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Abstract
Zinc oxide is a novel material system for mid-infrared and THz optoelectronics. Especially its
non-polar m-plane orientation is a promising candidate for the design of devices like quantum
cascade lasers (QCLs) and detectors (QCDs). But for their realization novel fabrication schemes
are needed. We present a new inductively coupled plasma reactive ion etching (ICP-RIE)
process for etching of m-Zn(Mg)O heterostructures in a CH4-based chemistry. The process has
been optimized for smooth vertical sidewalls together with high selectivity towards a SiN etch
mask. This was achieved by combining the RIE etching with wet chemical etching in strongly
diluted HCl. Similar to various types of semiconductor-based optoelectronic materials and
devices (Sidor et al 2016 J. Electron. Mater. 45 4663–7; Ma et al 2016 Opt. Express 24 7823),
including other wide-gap semiconductors like (In)GaN (Zhang et al 2015 Nanotechnology 26),
we observe surface leakage currents in etched m-plane Zn(Mg)O structures. We show that they
depend on the applied etching process and surface treatment techniques as well as the barrier
composition in the Zn(Mg)O heterostructures. In addition, a treatment in hydrogen peroxide
(H2O2) yields a significant surface leakage current suppression up to several orders of
magnitude.

Supplementary material for this article is available online

Keywords: optoelectronics, widegap semiconductors, intersubband physics, quantum cascade
laser, semiconductor processing, II–VI semiconductors

1. Introduction

The terahertz (THz) spectral region is a peculiar portion of
the electromagnetic spectrum. It is sandwiched between the
mid-infrared and the microwave spectral range and often

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

referred to as ‘the THz gap region’, because of its lack of
high performance coherent light sources like compact semi-
conductor lasers. At the same time, it is relevant for a wide
variety of applications ranging from trace gas sensing and
medical diagnostics [4–6] to spectral imaging and detection
in the THz [7–10], astronomical measurements (including
space-born species detection) [11, 12] and security (screen-
ing) applications [13]. Unfortunately, the lack of suitable high-
performance THz lasers operating at or at least close to room
temperature, prevents addressing those applications appropri-
ately and limits the usability of already existing devices signi-
ficantly.
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The difficulties in the development of semiconductor-based
THz lasers can be shown best, by the progress of the currently
most promising candidate for such devices: the THz quantum
cascade laser (QCL). THz QCLs were demonstrated for the
first time in 2002 by [14]. But even with putting significant
effort into the development for the following almost two dec-
ades and using the very mature material system of GaAs, THz
QCLs could only recently show lasing operation on a very
powerful thermoelectric cooler [15] and up to 210 K [16].
Therefore, room temperature operation is still out of reach for
GaAs-based THz QCLs.

One of the major limitations in GaAs-based THz devices
arises from the materials relatively low longitudinal-optical
(LO)-phonon energy of 36 meV (see e.g. [17]), which is on the
same order as the corresponding optical THz transitions (∼4–
41 meV). Together with the long radiative intersubband (ISB)
lifetimes in the THz spectral range being in strong competi-
tionwith the very efficient non-radiative LO-phonons and their
shorter lifetimes [18], it makes laser operation very inefficient.
In addition to the previously mentioned difficulties, increasing
the device temperature towards room temperature (∼300 K),
makes those problems become even more severe, since the
thermal energy at room temperature (kT ∼ 26 meV) is on the
same order as the LO-phonon energy (ELO,GaAs = 36 meV).
Consequently, there is a need for disruptive new approaches,
e.g. by using novel material systems with higher LO-phonon
energies like GaN (ELO,GaN = 96 meV) or ZnO (ELO,ZnO =
72 meV).

Alternative material systems have already been tested for
their suitability for THz emitting QCLs in the past. This
includes InAs- and InP-based [19–22] as well as GaN-based
devices [23, 24]. While the former have resulted in opera-
tional THz QCLs with decent performance (InAs- [25] and
InP-based [21] THz QCLs have a higher peak material gain
than GaAs devices [25, 26] due to a lower effective electron
mass), they are still limited to cryogenic temperatures [22,
27], also due to their low LO phonon energies (ELO,InAs =
29meV [28], ELO,InP = 43meV [29]) which are comparable
to ELO,GaAs = 36meV. In comparison to that, the GaN mater-
ial system could also reach lasing operation. But while it even
extended the accessible wavelength range to higher frequen-
cies of 5.5 and 7 THz [23], it yet left the predicted room tem-
perature operation [24] out of reach [30, 31].

