging to train machine learning models for restoration such as convolutional neural networks. To deal with the scarcity of ground-truth data, most successful approaches typically encode strong prior knowledge about data within the model architecture, which may be low-rank representations of input patches [START_REF] Fan | Spatial-Spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising[END_REF][START_REF] Gong | A low-rank tensor dictionary learning method for hyperspectral image denoising[END_REF][START_REF] Rasti | Automatic hyperspectral image restoration using sparse and low-rank modeling[END_REF][START_REF] Wang | Hyperspectral image mixed noise removal based on multidirectional low-rank modeling and spatial-spectral total variation[END_REF][START_REF] Zhao | Hyperspectral image denoising via sparse representation and low-rank constraint[END_REF], sparse coding [START_REF] Dantas | Hyperspectral image denoising using dictionary learning[END_REF][START_REF] Fu | Adaptive spatial-spectral dictionary learning for hyperspectral image denoising[END_REF][START_REF] Gong | A low-rank tensor dictionary learning method for hyperspectral image denoising[END_REF], or image self-similarities [START_REF] Maggioni | Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction[END_REF][START_REF] Peng | Decomposable nonlocal tensor dictionary learning for multispectral image denoising[END_REF][START_REF] Zhuang | Hyperspectral image denoising based on global and non-local low-rank factorizations[END_REF], which have proven to be very powerful in the RGB domain [START_REF] Buades | A non-local algorithm for image denoising[END_REF].

In this paper, we propose a fully interpretable machine learning model for hyperspectral images that may be seen as a hybrid approach between deep learning techniques, where parameters can be learned end to end with supervised data, and classical methods that essentially rely on image priors. Since designing an appropriate image prior by hand is very hard, our goal is to benefit from deep learning principles (here, differentiable programming [START_REF] Baydin | Automatic differentiation in machine learning: a survey[END_REF]) while encoding domain knowledge and physical rules about hyperspectral data directly into the model architecture, which we believe is a key to develop robust approaches that do not require massive amounts of training data.

More precisely, we introduce a novel trainable spectral-spatial sparse coding model with two layers, which performs the following operations: (i) The first layer decomposes the spectrum measured at each pixel as a sparse linear combination of a few elements from a learned dictionary, thus performing a form of linear spectral unmixing per pixel, where dictionary elements can be seen as basis elements for spectral responses of materials present in the scene. (ii) The second layer builds upon the output of the first one, which is represented as a two-dimensional feature map, and sparsely encodes patches on a dictionary in order to take into account spatial relationships between pixels within small receptive fields. To further reduce the number of parameters to learn and leverage classical prior knowledge about spectral signals [START_REF] Wang | Hyperspectral image mixed noise removal based on multidirectional low-rank modeling and spatial-spectral total variation[END_REF], we also assume that the dictionary elements admit a low-rank structure-that is, dictionary elements are near separable in the space and spectrum domains, as detailed later. Even though dictionary learning has been originally introduced for unsupervised learning [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF][START_REF] Olshausen | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF], we adopt an unrolled optimization procedure inspired by the LISTA algorithm [START_REF] Gregor | Learning fast approximations of sparse coding[END_REF], which has been very successful in imaging problems for training sparse coding models from supervised data [START_REF] Lecouat | Designing and learning trainable priors with non-cooperative games[END_REF][START_REF] Lecouat | Fully trainable and interpretable non-local sparse models for image restoration[END_REF][START_REF] Simon | Rethinking the CSC model for natural images[END_REF][START_REF] Xiong | SMDS-Net: Model Guided Spectral-Spatial Network for Hyperspectral Image Denoising[END_REF].

Our motivation for adopting a two-layer model is to provide a shared architecture for different HSI sensors, which often involve a different number of bands with different spectral responses. Our solution consists of learning sensor-specific dictionaries for the first layer, while the dictionary of second layer is shared across modalities. This allows training simultaneously on several HSI signals, the first layer mapping input data to a common space, before processing data by the second layer.

We experimentally evaluate our HSI model on standard denoising benchmarks, showing a significant improvement over the state of the art (including deep learning models and more traditional baselines), while being computationally very efficient at test time. Perhaps more important than pure quantitative results, we believe that our work also draws interesting conclusions for machine learning. First, by encoding prior knowledge within the model architecture directly, we obtain models achieving excellent results with a relatively small number of parameters to learn, a conclusion also shared by [START_REF] Lecouat | Designing and learning trainable priors with non-cooperative games[END_REF][START_REF] Lecouat | Fully trainable and interpretable non-local sparse models for image restoration[END_REF] for RGB imaging; nevertheless, the effect is stronger in our work due to the scarcity of training data for HSI denoising and the difficulty to train deep learning models for this task. Second, we also show that interpretable architectures are useful: our model architecture can adapt to different noise levels per band and modify the encoding function at test time in a principled manner, making it well suited for solving blind denoising problems that are crucial for processing hyperspectral signals.

Related Work on Hyperspectral Image Denoising

Learning-free and low-rank approaches. Classical image denoising methods such as BM3D [START_REF] Dabov | Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering[END_REF] may be applied independently to each spectral band of HSI signals, but such an approach fails to capture relations between channels; Not surprisingly, multi-band techniques such as BM4D [START_REF] Maggioni | Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction[END_REF] have been shown to perform better for HSI, and other variants were subsequently proposed such as GLF [START_REF] Zhuang | Hyperspectral image denoising based on global and non-local low-rank factorizations[END_REF]. Tensor-based methods such as LLRT [START_REF] Chang | Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising[END_REF] are able to exploit the underlying low-rank structure of HSI signals [START_REF] Fan | Spatial-Spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising[END_REF][START_REF] Rasti | Automatic hyperspectral image restoration using sparse and low-rank modeling[END_REF][START_REF] Zhang | Hyperspectral image restoration using low-rank matrix recovery[END_REF] and have shown particularly effective when combined with a non-local image prior as in NGMeet [START_REF] He | Non-local meets global: An integrated paradigm for hyperspectral denoising[END_REF]. Finally, other approaches adapt traditional image processing priors such as total variation [START_REF] Yuan | Hyperspectral image denoising with a Spatial-Spectral view fusion strategy[END_REF][START_REF] Wang | L0-l1 hybrid total variation regularization and its applications on hyperspectral image mixed noise removal and compressed sensing[END_REF], or wavelet sparsity [START_REF] Othman | Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage[END_REF][START_REF] Rasti | Hyperspectral image denoising using first order spectral roughness penalty in wavelet domain[END_REF] but they tend to perform worse than GLF, LLRT, or NGMeet, see [START_REF] Kong | A comprehensive comparison of multi-dimensional image denoising methods[END_REF] for a survey on denoising techniques for HSI.

