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ScienceDirect
Structure-Specific Endonucleases (SSE) are specialized DNA

endonucleases that recognize and process DNA secondary

structures without any strict dependency on the nucleotide

sequence context. This enables them to act virtually anywhere

in the genome and to make key contributions to the

maintenance of genome stability by removing DNA structures

that may stall essential cellular processes such as DNA

replication, transcription, repair and chromosome segregation.

During repair of double strand breaks by homologous

recombination mechanisms, DNA secondary structures are

formed and processed in a timely manner. Their homeostasis

relies on the combined action of helicases, SSE and

topoisomerases. In this review, we focus on how SSE

contribute to DNA end resection, single-strand annealing and

double-strand break repair, with an emphasis on how their

action is fine-tuned in those processes.
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Introduction
Homology directed repair of DNA double-strand breaks

(DSB) relies on elaborate DNA transactions that involve

the formation of a variety of secondary DNA structures.

These include double-stranded DNA ends, single-

stranded DNA flaps as well as more complex structures

such as displacement loops (D-loop) and Holliday junc-

tions that are generated after the exchange of comple-

mentary strands between sister chromatids or homologous

chromosomes (Figure 1). The homeostasis of these struc-

tures relies on the coordination of DNA processing

enzymes including DNA helicases, topoisomerases and

nucleases [1]. Here, we review the key contributions
www.sciencedirect.com 
made by so-called structure-specific endonucleases, a

specialized class of nucleases that recognize and process

secondary DNA structures without any strict dependency

on the DNA sequence context. This enables them to act

virtually anywhere in the genome and to process second-

ary DNA structures at multiple steps of HR mechanisms

(Figure 1).

The first step in DSB repair by HR that relies on SSEs is

the so-called end resection mechanism that promotes the

50 to 30 resection of a DNA double-stranded end

(Figures 1, 2). It is a key process that generates a 30

single-strand overhang that will serve for homology search

and annealing to the complementary homologous

sequence in all HR pathways (Figures 1, 3). It is cell

cycle regulated, occurring in S/G2 when a sister chromatid

is available. Over the last two decades or so, tremendous

efforts have been put into dissecting the ins and outs of

this process with the latest developments reviewed in this

issue [2]. We will focus here specifically on the tightly

controlled action of MRE11 and DNA2 which are the two

main SSEs that contribute to DNA end resection [3,4].

Following end resection, homology-directed repair of a

double-ended DSB can be executed by single-strand

annealing (SSA), synthesis-dependent strand annealing

(SDSA) or double-strand break repair (DSBR) (Figure 1).

SSA proceeds through the annealing of homologous

sequences that flank the break site. This is a highly error

prone mechanism that ends with the deletion of one of

the repeats and the entire intervening sequence between

the homologous repeats. It also results in the formation of

two non-homologous single-strand 30 tails that will need

to be removed for completion of the repair process

(Figures 1, 3b). Their removal is carried out by the

XPF-ERCC1 SSE in mammals and its yeast counterparts

Rad1XPF-Rad10ERCC1 and Swi10XPF-Rad16ERCC1 in Sac-
charomyces cerevisiae and Schizosaccharomyces pombe, respec-

tively [5]. We will review the important progress made on

understanding how 30 flap removal is controlled in yeast

SSA. In contrast to SSA, SDSA and DSBR involve

homology search and strand invasion of an intact sister

chromatid or homolog chromosome. This leads to the

formation of the D-Loop (Figures 1, 3a) where the 30 end
of the invading strand is used to prime DNA synthesis. In

SDSA, the extended invading strand dissociates from the

intact complementary donor strand and anneals to the 30

overhang on the other side of the break following D-loop

disassembly by helicases (Figures 1, 3c). This can result

in the formation of a 30 flap if DNA synthesis runs far

enough before D-loop disassembly (Figures 1, 3c). As in
Current Opinion in Genetics & Development 2021, 71:195–205
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Figure 1

Current Opinion in Genetics & Development

SSEs in HR-mediated repair of a two-ended DSB.