We therefore propose to use ZnO as suitable alternative
material system for optoelectronic devices like (THz) QCLs
and quantum cascade detectors (QCDs), owing to its high LO
phonon energy mentioned previously. It is also predicted that
such devices allow THz QCL emission up to above room tem-
perature [32]. Hereby, ZnO is in general a relatively new opto-
electronic material, in particular its application in the THz
spectral range. Hence, significant effort has to be put in the
characterization and analysis of its material parameters in the
THz, like e.g. the effective mass and permittivity, as well as
its electronic band parameters like the conduction band offset.
These efforts also include mastering its high-quality epitaxial
growth and the development of state-of-the-art device fabric-
ation schemes.

To date, ZnO [33] has been and still is mainly used in the
rubber (about 50%–60%) and ceramics industry [34], only to
minor extent exploiting its functional material properties [35]
through e.g. UV optoelectronic [36] and photovoltaic [37, 38]
devices as well as transparent electronics [39] and sensing
applications [40]. But no significant effort was put so far to
enable its full potential towards ISB physics and device applic-
ations, especially in the THz spectral range. Like GaN, ZnO
is a polar material (its main conformation is the wurtzite lat-
tice [33, 41]), resulting in the formation of internal electric
polarization fields [42] for its main crystallographic directions
like the c-plane orientation (0001). This strongly increases the
difficulty of designing and realizing complex ISB devices like
QCLs or QCDswith their up to hundreds of precisely designed
quantum wells. Thus, it is highly beneficial to use a non-polar
crystallographic orientation like the a-plane (2110) or the m-
plane (0110) direction [43, 44], which yield no internal fields.

While the epitaxial growth of high-quality m-plane ZnO
layers with up to monolayer precision could be realized in the
past [45–48], ISB absorptions at room temperature [49, 50]
or the realization of room temperature (mid-infrared) QCDs
[51], could just recently be demonstrated in m-plane Zn(Mg)O
devices.

In this paper we give detailed instructions and show results
on the fabrication of such m-plane Zn(Mg)O devices. The
main focus will lie on the etching procedure of ZnO/ZnMgO
heterostructures down to nanometer precision. We developed
a novel combined etching scheme including a first step of
plasma-based dry etching in a reactive ion etching (RIE)
machine, followed by a wet chemical (smoothing) etch and
a final step of surface passivation to prevent surface leakage
currents (similar as known from GaN based devices, e.g. [3]).
The whole etching procedure is optimized for smooth ver-
tical sidewall profiles together with a high selectivity towards
the etching mask and also high, while still well-controllable,
etch rates.

2. Samples

The samples analyzed in this work are grown by molecular
beam epitaxy (MBE) on a 3× 2 inch ‘Riber EPINEAT’ sys-
tem on non-polar m-plane ZnO substrates (mainly from the
company ‘Crystec’), to prevent the formation of internal elec-
trical fields. We use ZnO as quantum well material together
with ZnMgO as barriers with varying Mg-content (typically
between 10% and 30%). The active region and contact layers
are n-doped with Gallium, typically between 5 × 1017 cm−3

and ∼1020 cm−3.
In order to be able to etch a wide variety of different ZnO-

based samples, the etchingswere tested and optimized for vari-
ous Zn(Mg)O layer sequences ranging from barem-plane ZnO
substrates (350–500 µm) to additional hundreds of nanometer
thick epitaxial layers, including heterostructures with only a
few nanometer thick individual layers, as known from QCLs
andQCDs. In addition, we also varied the total etch depth from
some 10 nm only up to about 10 µm.
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Table 1. Display of four different samples on m-plane ZnO substrate, used in the etch tests for CH4-based dry (see detailed recipe below)
and HCl-based wet chemical etching (by column): 1. bare substrate, 2. 1 µm epitaxial ZnO, 3. 283 nm multi-quantum-well (mQW) on
170 nm ZnO buffer and 4. 150 nm ZnMgO. The etch rates are given in row 4–6.

ZnO substrate ZnO (doped) ZnO/Zn0.77Mg0.23O mQW Zn0.77Mg0.23O

Layer sequence

Epitaxial layer thickness — 1 µm 283 nm (mQW) + 170 (ZnO buffer) 150 nm
RIE etching rate (nm min−1) 42 49 33 35
HCl etching rate (1:4) (nm s−1) 29.2 43.2 26.1 19.9
HCl etching rate (1:16) (nm s−1) 22.6 17 6.9 4.4

Figure 1. AFM measurements of MBE-grown structures on m-plane ZnO substrate with increasing number of layers and therefore
complexity: (a) ZnMgO single barrier, (b) ZnO/ZnMgO single quantum well and (c) ZnO/ZnMgO-based QCL structure with 30 periods.
(d) One period of a typical QCL layer sequence (corresponding AFM shown in (c)).