Sparse coding models. Dictionary learning [START_REF] Olshausen | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF] is an unsupervised learning technique consisting of representing a signal as a linear combination of a few elements from a learned dictionary, which has shown to be very effective for various image restoration tasks [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF]. Several approaches have then combined dictionary learning and low-rank regularization. For instance, 3D patches are represented as tensors in [START_REF] Peng | Decomposable nonlocal tensor dictionary learning for multispectral image denoising[END_REF] and are encoded by using spatial-spectral dictionaries [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF]. In [START_REF] Zhao | Hyperspectral image denoising via sparse representation and low-rank constraint[END_REF], 2D patches are extracted from the band-vectorized representation of the 3D HSI data and sparsely encoded on a dictionary, while encouraging low-rank representations with a trace norm penalty on the reconstructed image. The low-rank constraint can also be enforced by designing the dictionary as the result of the matrix multiplication between spatial and spectral dictionaries learned by principal component analysis as in [START_REF] Fu | Adaptive spatial-spectral dictionary learning for hyperspectral image denoising[END_REF]. However, these methods typically compute sparse representations with an iterative optimization procedure, which may be computationally demanding at test time.

Deep learning. Like BM3D above, convolutional neural networks for grayscale image denoising (e.g., DnCNN [START_REF] Zhang | Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[END_REF]) may also be applied to each spectral band, which is of course suboptimal. Because deep neural networks have been highly successful for RGB images with often low computational inference cost, there have been many attempts to design deep neural networks dedicated to HSI denoising. For instance, to account for the large number of hyperspectral bands, several approaches based on convolutional neural networks are operating on sliding windows in the spectral domain, [START_REF] Maffei | A single model CNN for hyperspectral image denoising[END_REF][START_REF] Shi | Hyperspectral image denoising using a 3-D attention denoising network[END_REF][START_REF] Yuan | Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network[END_REF], which allows training models on signals with different number of spectral bands, but the sliding window significantly increases the inference time. More precisely, attention layers are used in [START_REF] Shi | Hyperspectral image denoising using a 3-D attention denoising network[END_REF], while more traditional CNNs are used in [START_REF] Maffei | A single model CNN for hyperspectral image denoising[END_REF], possibly with residual connections [START_REF] Yuan | Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network[END_REF]. Recently, an approach based on recurrent architecture was proposed in [START_REF] Wei | 3-D quasi-recurrent neural network for hyperspectral image denoising[END_REF] to process signals with an arbitrary number of bands, achieving impressive results for various denoising tasks.

Hybrid approaches. SMDS-Net [START_REF] Xiong | SMDS-Net: Model Guided Spectral-Spatial Network for Hyperspectral Image Denoising[END_REF] adopts a hybrid approach between sparse coding and deep learning models by adapting the RGB image restoration method of [START_REF] Lecouat | Fully trainable and interpretable non-local sparse models for image restoration[END_REF] to HSI images. The resulting pipeline however lacks interpretability: SMDS-Net first denoises the input image with non-local means [START_REF] Buades | A non-local algorithm for image denoising[END_REF], then performs subspace projection in the spectral domain using HySime [START_REF] Bioucas-Dias | Hyperspectral subspace identification[END_REF], before sparsely encoding 3D patches (cubes) with a trainable version of Tensor-based ISTA [START_REF] Qi | TenSR: Multi-dimensional tensor sparse representation[END_REF]. Although this method reduces considerably the number of parameters in comparison to vanilla deep learning models, the spectral sliding windows approach lacks interpretability since the same denoising procedure is applied across different bands, which may not suffer from the same level of noise. In contrast, we propose a much simpler sparse coding model, which is physically consistent with the nature of hyperspectral signals, by introducing a novel differentiable low-rank sparse coding layer.

A Trainable Spectral-Spatial Sparse Coding Model (T3SC)

In this section, we introduce our trainable spectral-spatial sparse coding model dedicated to hyperspectral imaging, and start by presenting some preliminaries on sparse coding.

Background on Sparse Coding

Image denoising with dictionary learning. A classical approach introduced by Elad and Aharon [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF] for image denoising consists in considering the set of small overlapping image patches (e.g., 8 × 8 pixels) from a noisy image, and compute a sparse approximation of these patches onto a learned dictionary. The clean estimates for each patch are then recombined to produce the full image.

Formally, let us consider a noisy image y in R c×h×w with c channels and two spatial dimensions. We denote by y 1 , y 2 , • • • y n the n overlapping patches from y of size c × s × s, which we represent as vectors in R m with m = cs 2 . Assuming that a dictionary D = [d 1 , • • • , d p ] in R m×p is given-we will discuss later how to obtain a "good" dictionary-each patch y i is processed by computing a sparse approximation:

min αi∈R p 1 2 y i -Dα i 2 + λ α i 1 , (1) 
where • 1 is the l 1 -norm, which is known to induce sparsity in the problem solution [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF], and α i is the sparse code representing the patch y i , while λ controls the amount of regularization. Note that the 0 -penalty, which counts the number of non-zero elements, could also be used, leading to a combinatorial problem whose solution is typically approximated by a greedy algorithm. After solving the n problems (1), each patch y i admits a "clean" estimate Dα i . Because each pixel belongs to several patches, the full denoised image x is obtained by averaging these estimates.

Finding a good dictionary can be achieved in various manners. In classical dictionary learning algorithms, D is optimized such that the sum of the loss functions (1) is as small as possible, see [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF] for a review. Adapting the dictionary with supervision is also possible [START_REF] Mairal | Task-driven dictionary learning[END_REF], as discussed next.

Differentiable programming for sparse coding. The proximal gradient descent method called ISTA [START_REF] Figueiredo | An EM algorithm for wavelet-based image restoration[END_REF] is a classical algorithm for solving the Lasso problem in Eq. ( 1), which consists of the following iterations α

(t+1) i = S λ α (t) i + ηD y i -Dα (t) i , (2) 
where η > 0 is a step-size and S λ [u] = sign(u) max(|u| -λ, 0) is the soft-thresholding operator, which is applied pointwise to each entry of an input vector.

By noting that the above iteration can be seen as a sequence of affine transformations interleaved with pointwise non-linearities S λ , it is then tempting to interpret T iterations (2) as a multilayer feed-forward neural network with shared weights between the T layers. Following such an insight, Gregor and LeCun have proposed the LISTA algorithm [START_REF] Gregor | Learning fast approximations of sparse coding[END_REF], where the parameters are learned such that the sequence approximates well the solution of the sparse coding problem (1).