Simplified outline of homology directed DSB repair mechanisms showing the processing of secondary DNA structures by SSEs (preferential cut

sites are indicated with red arrows). These range from protein-coated DNA ends (grey oval on the right end of the break) and/or ends with

secondary DNA structures (shown on left end of the break) that block 50–30 resection, 30 flaps to more complex branched DNA structures such as

D-loops and Holliday junctions. As explained in the main text, it is noteworthy that there are important functional interactions at play between

helicases and SSEs. Helicases can either generate secondary structures for SSEs to process, such as during end processing (see Figure 2 for

details), or instead dismantle structures such as D-loops and dHJs that otherwise need to get processed by SSEs (see Figure 4 for details).
SSA, the 30 flap will be endonucleolytically removed by

XPF-ERCC1 in mammalian cells and Rad1XPF-

Rad10ERCC1 in S. cerevisiae (for review Ref. [6]). However,

compared to SSA, much less is currently known on how

they are targeted and controlled in SDSA. Noteworthy,

SDSA is a non-crossover (non-CO) process that avoids

extensive exchange of genetic information, making it one

of the least mutagenic HR mechanisms. If the D-loop
Current Opinion in Genetics & Development 2021, 71:195–205 
persists, the non-invading 30 overhang can anneal to the

complementary intact donor strand that forms the single-

stranded loop (Figure 1). This combined with extension

of both 30 ends of the break and ligation will ultimately

lead to the formation of the canonical double-Holliday

junction structure (dHJ) (Figure 1). HJs covalently link

both sisters or homologs and need to be processed before

chromosome segregation to avoid segregation defects and
www.sciencedirect.com
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Figure 2

Current Opinion in Genetics & Development

DNA end resection.

MRE11 initiates end-resection by nicking the strand that is 50 terminated at the break (for simplicity end resection is shown for only one of the

ends). It will then carry out 30–50 short-range resection with its 30–50 exonuclease activity while the gap it has generated constitutes an entry point

for the EXO1 and DNA2 nucleases that will carry out long-range 50–30 resection. Whereas long-range resection carried out by Exo1 relies on a

classical exonucleolytic ‘chewing back’ process of the DNA strand, it is carried out by a more elaborate mechanism when achieved by DNA2.

Indeed, DNA2 is a single-strand DNA endonuclease that will drive 50–30 resection by nicking inside the single-strand 50 flaps which is generated by

50–30 DNA unwinding catalyzed by BLM. The pink dotted arrow shows a second cut that can be made by MRE11 opposite its first cut or a gap.

The cleavage products generated by that second cut are shown in the dotted lined box. These are a protein-coated short duplex DNA product

and a protein free end that can undergo further resection. Note: cuts are indicated with red arrows.
aneuploidy. They can be removed by dHJ dissolution,

which relies on the combined action of a DNA helicase

and a type I topoisomerase, or by HJ resolution, which

involves the nucleolytic processing of HJs by the MUS81-

EME1, SLX1-SLX4 and GEN1 SSEs (Figure 4a) or by

the MLH1-MLH3 nuclease complex. HJ resolution by

MLH1-MLH3, which is not an SSE as such, is reviewed

by Sanchez and colleagues in this issue and will not be

further discussed here [7]. While HJ dissolution is exclu-

sively a non-CO process like SDSA, HJ resolution can

lead to both non-CO or CO. Controlling the balance

between SDSA and DSBR is therefore critical in
www.sciencedirect.com 
determining the genetic outcome of the recombination

process. As reviewed in this issue, DNA helicases are key

enzymes that weigh into that balance reversing D-loops

and other intermediates to promote SDSA or eliminating

dHJs in DSBR [8]. We will see how elaborate spatio-

temporal control mechanisms of HJ-processing SSEs also

contribute (Figure 4b).

MRE11 and DNA2 in DNA end resection
The first SSE to come into action in HR is MRE11, which

displays both DNA endonuclease and 30 to 50 exonuclease
activities. MRE11 initiates end resection by nicking the
Current Opinion in Genetics & Development 2021, 71:195–205
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Figure 3

(a) (b)

(c)
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SDSA and SSA.

(a) A DSB with resected ends and RPA-coated 30 overhangs can be channeled by RAD52 towards SSA if homologous repeats flank the break (b)

or toward homology search and strand invasion of an intact double-stranded donor after replacement of RPA by RAD51 (c).

