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Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults.
While complete remission can be obtained with intensive chemotherapy in young and fit
patients, relapse is frequent and prognosis remains poor. Leukemic cells are thought to
arise from a pool of leukemic stem cells (LSCs) which sit at the top of the hierarchy. Since
their discovery, more than 30 years ago, LSCs have been a topic of intense research and
their identification paved the way for cancer stem cell research. LSCs are defined by their
ability to self-renew, to engraft into recipient mice and to give rise to leukemia. Compared
to healthy hematopoietic stem cells (HSCs), LSCs display specific mutations, epigenetic
modifications, and a specific metabolic profile. LSCs are usually considered resistant to
chemotherapy and are therefore the drivers of relapse. Similar to their HSC counterpart,
LSCs reside in a highly specialized microenvironment referred to as the “niche”.
Bidirectional interactions between leukemic cells and the microenvironment favor
leukemic progression at the expense of healthy hematopoiesis. Within the niche, LSCs
are thought to be protected from genotoxic insults. Improvement in our understanding of
LSC gene expression profile and phenotype has led to the development of prognosis
signatures and the identification of potential therapeutic targets. In this review, we will
discuss LSC biology in the context of their specific microenvironment and how a better
understanding of LSC niche biology could pave the way for new therapies that
target AML.

Keywords: leukemic stem cell (LSC), acute myeloid leukemia, stem cell niche, genetic heterogeneity,
therapeutic targets
INTRODUCTION

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is
characterized by the clonal proliferation of abnormal hematopoietic progenitors leading to blood
and bone marrow infiltration and consequently hematopoietic failure (1). Over the past decades,
intensive research has significantly improved our understanding of AML biology, highlighting the
role of clonal evolution and identifying potential therapeutic targets based on recurrent molecular
abnormalities (2, 3). However, therapeutic progress has been limited (4). Despite a promising initial
org October 2021 | Volume 12 | Article 7751281
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response to intensive chemotherapy, relapse occurs in the
majority of patients and prognosis remains poor with a long-
term overall survival of 40-50% in patients younger than 60 years
old (5–8). In older patients not able to endure intensive
chemotherapy, therapeutic options are limited, and long-term
overall survival remains low at 15% (9, 10).

Leukemic stem cells (LCSs), also sometimes referred to as
leukemic initiating cells, were first described 25 years ago, when
Lapidot et al. showed that a small subset of leukemic cells could be
transplanted and give rise to leukemia in immunocompromised
recipient mice (11). The same group latter identified the
CD34posCD38neg phenotype as a way to enrich the LSC
population. Similar to normal hematopoietic stem cells (HSCs),
LSCs are able to differentiate and self-renew suggesting a
leukemic hierarchy (12–16).

Like their normal counterpart, LSCs reside in the bone
marrow in a specialized microenvironment termed “niche”.
Schofield first described the concept of niche in 1978 and
defined it as a limited specific anatomical site where stem cells
could be maintained, undergo self-renewal, and where
differentiation is inhibited (17). Over the past 20 years, the
development of transgenic mice and the improvement of
imaging techniques has led to several breakthrough discoveries
suggesting that the bone marrow microenvironment plays a
central role in normal and pathological hematopoiesis (18).
Within the niche, LSCs are thought to be protected from
chemotherapy (19–22). Therefore, targeting the LSCs niche
represents a promising option to cure AML.
LEUKEMIC STEM CELLS ONTOGENY
AND PHENOTYPE

