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Abstract

The present work reports a comparative performance of artificial neurons obtained in terms of the real-valued

Jaccard and coincidence similarity indices and respectively derived functionals. The interiority index and classic

cross-correlation are also included for comparison purposes. After presenting the basic concepts related to real-valued

multisets and the adopted similarity metrics, including the generalization of the real-valued Jaccard and coincidence

indices to higher orders, we proceed to studying the response of a single neuron, not taking into account the output non-

linearity (e.g. sigmoid), respectively to the detection of gaussian two-dimensional stimulus in presence of displacement,

magnification, intensity variation, noise and interference from additional patterns. It is shown that the real-valued

Jaccard and coincidence approaches are substantially more robust and effective than the interiority index and the

classic cross-correlation. The coincidence-based neurons are shown to have the best overall performance respectively to

the considered type of data and perturbations. The potential of the multiset neurons is further illustrated with respect

to the challenging problem of image segmentation, leading to impressive cost/benefit performance. The reported

concepts, methods, and results, have substantial implications not only for pattern recognition and machine learning,

but also regarding neurobiology and neuroscience.

1 Introduction

A great deal of human perception and cognition, as well

as of many other living beings, critically rely on neuronal

transduction and processing of several types of informa-

tion. From a simplified mathematical perspective, a neu-

ron has been understood as a cell specialized in processing

and transmitting signals. In a very simplified approach to

modeling neuronal operation, known as integrate-and-fire,

neuronal dynamics can be though as involving the two

following main stages: (i) integration: an inner product

between the input stimulus and the respective synaptic

weights, yielding an accumulated value; and (ii) fire: the

subsequent application of a non-linear function, such as

a sigmoid, over that value, eventually yielding an action

potential (e.g. [1, 2]).

This type of operation can be complemented, regard-

ing the geometrical/shape aspects of neuronal operation,

in terms of the concept of receptive field (e.g. [3, 4]) de-

fined with respect to some input stage space. For in-

stance, several of the ganglion cells of the retina (e.g. [5])

have been characterized by respective antagonic recep-

tive fields defined on the visual space (scene) or along the

retina surface (retinotopic). Cortical neuronal cells of-

ten operate on topographical mappings of the visual field

(e.g. [3, 4]). The mathematical modeling of these recep-

tive fields therefore provides an effective manner for rep-

resenting, modeling, and better understanding neuronal

operation according to a systemic representation which is

directly related to the concepts of correlation, convolution

and point-spread functions (e.g. [6, 7, 8, 9]).

In addition to its dynamic properties along time, the

shape of receptive fields has been understood to play an

important role in detecting and processing patterns. In-

deed, a more elaborated dendritic arborization will tend

to have enhanced chances of receiving more synaptic con-

nections. The importance of the neuronal geometry seems

to be so important that it often adapts to the type of

function the neuron performs (e.g. [10, 11, 12]). Among

the several possible interrelationships between neuronal

shape and function, we have that the alignment and sim-

ilarity between the visual signal and the neuronal two-

dimensional distribution of synaptic weights tend to result

in higher neuronal activation, therefore providing some

kind of template matching or matched filtering.

In the present work, we re-evaluate the functioning of

single neurons in terms of recently introducted multiset-

based similarity indices capable of operating on real-

valued data [13, 14]. More specifically, instead of us-

ing the traditional inner product, we apply the real-
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valued Jaccard, interiority, and coincidence similarity

metrics [13, 14, 15].

Introduced decades ago [16], the Jaccard similarity be-

tween two sets A and B is aptly defined in terms of the

following ration between set operations:

J (A,B) =
|A ∩B|
|A ∪B|

(1)

where |A| stands for the cardinality of set A, and 0 ≤
J (A,B) ≤ 1.

When extended to 1D densities or non-negative func-

tions (e.g. [17, 18, 14, 13]), the Jaccard index can be un-

derstood in particularly appealing geometrical manner as

the ratio between the area shared between the two func-

tions and the union of their respective areas. Of particular

interest is the fact that, though extremely simple, the Jac-

card index implements an action that, though analogous

to the classic inner product, is non-linear as a consequence

of the use of the maximum and minimum binary operators

which are, in multiset theory (e.g. [19, 20, 21, 22, 23, 24]),

required for union and intersection of multisets, respec-

tively. By ‘binary operator’ it is meant the mathematical

understanding of an operation involving two arguments.