Table 1 shows the detailed layer sequences whichwere used
to test the final etch recipes (dry and wet etching), ordered
by decreasing etched ZnO thickness. Besides the first sample,
which is a bare substrate, all other consist of MBE grown
layers of ZnO and/or ZnMgO. Their individual total epitaxial
layer thickness is given in the second row. For better compar-
ison, the Mg-content is kept constant for the given samples.
The different etch-rates will be discussed in detail later on in
section 3.5.

Figure 1 showsAFMmeasurements of typical epitaxial lay-
ers after MBE growth, with increasing number of layers and
thus complexity. All structures are sandwiched between ZnO
contact layers.

The total grown layer thicknesses are ∼760 nm, ∼660 nm
and ∼1479 nm for figures 1(a)–(c), respectively. The detailed
layer sequence is given in the individual insets (figures 1(a)
and (b)) and in figure 1(d) for figure 1(c).

The surface quality, defined by its RMS roughness, yields
increasing values of figure 1(a) 0.52 nm, (b) 0.74 nm and
(d) 0.77 nm, respectively, as the number of grown lay-
ers increases. These values are on the same order as pub-
lished in literature: e.g. RMS= 0.385 nm [41]. But the latter

where measured on as-grown o-polar (0001) single-crystalline
epi-ready substrates (Crystec) without any additional epitaxial
growth or other deposition. Thus, the obtained values from the
present work confirm the high quality of the epitaxial growth.
It is worth noting, that a preferred direction of ‘roughness’ can
be distinguished in our samples. While in the vertical direc-
tion, individual ‘lines’ can be identified, which barely show
any roughness, the opposite is true for the horizontal direc-
tion. Abrupt changes in height as function of the measured
position, i.e. a surface roughness, is observed. Such a preferred
orientation of the surface roughness can be well identified in
figure 1(c). It is less pronounced in figures 1(a) and (b), but
can still be identified (attention to different scaling).

3. Etching of m-plane Zn(Mg)O

Etching of semiconductors can be performed utilizing differ-
ent techniques out of whichwet chemical etching and dry etch-
ing in a plasma reactor, are the most widely used ones. For
fabricating optical waveguides, which are one key component
for optoelectronic devices, the important characteristics are:
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smooth (on the wavelength-scale of the device) and ver-
tical sidewalls together with a good surface quality after
etching. Consequently, the following process parameters are
beneficial: a good selectivity towards the etching mask, a
relatively high etch rate for micrometer-scale etching and
a preferably anisotropic etching to prevent a strong under-
cut under the photomask together with vertical sidewalls.
For this study, we tested both types, dry and wet etch-
ing, of m-plane Zn(Mg)O-based samples, in our lab, includ-
ing different wet etching solutions and various inductively
coupled plasma reactive ion etching (ICP-RIE) dry etching
recipes.

3.1. Wet chemical etching of m-plane Zn(Mg)O epitaxial
layers

While the ZnO material system with its various crystallo-
graphic orientations (c-, m-, a-, r-plane etc) is etched by a wide
variety of liquids including typical acidic and alkaline solu-
tions likeHCl [52–54], (CH3COOH:)H3PO4 [41, 52] or HNO3

[52] and NaOH [55–57] or KOH [53, 58, 59], respectively,
their characteristics and thus also resulting etch profiles vary
significantly.

As revealed by wet chemical etching, an in-plane aniso-
tropy of the crystalline structure results in different etch rates
for the individual crystalline directions (see e.g. different etch
rates for (1120) Zn(Mg)O samples on r-plane (0112) Al2O3

substrates, when comparing etching of the in-plane (c-axis
(0001)) and its perpendicular (1100) direction [36, 60]). We
observe and present a similar anisotropic effect in m-plane
(0110) Zn(Mg)O samples. In addition, it is noteworthy, that
m-plane ZnO yields different etching characteristics compared
to previously analyzed a- or c-ZnO samples [61].

Knowing the total etched layer thickness together with
the needed etching precision is an important pre-requisite to
determine well-controllable etch-rates resulting from the dilu-
tion of the etchant. In (MIR-/THz-)QCLs and QCDs we typ-
ically have to etch between tens of nanometers up to∼10µm,
while the thickness of the targeted contact layers lies between
∼50 and 300 nm.

Testing four different etchants for different
dilutions in DI water: HCl(32%), H3PO4(85%),
CH3COOH(96%):H3PO4(85%) and HNO3(65%), we obtain
high etch rates (several micrometers/minute) and selectiv-
ity (sputtered gold or PECVD-deposited SiN hardmask are
not etched), which are clearly very beneficial characteristics.
In contrast to that, the resulting etch profiles are typically
trapezoidal sloped, together with a more or less pronounced
undercut, i.e. lateral etching, under the etch mask, which
can create problems during further device fabrication. More
details including particular etch rates and images of the etch
profiles are given in section 8.1 of the supplementary material
(available online at stacks.iop.org/SST/36/035023/mmedia).