The concept of LSCs is based on the idea that a small subset of
cells is able to continually replenish the bulk of leukemic cells.
Leukemic stem cells are defined by their capacity to self-renew,
incompletely differentiate, and reinitiate leukemia upon serial
transplantation in immunocompromised mice (11, 23). Initially
thought to originate from the healthy HSC compartment, recent
studies have shown that LSCs may instead emerge from
committed progenitors (24, 25). Most of human AMLs have at
least two molecularly hierarchically ordered distinct LSCs
populations (24). Interestingly, the more mature LSC
population most closely mirrors normal granulocyte-
macrophages progenitors (GMP) whereas the immature LSC
population is functionally similar to lymphoid-primed
multipotent progenitors (LMPPs). Leukemia originates from
the acquisition of driver mutations by HSC or early
progenitors (26–28). Identification of clonal hematopoiesis of
indeterminate potential (CHIP) has recently generated a
significant interest (29). The sequential acquisition of
mutations in HSCs and progenitors over a lifetime is suspected
to favor hematological malignancies. However, given the high
frequency of CHIP in the general population, the exact
significance of these mutations and implication in
leukemogenesis still needs clarification. To add more
Frontiers in Immunology | www.frontiersin.org 2
complexity, LSCs ontogeny seems to be reversible as opposed
to the previously accepted idea that LSCs unidirectionally
differentiate into mature AML cells. Indeed, PU.1 gene
suppression in differentiated AML-derived cells has been
shown to revert AML cells to an immature, clonogenic
leukemogenic state (30).

Following the pioneering work done by John Dick’s group,
showing that LSCs are enriched within the CD34posCD38neg

fraction, several surface markers have been described. Indeed,
studies showed that when compared to normal HSCs, LSCs
displayed a higher expression of CD25 (31), CD32 (31), CD44
(32), CD96 (33), CD123 (34–36), GPR56 (37), C-type lectin-like
molecule-1 (38), IL1RAP (Interleukin 1 Receptor Accessory
Protein) (39, 40), N-cadherin, and Tie2 (41). However, a high
intra and inter-patients’ heterogeneity prevents the use of a single
surface marker to easily isolate LSCs.
THE HEALTHY HEMATOPOIETIC NICHE

Hematopoietic stem cells reside in a highly specialized
microenvironment or niche within the bone marrow (18).
Cellular and molecular interactions between niche constituents
and HSCs tightly control their self-renewal, proliferation, and
differentiation properties. The development of reporter mice and
the improvement of imaging techniques has led to a better
understanding of the niche since the concept was first
proposed in 1978 (17). Studies have identified several cell
populations, sometimes redundant, implicated in homeostatic
and pathologic hematopoiesis. Similar to the heterogeneity of the
hematopoietic system, niche cells are also highly heterogeneous
(42–46).

Early studies have suggested a major role of osteoblasts in
hematopoiesis by showing hematopoietic stem and progenitor
cells (HSPCs) and osteolineage cells in close proximity at steady
state and after bone marrow transplantation, additionally
osteoblasts have the capacity to support HSPCs in vitro (47–
50). Other studies showed a correlation between the number of
osteoblasts and LinnegSca1posc-Kitpos HSPCs (51, 52). However,
the specific genetic deletion in osteoblast of two key cytokines
required for HSC maintenance, stem cell factor (Scf) and CXC-
chemokine ligand 12 (Cxcl12), did not have a major effect on
HSCs (53–55). In addition, 3-D imaging of the bone marrow
revealed that HSCs were preferentially localized close to the
vascular network but not to the endosteal surface (56, 57).
However, osteolineage cells form a niche for early lymphoid
progenitors (53, 54, 58), and are implicated in the development
and progression of several hematological malignancies like
leukemia (54, 58–61).

The identification of the SLAM cell surface markers allowed
the imaging of purified HSCs in their native niche (62). This
study and others revealed the close proximity of HSCs and blood
vessels suggesting the existence of a vascular niche composed by
different types of blood vessels and associated perivascular cells
(18). Bone marrow mesenchymal stem cells (BM-MSCs)
represent a rare and heterogeneous population of stromal cells
October 2021 | Volume 12 | Article 775128
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characterized by their ability to self-renew and differentiate into
osteoblasts, chrondrocytes and adipocytes (63). In the bone
marrow, MSCs are located around the blood vessels where
they closely interact with HSCs and support hematopoiesis.
The development of new transgenic mice models led to the
identification of several MSC subsets with significant overlap
between the different populations identified (53, 55, 64–68). BM-
MSCs are major sources of key niche factors important for the
maintenance, proliferation and retention in the mouse bone
marrow of HSCs (69). Deletion of Scf or Cxcl12 in stromal
cells directly affects HSC number and localization (67, 70, 71).
Recent single cell RNA sequencing-based studies have confirmed
the high heterogeneity among stromal cells in the bone marrow
in particular within the MSC compartment at an unprecedented
resolution (42, 44, 45).

