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Abstract We consider the axisymmetric formulation of the equilibrium problem
for a hot plasma in a tokamak. We adopt a non-overlapping mortar element ap-
proach, that couples C0 piece-wise linear Lagrange finite elements in a region that
does not contain the plasma and C1 piece-wise cubic reduced Hsieh-Clough-Tocher
finite elements elsewhere, to approximate the magnetic flux field on a triangular
mesh of the poloidal tokamak section. The inclusion of ferromagnetic parts is sim-
plified by assuming that they fit within the axisymmetric modeling and a new
formulation of the Newton algorithm for the problem solution is stated, both in
the static and quasi-static evolution cases.
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1 Introduction

Theoretical and computational plasma physics is a wide subject with applications
ranging from low temperature plasmas for lighting, thrusters and materials pro-
cessing to hot plasmas for fusion; from ultra-cold plasmas to particle accelerators;
from beams to pulsed power; and from intense kinetic non-equilibrium plasmas
to high power microwaves. Each application is characterized by a proper space-
time scaling, mathematical model and computational approach. In this work, we
are interested in simulating the equilibrium of a plasma for fusion reaction in a
tokamak [4]. We push forward the method proposed in [10] to compute a plasma
equilibrium in tokamak devices that include ferromagnetic parts. The choice of an
iron-transformer tokamak is due to Paul-Henri Rebut, a French physicist, working
on nuclear fusion. From 1970 to 1973, Rebut contributed to the creation of TFR
(Tokamak of Fontenay-aux-Roses), then of JET (Joint European Torus) and of
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Tore Supra (after the discontinuation of TFR). Tore Supra later became WEST
(Tungsten (W) Environment in Steady-state Tokamak). The tokamak is a sort of
huge transformer where the plasma current is the secondary circuit coupled to
the primary one represented by the current in the coils that generate the poloidal
field. In a tokamak with iron, the magnetic field lines are better conveyed (than
by the air) leading to an increase in the poloidal flux thus generating a longer
fusion reaction (at that time, the technology of supra-conducting coils to generate
high intensity fields was not so well developed yet). However, the presence of iron
makes numerical computations more involved. Indeed, the magnetic permeability
µ depends non linearly on the magnetic induction. Moreover, the presence of iron
parts (an internal kernel with an external arm) breaks the toroidal symmetry of the
physical parameter distribution despite the plasma equilibrium being an axisym-
metric phenomenon. For the TFR, that worked from 1973 to 1986, the presence
of iron caused an instability on the horizontal displacement of the plasma, as de-
scribed in [6,25]. Tokamaks of new generation, such as ITER (under construction
in Cadarache, France), are iron-free: thanks to modern technologies, the magnetic
induction in the plasma can easily reach 10 teslas (and this would have not been
possible with iron parts saturating at lower intensities). Iron-tokamaks such as
WEST and JET are still used by scientists to make experiments.

In this work, we rely on the existing literature (see, e.g., [4,5,10,11,16,17]) to
make some steps forwards. We approximate the solution of both the static and
quasi-static evolution problems by adopting a non-overlapping domain decompo-
sition mortar-like approach, coupling C0-C1 finite elements, on a triangular mesh
of the poloidal section of a iron tokamak. Due to the presence of iron parts and to
the mortar-like coupling, the Newton’s algorithm adopted to solve the non-linear
problems, has a new iteration, written in terms of the coupling and the Jacobian
matrices.

We start in Section 2 by recalling from books such as [4,18] how to derive
the famous Grad-Shafranov-Schlüter equation [14,19,26], to solve for the numer-
ical simulation of the axisymmetric equilibrium of the plasma. Then, in Section
3, we treat the static case: we adapt the finite element approach proposed in [10]
involving highly regular approximations of the poloidal magnetic flux field ψ, to
the iron case. Already in [17], it has been remarked that finite elements providing
piece-wise polynomial approximations of ψ that are only C0 have two main draw-
backs: 1.) The definition of the plasma boundary hinges on the critical points of
the unknown flux ψ. If the derivatives of ψ are not continuous, these points will
neither be correctly calculated nor move in a continuous way during the plasma
evolution. Indeed, with classical piece-wise finite elements, critical points of ψ are
necessarily located at mesh nodes. 2.) The resistive diffusion and transport of the
heat in plasma are described by one-dimensional equations containing metric coef-
ficients that depend on the gradient of the solution ψ of the equilibrium problem.
Many plasma characteristics (e.g. the so-called safety factor or the average cur-
rent density profile), important to quantify stability or for monitoring during the
experiment, are defined as integrals involving the gradient ∇ψ of the poloidal flux
ψ (see [4]). These coefficients are not well-defined if the gradients are not continu-
ous. Differently to other approaches in the recent literature (see for example [17,21,
24]), to solve the axisymmetric formulation of the free-boundary plasma equilib-
rium in a tokamak, we rely on a non-conforming domain decomposition approach
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that couples C0 piece-wise linear Lagrange finite elements in a region that does
not contain the plasma and C1 piece-wise cubic reduced Hsieh-Clough-Tocher [9]
finite elements elsewhere. This approach gives the flexibility to achieve easily and
at low cost higher order regularity for the approximation of the flux function ψ
in the domain covered by the plasma, thus resolving the cited drawbacks, while
preserving accurate meshing of the geometric details in the rest of the computa-
tional domain. The continuity of the numerical solution at the coupling interface
is weakly enforced by mortar projection [2]. We write the matrix problem and
the modified Newton method to solve it. Section 4 is dedicated to the quasi-static
evolution case: the new discrete problem includes a circuit equation (see [16], ap-
pendix A) and passive terms. The Newton iteration in the quasi-static case also
counts out new terms. Numerical results for the static and quasi-static evolution
cases are then presented1 in Section 5. Few conclusions in Section 6 end the paper.