3.2. ICP-RIE etching of m-plane Zn(Mg)O epitaxial layers

ICP-RIE is a widely used etching technique, which can lead
to enhanced etching profiles, i.e. significantly lower undercut

under the etch mask. This can be achieved through better con-
trol of the previously mentioned in-plane etching anisotropy,
by carefully adjusting the process parameters. Moreover, ICP-
RIE can often provide better control on the etch depths, due
to moderate etch rates in combination with very precise con-
trol on etching parameters like gas flow rates, temperature and
applied RF-bias.

In addition to a chemical etching component as in wet
chemical etching, ICP-RIE processes rely on physical etching
processes from ‘bombarding’ the sample surface with accel-
erated ions like ionized Ar atoms. This physical removal pro-
cess is crucial for: (a) breaking the bonds of the constituents
of the etched semiconductor lattice and (b) efficiently remov-
ing etch by-products from the sample surface. The former: (a)
is important in ZnO due to the high Zn to O chemical bond-
ing strength (see x-ray photon spectroscopy (XPS) measure-
ments of as-grown ZnO films: binding energy ∼= 1045 eV (Zn
2p1/2) and 1022 eV (Zn 2p3/2) [62]) and the latter: (b) for the
low vapor pressure of the etch by-products in ZnO [63–65]. In
addition, it has to be well-adjusted through carefully balancing
RF- and ICP-power, to minimize surface damage effects.

In our study, we focus on two different gas mixtures
and their suitability to etch m-plane ZnO: SiCl4(/Ar) and
CH4/H2(/Ar). Both have previously been used to etch other
types of ZnO samples and devices already, see e.g.: [41, 60, 63,
66–69] and the supplementary material section 8.2 for more
details on the ICP-RIE process in ZnO.

The availability of SiCl4 and CH4/H2 together with Ar
within our ICP-RIE reactor ‘Oxford Plasmalab 100’, allowed
us to perform the first comparative study between chlorine-
and methane-based etching of epitaxially grown m-plane
Zn(Mg)O.

3.3. SiCl4-based etching of m-plane ZnO

Chlorine-based ZnO etching has so far mainly been used in
the two chemistries Cl2(/Ar) [64, 65] and SiCl4(/Ar) [41, 60,
67]. While the former shows relatively fast etch rates between
50 nm min−1 and 206 nm min−1 [64, 65], the selectivity
towards a photoresist (PR) etch mask is very poor (⩽0.34 →
resist etched ∼3× faster than ZnO [65]). This is a direct con-
sequence of the high bias voltages of Vdc > 250 V, needed for
desorption of the low-vapor-pressure ZnCl2 etch by-product.

In contrast to that, SiCl4(/Ar) etches significantly slower in
the range of∼5 nmmin−1 up to∼37.5 nmmin−1 [60, 67, 70],
while the selectivity was not specifically analyzed so far.

In order to avoid poor selectivity and other negative effects
(see 8.3), the tests in our study have been conducted using a
sputtered Au-mask. We varied the SiCl4/Ar gas flow as well
as RF- and ICP-power at room-temperature and analyzed the
obtained etch-rate, selectivity and etch-profile for low cham-
ber pressure (⩽20 mTorr), i.e. in a rather diluted plasma. The
best etching is given by SiCl4:Ar (30:0 sccm) at 20 mTorr and
RF- : ICP-power (50 W : 200 W) which results in an etch-rate
of ∼12 nm min−1 and a selectivity of 2:1 (ZnO:Au-mask).
Further details, including etch-profile and other tested recipes
for this chemistry, are given in the supplementary material
section 8.3 and supplementary figure 6.
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We can conclude, that our etch-rates are in the same range
as in literature for other types of ZnO samples [60, 67, 70].
Our etch profiles are vertical for all tested parameters (see sup-
plementary figure 6) and only show slightly positively sloped
sidewalls for a very high partial Ar pressure (5 sccm : 40 sccm
(SiCl4:Ar), S1A). This is also in good agreement with findings
from literature for chlorine-based etching: e.g. ⩽70 ◦C [65].

Nevertheless, the suitability of SiCl4-based etching for m-
ZnO optoelectronic devices is limited twofold: firstly, due to
the very low etch-rate, limiting etching micrometer thick lay-
ers (10 µm ∼= 16 h) and secondly, due to the poor selectivity
even towards a sputtered Au-mask (best case: 2:1 for ZnO:Au-
mask). The poor selectivity is also an issue when using altern-
atives like e.g. PR-masks, while other metal-based masks like
Cr/Ni are difficult to be removed without damaging the ZnO
[60, 65].