The bone marrow is highly vascularized which provides
nutrients and oxygen and furthermore allows HSCs and newly
generated hematopoietic cells to leave the bone marrow and
circulate throughout the body. Bone marrow vascularization is
composed of thin-walled arterioles paralleled to the long bone
axis and mostly closed to the endosteal region. Arteriolar vessels
are connected to the dense network of highly branched sinusoids
by type-H vessels at the proximity of the bone (72). Endothelial
cells are also key regulators of HSC maintenance and function,
and most HSCs localize within 5µm of a bone marrow vessel (56,
62). Indeed, endothelial cells express several factors that regulate
HSC function such as SCF, CXCL12, and Notch ligands among
others. Depletion of these factors has a dramatic effect on HSC
number at steady state and hematopoietic recovery following
myeloablative treatment (53–55, 73, 74).

The nervous system plays a crucial role in bone and bone
marrow homeostasis (75). Whereas parasympathetic fibers only
innervate the compact bone, the bone marrow cavity is
innervated by both sympathetic and sensory nerves (76, 77).
Although sympathetic nerves do not regulate HSC directly, they
are important regulators of HSC mobilization from the bone
marrow in response to G-CSF (78). HSCs are also released into
the circulation in a circadian manner in response to adrenergic
signals from the sympathetic nervous system (SNS) that regulate
the synthesis of MSC derived CXCL12, critical for the retention
of HSCs inside the bone marrow (65, 78, 79). Interestingly,
nociceptive nerves collaborate with the SNS in HSCmaintenance
and G-CSF-induced mobilization via the secretion of calcitonine
gene-related peptide (80). Bone marrow neuropathy observed in
aging or after the administration of genotoxic drugs induced a
profound remodeling of the HSC niche and affected bone
marrow regeneration (81–83). Non-myelinating Schwann cells
are also involved in HSCs maintenance by converting the latent
Transforming Growth Factor b (TGFb) into the active form
inducing HSCs quiescence (84).

In addition to bone marrow stromal cells, healthy HSCs are
also directly and indirectly regulated by their own hematopoietic
progeny including megakaryocytes, macrophages, regulatory T
cells, neutrophils and other myeloid cells, reviewed
elsewhere (18).
Frontiers in Immunology | www.frontiersin.org 3
THE LEUKEMIC NICHE

Although the exact location of LSCs within the bone marrow
niche still needs to be clarified, it is now clear that the
microenvironment plays a role in leukemogenesis and that
leukemic cells can also alter the bone marrow at the expense of
physiological hematopoiesis.

A Potential Role of the Microenvironment
in Leukemogenesis
Leukemogenesis was long regarded as a cell autonomous process.
This dogma was challenged by the early description of donor cell
derived leukemia in bone marrow transplanted patients (85).
These observations supported the “seed and soil” theory
proposed by Paget in 1889 who suggested that tumor
metastasis required favorable interactions between tumor cells
(the “seed”) and their microenvironment (the “soil”) (86). The
role of non-hematopoietic cells in leukemogenesis was first
demonstrated by the development of transgenic mice and the
capacity to delete genes in a cell-specific manner. In the context
of hematological malignancies, the proof of concept came from
the description of a myeloproliferative disorder induced by
deregulated expression of Jagged 1 in IkBa deficient
hepatocytes. In contrast, mice with a conditional deletion of
IkBa specifically in the myeloid lineage did not develop any
myeloproliferative neoplasm (MPN) (87), suggesting that
premalignant hematopoietic disorders can be initiated by
nonhematopoietic cells. Walkley, et al. demonstrated the role
of the retinoic acid receptor-g (RARg) in niche-driven MPN.
Mice deficient in RARg developed a MPN-like phenotype even
when transplanted with wild-type cells (88). The same group
investigated the role of the retinoblastoma protein (RB) in
hematopoiesis and demonstrated that the deletion of Rb
induced a MPN-like phenotype only when deleted in both the
hematopoietic and non-hematopoietic compartments (89).
These studies support the role of the interaction between
hematopoietic cells and their microenvironment in the
development of hematological malignancies.