2 The direct equilibrium problem

In a plasma for nuclear fusion, the charged particles (essentially, tritium and deu-
terium) at an extremely high temperature (ten times larger than that in the Sun)
endure a fusion reaction, that is they stitch together, against the Coulomb repul-
sion, yielding production of energy, helium and neutrons. No material on Earth
can support the temperature of such a hot mixture but due to the fact that the
involved particles are charged, they can be confined in a toroidal chamber with
magnetic field, tokamak in Russian. An additional iron structure can be installed
in a tokamak to increase the poloidal flux thus generating a longer reaction. To
keep up a fusion reaction we have, among many other tasks, to control the plasma
in order to maintain it in equilibrium. A comprehensive survey of the (direct and
inverse) mathematical problems associated with this equilibrium and of their low-
order C0 finite element modeling is described in [16] and the therein references.
Here, we focus on the direct problem of computing a static equilibrium or the
quasi-static evolution of a plasma in a tokamak by a mortar element approach
coupling C0 piece-wise linear with C1 piece-wise cubic finite elements.

2.1 Mathematical properties for modeling the plasma at the equilibrium

The description of the plasma as a fluid that carries electrical currents and mag-
netic fields is surely simplified (e.g., kinetic effects are ignored) but it enables the
derivation and understanding of some of its most basic properties. In particular,
the equations of magneto-hydro-dynamics (MHD) may be used to describe how
the magnetic configuration of a tokamak holds the plasma in equilibrium. These
are the continuity, momentum and energy equations in the plasma domain for the
volume charge density ρ (with dimensions in the SI system2 as [L]−3[T ][I]), the

1 All numerical simulations are here performed with the software NICE (see [11]).
2 In the Standard International (SI) unit system, mass M (kg), length L (m), time T (s)

and current intensity I (A) are base dimensions (resp., units).
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fluid velocity v (as [L][T ]−1) and the pressure p (as [M ][L]−1[T ]−2), respectively,

∂tρ+ div(ρv) = 0 (continuity equation),

ρ dvdt = J×B− grad p (momentum equation),
d
dt (

p
ργ ) = S (energy equation),

(1)

where S is a source collecting several terms, γ > 1 and d.
dt denotes the material

time derivative, together with the magneto-quasi-static Maxwell’s equations in the
whole domain

E+ v ×B = 0 (ideal Ohm’s law),

curlE = −∂tB (Faraday’s law),

curl( 1
µB) = J (Ampère’s theorem),

div(B) = 0 (solenoidality condition),

(2)

for the electric field E (as [M ][L][T ]−3[I]−1), the magnetic induction field B (as
[M ][T ]−2[I]−1), the current density J (as [I][L]−2), where µ (as [M ][L][T ]−2[I]−2)
the magnetic permeability and ∂tB the time derivative of B. Non-ferromagnetic
parts of the tokamak have µ = µ0, where µ0 is the magnetic permeability of the
vacuum. Suitable boundary conditions close the MHD system. These conditions
translate into mathematical terms the following facts: (1) the plasma is confined
inside a perfectly conducting wall, (2) the wall separates the plasma from a vac-
uum region, and (3) the plasma is surrounded by external coils. We will detail
these conditions when stating the final form of the problem to solve. The MHD
system of equations (1), (2) is labeled as ideal since all resistive, viscous, conduc-
tive and diffusive terms have been neglected. Taking into account all these effects
is mathematically and physically far from trivial (to this purpose, one can see the
work done in [15]) and goes beyond the purpose of the present analysis.

In this work we consider the equilibrium of the plasma, we remain at the
diffusion time scale (the slowest one) in a device with characteristic length of
meters. The equations describing an ideal MHD equilibrium are respectively, force
balance (between the kinetic force and the magnetic force), Ampère’s theorem and
the solenoidality condition, that are

grad p = J×B, curl(
1

µ
B) = J, div(B) = 0. (3)

We know that the distribution of iron structures in these tokamaks is not at
all axisymmetric. Therefore, to fit within the axisymmetric modeling we make
the following assumption: all cross-sections of the considered iron tokamak are
identical. Moreover, when writing integrals, we will omit the integration element
if this is not misleading.

Under the assumption of perfect axial symmetry of the device geometry and
physical parameters’ distribution, let eφ is the unit vector for the toroidal coor-
dinate φ in the coordinate system (r, φ, z). In these coordinates, r measures the
distance from the tokamak axis, φ is the toroidal angle and z is the height along
the tokamak axis. The magnetic induction field B can be decomposed into the
sum of Bt, a vector in the same direction as eφ, and Bp, a vector with a direction
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orthogonal to eφ, and both Bt and Bp independent of φ. We express B in terms
of the poloidal flux function ψ and of another function f as given in [4], that is

B =
1

r
gradψ × eφ +

f

r
eφ = Bp +Bt. (4)

The first term, Bp, in (4) is the poloidal component of B that lies in the cross-
section plane (r, z) also called poloidal section (φ = constant) of the tokamak.
The second term Bt in (4) is the toroidal component of B and f , referred to as
the poloidal current flux, is such that f eφ = rBt. To fulfill the solenoidality con-
dition on B, a magnetic vector potential A such that B = curlA is introduced.
The Coulomb gauge condition divA = 0, which is typically used when the prop-
agation velocity of the perturbations of the magnetic field lines is smaller than
the speed of light, is imposed on A to ensure uniqueness. We will see that, in an
axisymmetric formulation as the one we consider here, the Coulomb gauge on A is
automatically satisfied. In particular, Bp = curlAt and the poloidal magnetic flux
ψ thus represents the scaled toroidal component of the vector potential A, namely
ψ eφ = rAt. We recall from books (see, e.g., [4,18]) two important properties for
the mathematical modeling of the plasma at the ideal MHD equilibrium. Their
proofs are here detailed for completeness. Property 1 states that the poloidal
magnetic flux ψ is a key quantity in modeling plasma in tokamaks.

Property 1. The lines of both the current density J and magnetic induction B are
on surfaces of constant value for ψ (and p). They are called magnetic surfaces.