Interestingly, the LISTA algorithm can also be used to train dictionaries for supervised learning tasks. This is the approach chosen in [START_REF] Lecouat | Fully trainable and interpretable non-local sparse models for image restoration[END_REF][START_REF] Simon | Rethinking the CSC model for natural images[END_REF] for image restoration, which considers the following iterations:

α (t+1) i = S λ α (t) i + C y i -Dα (t) i , (3) 
which differs from (2) with the presence of a matrix C of the same size as D. Even if the choice C = ηD (which recovers ISTA) is perfectly reasonable, using a different dictionary C has empirically shown to provide improvements in results quality [START_REF] Lecouat | Fully trainable and interpretable non-local sparse models for image restoration[END_REF], probably due to faster convergence of the LISTA iterations. Then, given some fixed parameters C, D, a clean estimate Wα (T ) i

for each patch y i is obtained by using a dictionary W, where T is the number of LISTA steps. The reason for allowing a different dictionary W than D is to correct the potential bias due to 1 -minimization.

Finally, the denoised image x is reconstructed by averaging the patch estimates:

x = 1 m n i=1 R i Wα (T ) i , (4) 
where R i is the linear operator that places the patch xi at position i in the image, and we assume-by neglecting border effects for simplicity-that each pixel admits the same number m of estimates.

In contrast to classical restoration techniques based on dictionary learning, the LISTA point of view enables us to learn the model parameters C, D, W in a supervised fashion. Given a training set of pairs of noisy/clean images, we remark that the estimate x is obtained from a noisy image y by a sequence of operations that are differentiable almost everywhere, as typical neural networks with rectified linear unit activation functions. A typical loss, which we optimize by stochastic gradient descent, is then min

C,D,W,λ E x,y x(y) -x 2 ,
where (x, y) is a pair of clean/noisy images drawn from some training distribution from which we can sample, and x(y) is the clean estimate obtained from (4), given the noisy image y.

A Trainable Low-Rank Sparse Coding Layer

We are now in shape to introduce a trainable layer encoding both sparsity and low-rank principles.

Spatial-Spectral Representation. As shown in [START_REF] Chakrabarti | Statistics of real-world hyperspectral images[END_REF][START_REF] Fu | Adaptive spatial-spectral dictionary learning for hyperspectral image denoising[END_REF], HSI patches can be well reconstructed by using only a few basis elements obtained by principal component analysis. The authors further decompose these into a Cartesian product of separate spectral and spatial dictionaries. In this paper, we adopt a slightly different approach, where we consider a single dictionary D = [d 1 , . . . , d p ] in R m×p as in the previous section with m = cs 2 , but each element may be seen as a matrix of size c × s 2 with low-rank structure. More precisely, we enforce the following representation ∀j ∈ 1, . . . , p,

d j = vec (U j × V j ) , (5) 
where U j is in R s 2 ×r , V j is in R r×c , r is the desired rank of the dictionary elements, and vec(.) is the operator than flattens a matrix to a vector. The hyperparameter r is typically small with r = 1, 2 or 3. When r = 1, the dictionary elements are said to be separable in the spectral and spatial domains, which we found to be a too stringent condition to achieve good reconstruction in practice.
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Encoding Decoding Figure 1: Architecture of T3SC : we propose a two-layer sparse coding model which is end-to-end trainable. The first layer performs a sensor-specific spectral decomposition, while the second layer encodes both spectral and spatial information.

The low-rank assumption allows us to build model with a reduced number of parameters, while encoding natural assumption about the data directly in the model architecture. Indeed, whereas a classical full-rank dictionary D admits cs 2 p parameters, the decomposition (5) yields dictionaries with (s 2 + c)rp parameters only. Matrices C and W are parametrized in a similar manner.

Convolutional variant and implementation tricks. Whereas traditional sparse coding reconstructs local signals (patches) independently according to the iterations (3), another variant called convolutional sparse coding (CSC) represents the whole image by a sparse linear combination of dictionary elements placed at every possible location in the image [START_REF] Simon | Rethinking the CSC model for natural images[END_REF]. From a mathematical point of view, the reconstruction loss for computing the codes α i given an input image y becomes

min {αi∈R p }i=1,...,n 1 2 y - 1 m n i=1 R i Dα i 2 + λ n i=1 α i 1 . (6) 
An iterative approach for computing these codes can be obtained by a simple modification of (3) consisting of replacing the quantity Dα (t)

i by the i-th patch of the reconstructed image

1 m n i=1 R i Dα (t)
i . All of these operations can be efficiently implemented in standard deep learning frameworks, since the corresponding operations corresponds to a transposed convolution with D, followed by convolution with C, see [START_REF] Simon | Rethinking the CSC model for natural images[END_REF] for more details. In this paper, we experimented with the CSC variant (6) and SC one (1), both with low-rank dictionaries, which were previously described. We observed that CSC was providing slightly better results and was thus adopted in our experiments. Following [START_REF] Lecouat | Fully trainable and interpretable non-local sparse models for image restoration[END_REF], another implementation trick we use is to consider a different λ parameter per dictionary element, which slightly increases the number of parameters, while allowing to learn with a weighted 1 -norm in (6).

The Two-Layer Sparse Coding Model with Sensor-Specific Layer

One of the main challenge in hyperspectral imaging is to train a model that can generalize to several types of sensors, which typically admit different number of spectral bands. Whereas learning a model that is tuned to a specific sensor is perfectly acceptable in many contexts, it is often useful to learn a model that is able to generalize across different types of HSI signals. To alleviate this issue, several strategies have been adopted such as (i) projecting signals onto a linear subspace of fixed dimension, with no guarantee that representations within this subspace can be comparable between different signals, or (ii) processing input data using a sliding window across the spectral domain.

In this paper, we address this issue by learning a two-layer model, presented in Figure 1, where the first layer is tuned to a specific sensor, whereas the second layer could be generic. Note that the second layer carries most of the model parameters (about 20× more than in the first layer in our experiments). Formally, let us denote by α in R p×h×w the sparse encoding of an input tensor y in R c×h×w as previously described. A sparse coding layer Φ naturally yields an encoder and a decoder such that:

Φ enc : y → α, and Φ dec : α → 1 n n i=1 R i Wα i . (7) 
Given a noisy image y, the denoising procedure described in the previous section with one layer can be written as

x(y) = Φ dec • Φ enc (y).
Then, a straightforward multilayer extension of the procedure may consist of stacking several sparse coding layers Φ 1 , . . . , Φ L together to form a multilayer sparse coding denoising model:

x(y) = Φ dec 1 • • • • • Φ dec L • Φ enc L • • • • • Φ enc 1 (y).
The model we propose is composed of two layers, as shown in Figure 1. The first layer encodes spectrally the input HSI image, meaning that it operates on 1 × 1 patches, whereas the second layer encodes both spectrally and spatially the output of the first layer.