Bone marrow MSCs play a central role in the regulation of
HSCs during homeostatic hematopoiesis while also involved in
the development of myelodysplasia and leukemia. Indeed,
specific deletion of the gene encoding Dicer 1, an enzyme
involved in micro-RNA processing in osteoprogenitors induces
myelodysplasia and sporadic secondary leukemia (59). This
phenotype was not observed when Dicer1 was deleted in the
hematopoietic cells demonstrating that the myelodysplasia was
environmentally induced. Deletion of Dicer1 induced the
downregulation of Sbds, a gene mutated in Schwachman-
Bodian-Diamond syndrome, which is a rare human disease
characterized by bone marrow failure and a predisposition to
leukemia. Specific deletion of Sbds in MSCs induced
mitochondrial dysfunction, oxidative stress, and activation of
the DNA damage response in HSPCs ultimately impairing
hematopoiesis and favoring leukemogenesis (90). This effect is
a consequence of the secretion of the pro-inflammatory
October 2021 | Volume 12 | Article 775128
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molecules, S100A8 and S100A9, by MSCs. Conditional
expression of a mutated form of Ptpn11, the gene encoding for
the protein tyrosine phosphatase SHP2, in MSCs and
osteoprogenitors also induced a MPN-like phenotype (91). To
further support the role of the osteolineage compartment in
leukemogenesis, activating mutation of beta-catenin in
osteoblasts induced AML by activation of Notch signaling
in HSPCs (92). By contrast, the defective activation of Notch
in the microenvironment leads to myeloproliferative disease
(93). This effect is attributed to a Notch-dependent repression
of the micro-RNA miR-155, regulating the inflammatory state of
the bone marrow niche (94).
Frontiers in Immunology | www.frontiersin.org 4
Healthy hematopoiesis is the consequence of close and
highly regulated interactions between HSPCs and their
microenvironment. Overall, cumulative evidence suggests that
niche constituents can also drive hematopoietic malignancy.

Remodeling of the Hematopoietic Niche
by Leukemic Cells
As our knowledge of the normal hematopoietic niche improved
in the past 20 years, the role of the microenvironment in
leukemia development captured the attention of the field.
Leukemic cells can remodel the niche creating a favorable
microenvironment at the expense of the normal hematopoiesis
FIGURE 1 | Remodeling of the healthy niche into a permissive leukemic niche. Neuropathy: Leukemic progression is associated with sympathetic neuropathy. Loss
of b2-adrenergic signaling directly promotes leukemic progression and triggers the expansion of MSCs primed for osteoblastic differentiation but with a defect in
terminal maturation leading to a reduction in mineralized trabecular bone. Mesenchymal stem cells: In leukemia, MSCs are dysfunctional expressing lower levels of
key healthy HSC niche factors such as Scf and Cxcl12 impairing healthy hematopoiesis. LSCs express high levels of the CXCL12 receptor CXCR4 and other
adhesion molecules such as CD44 and VLA-4 to usurp the adhesion mechanisms of healthy HSCs. MSC also contribute to LSC survival by the production of
microvesicules and via mitochondria transfer, providing energy support. Alteration of the vascular niche: The expression of VEGF in the leukemic niche induces an
increase in vascular density and the production of NO by endothelial cells increases vascular leakiness contributing to hypoxia. In leukemia, endosteal blood vessels
are more disrupted than the central bone marrow ones. Adipocytes: Leukemic cells support their own metabolism and survival by stimulating lipolysis which fuels
fatty acid oxidation in chemotherapy resistant LSCs expressing the fatty acid transporter CD36. Inflammatory niche: Activation of Notch signaling in osteolineage cells
leads to the activation of the NF-kB pathway in leukemic cells supporting their survival and proliferation. An autocrine secretion of pro-inflammatory molecules like
IL-1 and TNF-a also activates the NF-kB pathway. HSC, hematopoietic cells; SCF, stem cell factor; FA, fatty acid; LSC, leukemic stem cell; MSC, mesenchymal
stem cell; MV, microvesicule; NO, nitric oxide; ECM, extracellular matrix.
October 2021 | Volume 12 | Article 775128
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(Figure 1) (95). Imaging studies in mice have shown that
chemotherapy resistant human LSCs primarily home to and
engraft close to the endosteal region where they closely interact
with different microenvironmental structures (19).