Proof In cylindrical coordinates we have grad p = (∂rp,
1
r ∂φp, ∂zp)

⊤. As we
assume µ constant in the plasma domain, we obtain

curl (
1

µ
Bt) = curl (

f

µ r
eφ) =

1

µ r
(−∂z f) er +

1

µ r
(∂r f) ez (5)

being er and ez the unit vectors for the poloidal coordinates r, z, respectively. Let
us consider the force balance identity in (3), then

0 = grad p · Bp = grad p · curlAt =
1

r
∂rp (−∂zψ) +

1

r
∂zp (∂rψ)

since3 curlAt =
1
r (−∂zψ, 0 , ∂rψ)

⊤. Hence, p is constant over surfaces where ψ
is constant, so p = p(ψ). Moreover, for the axisymmetry assumption,

0 = grad p · Jp = grad p · curl ( 1
µ

Bt) =
1

µ r
∂rp (−∂z f) +

1

µ r
∂zp (∂r f)

and thus f is constant over surfaces where p and ψ are constant, so f = f(ψ). □

Magnetic field line twist while developing in the toroidal direction, and charged
particles remain localized closely to the magnetic surfaces, while moving in the
plasma mixture (see, e.g., [18] for more details on the magnetic field properties
in plasmas). The helicity of a divergence-free vector field is a standard measure
for the extent to which the field lines wrap and coil around one another (see,

3 From ψ eφ = rAt, we get At = (0, Aφ, 0 )⊤ where Aφ is equal to 1
r
ψ. In cylindrical

coordinates, for this vector At we have curlAt = (−∂zAφ, 0, 1r ∂r(r Aφ) )
⊤.
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e.g., [7]). The connection between twists and knots is analyzed in [23,22] and the
topological interpretation of helicity in terms of linking numbers is given, e.g.,
in [3,20] and references therein. The magnetic flux surfaces are hence strictly
connected to the value of ψ, they are nested surfaces, that do not intersect with
any material of the tokamak, and ensure the confinement of charged particles,
namely the confinement of plasma inside a tokamak. The center of the plasma,
where pressure has a maximum, is called the magnetic axis. The last surface in
proximity of which charged particles can still move, without striking against the
limiter or the divertor of the device, defines the domain containing the plasma,
say Ωp(ψ). Property 2 relates the poloidal magnetic flux ψ to the current in the
plasma domain Ωp(ψ).

Property 2. The flux ψ verifies the Grad-Shafranov-Schlüter equation in Ωp(ψ).

Proof We have

(−∂z f er + ∂r f ez) = f ′(ψ) (−∂z ψ er + ∂r ψ ez) (as f = f(ψ))

= f ′(ψ) gradψ × eφ (eq. (4))

= f ′(ψ) rBp

= f ′(ψ) r curlAt.

We consider the force balance equation in (3). We obtain

grad p = (Jp + Jt)× (Bt +Bp) =⇒ grad p = Jp ×Bt + Jt ×Bp

as

Jp ×Bp = curl(
1

µ
Bt)×Bp =

1

µ
f ′(ψ) curlAt × curlAt = 0

and Jt ×Bt = 0 by using vector identities. Let us now consider the identity

grad p · (eφ × curlAt) = (Jp ×Bt + Jt × curlAt) · (eφ × curlAt). (6)

The magnetic surfaces are defined by a constant value of p and p = p(ψ), as
we have seen with Property 1, hence grad p = p′(ψ) grad ψ. Since curlAt =
1
r (−∂zψ, 0 , ∂rψ)

⊤, we have (eφ × curlAt) = 1
r (∂rψ, 0 , ∂zψ)

⊤ and the left-
hand side of (6) gives

p′(ψ) grad ψ · (eφ × curlAt) =
1

r
p′(ψ) |gradψ |2.

For the terms in the right-hand side of (6) we have

(Jp ×Bt) · (eφ × curlAt)

= (curl ( 1
µ Bt)×Bt) · (eφ × curlAt)

= (
1

µ
f ′(ψ) curlAt ×

f

r
eφ) · (eφ × curlAt)

= − 1

µ r
ff ′(ψ) |1

r
gradψ|2 = − 1

µ r3
ff ′(ψ) |gradψ|2.
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Let us denote by jφ := Jt · eφ the toroidal component of the current density J.
The vector identity (a× b) · (α×β) = (a ·α)(b ·β)− (a ·β)(b ·α) for generic vectors
a, b, α, β, yields

(Jt ×Bp) · (eφ × curlAt)

= (Jt × curlAt) · (eφ × curlAt)

= (Jt · eφ) |curlAt|2 − (Jt · curlAt) (curlAt · eφ)
= jφ

1
r2 |gradψ|2

since curlAt · eφ = 0. We have thus obtained

1

r
p′(ψ) |gradψ |2 = [

1

r2
jφ − 1

µ r3
ff ′(ψ) ] |gradψ|2.

We can simplify by |1r gradψ|
2 in the three terms of the equation above and

jφ =
1

µ r
ff ′(ψ) + r p′(ψ) (7)

is the current in the plasma domain Ωp(ψ). In cylindrical coordinates, the left-
hand side of (7) in terms of ψ becomes −div(1/(µ r) gradψ) := −∆∗ψ and thus
it holds

−∆∗ψ =
1

µ r
ff ′(ψ) + r p′(ψ) (8)

that is the Grad-Shafranov-Schlüter equation for ψ in Ωp(ψ). □

For an air-transformer tokamak, µ = µ0 everywhere and −∆∗ in equation (8) is
a linear second-order elliptic operator. For an iron-transformer tokamak, µ is a
given function of |Bp|2, thus of |1r gradψ|

2, in the ferromagnetic region and −∆∗

in equation (8) becomes a non-linear second-order elliptic operator. The main
challenges for solving equation (8) numerically are its formulation on an infinite
domain, the non-linear right-hand side, the non-linear permeability in iron and the
non-linearity due to the free plasma boundary. In the following, we rely on existing
literature, as for example [16,17,10,11], and point out the modifications introduced
by a non-conforming mortar-like approach to the whole resolution algorithm.

2.2 The continuous problem in the poloidal section

We start by recalling the formulation of the plasma equilibrium evolution problem
as stated in [4,5,16,18]. We introduce D = [0,∞] × [−∞,∞], the positive half
plane that contains the poloidal section. The geometry of the tokamak determines
various sub-domains (see Fig. 1, left) that are used to set the expression of jφ
accordingly.