Though the present work focuses on the use of mul-

tiset similarities respectively to biological and artificial

neurons, the several analysis and comparisons with other

operators provide interesting resoures regarding other ap-

plications of the real-valued Jaccard and coincidence oper-

ators, be it used as quantifications of similarity (e.g. [13])

or as the means to translated datasets into respective net-

works (e.g. [15]).

We start by presenting the inner product, its proper-

ties, basic multiset concepts (e.g. [19, 20, 21, 22, 23, 24]),

as well as the recently introduced real-valued Jaccard and

coincidence indices [13, 18, 14]. This presentation is per-

formed first respectively to one-dimensional input, and

then extended to two- and multidimensional synaptic in-

puts. In addition to discussing the intrinsic, though lim-

ited, ability of the real product between two scalars in

providing information about their respective similarity,

we also show how the real-valued Jaccard index can be de-

rived in a logical manner starting from the totally strict

similarity comparison provided by the Kronecker delta

function.

Unlike in a recent study [13], which approached the sub-

ject of similarity more generally in terms of correlation-

like perspective, the neuronal perspective adopted in this

work allowed attention to be focused on similarity com-

parisons where one of the arguments is kept constant,

therefore corresponding to stable synaptic weights. In

addition, for generality’s sake, additional results are re-

ported regarding the generalization of the multiset simi-

larity indices to higher orders, yielding a generic similarity

function that converges to the Kronecker delta product for

infinite order.

A systematic approach is then proposed and applied for

comparing the performance of neurons in pattern recog-

nition, while adopting the standard cross-correlation as

well as the interiority, real-valued Jaccard and coinci-

dence indices [13, 18, 14]. The comparison is performed

with respect to varying pattern position, intensity, scale,

noise levels, presence of additional interfering patterns,

and false positives resulting from completely noisy data.

Several interesting results are report that, all in all, con-

firm that the coincidence index provides the most strict

and detailed recognition, followed by the real-valued Jac-

card and interiority indices. The classic cross-correlation

resulted almost useless for the considered task and type

of data. These results have many implications and ap-

plications to several related areas, some of which are also

briefly discussed.

2 The Importance of Feature

Spaces

The type of input received by a neuronal cell (biological or

artificial) — including the respective physical units, mu-

tual interrelationship, and coordinate system (basis cho-

sen for representation) — has a critically important im-

pact on subsequent processing, including pattern recog-

nition. Henceforth we will understand each individual

synaptic input to a neuronal cell as being associated to

a respective measurement or feature, which can often be

modeled as a random variable.

Figure 3 depicts two main situations regarding the type

of input received by a neuronal cell (biological or artifi-

cial). In Figure 3(a), we have a single neuronal cell de-

riving its synaptic input directly from the coordinates of

geometric data organized topographically, in which case

there are intrinsic geometrical relationships (e.g. continu-

ity and proximity) implied by proximity and adjacency

between the data elements or features that constitute po-

tentially useful information for the neuronal processing.

An example of this type of input is the description of

the geometry of a 3D real-world object (e.g. an apple) in

terms of the respective position of each of its points, each

of them corresponding to as defined by an orthonormal

coordinate system. Observe that each of these features

have completely homogeneous, having exactly the same

nature (physical unit of space). In these cases, geometric

transformations such as translations, rotation, and even-

tually scaling (e.g. citeshapebook) are well posed, and the

recognition is often required to be performed invariant to

these transformations.
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Figure 1: The two main types of synaptic inputs to an individual

neuronal cell: (a) the features have homogeneous units, correspond-

ing to the positions (coordinates) of the points of the patterns to be

recognized, in the case of this particular example being measured in

2D orthogonal coordinate system (the x and y coordinates of each of

the pattern points are taken as respective synaptic input/feature);

(b) the features are of more general and heterogeneous and poten-

tially abstract and/or compound nature, such as temperature, color,

weight, age, value, etc. Observe that any feature may correspond

to a functional combination and/or composition of the others, while

other features are more independent one another. In practice, the

identification of the intrinsic mathematical structure of the adopted

features constitutes a rather challenging issue.

However, the above discussed geometrical type of input

is never verified in biological or machine recognition sys-

tems, except for situations in which the neurons operate

directly onto the visual scene projections onto the retina,

but in this case the coordinate system is no longer orthog-

onal or normalized (projection from 3D to 2D). In visual

pattern recognition systems, except for the first layer re-

ceiving projections of the scene, the neuronal input almost

invariably relate to measurements – such as sizes, angles,

areas, etc. — that are derived from the patterns geome-

try but not correspond directly to the individual position

of the object points in an orthogonal system.