3.4. CH4-based etching of m-plane Zn(Mg)O

The reaction of ZnO with CHx radicals leads to higher
etch-rates as compared to SiCl4-based etching, due to the
favorable, i.e. higher, etch by-product vapor pressure [63].
As shown e.g. by [68], the CH4-based etch-rate strongly
depends on and increases with the ratio R of its chemical
component CH4, as part of the total gas-composition, i.e.
R= CH4[sccm]

CH4+H2(+Ar)[sccm] . Hereby, the investigated range in lit-
erature covers extremely low CH4-concentrations of R =
0.044 [71] and 0.05 [72] only, up to high values of R = 0.6
[68], 0.66 [63] and 0.74 [70], respectively. Additional para-
meters that determine the amount of chemical and physical
etching are given by the applied RF-power, the chamber pres-
sure and, if available at the plasma reactor, the applied ICP-
power. For more details and a more detailed comparison to lit-
erature see table 3 in the supplementary material section 8.4.

To reduce sample surface and also mask damage, we
developed a novel etching recipe with strong chemical con-
tribution with higher selectivity and still high enough etch-
rates (≫30 nm min−1), while applying just as much physical
sputtering as necessary. After thorough testing and character-
ization, we came up with the following recipe: a very high
methane content of R = 0.83 is combined with a strong RF-
power of 250 W (≈450–500 V) and ICP-power of 200 W.
Both add to the needed physical sputtering to break the Zn
to O bonds and additionally, remove any etch by-products
during the etching-process. In addition to that, the chamber
pressure is kept very low for a diluted plasma (20 mTorr) and
the temperature is fixed at 25 ◦C. It is interesting to note, that
changing the temperature to e.g. 100 ◦C has barely any influ-
ence on the etch-rate of our recipe. More details are shown in
in the first row of supplementary table 3.

While only a few previous studies analyze the selectiv-
ity of CH4-etching towards the etch-mask (see e.g. [69] for
PMMA resist or [68] for regular PR), none performed a com-
parison for different mask materials. It is important since it
distinguishes parameters as maximum etch-depth and impacts
on the obtained etch profile including sidewall defect density,
which e.g. add to the waveguide losses in an optical waveguide

and therefore increase the lasing threshold of corresponding
devices [18, 73].

We performed a detailed analysis and tested PR (= 1.4 µm,
type: AZ 5214E), Au (= 1 µm, sputtered) and SiN (= 1.3 µm,
PECVD) as mask material. It includes their deposition and a
comparison of prior to and after etching, which is shown in
supplementary figure 7. While all details of this analysis are
given in the supplementary material section 8.4, the main res-
ults are also shown in figure 2 and described in the following.

Figure 2 shows SEM-based topview pictures for the
three tested masks after etching: (a+b) PR (thickness:
dprior = 1.4 µm, etched ZnO= 4 µm), (c) Au (dprior = 1 µm,
etched ZnO= 1.7 µm) and (d) SiN (dprior = 1.3 µm, etched
ZnO= 1.7 µm). While the sample in figure 2(a) is still with
the etching mask, this is not the case for (b)–(d).

After the methane-based etching, the results with the three
masks are very different. While effectively etching the PR
sample by about 4 µm, measured after safely removing
the PR mask in acetone, which is not attacking the ZnO
or ZnO/ZnMgO heterostructures underneath, we can see in
figure 2(a), that the PR ‘blows up’ in some parts due to too
much local heating or instead in other parts gets completely
removed. Figure 2(b) reveals that the resulting sidewalls are
very rough and not straight at all but rather sloped.

In contrast to that, the obtained sidewalls when etching
1.7 µm of ZnO with a Au-mask are pretty smooth and only
gradually more rough than prior to etching (cp. figures 7(b)
and (f)). Unfortunately, parts of the Au mask get re-sputtered
during the etching process onto the sample, especially along
the etched ZnO sidewall (see figure 2(c)) and partially even
remain on top after removing the remainders of the Au mask
with a quick dip in KI/I2 (not damaging the ZnO or ZnO/Zn-
MgO heterostructures underneath). Therefore, Au is also not
suitable to be used as mask material under these conditions,
since the Au ‘contamination’ after etching is difficult to be
removed.