Noise Adaptive Sparse Coding

An advantage of using a model based on a sparse coding objective ( 1) is to give the ability to encode domain knowledge within the model architecture. For instance, the Lasso problem (1) seen from a maximization a posteriori estimator implicitly assumes that the noise is i.i.d. If the noise variance is different on each spectral band, a natural modification to the model is to introduce weights and use a weighted-2 data fitting term (which could be applied as well to the CSC model of ( 6)):

min αi∈R p 1 2 c j=1 β j M j (y i -Dα i ) 2 + λ α i 1 , (8) 
where M j is a linear operator that extracts band j from a given HSI signal. From a probabilistic point of view, if σ 2 j denotes the variance of the noise for band j, we may choose the corresponding weight β j to be proportional to 1/σ 2 j . Yet, estimating accurately σ 2 j is not always easy, and we have found it more effective to simply learn a parametric function β j = g(M j y)-here, a very simple CNN with three layers, see supplementary material for details-which is applied independently to each band. It is then easy to modify the LISTA iterations accordingly to take into account these weights, and learn the model parameters jointly with those of the parametric function g.

Self-Supervised Learning: Blind-Band Denoising with No Ground Truth Data

Even though acquiring limited ground truth data for a specific sensor is often feasible, it is also interesting to be able to train models with no ground truth at all, e.g., for processing images without physical access to the sensor. In such an unsupervised setting, deep neural networks are typically trained for RGB images by using blind-spot denoising techniques [START_REF] Laine | High-quality self-supervised deep image denoising[END_REF], consisting of predicting pixel values given their context. Here, we propose a much simpler approach exploiting the spectral redundancy between channels. More precisely, each time we draw an image for training, we randomly mask one band (ore more), and train the model to reconstruct the missing band from the available ones. Formally, the training objective becomes

min C,D,W,λ E x,y,S   j / ∈S M j (x S (y) -y) 2   , ( 9 
)
where S is the set of bands that are visible for computing the sparse codes α i , leading to a reconstructed image that we denote by xS (y). Formally, it would mean considering the objective [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF], but replacing the sum c j=1 by j∈S . This is in spirit similar to blind-spot denoising, except that bands are masked instead of pixels, making the resulting implementation much simpler. 

Experiments

We now present various experiments to demonstrate the effectiveness of our approach for HSI denoising, but first, we discuss the difficulty of defining the state of the art in this field. We believe indeed that it is not always easy to compare learning-free from approaches based on supervised learning. These two classes of approaches have very different requirements/characteristics, making one class more relevant than the other one in some scenarios, and less in others. Table 1 summarizes their characteristics, displaying advantages and drawbacks of both approaches.

Benchmarked models. Keeping in mind the previous dichotomy, we choose to compare our method to traditional methods such as bandwise BM3D [START_REF] Dabov | Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering[END_REF] (implementation based on [START_REF] Mäkinen | Exact transform-domain noise variance for collaborative filtering of stationary correlated noise[END_REF][START_REF] Mäkinen | Collaborative filtering of correlated noise: Exact transform-domain variance for improved shrinkage and patch matching[END_REF]), BM4D [START_REF] Maggioni | Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction[END_REF], GLF [START_REF] Zhuang | Hyperspectral image denoising based on global and non-local low-rank factorizations[END_REF], LLRT [START_REF] Chang | Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising[END_REF], NGMeet [START_REF] He | Non-local meets global: An integrated paradigm for hyperspectral denoising[END_REF]. We also included deep learning models in our benchmark such as HSID-CNN [START_REF] Yuan | Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network[END_REF], HSI-SDeCNN [START_REF] Maffei | A single model CNN for hyperspectral image denoising[END_REF] 3D-ADNet [START_REF] Shi | Hyperspectral image denoising using a 3-D attention denoising network[END_REF], SMDS-Net [START_REF] Xiong | SMDS-Net: Model Guided Spectral-Spatial Network for Hyperspectral Image Denoising[END_REF] and QRNN3D [START_REF] Wei | 3-D quasi-recurrent neural network for hyperspectral image denoising[END_REF]. Results of HSID-CNN, HSI-SDeCNN and 3D-ADNet on Washington DC Mall (available in the Appendix) are taken directly from the corresponding papers, as the train/test split is the same. Otherwise, the results were obtained by running the code obtained directly from the authors, except for SMDS-Net, where our implementation turned out to be slightly more effective. Note that the same architecture for our model was used in all our experiments (see Appendix).

Datasets. We evaluate our approach on two datasets with significantly different properties.

• ICVL [START_REF] Arad | Sparse recovery of hyperspectral signal from natural RGB images[END_REF] consists of 204 images of size 1392 × 1300 with 31 bands. We used 100 images for training and 50 for testing as in [START_REF] Wei | 3-D quasi-recurrent neural network for hyperspectral image denoising[END_REF] but with a different train/test split ensuring that similar images-e.g., picture from the same scene-are not used twice. • Washington DC Mall is perhaps the most widely used dataset 2 for HSI denoising and consists of a high-quality image of size 1280 × 307 with 191 bands. Following [START_REF] Shi | Hyperspectral image denoising using a 3-D attention denoising network[END_REF], we split the image into two sub-images of size 600 × 307 and 480 × 307 for training and one sub-image of size 200 × 200 for testing. Even though the test image does not overlap with train images, they nevertheless share common characteristics. Interestingly, the amount of training data is very limited here.

Specific experiments were also conducted with the datasets APEX [START_REF] Itten | Apex-the hyperspectral esa airborne prism experiment[END_REF], Pavia3 , Urban [START_REF]Hypercube sample data set: Hydice sensor imagery urban[END_REF] and CAVE [START_REF] Yasuma | Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum[END_REF], which appear in the supplementary material.

Normalization. Before denoising, HSI images are normalized to [0, 1]. For remote sensing datasets, we pre-compute the 2 nd and 98 th percentiles for each band, on the whole the training set. Then, normalization is performed on train and test images by clipping each band between those percentiles before applying bandwise min-max normalization, similar to [START_REF] Audebert | Deep learning for classification of hyperspectral data: A comparative review[END_REF][START_REF] Maffei | A single model CNN for hyperspectral image denoising[END_REF]. For the close-range dataset ICVL, we simply apply global min-max normalization as in [START_REF] Xiong | SMDS-Net: Model Guided Spectral-Spatial Network for Hyperspectral Image Denoising[END_REF][START_REF] Wei | 3-D quasi-recurrent neural network for hyperspectral image denoising[END_REF].

Noise patterns. We evaluate our model against different types of synthetic noise:

• i.i.d Gaussian noise with known variance σ 2 , which is the same on all bands.