(b) In SSA the 30 overhangs anneal when complementary sequences (yellow hallow) corresponding to the homologous repeats flanking the break

are uncovered by resection. This results in the formation of two 30 single-stranded non-homologous tails that will be removed by Rad1-Rad10 in

S. cerevisiae (ortholog of human XPF-ERCC1). As further detailed in the main text the recruitment, precise positioning and stimulation of Rad1-

Rad10 relies on multiple protein-protein contacts established between Rad1-Rad10 and Msh2-Msh3, Saw1 and Rpa as well as Slx4

phosphorylated by Mec1/Tel1. In S. pombe, Pxd1 was identified as the Saw1 ortholog. It binds and stimulates Rad16-Swi10 (the ortholog of

Rad1-Rad10 and XPF-ERCC1). Pxd1 can also interact with Dna2 and inhibit Rpa-mediated stimulation of Dna2 in S-phase. Pxd1 was recently

shown to be degraded in S-phase after it is ubiquitinated by the CRL4-Cdt2 ubiquitin ligase. For simplicity only one SSA complex is shown. Note:

cuts are indicated with red arrows.

(c) In SDSA, the invading strand is displaced after the D-loop gets dismantled by DNA helicases and annealed to the 30 overhang on the other

side of the break. If DNA synthesis and extension of the 30 invading strand proceeds far enough, a 30 flap will be generated after the invading

strands anneals to the opposite 30 overhang. The 30 flap will be removed by XPF-ERCC1 and its counterparts in yeast. Note: cuts are indicated

with red arrows.
strand that is 50-terminated at the break. The endonucleo-

lytic cut serves as an entry point for the EXO1 and DNA2

nucleases that carry out long-range 50 to 30 resection while

short-range 30 to 50 resectiontowards the end is carriedout by

MRE11 exonuclease activity (Figure 2) [9�,10–12]. It oper-

ates in complex with RAD50 and NBS1, or Xrs2 in S.
cerevisiae, as part of the MRN or MRX complex, respectively

(Figure 2). Recruitment of MRE11 to the ends is controlled

in multiple ways (reviewed in Ref. [3]), including the

recently reported unsuspected contribution of GRB2 as a

direct partner of MRE11 [13]. The MRE11-RAD50 (MR)
Current Opinion in Genetics & Development 2021, 71:195–205 
complex represents the catalytic core where ATP binding

and hydrolysis by RAD50 induces conformational changes

that specifically stimulate the endonuclease activity of

MRE11 while inhibiting its exonuclease activity [14–16].

The key regulatory cofactor of MRN/X is CtIP in mammals,

Ctp1CtIP in S. pombe and Sae2CtIP in S. cerevisiae [17–20].

Intriguingly, both CtIP and Sae2 CtIP have been reported to

have endonuclease activity, but this remains controversial in

the field [20–23]. Stimulation of MRE11 endonuclease

activity by CtIP was recently shown to rely on a small

conserved C-terminal motif [24��]. Phosphorylation of CtIP
www.sciencedirect.com
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Figure 4

(a)

(b)
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DNA damage

dHJ processing in DSBR.

(a) During dHJ dissolution the two HJs are merged by the BLM (ortholog of the S. pombe and S. cerevisiae Rqh1 and Sgs1 helicases,

respectively) helicase into a hemicatenaned structure where one strand of one chromosome is threaded between the two strands of the other

chromosome. Processing of the hemicatenane by the type I topoisomerase that cuts and religates one of the intertwined strands completes the

dissolution process without CO formation.

(b) Control mechanisms of HJ resolvases in human cells, S. cerevisiae and S. pombe. See main text for details. NLS = Nuclear Localization Signal.

NES = Nuclear Export Signal. P = Phosphate. S = SUMO.
by various kinases including CDK1 in S/G2, ATM/ATR in

response to DNA damage as well as CK2 in S. pombe,
enhances its stimulatory effect by driving its interaction

with the FHA and BRCT domains of NBS1 [24��,25–28], or

with Rad50 in the case of Sae2CtIP [29�]. Importantly,
www.sciencedirect.com 
CDK1-mediated phosphorylation is critical to restrict the

initiation of end resection to S/G2 when a sister chromatid is

available [17,30]. MRN/X endonuclease stimulation by

CtIP is essential in the presence of protein-DNA complexes

(DPC)attheendsof theDSB.Thiswasfirstdemonstrated in
Current Opinion in Genetics & Development 2021, 71:195–205
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vitro on dsDNA substrates with biotin-streptavidin coated