Finally, we analyzed SiN for its suitability as etch-mask.
As figure 2(d) reveals, the sidewalls after etching are abso-
lutely vertical (confirmation for etch by-products only volat-
ile in an ion assisted process [64]) and the ‘roughness’ on the
hundreds of nanometer scale is directly transferred from the
SiN-mask prior to etching into the etched ZnO. Another very
pronounced feature can also be observed in figure 2(d): the
occurrence of high-density pyramid-shaped and ‘grass-like’
structures. They most likely either result from a non-equirate
removal of Zn and O and their etch by-products [64] or ori-
ginate from threading dislocations and surface defects, well
known to wurtzite semiconductors, which lead to the form-
ation of typically hexagonal textures after crystallographic-
orientation dependent etching [41]. Since all three test samples
showed the same surface prior to etching, we believe that the
‘grass’ originates from varying Zn- and O- etch-rates, rather
than the sample surface prior to etching (the other samples did
not show any similar behavior after etching and also additional
TEM measurements did not reveal any threading dislocations
prior to etching, thus disagreeing with this theory).

In addition to that, we also investigated several techniques
for removing SiN from a ZnO surface. We found that etching
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Figure 2. SEM topview images of three different masks for CH4-based ZnO etching: (a) and (b) PR AZ 5214E, (c) sputtered Au,
(d) PECVD SiN. While the used etching mask is still on top of the sample in (a), this is not the case for samples (b)–(d).

SiN in a RIE-reactor either in a CHF3/O2-based or a SF6-based
plasma has at most minimal impact on a ZnO surface under-
neath the SiN, i.e. the surface is etched at maximum a few
nanometers with no observable additional damage.

In conclusion, even though the PR-mask (AZ 5214E) is
very promising and PR has already been used successfully
in literature for methane-based etching including very high
selectivity [68], it is not suitable in our case due to the destruc-
tion of the PR while etching. The sputtered Au-mask sample
is excluded because it suffers from Au re-deposition on the
sample surface which is difficult to be removed or at least
controlled.

In contrast to that, the SiN sample which reveals
pyramidally-shaped structures can be ‘smoothed’ on its sur-
face by an additional wet-etching step, as tested before in
section 3.1 and will be discussed in the next section of this
manuscript. More details on the CH4 etching can be found in
the supplementary material section 8.4.

3.5. Combined dry and wet etching for ZnO-based
optoelectronic devices

As presented in section 3.1, multiple wet etchants were tested
in this study. HCl was identified as the most suitable one
for our m-plane ZnO samples. Thus it was also tested for
removing the grass-like pyramids and smoothing the ‘pointy
edges’ in the sidewalls after the methane-based RIE-etching
(see section 3.4). Figure 3 shows SEM images of the whole
etching procedure, which consists of: (a) masking of the ZnO
sample with patterned SiN (fabrication as described in the sup-
plementary material section 8.4), (b) dry-etching of the ZnO
in the methane-based ICP-RIE plasma (see section 3.4) and
(c) wet-etching of the sample in a strongly diluted HCl solu-
tion (HCl/H2O : 1/16). The SEM images of figure 3(c) reveal,
that the HCl etching is a very good procedure to get rid of the
grass-like defects as well as any sidewall-roughness, includ-
ing pointy defects. The resulting sidewalls are almost perfectly
vertical and smooth, while the plain ZnO is flat and smooth
with barely any remaining surface roughness.

Consequently, the shown ZnO patterning procedure is a
well-suitable way to fabricate waveguide-structures into epi-
taxially grown (single-crystal) m-plane ZnO layers yielding
minimal sidewall and surface roughness. In a next step, we
want to analyze the etching of ZnO/ZnMgO heterostructures,
since they are the main building-block for our ZnO-based

quantum devices. Especially, any difference in the etch rate for
those two materials is of particular interest and will be invest-
igated.

3.6. Selectivity of m-plane ZnO vs ZnMgO etching and the
usability as etch stop layer

The sample characteristics presented in the previous sections,
were solely based on m-plane ZnO substrates. To ensure
reliability and reproducibility of the results and avoid arti-
facts originating from a defective initial sample surface, we
exclusively used so-called ‘epi-ready’ substrates, i.e. sub-
strates, where the surface is prepared for an epitaxial growth.
Similar to ZnO, the etching characteristics of ZnMgO vary
and depend on the actual sample-type, layer composition and
sequence and the applied etching mechanism itself. Literature
shows e.g. that while HCl etching leads to dilution-dependent
selective etching of ZnO (ZnO(concM) = 1 × 10−2–1.2 M
⇒ etch-rate = ∼1–53 nm min−1) versus Zn0.9Mg0.1O
(Zn0.9Mg0.1O(concM)= 6× 10−3–2.4× 10−2 M⇒ etch-rate
= ∼350–1150 nm min−1), with ZnMgO etching much faster
[61], the opposite is the case for etching in a SiCl4 plasma [60].