- ΩFe ⊂ D denotes those parts of D made of iron that do not carry any cur-
rent but where the magnetic permeability µ is not constant and depends non-
linearly on ψ, namely µ(ψ, r, z) = µFE(|gradψ|2r−2) ≥ µ0; elsewhere, that is
in ΩcFe, µ = µ0;
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Fig. 1 (Taken from [16]) Left: Geometric description of the tokamak in the poloidal plane.
Center and right: sketch for two characteristic plasma shapes. The plasma is depicted in red.
Its boundary is a magnetic surface. The plasma is an extremely hot mixture made of charged
particles that continue to move in the tokamak chamber under the effect of the magnetic forces.
Those charged particles that leave the plasma, finish their run by striking into a material of the
machine. The two presented configurations are those of a tokamak plasma where its boundary
either touches the limiter (center) or goes through an X-point (right).

- Ωci ⊂ D, 1 ≤ i ≤ Nc, denotes the intersection with the poloidal plane of the
ith field coil carrying currents and Nc denotes the number of poloidal field
coils used for confinement in the reactor. Here, the ith coil has cross section
area |Ωci | and carries a total current Ii (which is a given constant, in the
static modelization, or a function, solution of an electric circuit equation, in
the quasi-static case);

- S ⊂ D, denotes the part of domain S = ∪jΩpsj , where are located the Nps
passive structures Ωpsj , characterised by an electric conductivity σj ̸= 0, j =
1, ..., Nps (note that the tokamak vacuum vessel is a passive structure too);

- ΩL ⊂ D, denotes the domain bounded by the limiter, thus the domain acces-
sible by the plasma;

- Ωp ⊂ ΩL, denotes the domain covered by the plasma and the boundary ∂Ωp
is the outermost closed ψ-isocontour contained within ΩL.

The equilibrium of plasma in a tokamak has to satisfy at each instant the
following non-linear initial boundary value problem: for each t ∈ [0, T ], T ≥ 0,
find ψ(r, z, t) such that

−∆∗ψ = jφ =



rp′(ψ) + 1
µ0r

ff ′(ψ) in Ωp(ψ),

Ii(ψ, t)/|Ωci | in Ωci , i = 1, ..., Nc, (⋆)

−σj
r
∂tψ in Ωpsj ⊂ S, j = 1, ..., Nps,

0 elsewhere,

ψ(0, z, t) = 0 ∀ (0, z) ∈ Γ0, lim||(r,z)||2→+∞ψ(r, z, t) = 0,

ψ(r, z, 0) = ψ0(r, z) ∀ (r, z) ∈ D (initial condition)

(9)

with more details about (⋆) in Section 5, where Ii(ψ, t) is defined by (19). The
plasma domain Ωp(ψ) is unknown and depends non-linearly on the poloidal flux ψ
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(we have a free-boundary problem). The boundary of Ωp(ψ) either touches that of
ΩL (limiter configuration, as in Fig. 1 middle) or contains one or more saddle points
of ψ (divertor configuration, as in Fig. 1 right). The saddle points of ψ, denoted by
(rX, zX)=(rX(ψ), zX(ψ)), are called X-points of ψ. The plasma domain Ωp(ψ) is
the largest sub-domain of ΩL bounded by a closed ψ-isoline in ΩL and containing
the magnetic axis (ra, za). The magnetic axis is the point (ra, za) = (ra(ψ), za(ψ)),
where ψ has in ΩL its global maximum (or minimum, depending on axis positive
direction). Let (rb, zb) = (rb(ψ), zb(ψ)) be the point that determines the plasma
boundary. Note that (rb, zb) is either an X-point of ψ or the contact point with
∂ΩL. As explained in [4,5,15], to determine the two functions p′ and ff ′ it is
necessary to complete (9) with additional (transport and diffusion) equations. In
this work, we will assume that, up to some scaling coefficient λ, the functions p′

and f f ′ are known. We thus suppose that we are given two polynomial or piece-
wise polynomial functions A(.) and B(.) defined on [0, 1] such that, in the plasma
domain Ωp(ψ), we have jφ = λ( rr0A(ψN ) + r0

r B(ψN )). Here, r0 the characteristic
major radius (in meters) of ΩL and ψN(ψ, r, z) = (ψ(r, z)−ψa(ψ))/(ψb(ψ)−ψa(ψ))
is the normalized poloidal flux. The domain of p′ and f f ′ is the interval [ψa, ψb]
(supposing ψa < ψb) with the scalar values ψa and ψb being the flux values at the
magnetic axis and at the boundary of the plasma. To solve numerically problem
(10) we work in a domain Ω ⊂ D , known as the ABB domain, named after
Albanese-Blum-Barbieri [1], who first introduced it, associated with D (see Fig. 2,
left), delimited by a half-circle γ of radius ργ > 0 including ΩL∪ΩFe∪iΩci ∪jΩpsj
and the vertical segment Γ0 = {0}r × [−ργ , ργ ]z.

3 The static problem

Let us first consider the static equilibrium problem: find ψ(r, z) such that

−∆∗ψ = jφ =


rp′(ψ) + 1

µ0r
ff ′(ψ) in Ωp(ψ),

Ii/|Ωci | in Ωci , i = 1, ..., Nc,

0 elsewhere,
ψ(0, z) = 0 ∀ (0, z) ∈ Γ0, lim||(r,z)||2→+∞ψ(r, z) = 0.

(10)

Problem (10) results from (9) when we neglect the effects due to passive structures
(that is σj = 0 for all j = 1, ..., Nps) and Ii denotes the total current (in Ampère
turns) in the ith coil, set independently from ψ.

3.1 The weak form

To introduce the non-overlapping domain decomposition framework, we set Ω =
Ωin ∪ Ωex where Ωin is a bounded domain containing ΩL (see Fig. 2, right) and
Ωex = Ω \Ωin. The boundary of Ωin is denoted I, to recall that it is an interface
between the two sub-domains Ωin, Ωex, on which we will impose the continuity of
ψ, in a weak sense, through a mortar-like L2 projection [2]. The weak formulation
of (10) is: Find ψ = (ψex, ψin) ∈ V such that

a(ψ, s) := aex(ψex, v) + ain(ψin, w) = ℓ(I, s) ∀s = (v, w) ∈ V0,I (11)
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Fig. 2 The ABB domain (left) associated with D and a zoom (right) on the sub-domain
Ωin involved in the domain decomposition formulation. The mortar interface I in this case is
closed. Example of a passive structure S where σ ̸= 0.

