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High-order finite elements in tokamak
free-boundary plasma equilibrium
computations

Francesca Rapetti, Blaise Faugeras and Cedric Boulbe

Abstract We wish to compute numerically the equilibrium for a hot plasma
in a tokamak. For such a problem in an axisymmetric configuration, we
present a non-overlapping mortar element approach, that couples piece-wise
linear finite elements in a region that does not contain the plasma and reduced
Hsieh-Clough-Tocher finite elements elsewhere, to approximate the magnetic
flux field on a triangular mesh of the poloidal tokamak section. This approach
has the flexibility to achieve easily and at low cost higher order regularity for
the approximation of the flux function in the domain covered by the plasma,
while preserving accurate meshing of the geometric details in the rest of the
computational domain and simplifying the inclusion of ferromagnetic parts.

1 Introduction

Theoretical and computational plasma physics is a wide subject with ap-
plications ranging from low temperature plasmas for lighting, thrusters and
materials processing to hot plasmas for fusion; from ultra-cold plasmas to
particle accelerators; from beams to pulsed power; and from intense kinetic
nonequilibrium plasmas to high power microwaves. Each application is car-
acterized by a proper space-time scaling, mathematical model and computa-
tional approach. In this work, we are interested in simulating the equilibrium
of a plasma for fusion reaction in a tokamak [3]. We propose a finite element
approach involving highly regular approximations of the magnetic flux field
on a triangular mesh of the tokamak poloidal section. Differently to other
approaches in the recent literature (see for example [9, 10, 11]), to solve
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the axisymmetric formulation of the free-boundary plasma equilibrium in a
tokamak, we rely on a non-conforming domain decomposition approach that
couples piece-wise linear finite elements in a region that does not contain the
plasma and reduced Hsieh-Clough-Tocher [5] finite elements elsewhere. This
approach gives the flexibility to achieve easily and at low cost higher order
regularity for the approximation of the flux function in the domain covered
by the plasma, while preserving accurate meshing of the geometric details
in the rest of the computational domain and simplifying the inclusion of fer-
romagnetic parts. The continuity of the numerical solution at the coupling
interface is weakly enforced by mortar projection [2]. This work generalizes
the method proposed in [6] to compute a plasma equilibrium in tokamak
devices that include nonlinear ferromagnetic materials. To underline the dif-
ferences with the iron-free case in terms of the poloidal magnetic induction
distribution and of the Newton algorithm convergence, we suppose that the
iron parts occupy all the exterior part of the WEST or JET tokamaks so that
it is possible to remain within an axisymmetric formulation. Indeed, a cor-
rect treatement of the iron case1 would necessitate a full three-dimensional
computation of the plasma equilibrium that goes beyond the purpose of the
present work. Numerical simulations are here performed with the software
NICE (see [7]).

2 The direct static equilibrium problem

In a plasma for nuclear fusion, the charged particles (essentially, tritium and
deuterium) at an extremely high temperature (ten times larger than that in
the Sun) endure a fusion reaction, that is they stich together, against the
Coulomb repulsion, yielding production of energy, helium and neutrons. No