The bone marrow vascularization is altered in AML with an
increased micro-vessel density consequence of the production of
pro-angiogenic factors like vascular endothelial growth factor
(VEGF) (96–99). AML progression induces the production of
nitric oxide (NO) which increases vascular permeability and
maintains overall hypoxia (100). Interestingly AML leads to a
differential remodeling of vasculature in central and endosteal
regions (101). A preferential disruption of the endosteal blood
vessels leads to progressive remodeling of the endosteal stroma
and the progressive loss of stromal cells. Inhibition of the AML-
driven vascular remodeling was shown to improve
chemotherapy efficiency in mice (100, 101).

Leukemic cells can reprogram MSCs to create a pro-tumoral
niche. MSCs reprogramming can occur following direct cell-to-
cell contact, via secreted factors, or via exosomes (102–104). In
addition, humanMSCs isolated from AML patients (AML-MSC)
displayed in-vitro reduced proliferative potential and increased
levels of apoptosis (105). Compared to MSCs isolated from
healthy donors, AML- MSCs have a lower expression of
several niche factors such as SCF, THPO, ANGPT1, VCAM1
and BMI1 (106). In mice, MSCs support AML cells by
transferring mitochondria to provide additional energy (107,
108). This transfer is enhanced by some chemotherapies and
provides a survival advantage to leukemic blasts and LSCs. This
transfer occurs through AML-derived nanotubes. Study in mice
showed that superoxide produced by AML cells NADPH
oxidase-2 (NOX2) stimulates the nanotubes formation in
MSCs. Interestingly, inhibition of NOX2 was able to prevent
mitochondrial transfer and improved survival in a xenograft
model (107). MSCs also help LSCs to cope with increased
reactive oxygen species (ROS) levels, consequence of the
mitochondrial transfer by providing increased bioenergetics
and detoxifying enzymes (109). Furthermore, MSCs protect
AML from chemotherapy through increased Notch and Wnt
signaling and inhibition of apoptosis (110–113). Dysregulation
of the cytokine profile is suspected to create a pro-tumoral niche
in AML (114, 115). LSCs reside in a pro-inflammatory
environment known to favor LSCs survival and proliferation.
As opposed to normal HSCs and differentiated blasts, LSCs
exhibit constitutive NF-kB activity. This activity is partly the
consequence of an autocrine tumor necrosis factor-a (TNF-a)
secretion, formed by an NF-kB/TNF-a positive feedback loop
(116). Activation of Notch signaling also contributes to the
activation of the NF-kB pathway (111). Similarly, LSCs
aberrantly express the co-receptor for interleukine-1 (IL-1),
IL1RAP. Downregulation of IL1RAP inhibits the clonogenic
activity of AML cells and leads to increased apoptosis (39).
Interestingly, LSCs express IL-1 suggesting another pro-
inflammatory autocrine loop. Within the leukemic niche,
cytokines can be produced by either immune or leukemic cells.
Several cytokines and soluble factors have been shown to affect
Frontiers in Immunology | www.frontiersin.org 5
leukemic cells survival and growth in-vitro (117). While pro-
inflammatory cytokines such as IL-1b, GM-CSF, IL-3, TNF-a
seem to promote AML cells growth, anti-inflammatory
molecules such as IL-1Ra, TGF-b and IL-10 have an inhibitory
effect (117–119). The function of a specific cytokine is dependent
on multiple complex molecular interactions within the
microenvironment. Therefore, despite a major improvement in
our understanding over the past decade, further studies are
needed to clarify the cytokine network in AML.