The slower ZnMgO etching in the latter case can be
explained through the lower vapor pressure of the etch by-
product MgCl2 for ZnMgO etching [60] as compared to ZnCl2
for ZnO etching [63, 64]. This result is in strong contrast to
the HCl etching, i.e. ZnMgO being etched much faster (∼5–6
times).

Such a difference in the etch-rate is, on one hand, import-
ant to be controlled when etching heterostructures (see e.g.
‘fishbone-like’ etching structures in InGaAs/AlInAs QCLs
[74]), but can also be beneficial since it enables the use of cer-
tain materials/compositions as etch-stop layers. They are e.g.
needed in the fabrication of so called double-metal waveguides
for THz-QCLs [75–77].

Table 1 reveals different etch-rates for wet (HCl-) as well
as dry (CH4-)based etching of m-plane: (a) ZnO substrate,
(b) doped ZnO (MBE-grown), (c) ZnO/Zn0.77Mg0.23O hetero-
structure (MBE-grown) and (d) Zn0.77Mg0.23O. While CH4-
based ICP-etching shows up to 48% faster etching compared to
ZnMgO, the difference is not large enough for surface planar-
ization. The situation is different for HCl-etching (dilution:
1:16), for which the selectivity ZnO/ZnMgO reaches values
of >5 (see also table 2).
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Figure 3. SEM images of the three-step etching procedure: (a) masking and patterning: with/of SiN, (b) dry-etching: in CH4-based
chemistry and (c) wet-etching: in diluted HCl for surface defect and sidewall curing and smoothing.

Table 2. Values of the etch-rate selectivity between ZnO (substrate or doped MBE layer) and ZnMgO for two dilutions of HCl. The highest
selectivity results in a ratio of ∼5 (etching substrate and dilution of 1:16 in H2O).

Selectivity

HCl dilution ratio HCl:H2O ZnOsubstrate/ZnMgO ZnOdoped MBE/ZnMgO

1:4 1.5 2.2
1:16 5.2 3.9

The quality of the layer/substrate might be the origin, of
why the two ZnO samples (substrate and epitaxial layer) have
different etch-rates [70], together with some impact of the
doping-level on the etch rate.

It is worth noting, that, the etch-rate for ZnMgO is a func-
tion of the Mg-content. Consequently, a higher Mg-content
yields even slower etch-rates as seen for our methane-based
process. At the same time, the maximum layer thickness that
can be grown in this case is limited by built-in strain (see
section 8.5 in the supplementary material).

4. Suppression of ICP-etching induced surface
leakage currents

Surface currents are a known leakage mechanism for elec-
trons in various compound semiconductors [1, 2] includ-
ing the wide gap semiconductors GaN [3] and ZnO [78].
While those currents and their enhancement by additional
plasma treatment of the semiconductor surface, can result
in a further reduced resistivity, which is beneficial e.g. for
better n-type ohmic contacts in ZnO devices [79], they still
pose a parasitic loss mechanism for etched semiconductors
or more complex structures like heterostructures. In partic-
ular, the treatment in an Ar- and/or Hydrogen-ICP plasma
reduces the specific contact resistivity of ZnO-based struc-
tures up to more than two orders of magnitude [79] and can
be explained by the bombardment of the sample surface with
high energy argon/hydrogen ions (see section 8.6). Unfortu-
nately, the ICP-etching of our m-Zn(Mg)O samples also uses

those two surface-conductivity enhancing gasses (Ar and H2).
Moreover our etching recipe shows similarities to another
reported etching procedure by Lee et al which was used for
enhancing n-type contacts on ZnO (cp. section 8.6 and [79]),
i.e. basically the opposite of what we want to achieve by
suppressing those surface currents. In addition, CH4-based
etching tends to incorporate carbon in the Zn(Mg)O surface
[68], which can act as a n-dopant and consequently also
further enhance surface leakage currents [80, 81] (see also
section 8.6).

In order to obtain proper device operation for our samples,
we have to counteract all the previously mentioned effects and
suppress such surface leakage currents efficiently. This can
e.g. be achieved by introducing a highly-resistive ‘Shottky-
contact-like’ layer on top of the Zn(Mg)O, e.g. through treat-
ment with H2O2. In that case hydrogen peroxide forms a
highly resistive, O2-rich surface layer on top of the ZnO, which
results in an upward bending of the energy band at the sample
surface [78]. Another positive effect of the H2O2 treatment is
the reduction of deep-level defects in ZnO through the reaction
of the ZnO surface with O2-radicals, resulting in a reduced net-
carrier concentration at the sample surface and hence surface
leakage current suppression by several orders of magnitude
[82]. For more details on the processes and mechanisms of
surface leakage current suppression through the application
of H2O2 to ZnO, please see section 8.6 of the supplementary
material.