where V = {(v, w) ∈ H1(Ωex)×H1(Ωin), v|Γ0
= 0, v|I = w|I} , being H1(Ω) the

functional space defined as H1(Ω) = {u ∈ L2
∗(Ω), ∇u ∈ L2

∗(Ω)2} with L2
∗(Ω) =

{g : Ω → R, ∥g∥2∗,Ω :=
∫
Ω
(gr )

2 r dr dz <∞} and ∇ denoting the gradient operator
in the poloidal variables. We have also set V0,I = {(v, w) ∈ V, v|I = w|I = 0} and

aex(ψ, v) :=
∫
Ωex

1
µ r ∇ψ · ∇ v drdz + c(ψ, v) ,

ain(ψ,w) :=
∫
Ωin

1
µ0r

∇ψ · ∇w drdz − Jp(ψ,w) ,

Jp(ψ,w) :=
∫
Ωp(ψ)

λ
(
r
r0
A(ψN) +

r0
r B(ψN)

)
w drdz ,

ℓ(I, s) :=
∑Nc

i=1
Ii

|Ωci
|
∫
Ωci

(χΩex v + χ
Ωinw) drdz

(12)

with λ a scaling coefficient such that the total plasma current is

Ip = λ |
∫
Ωp(ψ)

(
r

r0
A(ψN) +

r0
r
B(ψN)

)
drdz |.

We recall that, in the expression of aex(ψ, v), the magnetic permeability can de-
pend on ψ as follows

µ = µFE

(
|∇ψ|2

r2

)
χΩFe

+ µ0χΩex\ΩFe
,

where χV is the characteristic function of a set V and µFE is a given function.
Note that ℓ(I, s) contains the expression χΩex v + χ

Ωinw to deal with the presence

of coils in Ωin and Ωex. Moreover, c(ψ, v) =
∫
γ
v ∂nψ dΓ takes into account the

condition at infinity on γ and will be discretized as explained in [16,17]. Under
suitable assumptions, such as for example ΩFe = ∅ or Ip assigned, it can be proven
that problem (11) has a unique solution [13], in the general case the question is
theoretically open4. In the next section, we propose a Newton method to solve

4 We wish to recall the fundamental contribution of Roland Glowinski to the analysis, the
finite element approximation and numerical resolution by Newton-like methods of such non-
linear problems.
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the discrete problem associated with (11) when ΩFe ̸= ∅ and µ needs to be esti-
mated from experimental data. The reconstruction of the function µ for a given
ferromagnetic material is performed on the tokamak in absence of plasma. The
function µr(Hp) representing the relative magnetic permeability (µ = µ0 µr) is
experimentally determined as a function of the modulus Hp of the poloidal mag-
netic field Hp. We anticipate that, as remarked in [12], if µ was directly linked to
Bp, the Newton algorithm generally used to solve the final discrete problem could
be divergent, as B2

p and thus µ vary significantly from one iteration to another.
Therefore, the function µr(Hp) is first reconstructed by relying on the Ampère
theorem and then, at each iteration n, we use

µn = g

(
|∇ψnh |2

r2 (µn−1)2

)
.

To define the corresponding Jacobian matrix, we compute the derivatives w.r.t.
the unknown field ψ of the non-linear operators in (11), and then we evaluate
them on discrete fields with special care. By involving directional derivatives, we
can define Dψa

ex(., .), the differentiation operator w.r.t. ψ in the direction of ψ̃,
as follows

Dψa
ex(ψ, s)(ψ̃) = aex(ψ̃, s)− 2

∫
ΩFe

g′(.)

g2(.)

1

r3
(∇ψ̃ · ∇ψ) (∇ψ · ∇s) (13)

where (.) stands for (|∇ψ|2/r2/(µn−1)2). For Dψa
in(., .), the derivative w.r.t. ψ

of Jp(., .) is computed5 analytically on an approximation of this functional by a
quadrature formula.

3.2 The discrete static problem

A mortar finite element approach is applied to (11) to get the discrete problem.
Let τex (resp. τ in) be a mesh of triangles that covers Ωex (resp. Ωin). The two
meshes τex, τ in are shape regular and quasi-uniform, with maximal diameters hex,
hin, respectively. We assume that I is a polygon with nodes and edges in τex. We
wish to use in ΩL ⊂ Ωin, a finite element approximation ψh for the poloidal flux ψ
that is not only continuous but has also component-wise continuous gradient ∇ψh.
This is possible if we use the piece-wise cubic reduced or minimal Hsieh-Clough-
Tocher (rHCT) finite element space, say V in, on τ in (see [9]). This regularity is not
necessary in Ωex therefore we couple rHCT finite elements in Ωin with continuous
piece-wise linear finite elements, say Vex, on τex. The finite element space over the
mesh τex is Vex = {v ∈ C0(Ωex), v|Γ0

= 0, v|T ∈ P1(T ), ∀T ∈ τex}, whereas over

τ in is V in = {w ∈ C1(Ωin), w|T ∈ Ploc(T ), ∀T ∈ τ in}. The space Ploc(T ) reads

Ploc(T ) = {w ∈ C1(T ), w|Bi
∈ P3(Bi), (∂nw)|bi ∈ P1(bi), ∀ bi ∈ ∂Bi ∩ ∂T},

with the triangle T = [V1, V2, V3] cut into three triangles Bi = [G,Vm, Vℓ], having
vertices in Vm, Vℓ with m, ℓ ∈ {1, 2, 3} \ {i} and at the barycenter G, for each

5 To approximate Jp(., .) in (12) by a quadrature formula we need to know the domain
Ωp(ψ) occupied by the plasma. This domain is an unknown of the equilibrium problem, as it
depends on ψ. An efficient technique to determine it is stated in [10].



12 C. Boulbe, B. Faugeras, G. Gros, F. Rapetti

B
B

BV

V

V

1

2

3

2
1

3

B
B

BV

V

V

1

2

3

2
1

3

rot

Fig. 3 Barycentric subdivision of T = [V1, V2, V3] ∈ τ in into three sub-triangles Bi. Locally on
T , at the three vertices Vi, we reconstruct the height ψh(Vi) (black filled thick points) of ψ and
the tangent plane to the surface ψ as generated by ∂rψh(Vi), ∂zψh(Vi) (empty circles around
the vertices). Here rotψh = (∂r ψh, −∂z ψh)t. If we compute rotψh, we get the restriction
of rBp to T with continuous components (the two black filled thick points) at the Vi and
continuous normal component (the small arrows) at the bi = ∂Bi ∩ ∂T (see details in [8]).

i = 1, 2, 3 as shown in Fig. 3. In the Ploc(T ) space definition, n is the outward
normal vector to ∂T , bi the edge ∂Bi ∩ ∂T and (∂nw)|bi the normal derivative of
w along the edge bi.