• Gaussian noise with unknown band-dependent variance: We consider Gaussian noise with different standard deviation σ j for each band, which is uniformly drawn in a fixed interval. These standard deviations change from an image to the other and are unknown at test time. • Noise with spectrally correlated variance: We consider Gaussian noise with standard deviation σ j varying continuously across bands, following a Gaussian curve, see details in the appendix. • Stripes noise : similar to [START_REF] Wei | 3-D quasi-recurrent neural network for hyperspectral image denoising[END_REF], we applied additive stripes noise to 33% of bands. In those bands, 10-15% of columns are affected, meaning a value uniformly sampled in the interval [-0.25, 0.25] is added to them. Moreover, all bands are disturbed by Gaussian noise with noise intensity σ = 25.

Metrics. In order to assess the performances the previous methods, we used five different indexes widely used for HSI restoration, namely (i) Mean Peak Signal-to-Noise Ratio (MPSNR), which is the classical PSNR metric averaged across bands; (ii) Mean Structural Similarity Index Measurement (MSSIM), which is based on the SSIM metric [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]; (iii) Mean Feature Similarity Index Measurement (MFSIM) introduced in [START_REF] Zhang | Fsim: A feature similarity index for image quality assessment[END_REF]; (iv) Mean ERGAS [START_REF] Du | On the performance evaluation of pan-sharpening techniques[END_REF], and (v) Mean Spectral Angle Map (MSAM) [START_REF] Alparone | Comparison of pansharpening algorithms: Outcome of the 2006 grs-s data-fusion contest[END_REF]. We use MPSNR and MSSIM in the main paper and report the other metrics in the appendix.

Implementation details. We trained our network by minimizing the MSE between the groundtruth and restored images. For ICVL, we follow the training procedure described in [START_REF] Wei | 3-D quasi-recurrent neural network for hyperspectral image denoising[END_REF] 4, augmenting the number unrolled iterations improves the denoising performances at the expense of inference time. Since the Spectral-Spatial SC layer is the most time-consuming, the number of unrolled iterations chosen for the first and second layers are 12 and 5 respectively.

Quantitative results on synthetic noise. We present in Table 2 the results obtained on the ICVL dataset (results on DCMall are presented in the appendix). Our method uses the vanilla model of Section 3.3 for the experiments with constant σ or correlated noise. For the blind denoising experiment with band-dependent σ or for the stripe noise experiment, we use the variant of Section 3.4, which is designed to deal with unknown noise level per channel. The method "T3SC-SSL" implements the self-supervised learning approach of Section 3.5, which does not rely on ground-truth data.

• Our supervised approach achieves state-of-the-art results (or is close to the best performing baseline) on all settings. GLF performs remarkably well given that this baseline is learning-free. • Our self-supervised method achieves a relatively good performance under i.i.d. Gaussian noise, but does not perform as well under more complex noise. This is a limitation of the approach which is perhaps expected and overcoming this limitation would require designing a different self-supervised learning scheme; this is an interesting problem, which is beyond the scope of this paper.

A visual result on ICVL is shown in Figure 2 for stripes noise. Inference times are provided in Table 3, showing that our approach is computationally efficient.

Results on real noise. We also conducted a denoising experiment on the Urban dataset, reporting a visual result in Figure 3. Deep models were pre-trained on the APEX dataset, which has the same number of channels as Urban (even though the sensors are different), with band-dependent noise with σ ∈ [0 -55]. Please note that for this experiment we did not use Noise Adaptive Sparse Coding3.4 for T3SC, as it is highly dependent on the type of sensor used for training. We show that learning-based models trained on synthetic noise are able to transfer to real data.

Comments on the additional results presented in the appendix. The appendix also contains (i) results on the DCMall dataset including additional baselines mentioned above; (ii) error bars for parts of our experimental results in order to assess their statistical significance; (iii) an experiment when learning simultaneously on several datasets with different types of sensors showing that the second layer can be generic and effective at the same time; (iv) additional visual results; (v) various ablation studies to illustrate the importance of different components of our method.

Broader Impact

Our paper addresses the problem of denoising the signal, which is a key pre-processing step before using hyperspectral signals in concrete applications. As such, it is necessarily subject to dual use. For instance, HSI may be used for environmental monitoring, forestry, yield estimation in agriculture, natural disaster management planning, astronomy, archaeology, and medicine. Yet, HSI is also used by the petroleum industry for finding new oil fields, and has obvious military applications for surveillance. We believe the potential benefits of HSI for society are large enough to outweigh the Table 3: Inference time per image on ICVL with σ = 50; SMDS, QRNN3D and T3SC are using a V100 GPU; BM4D, GLF, LLRT and NGMeet are using an Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70GHz. Note that unlike GLF, NGMeet, and LRRT, learning-based approaches such as QRNN3D and our approach require a training procedure, which may be conducted offline. The cost of such a training step was about 13.5 hours for our method and 19 hours for QRNN3D on a V100 GPU. potential harm. Nevertheless, we are planning to implement appropriate dissemination strategies to mitigate the risk of misuse for this work (notably with restrictive software licenses), while targeting a gold standard regarding the scientific reproducibility of our results.

Self-Supervised Learning During the training, n bands randomly selected are masked simultaneously, and reconstructed from the available ones. The MSE loss is applied on the masked bands only. For testing, the n masked bands are evenly distributed along the spectral dimension. All bands are reconstructed after c/n iterations, where c denotes the total number of bands and • is the ceiling operator. We used n = 4 for ICVL and n = 16 for Washington DC Mall.

For the SSL setting to be realistic, the noise is added to the clean image before patches are extracted. Otherwise, the model would have indirect access to the groundtruth by seeing the same patch with different noise realizations. As a consequence, the denoising task is much harder on complex noise when data is limited, as shown in Table 7.

B Additional Quantitative Results.

Washington DC Mall dataset. Results for this dataset are presented in Table 7. Additional baselines are presented in Table 8. The conclusions are similar to those already drawn in the main paper. Study of statistical significance for the ICVL dataset. In order to evaluate the statistical significance of our results, we present some results in Table 9 for some of our models and baselines, by running models with five different random seeds. Note that we did not conduct such a study for all results in this paper in order to keep the computational cost of the project reasonable. The conclusions of the paper remain unchanged. 

D GPU ressources

The total number of GPU hours involved in this project is around 19k hours on NVIDIA Tesla V100 16Go, including preliminary experiments, model design, final experiments and running baseline methods.

Figure 2 :

 2 Figure 2: Denoising results with Gaussian noise σ = 25 on ICVL with bands 9, 15, 28.

Figure 3 :

 3 Figure 3: Visual result on a real HSI denoising experiment on Urban dataset with bands 1, 108, 208.

Finally, we

  show additional visual examples in Figure 4 and 5.
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Figure 4 :

 4 Figure 4: Simulated Gaussian noise (σ = 100) on DCMall

Figure 5 :

 5 Figure 5: Visual results for the denoising experiment with stripes noise on ICVL with bands 9, 15, 28.

Table 1 :

 1 Simplified comparison between learning-free and learning-based approaches.

		Data req. training	inference adapt. to new data complex noise
	learning-free	no req.	no training slow	easy	poor
	learning-based clean data slow	fast	complicated	good perf.