Adipocytes are classically considered negative regulators of
normal hematopoiesis (120). However, this negative action
seems to depend on adipocytes anatomical location. Indeed,
adipocytes in the active red bone marrow support blood
regeneration and myelo-erythroid maturation (121, 122). In
the context of AML, leukemic cells repress bone marrow
adipocyte maturation impairing myelo-erythoid differentiation
(122). Leukemic cells induce the lipolysis of triglyceride to free
fatty acids supporting their proliferation and survival (123).
Interestingly, outside the bone marrow, gonadal adipose tissue
represents a reservoir for LSCs. Within this adipose tissue,
leukemic cells create an inflammatory environment triggering
lipolysis and the released of fatty acids that fuel LSCs expressing
the fatty acid transporter CD36, contributing to chemo-
resistance (124).

The sympathetic nervous system is a critical regulatory
component of the bone marrow microenvironment that
controls the plasticity of bone marrow stromal cells under
homeostatic conditions (78, 79, 125). Aging, a condition
associated with myeloid biased hematopoiesis and an increased
risk of myelodysplastic syndromes and leukemia is associated
with sympathetic neuropathy and decreased b3-adrenergic
signaling (82, 83). In a MLL-AF9 mouse model, AML
infiltration induced sympathetic neuropathy which further
promoted AML (60). This neuropathy was associated with an
expansion of Nestin-GFPpos MSCs primed for osteolineage
differentiation, and HSC exhaustion. Loss of b2-adrenergic
signals directly promotes an expansion of LSCs expressing the
b2-adrenergic receptor. Studies using primary AML cells from
patients showed that leukemic cells altered adipogenesis in favor
of osteolineage differentiation (122, 126). However, sympathetic
neuropathy impairs terminal osteoblastic lineage differentiation
leading to a reduction in mineralized bone density (60).
Sympathetic neuropathy was also induced by the pro-
inflammatory environment observed in a JAK2V617F MPN
mouse model (127). In this context, Nestin-GFPpos MSCs are
reduced, which in turn led to the expansion of altered HSPCs and
disease progression.

Similar to their healthy counterpart, LSC localization is
dependent on the expression of cytokines and adhesion
receptors. Leukemic cells adhere to the bone marrow through
three main receptors: CXCR4, Very Late Antigen-4 (VLA-4) and
CD44 (128). The high expression of these adhesion molecules
facilitates the homing and retention of leukemic cells in the niche
impairing chemosensitivity (32, 129–131). In addition,
interactions between VLA-4 expressed by leukemic cells and
October 2021 | Volume 12 | Article 775128
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VCAM1 expressed at the surface of BM-MSC mediates
chemoresistance via activation of the NF-kB pathway in
stromal cells (20).
LEUKEMIC STEM CELLS: A
THERAPEUTIC OPPORTUNITY

LSCs as a Prognostic Marker
Patients with AML are treated according to a risk stratification
aiming to identify the patients with low, intermediate, and high
risk of relapse based on the disease characteristics at diagnosis
(9). Since LSCs have been implicated in treatment resistance and
relapse, quantification of the LSC pool could be an additional
prognostic factor beside the traditional genetic and molecular
abnormalities. As we discussed before, a clear definition of the
LSC phenotype does not exist, and different approaches have
been used to estimate the LSC pool in patients. Using flow
cytometry, Zeijlemaker W. et al. showed that CD34-positive
AML blasts were associated with an increased incidence of
relapse compared to CD34-negative AML (132). More recently,
the prognostic impact of LSC frequency defined by the
CD34posCD38neg phenotype combined with minimal residual
disease (MRD) evaluation was demonstrated in a prospective
study (133). High level of CD34posCD38low/CD123pos blasts at
diagnosis is predictive of an adverse outcome (134).
Interestingly, a recent study performed in older AML patients
showed that this predictive impact is only seen in patients treated
by intensive chemotherapy but not by hypomethylating agents
(36). Leukemic stem cells frequency seems to be correlated with a
lower white blood cell count, an adverse cytogenetic risk, and less
frequent NPM1 mutation (36, 135).