ends [17,30–32]. Follow-up studies went on to show that KU

forms a physiologically relevant DPC that stimulates MRN/

X endonuclease activity [31,33–35]. DNA-PKcs further

stimulates endonucleolytic cutting by MRE11 of KU-

coated ends, enhancing the binding of CtIP to the MR core

complex seven to eightfold [34��]. Remarkably, MRE11

endonuclease activity was shown to be stimulated by a nick

or a gap on the opposite strand in the vicinity of protein-

coated DNA ends [11,32,34��]. This ability of MRE11 to

nick both strands was shown to drive the release of short

dsDNA/KU and dsDNA/DNA-PKcs cleavage products

detected both in vitro and in vivo (Figure 2) [11,34��].
Whether this is a general feature that applies to other

naturally occurring protein blocks at DNA ends such as

topoisomerase-DNA cleavage complexes and the meiotic

topoisomerase-related Spo11 enzyme remains to be

determined.

While all of the above relates to positive regulation of the

MRE11 endonuclease activity, recent studies have iden-

tified new MRE11 binding partners that can negatively

control DNA end resection. These factors influence

MRE11 stability, DNA binding, DNA exonuclease activ-

ity and/or chromatin retention and it is not known

whether some may directly modulate the endonuclease

activity of MRE11 [36–38].

DNA2 is the next SSE to come into action during end-

resection where it is recruited by MRN/X via direct interac-

tion with MRE11 to promote long-range resection in coor-

dination with the RecQ-like helicases BLM and WRN in

mammals, Sgs1BLM in S. cerevisiae and Rqh1BLM in S. pombe
[33,39–42,43�,44,45]. DNA2 is a bifunctional enzyme that

carries both single-strand specific endonuclease and DNA

helicase activities. It can introduce cuts within either 30 or 50

flaps [4]. The 30 overhang generated by end resection is

protectedby RPA fromDNA2 SSE activity,which is instead

targetedto the 50-flapgeneratedby its RecQ helicasepartner

[40,46,47]. DNA2 helicase activity does not contribute to

DNAunwindingbut ratheractsasa translocase that removes

RPA from the 50-flap so that it can get cleaved by DNA2

[46,47]. Remarkably, human phosphorylated CtIP (P-CtIP)

isalso akey co-activatorofDNA2 [42,48��]. This ismediated

by a central domain of CtIP that is not required for MRE11

stimulation and is missing in Sae2CtIP [48��]. Accordingly,

Sae2 CtIP is unable to stimulate Dna2 [48��]. Dna2 recruit-

ment through direct binding to Mre11 is negatively regu-

lated by the NHEJ factor Nej1, which competes with Dna2

for Mre11 binding and shifts the balance in favor of NHEJ

[49]. In S. cerevisiae, SUMOylation of Dna2 in its N-terminal

regulatory domain, that is not found in its human counter-

part, was recently shown to impair its endonuclease activity

in vitro [50], but to contribute to nuclear localization and

recruitment of Dna2 to DNA damage induced foci, which is

also stimulated by Cdk1 and Mec1ATR-mediated phosphor-

ylation of Dna2 [50,51]. In human cells, nuclear localization
Current Opinion in Genetics & Development 2021, 71:195–205 
of DNA2, which lacks an NLS, instead strictly relies on K63

polyubiquitination mediated by the TRAF6 E3 ligase [52].

Considering the importance of P-CtIP in promoting end-

resection in part through direct stimulation of both MRE11

and DNA2 SSEs, mechanisms that control its turnover are

expected to be critical for controlling the timing and extent

of resection. In line with this, protein phosphatase 1 coordi-

nates with RIF1 to counteract DNA end resection by

suppressing the accumulation of CtIP at DSBs immediately

after damage and was proposed to achieve this by depho-

sphorylating P-CtIP [53]. Other possible avenues rely on the

control of CtIP levels by proteasomal degradation [54,55].

Remarkably, ATM-mediated hyperphosphorylation of

chromatin-bound CtIP stimulates its SUMOylation and

subsequent degradation by the proteasome following poly-

ubiquitination by the RNF4 SUMO targeted ubiquitin

ligase (STUbL) [56,57]. Impeding on this process results

in excessive resection and defective HR.