1 The choice of an iron-transformer tokamak is due to Paul-Henri Rebut, a French
physicist, working on nuclear fusion. From 1970 to 1973, Rebut contributed to the
creation of TFR (Tokamak of Fontenay-aux-Roses), then of JET (Joint European
Torus) and of Tore Supra, that later became WEST (Tungsten (W) Environment in
Steady-state Tokamak). In a tokamak with iron, the magnetic field lines are better
conveyed (than by the air) leading to an increase in the poloidal flux thus generating
a longer fusion reaction (at that time, the technology of supraconducting coils to gen-
erate high intensity fields was not so well developed yet). However, the presence of the
iron makes numerical computations more involved. Indeed, the magnetic permeabil-
ity µ depends non linearly on the magnetic induction and the Green function, that
relates directly the magnetic flux to the generating currents in an iron-free tokamak,
cannot be used anymore. Moreover, the presence of iron parts (an internal kernel with
an arm) breaks the toroidal symmetry of the physical parameter distribution despite
the plasma equilibrium is an axisymmetric phenomenon. On the top of this, for the
TFR, the presence of iron caused an instability on the horizontal displacement of the
plasma [12, 4]. Tokamaks of new generation, such as ITER, are iron-free: thanks to
modern technologies, the magnetic induction in the plasma can easily reach 10 teslas
(and this would have not been possible with iron parts saturating at lower intensities).
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material on Earth can support the temperature of such a hot mixture but due
to the fact that the involved particles are charged, they can be confined in
a toroidal chamber with magnetic field, tokamak in Russian. An additional
iron structure can be installed in a tokamak to increase the poloidal flux
thus generating a longer reaction. To keep up a fusion reaction we have,
among many other tasks, to control the plasma in order to mantain it in
equilibrium. A comprehensive survey of the (direct and inverse) mathematical
problems associated with this equilibrium and of their low-order finite element
modeling is described in [8] and the therein references. Here, we focus on the
direct problem of computing a static equilibrium of a plasma in a tokamak
by high-order finite elements. We thus work at the diffusion time scale (the
slowest one) in a device with characteristic lenght of meters and suppose to
eliminate all terms containing a time derivative in the kinetic and magnetic
equations. The equations describing such an equilibrium are respectively,
force balance (between the kinetic force and the magnetic part of the Lorentz
force), Ampère theorem and the solenoidal condition, that read

grad p = J×B, curl
1

µ
B = J, divB = 0, (1)

where p (with dimensions in the SI system2as [M ][L]−1[T ]−2) is the plasma
kinetic pressure, B (as [M ][T ]−2[I]−1) is the magnetic induction field, J (as
[I][L]−2) is the current density and µ (as [M ][L][T ]−2[I]−2) the magnetic
permeability. Under the assumption of perfect axial symmetry of the device
geometry and physical parameters’ distribution, we reformulate (1) in cylin-
drical coordinates (r, ϕ, z) and work in a poloidal section (φ = C) of the toka-
mak. The primal unknown is the poloidal magnetic flux ψ = rA ·eϕ, namely
the scaled toroidal component of the vector potential A, with B = curlA
and eϕ the unit vector for the φ coordinate. The poloidal magnetic flux ψ is a
key quantity in modeling plasma in tokamaks as the lines of both the current
density J and magnetic induction B lie on surfaces of constant value for such
a flux, the so-called magnetic surfaces (see [3] for more details). These are
closed nested surfaces, that do not intersect with any material of the toka-
mak, and ensure the confinement of charged particles hence the confinement
of plasma inside a tokamak.

We introduce D = [0,∞]× [−∞,∞], the positive half plane that contains
the poloidal section. Equations (1) in D becomes

−∂r
(

1

µ(ψ)r
∂rψ

)
− ∂z

(
1

µ(ψ)r
∂zψ

)
:= −∆∗ψ = Jϕ (2)

in coordinates (r, ϕ, z), where Jϕeϕ is the toroidal component of J. The ge-
ometry of the tokamak determines various subdomains (see Fig. 1, left) that

2 In the Standard International (SI) unit system, mass M (kg), lenght L (m), time
T (s) and current intensity I (A) are base dimensions (resp., units).
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Fig. 1 Left: Geometric description of the tokamak in the poloidal plane. Middle
and right, sketch for characteristic plasma shapes. The plasma boundary touches the
limiter or the plasma is enclosed by a flux line that goes through an X-point.

are used to set Jϕ accordingly. In these pages, passive structures are not mod-
eled (they are hence supposed to be characterised by an electric conductivity
σ = 0). We have:

- ΩFe ⊂ D denotes those parts of D made of iron where the permeability µ
is not constant and given as a (non-linear) function of ψ, namely µ(ψ) =
µFe(|∇ψ|2r−2); if ΩFe = ∅, then µ = µ0 everywhere;

- Ωci ⊂ D, 1 ≤ i ≤ Nc, denotes the intersection of the ith coil with the
poloidal plane. We suppose that the ith coil cross section area is |Ωci |,
with total current Ii;

- ΩL ⊂ D, denotes the domain bounded by the limiter, thus the domain
accessible by the plasma;

- Ωp ⊂ ΩL, denotes the domain covered by the plasma and the boundary
∂Ωp is the outermost closed ψ-isocontour contained within ΩL.

The static direct equilibrium problem thus reads: find ψ such that

−∆∗ψ =


rp′(ψ) + 1

µ0r
ff ′(ψ) in Ωp(ψ),

Ii(ψ)/|Ωci | in Ωci , i = 1, Nc,
0 elsewhere,

ψ(0, z) = 0, lim||(r,z)||→+∞ψ(r, z) = 0.

(3)

The first line of (3), stated in the plasma domain, is the celebrated Grad-
Shafranov-Schlüter equation [13]. The plasma domain Ωp(ψ) is unknown
and depends non-linearly on the poloidal flux ψ (we have a free-boundary
problem). The boundary of Ωp(ψ) either touches that of ΩL (limiter con-
figuration, as in Fig. 1 middle) or contains one or more saddle points of ψ
(divertor configuration, as in Fig. 1 right). The saddle points of ψ, denoted
by (rX, zX)=(rX(ψ), zX(ψ)), are called X-points of ψ. The plasma domain
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Ωp(ψ) is the largest subdomain of ΩL bounded by a closed ψ-isoline in ΩL
and containing the magnetic axis (ra, za). The magnetic axis is the point
(ra, za) = (ra(ψ), za(ψ)), where ψ has its global maximum (or minimum, de-
pending on axis positive direction) in ΩL. Let (rb, zb) = (rb(ψ), zb(ψ)) be the
point that determines the plasma boundary. Note that (rb, zb) is either an
X-point of ψ or the contact point with ∂ΩL. The domain of p′ and f f ′ is
the interval [ψa, ψb] (supposing ψa < ψb) with the scalar values ψa and ψb
being the flux values at the magnetic axis and at the boundary of the plasma.
Since the domain of p′ and f f ′ depends on the poloidal flux itself, it is more
practical to supply these profiles as functions of the normalized poloidal flux
ψN(r, z) = (ψ(r, z) − ψa(ψ))/(ψb(ψ) − ψa(ψ)). These two functions, subse-
quently termed Sp′ and Sff ′ , have, independently of ψ, a fixed domain [0, 1]
(see [3] for more details on these functions). To solve numerically problem (3)
we need to work in a domain Ω ⊂ D , known as the ABB domain [1] associ-
ated with D (see Fig. 2, left), delimited by a semi-circle γ of radius ργ > 0
including ΩL ∪ΩFe ∪i Ωci and the vertical segment Γ0 = {0}r × [−ργ , ργ ]z.

Fig. 2 The ABB domain (left) associated with D and a zoom (right) on the subdo-
main Ωin involved in the domain decomposition formulation. The mortar interface
I appears on the right but not on the left, as it is not a physical one. The passive
structure S is drawn for completeness but its modeling is not considered here.