Note that ΩFe ⊂ Ωex. Let us also write Vex = Vex
◦ ⊕ EVex

∂ and V in = V in
◦ ⊕ EV in

∂ ,
where, for example, Vex

◦ (resp. Vex
∂ ) is the subspace of Vex described by basis

functions associated with dofs at nodes in Ω̄ex\I (resp., Ω̄ex∩I) and E denotes the
extension by zero operator. The functions in Vex

◦ and V in
◦ have vanishing Dirichlet

trace on I. The discrete problem to solve reads: Find ψh ∈ Vh such that

a(ψh, sh) = ℓ(I, sh) ∀sh = (vh, wh) ∈ Vex
◦ × V in

◦ (14)

where

Vh = {(uinh , uexh ) ∈ V in × Vex, uexh|Γ0
= 0,

∫
I
(uinh − uexh ) zh dI = 0, ∀ zh ∈ Mh},

with Mh = {ξh ∈ C0(I) : ξh|e ∈ P1(e) , ∀ e ∈ (τex)|I} the mortar multiplier
space. The bilinear and linear forms a(., .), ℓ(I, .) are defined as for the problem
(11) and evaluated in (14) for functions in the discrete space Vh.

3.3 The matrix problem and the Newton algorithm

Let us denote by {vexi }i=1,Nex the dual basis of Vex for the P1 dofs associated
with the Nex nodes Vi ∈ τex and {win

j }j=1,3N in that of V in for the rHCT dofs at

the N in nodes Vj ∈ τ in. Let A (resp. C, Lin, Lex) be the matrix associated with
the integral expressions in (12) contained in a(., .) (resp., in c(., .), in ℓ(., .) for the
coil Ωci if this coil is in Ωin or in Ωex) and J(.) (resp., Uin

I , Uex
I ) the vector with

components resulting from Jp(.) (resp., holding the currents Ii for the coil Ωci if
it is in Ωin or in Ωex). To take into account iron parts in Ωex, we separate the
elliptic operator into the linear part and a nonlinear part, say A0ψ+Aµ(ψ), where
the vector ψ gathers all dofs of ψh ∈ Vh, the matrix A0 has entries

(A0)ij =

∫
Ωex\ΩFe

1

µ0r
∇vexi · ∇vexj dr dz, i, j = 1, Nex,
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and the vector Aµ(ψ) has components

(Aµ(ψ))i =

∫
ΩFe

1

µ(ψh)r
∇vexi · ∇ψh dr dz, i = 1, Nex.

Equation (14) in its fully discretized form reads e(ψ) = 0 with

e(ψ) := (A0 + C)ψ + Aµ(ψ)− J(ψ)− L
in Uin

I − L
ex Uex

I (15)

where, for k = 1, 3N in, we have

(J(ψ))k = Jp(ψN,h, wk), and L
in
i,k =

1

|Ωci |

∫
Ωci

win
k dr dz,

for those indices i = 1, Nc such that Ωci ⊂ Ωin. For the indices i such that
Ωci ⊂ Ωex, the definition of Lexi,j , with j = 1, Nex, is similar to that of Lini,k, just

replacing win
k by vexj . Newton’s iterations for problem (15) are

ψn+1 = ψn − [eψ(ψ
n)]−1 e(ψn), (16)

with
[eψ(ψ)] = Dψ[(A0 + C)ψ + Aµ(ψ)]−DψJ(ψ) .

Let uex and uin gather the values of dofs for ψex
h ∈ Vex and ψin

h ∈ V in, re-
spectively. We have uex = (uex

◦ ,u
ex
∂ ) and uin = (uin

◦ ,u
in
∂ ) where uex

◦ (resp. uin
◦ )

and uex
∂ (resp. uin

∂ ) are for dofs in V ex
◦ (resp. V in

◦ ) and V ex
∂ (resp. V in

∂ ). The mor-
tar coupling condition in Vh links the block uex

∂ to the block uin
∂ by the matrix

relation Puex
∂ = Duin

∂ with (P)i,j =
∫
I v

ex
∂,i v

ex
∂,j dI, for all i, j = 1, Nex

∂ , and

(D)i,k =
∫
I v

ex
∂,i w

in
∂,k dI , for all i = 1, Nex

∂ and k = 1, N in
∂ . The inclusion of the

coupling condition matrix form into the algebraic system associated with the dis-
crete problem (14) is done by introducing the reduced variable, X, such that

ψ =


uex
◦

uex
∂

uin
◦

uin
∂

 =


I 0 0
0 0 P−1D

0 I 0
0 0 I


uex

◦
uin
◦

uin
∂

 = QX.

Equation (15) rewritten in terms of X becomes

e(X) := Q
⊤[(A0 + C)QX+ Aµ(ψ)− J(ψ)− L

in Uin
I − L

ex Uex
I ]. (17)

For J(ψ) = J(QX) = H(X) we get

DXH(X)dX = DψJ(ψ)QdX = Jacψ(ψ)QdX,

with Jacψ(ψ) the matrix representing the derivative of J(ψ) w.r.t. ψ. For the
vector Aµ(ψ) = Aµ(QX) = G(X), we obtain DXG(X)dX = Aµ,ψ(ψ)QdX with

[Aµ,ψ]i,j given in (13) by setting ψh, v
ex
i , vexj at the place of ψ, ψ̃ and s, respectively.

Newton’s iterations for problem (17) read

Xn+1 = Xn − [eX(Xn)]−1 e(Xn) (18)

where
[eX(Xn)] = Q

⊤[(A0 + C) + Aµ,ψ(ψ
n)− Jacψ(ψ

n)] Q .

In the next Section, we present the new iteration of the Newton’s algorithm that
is used to solve the discrete version of the quasi-static evolution problem in iron
tokamaks. The evolution is quasi-static in the sense that it happens slowly enough
for the system to go from one physical equilibrium to the successive.