  : we first center crop training images to size 1024 × 1024, then we extract patches of size 64 × 64 at scales 1:1, 1:2, and 1:4, with stride 64, 32 and 32 respectively. The number of extracted patches for ICVL amounts to 52962. For Washington DC Mall, we do not crop training images and the patches are extracted with stride 16, 8 and 8, for a total of 1650 patches. One epoch in Washington DC Mall corresponds to 10 iterations on the training dataset. Basic data augmentation schemes such as 90 • rotations and vertical/horizontal flipping are performed. Code and additional details about optimization, implementation, computational resources, are provided in the supplementary material. As reported in Table

Table 2 :

 2 Denoising performance on ICVL with various types of noise patterns. The first four rows correspond to i.i.d. Gaussian noise with fixed σ per band. The next three rows corresponds to a noise level that depends on the band, taken uniformly on small interval. This is a blind-noise experiment since at test time, the noise level is unknown. The last two rows correspond to the scenarios with correlated σ across bands, and with stripe noise, respectively. See main text for details.

	σ	Metrics	Noisy BM3D BM4D	GLF	LLRT NGMeet SMDS QRNN3D T3SC T3SC-SSL
	5	MPSNR 34.47 MSSIM 0.7618 0.9843 0.9916 0.9949 0.9951 0.9960 46.17 48.85 51.25 51.86 52.74	50.91 0.9944 0.9918 48.80	52.62 0.9959 0.9952 51.42
	25	MPSNR 21.44 MSSIM 0.1548 0.9269 0.9510 0.9695 0.9746 0.9796 37.86 39.89 43.16 43.43 44.74	42.83 0.9700 0.9782 44.20	45.38 0.9825 0.9805 44.73
	50	MPSNR 16.03 MSSIM 0.0502 0.8654 0.8654 0.9197 0.9504 0.9602 34.22 34.22 39.26 39.69 41.08	39.25 0.9382 0.9655 41.67	42.16 0.9677 0.9646 41.62
	100	MPSNR 10.85 MSSIM 0.0144 0.7557 0.8155 0.7982 0.9182 0.9311 30.43 32.47 34.79 36.39 37.55	35.64 0.8815 0.9140 37.19	38.99 0.9439 0.9394 38.50
	[0-15]	MPSNR 33.89 MSSIM 0.6386 0.9767 0.9735 0.9948 0.9899 0.9078 45.81 45.35 50.57 48.50 41.67	48.23 0.9900 0.9957 52.07	53.31 0.9967 0.9955 51.26
	[0-55]	MPSNR 23.36 MSSIM 0.2601 0.9231 0.9074 0.9818 0.9580 0.7565 39.06 38.43 44.22 41.13 32.94	41.76 0.9620 0.9884 47.13	48.64 0.9911 0.9882 46.82
	[0-95]	MPSNR 19.06 MSSIM 0.1614 0.8760 0.8540 0.9674 0.9354 0.6609 36.17 35.55 41.43 38.44 29.40	38.94 0.9357 0.9753 43.98	46.30 0.9859 0.9822 44.75
	Corr.	MPSNR 28.85 MSSIM 0.4740 0.9599 0.9070 0.9881 0.9824 0.8536 42.73 42.13 47.05 45.76 38.06	45.98 0.9835 0.9911 48.90	49.89 0.9923 0.9911 48.78
	Strip.	MPSNR 21.20 MSSIM 0.1508 0.8641 0.9198 0.9628 0.9258 0.9333 34.88 37.70 42.06 39.38 39.78	41.98 0.9655 0.9806 44.60	44.74 0.9805 0.9773 43.80

Table 4 :

 4 Impact of the number of unrolled iterations per layer on denoising performances and inference time. This experiment was carried out on ICVL with σ = 50.

	Unrolled iterations per layer	1	2	5	12
	MPSNR	40.16 41.48 42.15 42.45
	Inference time (s)	0.38	1.44	5.27 14.91

Table 7 :

 7 Denoising performances on Washington DC Mall.

	σ	Metrics	Noisy BM3D BM4D	GLF	LLRT NGMeet SMDS QRNN3D T3SC T3SC-SSL
	5	MPSNR 34.31 MSSIM 0.9821 0.9875 0.9962 0.9953 0.9968 35.10 41.13 39.57 41.83	37.57 0.9928	42.83 0.9971	43.42 0.9973	43.85 0.9978	42.56 0.9967
	25	MPSNR 20.70 MSSIM 0.7688 0.8859 0.9690 0.9883 0.9863 24.51 31.08 35.25 34.95	35.38 0.9886	35.64 0.9889	35.04 0.9864	36.74 0.9912	35.92 0.9894
	50	MPSNR 15.25 MSSIM 0.5314 0.7508 0.9220 0.9761 0.9704 20.80 26.69 31.77 30.94	31.88 0.9759	31.76 0.9765	31.72 0.9741	33.12 0.9819	31.96 0.9762
	100	MPSNR 10.48 MSSIM 0.2888 0.5427 0.8141 0.9475 0.9322 17.65 22.51 27.81 26.82	27.86 0.9460	28.02 0.9491	27.41 0.9375	29.48 0.9618	28.04 0.9460
	[0-15]	MPSNR 33.32 MSSIM 0.9551 0.9746 0.9903 0.9950 0.9951 34.62 37.22 39.89 40.04	37.40 0.9926	40.77 0.9958	43.72 0.9971	41.83 0.9968	38.16 0.9917
	[0-55]	MPSNR 22.45 MSSIM 0.7450 0.8683 0.9504 0.9934 0.9811 26.11 29.04 38.37 33.36	32.55 0.9780	34.31 0.9859	38.44 0.9925	39.28 0.9945	31.93 0.9781
	[0-95]	MPSNR 18.18 MSSIM 0.5889 0.7688 0.9033 0.9914 0.9643 23.06 25.77 36.98 30.07	29.21 0.9589	30.80 0.9718	35.84 0.9877	37.20 0.9920	27.79 0.9561
	Corr.	MPSNR 28.48 MSSIM 0.9085 0.9515 0.9637 0.9928 0.9921 30.50 33.69 37.96 37.77	36.56 0.9911	38.54 0.9934	39.84 0.9944	40.79 0.9960	39.61 0.9944
	Strip.	MPSNR 20.47 MSSIM 0.7621 0.8672 0.9433 0.9877 0.9833 24.08 29.07 35.27 34.13	34.94 0.9876	35.24 0.9876	35.25 0.9874	36.34 0.9906	34.50 0.9853

Table 8 :