Control of 30flap processing during SSA
SSA strongly relies on end resection which must proceed

until complementary sequences are exposed in the resulting

30 single-strand overhangs. Accordingly, SSA was found to

depend on CtIP and to be low in G1 arrested human cells

[58,59]. The pairing of the opposite overhangs driven by

RAD52 results in the formation of two 30 non-homologous

single-stranded tails that will be removed by XPF-ERCC1

SSEs in mammals and yeast (Figure 3b).

A number of studies have unraveled the mechanisms that

control the recruitment, DNA binding and catalytic activity

of Rad1XPF-Rad10ERCC1 during SSA in S.
cerevisiae. Recruitment of Rad1XPF-Rad10ERCC1 to recom-

bination intermediates relies on both Saw1 and the Msh2-

Msh3 mismatch repair complex [60,61]. Saw1 is a structure-

specific DNA binding protein that also interacts directly

with Rad1 [60]. Both properties are essential for targeting

Rad1XPF-Rad10ERCC1 to 30 flaps that are over 30 nucleotides

[60]. Msh2-Msh3 which is also a structure-specific DNA

binding protein that binds ds/ss DNA junction at the base of

a 30 flap is required when repeat length is below 1 kb

probably to stabilize the annealed 30 overhangs [62,60].

Msh2-Msh3 also interacts directly with Rad1XPF-

Rad10ERCC1 [63��]. Biochemical studies show that

Rad1XPF-Rad10ERCC1 and Saw1 can form a stable complex

in the absence of DNA and it is currently unclear whether

Saw1 loads on the recombination intermediates before it

recruits Rad1XPF-Rad10ERCC1 or whether they arrive as a

preformed ternary complex [60,63��]. Importantly, Saw1

stimulates Rad1XPF-Rad10ERCC1 in vitro specifically on 30

flap structures, not on other structures such as a model

replication fork with no 30 flap [60]. RPA also directly binds

and stimulates Rad1XPF-Rad10ERCC1 during SSA [63��,64��

]. Intriguingly, earlier studies hadshown that Slx4stimulates

Rad1XPF-Rad10ERCC1 during SSA after its phosphorylation

by Mec1ATR/Tel1ATM [65,66]. However, although Slx4 also
www.sciencedirect.com
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directly interacts with Rad1XPF, it is not involved in the

recruitment of Rad1XPF-Rad10ERCC1 [60], which is in strik-

ing contrast with the key role fulfilled by mammalian SLX4

in the recruitment of XPF-ERCC1 to interstrand crosslinks

or telomeres [67]. Separation of function rad1 mutants that

are unable to process 30 flaps and are deficient in gene

conversion and SSA but proficient for NER were generated

by mutating conserved residues in the N-terminal domain of

Rad1 [63��,64��]. Combined biochemical and genetic anal-

yses of these mutants suggest that the timely and precise

positioning of Rad1XPF-Rad10ERCC1at the baseof the 30 flap
is mediated by its interaction with Msh2-Msh3, Saw1 and

possibly RPA [63��,64��]. Interactions between Saw1 and

DNA and Saw1 and Msh2-Msh3 also contribute to the

process [63��]. However, further investigations will be nec-

essary to better understand the catalytic stimulation of

Rad1XPF-Rad10ERCC1 by Saw1, RPA and/or Slx4 and get

a complete picture of its spatio-temporal controlduring SSA.

Interestingly, Pxd1 was identified as the fission yeast Saw1

ortholog and a key regulator of SSA [68]. Remarkably

though, Pxd1 interacts with Dna2 in addition to

Rad16Rad1-Swi10Rad10 [68] and while it promotes SSA by

activating Rad16Rad1-Swi10Rad10, it inhibits RPA-mediated

Dna2 activation[68]. Zhang et al. recently demonstrated that

Pxd1 is degraded in S-phase after its ubiquitination by the

CRL4-Cdt2 ubiquitin ligase [69�]. This ensures that S-

phase related functions of Dna2 are not inhibited by

Pxd1 while avoiding Pxd1-mediated stimulation of

Rad16Rad1-Swi10Rad10 and error prone SSA [69�].