Here comes the non-overlapping domain decomposition framework. We set
Ω = Ωin ∪ Ωex where Ωin is a bounded domain containing ΩL (see Fig. 2,
right) and Ωex = Ω\Ωin. The boundary of Ωin is denoted I, to recall that it is
an interface between the two subdomains Ωin, Ωex, on which we will impose
the continuity of ψ, in a weak sense, through a mortar-like L2 projection [2].
The weak formulation of (3) is: Find ψ = (ψex, ψin) ∈ V such that

a(ψ, s) := aex(ψex, v) + ain(ψin, w) = `(I, s) ∀s = (v, w) ∈ V0,I (4)

where V = {(v, w) ∈ H1(Ωex) × H1(Ωin), v|γ0 = 0, v|I = w|I} , being
H1(Ω) = {u ∈ L2

∗(Ω), ∇u ∈ L2
∗(Ω)2} with L2

∗(Ω) = {g : Ω → R, ‖g‖2∗,Ω :=
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Ω
g2 1

r dr dz <∞}. We have also set V0,I = {(v, w) ∈ V, v|I = w|I = 0} and

aex(ψ, v) :=
∫
Ωex

1
µ r ∇ψ · ∇ v drdz + c(ψ, v) ,

ain(ψ,w) :=
∫
Ωin

1
µ0r
∇ψ · ∇w drdz − Jp(ψ,w) ,

Jp(ψ,w) :=
∫
Ωp(ψ)

(
r
r0
A(ψN) + r0

r B(ψN)
)
w drdz ,

`(I, s) :=
∑Nc
i=1

Ii
|Ωci |

∫
Ωci

(χ
Ωex v + χ

Ωinw) drdz

(5)

with, respectively, r0 the characteristic radius (in meters) of ΩL, λ a scaling
coefficient such that the total plasma current is Ip = λ Jp, the functions A, B
parametric representations of Sp′ , Sff ′ , and µ = g( |∇ψ|

2

r2 )χ
ΩFe

+ µ0χΩex\ΩFe
in the expression of aex(ψ, v) (here, χD is the characteristic function of a
set D). We assume that the function g, defining µ in ΩFe, is known. In
practical applications µ needs to be estimated from experimental data. Note
that `(I, s) contains the expression χ

Ωex v+χ
Ωinw to deal with the presence of

coils inΩin andΩex. Morever, c(ψ, v) ≈
∫
∂Ω

v ∂nψ dΓ to take into account the

condition at infinity on γ, namely limr→0+
∫
{r}×[−ργ ,ργ ]∩Ω ψ(r, z)2 1

r2 dz = 0.

Under suitable assumptions, such as for example ΩFe = ∅ or Jp(.) assigned, it
can be proved that problem (4) has a unique solution but in the general case
the question is theoretically open. In the next section, we propose a Newton
method to solve the discrete problem associated with (4) when ΩFe 6= ∅. To
define the corresponding Jacobian matrix, we first compute the derivatives
w.r.t. the unknown field ψ of the non-linear operators in (4), and then we
evaluate them on discrete fields with special care. By relying on directional
derivatives, we can compute Dψa

ex(., .) as follows

Dψa
ex(ψ, s)(ψ̃) = aex(ψ̃, s)− 2

∫
ΩFe

g′(.)

g2(.)

1

r3
(∇ψ̃ · ∇ψ) (∇ψ · ∇s). (6)

For Dψa
in(., .), the derivative w.r.t. ψ of Jp(., .) is computed analytically on

an approximation of this functional by a quadrature formula3.

3 A Newton method for the discrete problem

Let τ ex (resp. τ in) be a mesh of triangles that covers Ωex (resp. Ωin). The
two meshes τ ex, τ in are shape regular and quasi-uniform, with maximal di-
ameters hex, hin, respectively. We assume that I is a polygonal with nodes
and edges in τ ex. We wish to use in ΩL ⊂ Ωin, a finite element approxi-
mation ψh for the poloidal flux ψ that is not only continuous but has also

3 To approximate Jp(., .) in (5) by a quadrature formula we need to know the do-
main Ωp(ψ) occupied by the plasma. This domain is an unknown of the equilibrium
problem, as it depends on ψ. An efficient technique to determine it is stated in [6].
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component-wise continuous gradient ∇ψh. This is possible if we use the re-
duced or minimal Hsieh-Clough-Tocher (rHCT) finite element space, say V in,
on τ in (see [5]). This regularity is not necessary in Ωex therefore we couple
rHCT finite elements in Ωin with continuous piece-wise linear finite elements,
say Vex, on τ ex. Note that ΩFe ⊂ Ωex. Let us also write Vex = Vex