14 C. Boulbe, B. Faugeras, G. Gros, F. Rapetti

4 The quasi-static evolution problem

In a tokamak, the poloidal field system is made of L circuits; each circuit, labeled
by i with 1 ≤ i ≤ L, includes Ni coils (out of Nc) and Mi power supplies (out
of M). We refer to Appendix B in [5] and Appendix A in [16] for the technical
details to get the circuit equation

−→
I i(ψ, t) = Si

−→
V i(t) + Ri

−→
Ψ i(∂tψ) , i = 1, ..., L , (19)

expressing the current in the ith circuit. In (19),
−→
I i is the vector of size Mi +Ni

containing the currents at the Mi supplies and in the Ni coils of the ith circuit;−→
V i ∈ RMi is the one of the tensions applied to the supplies; finally,

−→
Ψ i(∂tψ) ∈ RNi

is the vector such that

−→
Ψ i(∂tψ) =

(
1

|Ωci,1|

∫
Ωci,1

∂tψdrdz, . . . ,
1

|Ωci,Ni
|

∫
Ωci,Ni

∂tψdrdz

)⊤

,

with Ωci,j denotes the jth coil section in the ith circuit. The two matrices Si ∈
R(Mi+Ni)×Mi and Ri ∈ R(Mi+Ni)×Ni , which multiply

−→
V i and

−→
Ψ i(∂tψ), respec-

tively, contain information about the ith circuit, namely the physical characteris-
tics of its components and their relative connections. The current density in (⋆)
for problem (9) flowing in Ωci,ℓ is

(jφ)ℓ =
1

|Ωci,ℓ |

(
Si
−→
V i(t) + Ri

−→
Ψ i(∂tψ)

)
ℓ
, ℓ = 1, ..., Ni.

For problem (9) in the tokamak WEST, the coils Ωci are in Ω
ex (i.e., LinUin

I = 0).
The weak form of (9) reads: given T ≥ 0, find the function ψ : t ∈ [0, T ] 7→ ψ(t) =
(ψex(t), ψin(t)) ∈ V such that ψ(0) = ψ0 and, ∀s = (v, w) ∈ V0,I , it holds

a(ψ(t), s)− jps(ψ̇(t), s)− jc(ψ̇(t), s) = ℓex(Si
−→
V i(t), s), (20)

where ψ̇(t) is the time derivative of ψ(t) and

a(ψ(t), s) := aex(ψex(t), v) + ain(ψin(t), w) ,

jps(ψ̇(t), s) := −
∑Nps

j=1

∫
Ωpsj

σj

r ψ̇(t)(χΩex v + χ
Ωinw) drdz ,

jc(ψ̇(t), s) :=
∑L
i=1

∑Ni

j=1
(Ri

−→
Ψ i(ψ̇(t)))j
|Ωci,j

|
∫
Ωci,j

χΩex v drdz,

ℓex(Si
−→
V i(t), s) :=

∑L
i=1

∑Ni

j=1
(Si

−→
V i(t))j

|Ωci,j
|
∫
Ωci,j

χΩex v drdz ,

(21)

with aex(., .), ain(., .), the bilinear forms defined in (12). Problem (20) has to be
discretized in space and in time.

The semi-discrete evolution problem is obtained by applying to (20), in space,
the mortar finite element approach detailed in Section 3.2. The semi-discrete
problem thus reads: given T ≥ 0, find the function ψh : t ∈ [0, T ] 7→ ψh(t) =
(ψex
h (t), ψin

h (t)) ∈ Vh such that ψh(0) = ψ0,h and, ∀sh = (vh, wh) ∈ Vex
◦ × V in

◦ , it
holds

a(ψh, sh)− jps(ψ̇h(t), sh)− jc(ψ̇h(t), sh) = ℓex(Si
−→
V i(t), sh) (22)
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with ψ0,h a representation of ψ0 in the space Vh. The bilinear forms appearing
in (22) are defined as for (20) and evaluated for functions in the discrete spaces.
We finally rely on an implicit Euler scheme to fully discretize in time the semi-
discrete problem. The discrete problem thus reads: Find ψkh = (ψex,kh , ψin,kh ) ∈ V
approximating ψh(tk), for tk ∈ [0, T ], such that, ∀sh = (vh, wh) ∈ Vex

◦ × V in
◦ , it

holds

aevol(ψ
k
h, sh) := aexevol(ψ

k
h, vh) + ainevol(ψ

k
h, wh) = ℓex(Si

−→
V k
i , sh) (23)

with :

aexevol(ψ
k
h, v) := aex(ψkh, v)− 1

∆t (jps(ψ
k
h, v)− jps(ψ

k−1
h , v))

− 1
∆t (jc(ψ

k
h, v)− jc(ψ

k−1
h , v)) ,

ainevol(ψ
k
h, w) := ain(ψkh, w)− 1

∆t (jps(ψ
k
h, w)− jps(ψ

k−1
h , w)) ,

jps(ψ
k, v) := −

∑Nps

j=1

∫
Ωpsj

σj

r ψ
kv drdz ,

jc(ψ
k, v) :=

∑L
i=1

∑Ni

j=1
(Ri

−→
Ψ i(ψ

k))j
|Ωci,j

|
∫
Ωci,j

χΩex v drdz ,

ℓex(Si
−→
V k
i , s) :=

∑L
i=1

∑Ni

j=1
(Si

−→
V k

i )j
|Ωci,j

|
∫
Ωci,j

χΩex v drdz .

(24)

Hence, for the evolution problem, if we denote Xbefore the solution X computed
at the previous time step, equation (22) in its fully discretized form reads

e(X) := Q⊤
[(
A0 + C − 1

∆t (Mps + LRL⊤)
)
QX

+ 1
∆t (Mps + LRL⊤)QXbefore

+Aµ(ψ)− J(ψ)− LSV
]
,

(25)

where L stands for Lex, and Mps (resp. LRL⊤) is the matrix associated with the
bilinear form jps(., .) (resp. jc(., .)). Therefore, we have

[eX(Xk)] = Q
⊤[A0 + C− 1

∆t
(Mps + LRL

⊤) + Aµ,ψ(ψ
k)− Jacψ(ψ

k)] Q . (26)

It does not exist, to our knowledge, analytical solutions for the free-boundary equi-
librium problems considered in this paper. We provide nevertheless some numerical
evidence of convergence for the proposed method.