Control of dHJ processing in DSBR
As previously mentioned, two different processes ensure

removalofdHJs.Oneis the so-called dissolutionmechanism

that is achieved by the concerted action of a RecQ-like

helicase (BLM in mammals, Sgs1BLM or Rqh1BLM in bud-

ding and fission yeasts, respectively) and a type 1A topo-

isomerase (TOPO IIIa in mammals, TopIII in both yeasts)

in complex with an accessory factor Rmi1(for review Ref.

[70]) (Figure 4a). dHJ dissolution is a conservative mecha-

nism that leads exclusively to non-CO and is considered the

pathway of choice in vegetative cells. HJ resolution is the

alternative mechanism. It is carried out by SSEs that have

acquired the capacity to introduce coordinated cuts on

opposite strands at the junction. Unlike dHJ dissolution,

HJ resolution by these so-called HJ resolvases can result in

either non-CO or CO (Figure 4a) and nucleolytic processing

of HJs and other HJ-related structures is a major source of

genetic variability in meiosis. Importantly, HJ resolution is

also the only mechanism for eliminating single HJs. Three

conserved families of nuclear SSEs are capable of HJ reso-

lution. These include MUS81-EME1 (Mus81-Mms4 in S.
cerevisiae) that belongs to the XPF-family of endonucleases,

Gen1 (Yen1 in S. cerevisiae) that is a member of the FEN1/

XPG endonucleases and Slx1-Slx4 where Slx1 belongs to

the GYI-YIG superfamily of nucleases ([71–77] and for

review Ref. [78]). Remarkably, there is no Gen1 ortholog
www.sciencedirect.com 
in fission yeast and an Slx4 ortholog has yet to be found in

plants. Importantly, as reviewed in this issue, CO-biased

resolution of HJs in meiosis relies primarily on the Mlh1-

Mlh3 endonuclease and its co-factors in S. cerevisiae and

mammals,while COin S. pombe relies exclusivelyonMus81-

Eme1 [7].

Elaborate control mechanisms have been selected to

ensure the timely hyperactivation and spatial control of

HJ resolvases in late G2 and mitosis (Figure 4b). They

guarantee efficient resolution of persisting HJs and other

recombination intermediates before chromosome segre-

gation. Importantly, they also provide time for conserva-

tive helicase-driven processing of those structures earlier

in the cell cycle, thereby limiting CO in vegetative cells.

Control of MUS81-EME1

In S. cerevisiae, catalytic upregulation of Mus81-Mms4EME1

at the G2/M transition relies on the phosphorylation of

Mms4 by Cdc28CDK1, Cdc5PLK1 and DDK [79–82]

(Figure 4b). This also triggers complex formation between

Mus81-Mms4EME1 and the Rtt107, Slx4 and Dpb11 scaf-

folds, which is mediated by direct interactions between

Mus81-Mms4EME1 and Rtt107 and Dpb11 [80]. Formation

of this multifactorial complex seems to further contribute to

Mus81-Mms4EME1 stimulation and is suspected to contrib-

ute to the timely recruitment of Mus81-Mms4EME1 but its

exact functional relevance is uncertain. The importance of

restricting hyper-activation of Mus81-Mms4EME1 to late G2

and mitosis is underscored by increased rates of aberrant CO

and processing of replication intermediates in cells produc-

ing phosphomimetic mms4 mutants [83]. Recently, an addi-

tional level of control was found to be imposed by the

degradation of phosphorylated Mms4EME1 specifically

[84�]. This is mediated by SUMOylation of phosphorylated

Mms4EME1 by an as yet unknown process, and targeted

ubiquitination by the Slx5-Slx8 STUbL and the Cul8-

Mms21-Esc2 E3 ubiquitin ligase complex [84�]. It will be

important to better understand why Mms4 needs to be

ubiquitinated by two different and apparently independent

ligases as well as whether Esc2 acts as a co-activator of

Mus81-Mms4EME1, as previously suggested [85], before

promoting Mms4EME1 degradation [84�].