◦ ⊕EVex
∂ and

V in = V in
◦ ⊕ EV in

∂ , where, for example, Vex
◦ (resp. Vex

∂ ) is the subspace of Vex

described by basis functions associated with dofs at nodes in Ω̄ex \ I (resp.,
Ω̄ex ∩ I) and E denotes the corresponding trivial extension operator. The
functions in Vex

◦ and V in
◦ have vanishing Dirichlet trace on I. The discrete

problem to solve reads: Find ψh ∈ Vh such that

a(ψh, sh) = `(I, sh) ∀sh = (vh, wh) ∈ Vex
◦ × V in

◦ (7)

where Vh = {(uinh , uexh ) ∈ V in×Vex, uexh|γ0 = 0,
∫
I(uinh −uexh ) zh dI = 0, ∀ zh ∈

Mh}, with Mh = {ξh ∈ C0(I) : ξh|e ∈ P1(e) , ∀ e ∈ (τ ex)|I} the mortar
multiplier space. The bilinear and linear forms a(., .), `(I, .) are defined as for
the problem (4) and evaluated in (7) for functions in the discrete space Vh.

Let us denote by {vexi }i=1,Nex the dual basis of Vex for the P1 dofs as-
sociated with the N ex nodes Vi ∈ τ ex and {win

j }j=1,3N in that of V in for the

rHCT dofs at the N in nodes Vj ∈ τ in. Let A (resp. C, Lin, Lex) be the matrix
associated with the integral expressions in (5) contained in a(., .) (resp., in
c(., .), in `(., .) for the coil Ωci if this coil is in Ωin or in Ωex) and J(.) (resp.,
Uin
I , Uex

I ) the vector with components resulting from Jp(.) (resp., holding the
currents Ii for the coil Ωci if it is in Ωin or in Ωex). To take into account
iron parts in Ωex, we separate the elliptic operator into the linear part and
a nonlinear part, say A0ψ + Aµ(ψ), where the vector ψ gathers all dofs of
ψh ∈ Vh, the matrix A0 has entries (A0)ij =

∫
Ωex\ΩFe

1
µ0r
∇vexi ·∇vexj dr dz and

the vector Aµ(ψ) has components Aµ,i(ψ) =
∫
ΩFe

1
µ(ψh)r

∇vexi · ∇ψh dr dz,
being i, j = 1, N ex. Equation (7) in its fully discretized form reads e(ψ) = 0
with

e(ψ) := (A0 + C)ψ + Aµ(ψ)− J(ψ)− Lin Uin
I − Lex Uex

I (8)

where, for k = 1, 3N in, we have

(J(ψ))k =

∫
Ωp(ψh)

Jp(ψN,h, r)wk dr dz, and Lini,k =
1

|Ωci |

∫
Ωci

win
k dr dz,

for those indices i = 1, Nc such that Ωci ⊂ Ωin. For the indices i such that
Ωci ⊂ Ωex, the definition of Lexi,j , with j = 1, N ex, is similar to that of Lini,k,

just replacing win
k by vexj . Newton iterations for problem (8) are

ψn+1 = ψn−[eψ(ψn)]−1 e(ψn), [eψ(ψ)] = Dψ[(A0+C)ψ+Aµ(ψ)]−DψJ(ψ) .

Let uex and uin gather the values of dofs for ψex
h ∈ Vex and ψin

h ∈ V in,
respectively. We have uex = (uex

◦ ,u
ex
∂ ) and uin = (uin

◦ ,u
in
∂ ) where uex

◦ (resp.
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uin
◦ ) and uex

∂ (resp. uin
∂ ) are for dofs in V ex

◦ (resp. V in
◦ ) and V ex

∂ (resp. V in
∂ ).