 8 Denoising performances on Washington DC Mall with additional baselines.

	σ	Metrics	Noisy BM3D BM4D	GLF	LLRT NGMeet 3D-ADNet HSID-CNN HSI-SDeCNN SMDS-Net QRNN3D T3SC
	5	MPSNR 34.31 MSSIM 0.9821 0.9875 0.9962 0.9953 0.9968 35.10 41.13 39.57 41.83	37.57 0.9928	42.08 0.9968	41.68 0.9966	39.98 0.9954	42.83 0.9971	43.42 0.9973	43.85 0.9978
	25	MPSNR 20.70 MSSIM 0.7688 0.8859 0.9690 0.9883 0.9863 24.51 31.08 35.25 34.95	35.38 0.9886	33.78 0.9825	33.05 0.9813	33.44 0.9822	35.64 0.9889	35.04 0.9864	36.74 0.9912
	50	MPSNR 15.25 MSSIM 0.5314 0.7508 0.9220 0.9761 0.9704 20.80 26.69 31.77 30.94	31.88 0.9759	29.73 0.9587	28.96 0.9536	29.61 0.9608	31.76 0.9765	31.72 0.9741	33.12 0.9819
	100	MPSNR 10.48 MSSIM 0.2888 0.5427 0.8141 0.9475 0.9322 17.65 22.51 27.81 26.82	27.86 0.9460	24.74 0.9064	25.29 0.9014	25.75 0.9121	28.02 0.9491	27.41 0.9375	29.48 0.9618

Table 9 :

 9 Denoising performances on ICVL with multiple seeds We report denoising performances of T3SC on the CAVE Dataset in Table10To evaluate T3SC, the dataset was divided in four splits : three were used for training and one for testing. The values reported for T3SC are averaged across all rotations of the test split.

	σ	Metrics	Noisy	GLF	NGMeet	SMDS	QRNN3D	T3SC	T3SC-SSL
	5	MPSNR 34.47 ± 0.01 MSSIM 0.7619 ± 0.0001 0.9951 ± 0.0001 0.9961 ± 0.0001 0.9943 ± 0.0001 0.9924 ± 0.0021 0.9960 ± 0.0001 51.25 ± 0.01 52.74 ± 0.01 50.78 ± 0.09 49.54 ± 1.28 52.62 ± 0.01	51.37 ± 0.03 0.9952 ± 0.0001
	25	MPSNR 21.43 ± 0.01 MSSIM 0.1548 ± 0.0002 0.9696 ± 0.0001 0.9797 ± 0.0001 43.16 ± 0.01 44.74 ± 0.01	42.63 ± 0.11 0.9687 ± 0.0009 0.9780 ± 0.0009 0.9825 ± 0.0001 0.9805 ± 0.0001 44.20 ± 0.16 45.37 ± 0.02 44.70 ± 0.02
	50	MPSNR 16.03 ± 0.01 MSSIM 0.0503 ± 0.0001 0.9198 ± 0.0002 0.9603 ± 0.0001 39.26 ± 0.01 41.09 ± 0.01	39.09 ± 0.08 0.9359 ± 0.0012 0.9639 ± 0.0012 0.9677 ± 0.0001 0.9648 ± 0.0001 41.47 ± 0.14 42.16 ± 0.01 41.62 ± 0.01
	100	MPSNR 10.85 ± 0.01 MSSIM 0.0144 ± 0.0001 0.7981 ± 0.0004 0.9312 ± 0.0001 34.78 ± 0.01 37.55 ± 0.01	35.59 ± 0.04 0.8781 ± 0.0017 0.9370 ± 0.0114 0.9439 ± 0.0002 0.9397 ± 0.0001 38.38 ± 0.60 38.99 ± 0.01 38.51 ± 0.01
	[0-15]	MPSNR 33.94 ± 0.09 MSSIM 0.6381 ± 0.0013 0.9950 ± 0.0001 0.9065 ± 0.0022 50.68 ± 0.11 41.57 ± 0.14	48.00 ± 0.13 0.9899 ± 0.0001 0.9958 ± 0.0001 0.9966 ± 0.0001 0.9955 ± 0.0002 52.10 ± 0.12 53.10 ± 0.12 51.21 ± 0.11
	[0-55]	MPSNR 23.41 ± 0.09 MSSIM 0.2621 ± 0.0025 0.9820 ± 0.0004 0.7534 ± 0.0031 44.41 ± 0.12 32.93 ± 0.09	41.42 ± 0.18 0.9593 ± 0.0015 0.9889 ± 0.0004 0.9915 ± 0.0005 0.9856 ± 0.0024 47.26 ± 0.12 48.57 ± 0.28 46.47 ± 0.23
	[0-95]	MPSNR 19.11 ± 0.09 MSSIM 0.1644 ± 0.0031 0.9667 ± 0.0007 0.6601 ± 0.0051 41.62 ± 0.11 29.40 ± 0.12	38.86 ± 0.06 0.9352 ± 0.0004 0.9758 ± 0.0003 0.9863 ± 0.0005 0.9735 ± 0.0049 44.07 ± 0.08 46.24 ± 0.24 43.98 ± 0.46
	CAVE dataset.							

Table 10 :

 10 Denoising performances on CAVE dataset with Gaussian noise. In Table11, we study the problem of training a single model on three different datasets, APEX, DC Mall, and Pavia, involving a different number of channels. As mentioned in the paper, this model involves a common second layer and a spectral dictionary per dataset. These result show that most of the model parameters (which are present in the second layer) can in fact be shared across datasets without significant loss of accuracy when compared to the training of three different models (thus involving three times more parameters).

	σ	Metrics Noisy NGMeet T3SC
	5	MPSNR 35.05	47.96	49.16
	25 MPSNR 21.99	42.44	42.77
	50 MPSNR 16.37	38.89	39.7
	100 MPSNR 10.96	34.99	36.48

Joint training across heterogeneous datasets.

Table 11

 11 

		: Results for joint training experiment	
	Training procedure	Model	Metrics APEX DC Mall Pavia Center
	Independant trainings	QRNN3D T3SC	MPSNR 33.19 MSSIM 0.9619 0.9741 31.72 MPSNR 34.91 33.12 MSSIM 0.9730 0.9819	30.56 0.9569 31.32 0.9617
	Joint training	QRNN3D T3SC	MPSNR 31.95 MSSIM 0.9501 0.9690 30.97 MPSNR 34.74 33.08 MSSIM 0.9711 0.9819	29.12 0.9428 31.30 0.9616
	Additional metrics.			

Additional metrics are provided for the ICVL and DCMall datasets, respectively in Tables

12 and 13

. The conclusions of the paper are unchanged.