Human MUS81-EME1 also undergoes CDK1-mediated

catalytic upregulation [79,86], but this relies instead on

phosphorylation of the SLX4 nuclease scaffold which acts

as a stimulatory cofactor of MUS81-EME1 [74–76] and

shows enhanced interaction with MUS81 in G2/M following

phosphorylation by CDK1 [86]. EME1 also appears to be

phosphorylated by CDK1 but whether this also stimulates

MUS81-EME1 remains to be established. Importantly,

binding of SLX4 to the N-terminus of MUS81 relieves

auto-inhibition of MUS81-EME1 imposed by MUS81’s

N-terminalHelix-hairpin-Helixdomain[87].Invitrostudies
showed that efficient HJ resolution by SLX4-MUS81-

EME1 is strongly promoted by SLX1 within a SLX1-
Current Opinion in Genetics & Development 2021, 71:195–205
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SLX4-MUS81-EME1 (SLX-MUS) complex [88]. Produc-

tiveHJ resolutionby the SLX-MUS complex reliesona nick

and counter mechanism that coordinates a first cut by SLX1

and a second cut on the opposite strand by MUS81-EME1.

This reaction can be further stimulated in vitro when the N-

terminus of SLX4 is in interaction with its XPF and MSH2

partners [87,89].

In S. pombe, stimulation of HJ resolution by Mus81-Eme1

is mediated by dual phosphorylation of Eme1 by

Cdc2CDK1 and Rad3ATR in response to DNA damage

[90,91]. Importantly, hyper-phosphorylation of Eme1

by Rad3ATR requires that it is first phosphorylated by

Cdc2CDK1. This ensures rapid hyperactivation of Mus81-

Eme1 in response to DNA damage in late G2/M. Pre-

venting Mus81-Eme1 hyperactivation in cells lacking

Rqh1BLM results in gross chromosomal rearrangements

and impaired cell viability [90,91].

Control of GEN1

In S. cerevisiae, Yen1GEN1 also undergoes Cdc28CDK1-medi-

ated phosphoregulation [79]. However, the outcomes are

opposite to those described above for Mus81-Mms4EME1, as

phosphorylation of Yen1GEN1 results in both its catalytic

inhibition and nuclear exclusion [92,93] (Figure 4b). This

inhibitory control of Yen1GEN1 is relieved in anaphase after

dephosphorylation by Cdc14 [92,93]. The importance of

Yen1GEN1 control is underscored by the detrimental impact

ofpremature activation of Yen1 on genomestability [92–94].

Furthermore, Cdc28CDK1-driven inhibition of Yen1GEN1

was recently shown to be particularly important in meiosis

where it prevents the premature resolution by Yen1GEN1 of

recombination intermediates that are needed to establish a

controlled distribution of CO [95�]. Reminiscent of the

previously mentioned Slx5-Slx8 mediated degradation of

phosphorylated Mms4EME1 [84�], Yen1GEN1 turns out to be

targeted for degradation by Slx5-Slx8 dependent ubiquiti-

nation at the G1/S transition [96�]. This additional layer of

regulation is proposed to ensure that any chromatin associ-

ated active Yen1GEN1 that remains at the end of G1 will be

eliminated before the cells enter S phase [96�]. Preventing

ubiquitination ofYen1GEN1by Slx5-Slx8 results in increased

levels of CO [96�]. In human cells, control of GEN1 instead

relies on a nuclear export signal that prevents GEN1 from

accessing chromosomes until nuclear envelope breakdown

occurs in mitosis [97].

Conclusion
Important progress has been made in recent years on

dissecting the mechanisms underlying the control of

SSEs in end-resection and on understanding how from

a structural standpoint they modulate the enzymatic

activity and/or DNA binding properties of the enzyme.

This also stands true for the control of Rad1XPF-

Rad10ERCC1 during SSA in budding yeast. However, as

discussed throughout this review many questions still

need to be answered before we can get a full picture
Current Opinion in Genetics & Development 2021, 71:195–205 
of how SSEs are regulated. This relates for example to

how XPF-ERCC1 is controlled in SSA in higher eukar-

yotes and to what extent the principles of Rad1XPF-

Rad10ERCC1 control in budding yeast can be extrapolated

to its human counterpart. Control of these SSEs in the

SDSA pathway is also poorly understood. On another

note, while remarkably elaborate regulatory networks that

ensure the timely upregulation of MUS81-EME1

enzymes have been unraveled over this last decade, we

still do not understand how catalytic stimulation medi-

ated by phosphorylation of EME1 and Mms4EME1 actu-

ally operates, not to mention whether phosphorylation of

human EME1 has any relevance at all. Many more

questions remain and there is no doubt that investigating

how SSEs are controlled in HR and beyond will yield

important new findings of potential therapeutic value.
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