Stem cell gene expression signatures have been shown to have
a prognostic impact in AML, also highlighting the potential role
of leukemia stemness in treatment response (25). Based on this
observation, a 17 genes score (LSC17) that compared the gene
expression profiles between 138 LSCpos and 89 LSCneg isolated
from 78 AML patients was developed (136). A high score is
associated with a poor outcome after standard treatment
including HSC transplantation (136). The LSC17 was recently
challenged by the newly developed AML prognostic score (APS),
a 16 gene expression signature score, derived from RNA-
sequencing and whole exome sequencing results (137).
Interestingly, the authors hypothesized that APS can
outperform the LSC17 because of its capacity to capture signal
from the microenvironment.

How to Target the Leukemic Stem
Cell Niche
Compared with other hematological malignancies, therapeutic
progresses have been limited in AML highlighting the need for
new strategies. The microenvironment shelters LSCs, protects
them from genotoxic drugs and therefore represents a possible
cause of treatment failure and relapse. Different strategies have
attempted to target the LSC-niche interactions and several
studies are currently ongoing (Figure 2). LSCs can also be
Frontiers in Immunology | www.frontiersin.org 6
directly targeted based on their phenotypic and functional
differences compared to healthy HSCs. These strategies are
beyond the scope of this article and have been reviewed
elsewhere (31, 138–140).

Adhesion Molecules
Adhesion molecules maintain LSCs in the hypoxic niche
protecting them from cycling-dependent chemotherapies.
Targeting adhesion molecules aims to mobilize LSCs out of
their protective niche in order to expose them to
chemotherapy. LSCs express the receptor CXCR4 and migrate
in response to CXCL12 (141). Moreover, high levels of CXCR4
expression are associated with relapse and poor overall survival
in patients (142). Plerixafor, a potent inhibitor of CXCR4, is
currently used in association with G-CSF to induce HSCs
mobilization (143). In an acute promyelocytic leukemia murine
model, treatment with plerixafor in combination with cytarabine
and daunorubicine improved chemosensibility and overall
survival (144). Since this early study, plerixafor has been tested
in phase I-II studies, in combination with various
chemotherapies and hypomethylating agents with promising
results (145–147). Other CXCR4-CXCL12 axis inhibitors are
under clinical development like CX-01, BL-8040 and
ulocuplumab. These drugs showed encouraging results in
combination with chemotherapy in phase I-II studies (148–
151). However, larger phase III studies are needed to confirm
the benefit and the exact place of the CXCR4-CXCL12 axis
inhibition in AML treatment strategy.

Bromodomain and extra-terminal domain-containing (BET-
containing) proteins (BETPs)-inhibitors, can also target adhesion
molecules. Sustained degradation of BETPs induced the
downregulation of CXCR4 and CD44 expression, decreased the
LSC population, and improved overall survival in a patient-
derived xenotransplantation model (152). Importantly, BETPs
inhibition significantly reduced the number of LSCs when used
alone or in combination with chemotherapy. CD44 represents an
exciting target since it is differentially expressed between LSCs and
normal HSCs (130, 131). Administration of H90, a monoclonal
antibody directed to CD44, in immunocompromised mice
transplanted with human AML reduced the leukemic burden.
Interestingly, H90 seemed to specifically target the LSCs
population since no leukemia was observed in serially
transplanted mice (32).