Figure 3(b) shows another situation, much more fre-

quently observed in practice regarding neuronal input.

Here, though the position of each feature is important,

they have heterogenous units and are not directly related

coordinate systems are rather unlikely to be orthonormal,

so that invariance to rigid body transformations are un-

likely to be meaningful (or viable) for neuronal response.

For instance, the synaptic input of a specific neuronal cell

may involve, respectively to the pattern being analyzed,

its color, temperature, weight, speed, etc. These features

are rather unlikely to belong to a orthonormal coordinate

system. A better appreciation of this important effect can

be obtained by considering that each feature corresponds

to a measurement that may potentially be related to the

other adopted features. These relationships can be lin-

ear, such as when one of the features corresponds to a

linear combination of other features taken or not into ac-

count, or even non-linear combinations and compositions

of features.

Figure 2 illustrates the prototypical orthonormal sys-

tem in 3D, which provide an ideal reference for synaptic

input, though this is almost never observed in practical

situations. An example of real-world situation involving

this type of feature representations corresponds to the

positions of objects in the 3D space, measured by some

accurate position acquisition device. Observe that this

cannot be accomplished biologically, in the case of visual

input, often rely on projections of 3D onto 2D, being fea-

sible only by using artificial systems.

Figure 2: The R3 vector space, characterized by three coordinates

x1, x2 and x3 associated to respective versors ı̂1, ı̂2, ı̂3. The two

vectors (blue and red) are assumed to be entirely contained in the

plan (0, x2, x3). Each generic vector ~v in this space can be repre-

sented as [x1, x2, x3]T = x1ı̂1 + x2ı̂2 + x3ı̂3.

An important feature of the R3 space is the orthonor-

mality of the axes, corresponding to 〈̂ı1, ı̂2〉 = 〈̂ı2, ı̂3〉 =

〈̂ı1, ı̂3〉 = 0 (orthogonal) and 〈̂ı1, ı̂1〉 = 〈̂ı2, ı̂2〉 =

〈̂ı3, ı̂3〉 = 1 (normalization). An example of orthonormal

basis for R3, known as canonical, is as follows:

ı̂1 = [1, 0, 0] ; ı̂2 = [0, 1, 0] ; ı̂3 = [0, 0, 1] (2)

In practice, patterns are characterized by a set of re-

spective features xi, i = 1, 2, . . . , N that are pre-specified

or chosen in a relatively intuitive manner, sometimes with

some assistance of statistical methods such as principal

component analysis (PCA, e.g. [25]). Each of these fea-

tures are typically understood as defining each of the axis

in the associated N−dimensional feature space, allowing

each pattern to be mapped into a respective vector in this

space.

A critical problem not often realized, taken into ac-

count or studied, regards the fact that the so obtained

feature spaces are almost invariably non-orthonormal as

a consequence of several effects.

Figure 3 illustrates one such situation in which the pat-

terns to be analyzed are originally in an orthonormal
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space [x1, x2, x3], where distances and geometric trans-

formations such as rotation are well defined and stable.

Observe that these original features do not need to cor-

respond to space, or even have the same physical units.

Two possible patterns are illustrated in terms of the blue

and red vectors which, for simplicity’s sake, are assumed

to belong to the plan [x1 = 0, x2, x3]. The dashed cir-

cle illustrates the position of the blue vectors that are at

distance d from the red vector. As a consequence of the

orthonormality of the system [x1, x2, x3], these positions

define a perfect circle, reflecting the isometry and rota-

tional invariance of distance in an orthogonal coordinate

system. In the context of neuronal networks and pat-

tern recognition, this circular area can be immediately be

related to the concept of generalization of the reference

pattern corresponding to the red vector.

However, in practice the measurements are adopted in a

mostly intuitive manner while taking into account the po-

tential of each of them for characterizing and discriminat-

ing between the available patterns. As such, it is highly

unlikely that the adopted features will correspond to an

orthonormal coordinate system. In the specific case in

Figure 3, one of the adopted features actually corresponds

to a linear combination of two of the original coordinates,

e.g. x̃3 = 2x3 + x2. Other situations undermining the or-

thonormality of the feature space include scaling of the

original features or non-linear transformations of their in-

dividual or combined values.