Table 12 :

 12 Additional metrics on ICVL

	σ	Metrics	Noisy BM3D BM4D	GLF	LLRT NGMeet SMDS QRNN3D T3SC T3SC-SSL
		MFSIM	0.9534 0.9578 0.9772 0.9824 0.9817 0.9785	0.9802 0.9824	0.9814	0.9804
	5	MERGAS 3.12 MSAM 0.0862 0.0775 0.0427 0.0495 0.0395 0.0569 2.84 1.50 1.96 1.46 2.50	1.38 0.0373 0.0349 1.26	1.19 0.0329	1.54 0.0425
		MFSIM	0.8213 0.8676 0.9394 0.9661 0.9629 0.9655	0.9639 0.9614	0.9673	0.9648
	25	MERGAS 14.96 MSAM 0.3087 0.1753 0.1044 0.0684 0.0726 0.0671 9.50 4.55 2.91 3.31 2.94	2.87 0.0676 0.0709 3.08	2.50 0.0599	2.77 0.0668
		MFSIM	0.7174 0.7861 0.8974 0.9495 0.9439 0.9484	0.9464 0.9487	0.9542	0.9465
	50	MERGAS 28.00 MSAM 0.4785 0.2175 0.1438 0.0890 0.0925 0.0864 14.51 7.44 4.24 4.89 4.28	4.45 0.0944 0.0880 4.38	3.68 0.0768	4.23 0.0934
		MFSIM	0.6000 0.6821 0.8240 0.9188 0.9065 0.9209	0.9170 0.9100	0.9329	0.9163
	100	MERGAS 48.42 MSAM 0.6566 0.2700 0.1939 0.1183 0.1193 0.1147 20.83 11.98 6.54 7.58 6.66	6.52 0.1205 0.1297 7.01	5.51 0.0977	6.52 0.1265
		MFSIM	0.9338 0.9455 0.9690 0.9831 0.9774 0.9761	0.9787 0.9828	0.9782	0.9679
	[0-15]	MERGAS 5.42 MSAM 0.1358 0.1052 0.0610 0.0509 0.0487 0.0582 4.29 2.29 2.10 1.89 2.53	1.68 0.0438 0.0368 1.36	1.48 0.0395	2.34 0.0624
		MFSIM	0.8196 0.8642 0.9261 0.9766 0.9554 0.9523	0.9603 0.9714	0.9748	0.9507
	[0-55]	MERGAS 18.46 MSAM 0.3563 0.1879 0.1171 0.0572 0.0798 0.0961 10.41 5.56 2.37 3.86 4.19	3.22 0.0731 0.0581 2.37	2.05 0.0518	4.73 0.1226
		MFSIM	0.7471 0.8057 0.8837 0.9725 0.9377 0.9339	0.9473 0.9613	0.9689	0.9370
	[0-95]	MERGAS 29.42 MSAM 0.4899 0.2274 0.1466 0.0632 0.0973 0.1262 14.25 8.15 2.68 5.36 6.14	4.60 0.0962 0.0719 3.07	2.50 0.0604	6.95 0.1520
		MFSIM	0.9028 0.9229 0.9519 0.9783 0.9713 0.9693	0.9721 0.9790	0.9768	0.9744
	Corr.	MERGAS 8.25 MSAM 0.2049 0.1368 0.1106 0.0559 0.0593 0.0661 5.91 4.07 2.29 2.44 2.67	2.10 0.0540 0.0481 1.92	1.65 0.0436	1.97 0.0527
		MFSIM	0.8177 0.8621 0.9365 0.9663 0.9604 0.9649	0.9639 0.9619	0.9651	0.9582
	Strip.	MERGAS 15.38 MSAM 0.3152 0.1886 0.1101 0.0698 0.0794 0.0705 10.20 4.84 3.00 3.55 3.09	2.99 0.0700 0.0702 3.02	2.62 0.0623	3.26 0.0795

Table 13 :

 13 Additional metrics on DCMallAblation studies. In this paragraph, we present different ablation studies, demonstrating in Table14that our two-layer model outperforms single-layer models. We also demonstrate the usefulness of our variant with weights βj in Table15when the noise variance varies a lot between different bands.

	Metrics	Noisy	Spec	SpecSpat Spec + SpecSpat
	MPSNR	16.03	30.96	40.13	42.17
	MSSIM	0.0502 0.6884 0.9533	0.9677
	MFSIM	0.8100 0.9708 0.9849	0.9925
	MERGAS 51.48	8.84	3.00	2.39
	MSAM	0.7546 0.1300 0.1021	0.0547

Table 14 :

 14 Combination of sparse coding layers: we denote by Spec the Spectral Sparse Coding layer and by SpecSpat the Spectral-Spatial Sparse Coding layer. This experiment was run on ICVL with σ = 50.

Table 15 :

 15 Our model without/with band-wise noise estimator (NE) on ICVL with band-dependent Gaussian noise and stripes noise

		Metrics	T3SC T3SC + NE
	[0-15]	MPSNR 52.85 MSSIM 0.9963 0.9967 53.31
	[0-55]	MPSNR 47.39 MSSIM 0.9890 0.9911 48.64
	[0-95]	MPSNR 44.92 MSSIM 0.9821 0.9859 46.30
	Strip.	MPSNR 44.68 MSSIM 0.9801 0.9805 44.74
	C Visual Examples	

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Supplementary Material

A Implementation details

In this section, we provide additional implementation details, which are useful to reproduce our experiments (note that the code is also provided).

Noise with spectrally correlated variance. For each band i ∈ 0, c -1 , the standard deviation of the Gaussian noise is defined as :

with β = 23.08 and η = 0.157.

Preprocessing.

A basic centering step is used for each input patch of our model. More precisely, for the first layer, each band of the input hyperspectral image is centered independently prior to patches extraction, and means are added back after decoding. For the second layer, patches are centered independently for each band (and similarly, the means are added back after decoding).

Code and patch sizes

The hyperparameters of our model are presented in Table 5.

Layer

Patches size Code size Unrolled iterations Rank

Table 5: Architecture of our model Table 14 shows that the combination of both layers is more performant than each layer independently.

Initialization All parameters are initialized with He initialization [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF].

Blocks inference

In order to apply our model to large images, we split them into blocks of size 256 × 256 with an overlap of 6 pixels. Each block is denoised independently. The output image is obtained by aggregating the denoised blocks. Pixels comprised in several blocks are averaged.

Weights estimator

For complex noise such as Gaussian noise with band-dependent variance or stripes noise, our model uses a CNN to estimate the weights βj associated with each band. The CNN operates on centered patches of size 56 × 56 both during training (random crops) and inference (blocks inference), and its architecture is described in Table 6. The ablation study presented in Table 15 shows that this extension improves performances substantially for complex noise.

Layer

Optimization Our models are trained with batch size of 16 for 60 epochs. We use the Adam optimizer, the initial learning rate is 3 × 10 -4 , and is divided by two at epoch 30 and 45.