Vascularization Remodeling and Hypoxia
VEGF was early identified as a promising target given its pro-
angiogenic and anti-apoptotic effects on leukemic cells (153).
However, results of clinical studies using bevacizumab, a
humanized recombinant monoclonal antibody directed against
VEGF have proven disappointing (154, 155). A recent study in
mice suggests that inhibition of NO production by endothelial
cells could restore the normal vascularization and improve
response to cytarabine (100). Targeting NO production by
inhibiting the NO synthase could therefore represent a new
therapeutic target. The niche represents a hypoxic environment
that maintains LSCs in a quiescent state. Moreover, hypoxia
inducible factor-1 (HIF-1a) expression induced by hypoxia
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upregulates CXCR4 expression at the membrane surface of LSCs
(19). However, the exact impact of HIF-1a inhibition is still
debated (156, 157). Another way to target the hypoxic
microenvironment is to use hypoxia-activated prodrugs
(HAPs) (158) specifically designed to form cytotoxic agents
under hypoxic conditions while limiting the toxicity on normal
tissues. Evofosfamide (also known as TH-302) is a 2-
nitroimidazole-linked prodrug. In vitro, evofosfamide
treatment promotes a dose- and hypoxia-dependent apoptosis
and cell death in AML cells. Interestingly, in a xenograft model,
evofosfamide reduces LSC pool with limited toxicity on normal
hematopoiesis (159, 160). However, a phase I study conducted in
Frontiers in Immunology | www.frontiersin.org 7
49 patients with advanced leukemia showed disappointing
results with an overall response rate of only 6% only (161).
Other HAPs are currently under development.

Cytokines and Soluble Factors
Targeting the pro-inflammatory environment represents another
interesting strategy considering the importance of cytokines like
IL-1, IL-6 and TNFa for LSC survival and proliferation. IL-1 and
IL-6 inhibitors are already commercially available for the
treatment of autoimmune disease and cytokine released
syndromes (162, 163). It would be interesting to test these
inhibitors in combination with chemotherapy even if caution is
FIGURE 2 | Therapeutic targeting of the leukemic niche. The different molecular interactions between LSCs and the bone marrow niche constituents are shown.
Inhibitors are labeled in red. Most of the drugs shown in the figure are under pre-clinical or early clinical development. IL-1, interleukine-1; Ab, antibody; CD, cluster
of differentiation, FA, fatty acid; LSC, leukemic stem cell; MSC, mesenchymal stem cell; NOX2, NADPH oxidase 2; NO, nitric oxide; ECM, extracellular matrix; VEGF,
vascular endothelial growth factor; HAP, Hypoxia-activated prodrugs; PPARg, Peroxisome Proliferator-activated Receptor gamma; VCAM-1, Vascular Cell Adhesion
Molecule-1; BETPs, Bromodomain Extra-Terminal Protein.
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needed regarded the risk of infections. Given the higher
expression of IL1RAP at the surface of LSCs compared with
normal HSCs, targeting IL1RAP is an attractive option. Indeed,
in a preclinical study, targeting IL1RAP using a monoclonal
antibody induced selective killing of AML CD34posCD38pos,
and CD34posCD38neg cells both in vitro and in a xenograft
model (164).

Since leukemic cells trigger lipolysis and use fatty acids as a
source of energy, targeting the adipose tissue represents another
possible strategy. Studies in mice have shown that restoring
normal adipocyte maturation using PPARg agonists inhibits
leukemic growth. Similarly, inhibiting fatty acids transfer to
leukemic cells improved survival in a xenograft model (123).
However, further studies in human are warranted.
CONCLUSION

According to the cancer stem cell theory, LSCs sit at the top of
the hierarchy and are the source of the more differentiated
leukemic blasts. Even if these cells represent an attractive
target, eradicating LSCs is highly complex, notably due to the
lack of specific markers. AML is associated with a remodeling of
the hematopoietic niche where HSCs and LSCs reside, however,
modifications of the microenvironment also contribute to
leukemia development at the expense of normal hematopoiesis.
Since the first description of LSCs more than 25 years ago, our
Frontiers in Immunology | www.frontiersin.org 8
understanding of this small subset of leukemic cells has greatly
improved with the identification of potential therapeutic targets
paving the way for the development of new treatment strategies
in a still deadly disease.
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