In practice, the adopted features are often understood,

for simplicity’s sake, to be associated to an orthonormal

feature space, as illustrated in Figure 3(d,e). This ap-

proach, which is characteristic to a large range of ap-

proaches in pattern recognition and neuronal networks,

will be henceforth referred to as the Cartesian surmise.

Though the measurement values will remain property

represented in each corresponding axis, it is no longer

valid to assume rotational invariance or distance preser-

vation respectively to the original, real measurements

[x1, x2, x3]. In Figure 3, this is illustrated by the fact

that the isometric distance circle having become a de-

formed region that, in this specific case, corresponds to

a shape more complex than an ellipsis, which would be

otherwise obtained in case the original features had only

been scaled. Even though generalization is still catered

for, it is no longer isometric and by no means correspond

to a circle or sphere.

One of the most immediate consequences of the criti-

cally important effects of the Cartesian surmise concerns

the fact that, unless the adopted measurements do related

directly to an orthonormal coordinate system, it makes

little sense to expect or implement rotational invariance

in the neuronal operation because, even if this property is

observed in the adopted feature space, therefore defining

isometric relationships between the vectors associated to

the patterns, this by no means translate to the original

properties of the system. Ideally, in the rather unlikely

case the interrelationship between the adopted and origi-

nally orthonormal features is known, the neurons can have

their operation designed so as to compensate for the re-

spective divergences from orthonormality. At the same

time, it does not by any means follows that the neuronal

operation can have any erratic generalization regarding

the respectively implemented quantification of similar-

ity, in the sense that relatively symmetric generalization

regions should be sought, though not necessarily corre-

sponding to perfect spheres. Actually, other potentially

more important requirements can be taken into account

while defining the neuronal basic operation, such as min-

imizing the sensitivity of the neuronal output respective

to perturbations of a single or small set of features, or

normalizing with respect to the input signal overall mag-

nitude.

3 Product and Similarity

Given any two real values x and y, their product con-

stitutes one of the most frequently performed algebraic

operation in science and technology, not to mention daily

activities. Yet, there are some quite interesting properties

of the product xy that, perhaps as a consequence of being

so ubiquitous, are not commonly realized.

Let’s start with the product sign rule:

sign {x} sign {y} sign {xy}
− − +

− + −
+ − −
+ + +

Logically, the above rules can be conceptualized as the

identity operation of Boolean Algebra (e.g. [19]).

It follows that the classic product between two real val-

ues is capable of expressing whether the two values x and

y head toward the same direction along the real line, in

which case sign {xy} = +1, or if they oppose one another,

yielding sign {xy} = −1. As such, the product operation

can be understood to quantify, in its signal, the similarity

of the relative orientations of the two operands.

This important property of the classic real product

hints at a yet more important respective feature, namely

the fact that the classic real product provides measure-

ment of similarity between the signs (or direction) of two

signed values x and y [13]. This particular feature of

the product contributes strongly to capacity of the in-

ner product for quantifying the similarity between two
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Figure 3: The Cartesian surmise: A real-world or abstract system (a) in which three original properties x1, x2 and x3 associated to an

orthogonal coordinate system (b) characterize the patterns to be studied. However, the measurements are performed respectively to a

different, sheared coordinate system involving x1, x2 and x̃3 (c) and then treated as if belonging to an orthogonal coordinate system (d,e).

The horizontal bar represents the separation between the pattern and analysis domains. Though each of the individual measurement values

will be preserved, respective interrelationships such as distances and magnitudes, including rotational invariance and generalization regions,

can become strongly modified or invalidated.

vectors. More specifically, the traditional inner product

between any two vectors ~v and ~p in an N−dimensional

space can be written as:

〈~v, ~p〉 =

N∑
i=1

vipi = |~v| |~p| cos(θ) (3)

where θ is the smallest angle between the two vectors.

Provided the magnitudes of ~v and ~p are kept constant,

the inner product will provide an indication of the angu-

lar and orientation similarity between these two vectors.

Observe that the inner product is a bilinear operation.

When translated to scalar values, the inner product be-

comes:

〈x, y〉 = xy = |x| |y| cos(θ) (4)

which makes it clear that the scalar version of the inner

product is the product of the two scalar arguments.

In this case, the cosine similarity becomes:

cos(θ) =
〈x, y〉
|x||y|

=
xy

|x||y|
= ±1 (5)

Observe also that, provided |x| ≤ 1 and |y| ≤ 1, it will

follow that −1 ≤ xy ≤ 1.