5 Numerical results

The initial guess of the plasma domain Ωp(ψ) for given currents in the poloidal
field coils plays a crucial role in free-boundary equilibrium problems. Here, we find
such initial guesses by solving inverse problems or optimal control problems, where
a desired shape and position of the plasma domain is the objective and the precise
values of the currents is unknown. In the present case we do not focus on this
technical issue, but assume we have a good initial guess for the poloidal flux (e.g.,
X0 could be a non-mortar formulation of the free-boundary equilibrium problem
involving piece-wise linear FEs everywhere, as explained in [11]).
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Table 1 Convergence history of Newton iterations for WEST: iteration number n and residual
relative error ||Xn −Xn−1||/||Xn−1||, with either ΩFe = ∅ or ΩFe ̸= ∅.

n if ΩFe = ∅ if ΩFe ̸= ∅
1 1.77919× 10−2 9.78267× 10−3

2 4.35470× 10−4 8.56241× 10−4

3 4.05152× 10−7 6.17721× 10−4

4 2.80505× 10−11 3.46301× 10−4

5 9.38432× 10−5

6 3.09165× 10−5

7 8.76154× 10−6

8 3.11734× 10−6

9 5.16426× 10−7

10 2.58976× 10−10

11 6.29602× 10−14

Fig. 4 Poloidal cross section showing ψ-isolines for a WEST typical equilibrium, supposing
either ΩFe = ∅ (left) or ΩFe ̸= ∅ (right). The red curve is the plasma boundary and the blue
one is the coupling interface.

We start with the static problem. The good convergence of the Newton itera-
tions applied to (17), with error threshold fixed to 10−10, is shown in Table 2. We
remark that the presence of iron parts slows down considerably the convergence
speed. Fig. 4 shows a typical WEST poloidal flux map calculated by NICE. A zoom
on the distribution of ψh in Ωin is proposed in Fig. 5, for the case ΩFe ̸= ∅. The
X-point and plasma axis are highlighted in the small pictures. With the adopted
cubic C1 FEs in Ωin, these points do not coincide with nodes of the computa-
tional mesh, thus assuming a more physically meaningful position than the one
that could be computed with low-order C0 FEs.

For the quasi-static evolution problem, simulations are done with ∆t = 0.001
s over the time interval [0, 0.03]. In Table 2, we report the relative residual
for the Newton’s algorithm at three time steps of the simulation with ΩFe ̸= ∅
(the error threshold is still fixed to 10−10). In the quasi-static evolution case the



Plasma equilibrium with non-linear materials 17

Fig. 5 Left: Zoom on the inner vacuum vessel region inside the coupling interface (the ψ-
isolines in Ωin cross without discontinuity the interface). Right : Zoom around the plasma axis
(red point, top) and X-point (red point, bottom).

Table 2 Convergence history of Newton iterations for WEST: iteration number n and residual
relative error ||Xn −Xn−1||/||Xn−1||, for the times t = 0.01 s, t = 0.02 s, t = 0.03 s.

n t = 0.01 if t = 0.02 if t = 0.03

1 8.32182× 10−3 1.11224× 10−2 1.39098× 10−2

2 2.37455× 10−4 3.01691× 10−4 4.68653× 10−4

3 8.37148× 10−7 1.27151× 10−6 4.72572× 10−6

4 9.49314× 10−12 3.72105× 10−11 8.28915× 10−10

5 2.57022× 10−14

convergence of the Newton’s method is faster than for the static problem since,
at each time step, we start close to an equilibrium. Figures 6-9, present the
separatrix computed by a full P1 approach (blue line) and by a coupled P1-HCT
one (red line), at four time steps of the simulation over a given mesh. In all the
cases, the blue and the red lines are very close one from another, stating that
the mortar coupling in the quasi-static evolution case is correctly realised. The
coarser mesh zones visible in the figures are parts of the limiter. In Figures 7-9 the
volume bounded by the separatrix looks smaller in the C0-C1 (red) case because
the extremum value of ψ on the limiter is taken at a point of its boundary, not
necessarily coincident with a point of the mesh.

Finally, the computed behavior of the plasma looks more realistic when a C0-C1
approach is adopted. Indeed, as shown in Figure 10, the C0-C1 simulation yields
a displacement of the magnetic axis without the staircase effects that appear with
the full C0 simulation.
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Fig. 6 Comparison between P1 and P1-HCT plasma boundary computations at t = 0.001 s.
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Fig. 7 Comparison between P1 and P1-HCT plasma boundary computations at t = 0.01 s.

6 Conclusions

We have focused on the numerical computation of a MHD equilibrium for a hot
plasma in iron tokamaks, such as WEST or JET, still in activity nowadays. A short
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Fig. 8 Comparison between P1 and P1-HCT plasma boundary computations at t = 0.02 s.
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Fig. 9 Comparison between P1 and P1-HCT plasma boundary computations at t = 0.03 s.

overview on the mathematical complexity to treat the magnetic induction B in
tokamak plasmas has preceded the equations. We have underlined that axisymmet-
ric plasma equilibrium simulations need to rely on accurate reconstructions of the
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Fig. 10 Time evolution of the magnetic axis coordinates ra (left) za (right) : comparison of
the results obtained by a full C0 (P1, in blue) approach and a coupled C0-C1 (P1CT, in red)
approach.

poloidal magnetic flux ψ and of its gradient ∇ψ, at least in the part of the tokamak
cross section that is accessible to the plasma. Therefore we have considered the
C1, piece-wise cubic, reduced Hsieh-Clough-Tocher (rHCT) finite elements with C0

piece-wise linear Lagrange ones by relying on a non-overlapping mortar element
method and to discretize, in such a cross section, the Grad-Shafranov-Schlüter’s
equation. At the discrete level a Newton’s method is proposed to solve the cou-
pled nonlinear problem and numerical evidence of its convergence is given. The
presence of material non-linearities has been taken into account in the algorithm
by suitably modifying the computation of the Jacobian matrix.
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Engng. 3, 55–85 (1974)

13. Glowinski, R., Marrocco, A.: Sur l’approximation par eléments finis d’ordre 1, et la
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