The mortar coupling condition in Vh links the block uex
∂ to the block uin

∂

by the matrix relation Puex
∂ = Duin

∂ with (P)i,j =
∫
I v

ex
∂,i v

ex
∂,j dI, for all

i, j = 1, N ex
∂ , and (D)i,k =

∫
I v

ex
∂,i w

in
∂,k dI , for all i = 1, N ex

∂ and k = 1, N in
∂ .

The inclusion of the coupling condition matrix form into the algebraic system
associated with the discrete problem (7) is done by introducing the reduced
variable, X, such that

ψ =


uex
◦

uex
∂

uin
◦

uin
∂

 =


I 0 0
0 0 P−1D

0 I 0
0 0 I


uex

◦
uin
◦

uin
∂

 = QX.

Equation (8) rewritten in terms of X becomes

e(X) := Q>[(A0 + C)QX + Aµ(ψ)− J(ψ)− Lin Uin
I − Lex Uex

I ]. (9)

For J(ψ) = J(QX) = H(X) we get DXH(X)dX = DψJ(ψ)QdX =
Jacψ(ψ)QdX, and for Aµ(ψ) = Aµ(QX) = G(X), we obtain DXG(X)dX =
Aµ,ψ(ψ)QdX with [Aµ,ψ]i,j given in (6) by setting ψh, vexi , vexj at the place of

ψ, ψ̃ and s, respectively. Newton iterations for problem (9) read

Xn+1 = Xn − [eX(Xn)]−1 e(Xn) (10)

where [eX(Xn)] = Q>[(A0+C)+Aµ,ψ(ψn)− Jacψ(ψn)] Q . In the next section,
we present some numerical results.

4 Numerical results

It does not exist, to our knowledge, analytical solutions for the free-boundary
equilibrium problem considered in this paper. We provide nevertheless some
numerical evidence of convergence for the proposed method.

The initial guess of the plasma domain Ωp(ψ) for given currents in the
poloidal field coils plays a crucial role in free-boundary equilibrium problems.
Here, we find such initial guesses by solving inverse problems or optimal
control problems, where a desired shape and position of the plasma domain
is the objective and the precise values of the currents is unknown. In the
present case we do not focus on this technical issue, but assume we have a
good initial guess for the poloidal flux from, e.g., a non-mortar formulation
of the free-boundary equilibrium problem involving P1 FEs everywhere, as
explained in [7]. Then, the good convergence of the Newton iterations applied
to (9) is shown in Table 1. We remark that the presence of iron parts slows
down considerably the convergence speed.
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n if ΩFe = ∅ if ΩFe 6= ∅
1 1.77919× 10−2 9.78267× 10−3

2 4.35470× 10−4 8.56241× 10−4

3 4.05152× 10−7 6.17721× 10−4

4 2.80505× 10−11 3.46301× 10−4

5 9.38432× 10−5

6 3.09165× 10−5

7 8.76154× 10−6

8 3.11734× 10−6

9 5.16426× 10−7

10 2.58976× 10−10

11 6.29602× 10−14

Table 1 Convergence history of Newton iterations for WEST: iteration number n
and residual relative error ||Xn−Xn−1||/||Xn−1||, with either ΩFe = ∅ or ΩFe 6= ∅.

Fig. 3 Magnetic flux isolines in the poloidal section of WEST, supposing either
ΩFe = ∅ (left) or ΩFe 6= ∅ (right).

Fig. 3 shows a typical WEST poloidal flux map calculated by NICE. A
zoom on the distribution of ψh in Ωin is proposed in Fig. 4, for the case
ΩFe 6= ∅. The X-point and plasma axis are enlightened in the small pictures.
With high-order FEs in Ωin, these points do not coincide with nodes of the
computational mesh, as it would be the case with P1 FEs, thus assumimg a
more physically meaningful position.
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