In addition to a H2O2 treatment, we also tested exposing
our m-ZnO samples to a strong oxygen plasma in order to
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Figure 4. (a) Layer sequence of the passivation-test sample. (b) IV-characteristics of the CH4/Ar/H2 etched m-plane ZnO test samples
(logarithmic-scale) as etched and under O2-plasma and H2O2-treatment for different temperatures and exposure times. (c) Resulting
voltage-dependent resistance after surface treatment.

obtain an oxygen-rich and therefore resistive surface layer.
We tested the treatments on etched square Mesas (CH4-based
etching presented in section 3.4) in a layer sequence as shown
in figure 4(a). It consists of a 30 nm thick non-intentionally
doped ZnO layer sandwiched between doped ZnO contact lay-
ers and 10/200 nm thick Ti/Au metal contacts. Figure 4(b)
shows the IV-characteristics of the sample in a logarithmic
plot. We extract an ohmic behavior with a resistance of
145 Ω at −1 V (black line) for the as-etched sample (see
figure 4(c)).

While treating the sample in an O2-plasma in two suc-
cessive steps, i.e. 300 W and 3min followed by 300 W and
10min (red and green line in figures 4(b) and (c), respect-
ively) has basically no effect on the IV-curve and resistance
at all, exposing it to H2O2 (32%) in a third step for 10min at
50 ◦C almost doubles the (still ohmic, i.e. constant) resistance
to 280 Ω at −1 V. This also means, that the current passing
through theMesa is reduced to half of its initial value. Another
exposure, this time at 57 ◦C for 32min, yields a much larger
reduction of the current by about two orders of magnitude to
currents in the mid.-10−2 Milliampere range. This is accom-
panied by a change of the resistive behavior to a Schottky-like
resistance (see asymmetry in figures 4(b) and non-constant
curves in (c)). As expected, additional treatments in hydrogen
peroxide at even higher temperatures (e.g. 85 ◦C and 90 ◦C)
can be performed at much shorter times (e.g. 2 and 5min),
while still further reducing the measured current. We measure
the highest resistance after the 5min 90 ◦C H2O2 treatment
(91 kΩ at −1 V), which is similar to the results of e.g. [83],
who fabricatedAu/n-ZnO rectifying contacts with such a treat-
ment (more details given in section 8.6 of the supplementary
material).

In order to reduce the needed total exposure time, we
use 95 ◦C for 5min as standard procedure for all following
samples, yielding similar surface leakage current suppression
as the results shown in figures 4(b) and (c). In agreement
with [83], we also observe a significant surface roughening
at 100 ◦C (⩾1min), identified through a change of the surface
investigated with a microscope from a shiny yellow color to a
dim brown one.

5. Conclusion

In conclusion, we investigated different etching schemes for
(non-polar) m-Zn(Mg)O epitaxial layers on m-plane ZnO
substrates, including various wet chemical and ICP-RIE dry
etching recipes. While solely applying dry etching in a CH4-
based chemistry results in vertical sidewalls with decent etch-
rates (0.5–0.8 nm s−1) and good selectivity towards a PECVD-
deposited SiNmask (∼1:10), it leaves ‘grass-like’ residuals on
the etched surface. In contrast to that, wet chemical etching,
e.g. in diluted HCl or H3PO4, shows high etch rates (∼20–
90 nm s−1) and selectivity towards an Au or SiN mask, but
with significant undercut.

The best way to mitigate the drawbacks of both techniques,
is in combining them: first dry etching to define the profile and
etch the major part of the structure, followed by a smoothing
etch in diluted (1:16) HCl to remove the residuals and defects
from the ion bombardment and the different Zn- and O- etch
rates at the sample surface during ICP-RIE etching. In addi-
tion to that, subsequently exposing the sample to H2O2 for
∼5 min at 95 ◦C reduces surface leakage currents from the
plasma-based etching by more than two orders of magnitude.
Similar effects of leakage current suppression could be iden-
tified for samples containing a significant amount of Mg in
their ZnMgO layers, i.e. by increasing the barrier height of
the quantum wells (cp. also [84]). This could e.g. be observed
by fabricating QCD structures with 20 periods in their active
region [51] and will be the topic of future investigations.

One additional advantage of using HCl is its observed
selectivity between ZnO and ZnMgO etching (up to ∼1:4
to 1:5), allowing the latter to be used as ‘etch-stop’ layer in
double metal waveguides, often used for THz QCL devices.
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