In the case of ~x and ~y being vectors in RN , the respec-

tive cosine similarity can be expressed as:

cos(θ) =
〈~x, ~y〉
|~x| |~y|

(6)

This expression implies that the cosine similarity be-

tween two vectors can be understood as corresponding to

a normalized version of the inner product between those

two vectors. As a consequence, the inner product between

two versors (vectors with unit magnitude) is identical to

the respective cosine similarity.

Despite its intrinsic ability for quantifying similarity be-

tween the sign of values, as well as it extensive application

in operations as the inner product, the real product has

two important shortcomings. First, it is relatively difficult

to be implemented in computational hardware or even in

analog circuits. Second, it has been shown that the real

product tends to be too tolerant regarding the provided

indication of similarity [14, 13, 26], as illustrated in Fig-

ure 4 with respect to comparison between versors.

The substantially high similarity values generated by

the inner product similarity between two vectors imme-

diately implies that that it tends to provide a relatively

coarse, or little strict, quantification of the relationship

between the two vectors. Another feature of particular

interest in the similarity profiles such as those in Fig-

ure 4 concerns the quality factor (in analogy with filter

theory, e.g. [27]) of the quantification, which can be un-

derstood as being proportional to the peak value divided

by the standard deviation or other dispersion measure-

ments, therefore providing an indication of the sharpness

of the profile. Another important property of a similarity

profile is its magnitude of the derivative at and around

its peak. Regarding the former, we have that it is zero

for the inner product similarity (as expected with any

smooth function) and infinite for the coincidence. At the

same time, the magnitude of the derivatives around the
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Figure 4: The pairwise similarity between versors in R2 as quan-

tified by the inner product (dashed blue) and coincidence (solid

salmon) similarities. The versor ~x = [0, 1] is compared to versors

making angles from 0 to π with the horizontal axis. As expected,

both similarity indices reach their respective peak at π/2, but the

inner product similarity, which in the case of versors is identical to

the cosine similarity, is markedly less strict in comparing similarity,

providing substantially higher values than the coincidence similarity

in all cases except for angles 0 and π/2.

peak are very small in the case of the inner product simi-

larity, and particularly high for the coincidence similarity.

The fact that the derivative of the coincidence similarity

profile diverge at its peak can be easily circumvented, if

necessary for analytical and theoretical studies, by repre-

senting the profile in terms of a truncated Fourier series,

which is necessarily analytical (has any derivative).

One problem of having a smooth (or ‘blunt’) similarity

peak, as is the case with the inner product similarity, con-

sists in the fact that the identification of its position by

using derivative is highly susceptible to any level of noise.

That is so because the derivatives at and around the peak

have very small magnitudes (smooth) and can therefore

be severely disturbed by the noise during the derivative,

as this operation emphasized the high frequency content

of the curve. The sharp and intense derivative peak re-

sulting from the coincidence can hardly have its correct

position disturbed by any reasonable level of signal noise.

On the other hand, a smoother similarity comparison

profile tends to favor generalization of the comparison, a

property that is often expected at some level in neuronal

networks and pattern recognition. In the case of Fig-

ure 4, the relatively higher similarity values provided by

the inner product, respectively to the coincidence, simi-

larity means that input patterns that are more different to

the one used as a reference (or template) will imply larger

similarity values, therefore implying larger generalization.

Observe that the generalization property is opposite to

accuracy in the similarity comparison, which means that

either one of these two properties is prioritized, or a suit-

able balance between them needs to be achieved. To any

extent, as it can be appreciated from Figure 4, the coinci-

dence similarity already presents a substantial ability for

generalization, yielding substantially high (though much

smaller than the cosine similarity) for input with angles

reasonably near π/2.

Table 1 provides a qualitative relative comparison be-

tween the several properties respectively characterizing

the inner product (or cosine) and coincidence similarities.

property inner product coincidence

values typ. higher typ. lower

peak shape smooth sharp

peak concavity convex concave

strictness lower higher

peak localiz. accur. lower higher

magn. deriv. at peak lower higher

deriv. at peak 0 ∞
quality factor lower higher

false neg. prob. lower higher

false pos. prob. higher lower

generalization higher lower

complexity higher lower

Table 1: Relative comparison of the main properties of the inner

product (cosine) and coincidence similarities. The abbreviation peak

localiz. accur. means peak localization accuracy, and the term com-

plexity property related to conceptual and implementation (software

or hardware) aspects.

However, being more or less strict does not necessarily

imply an advantage or shortcoming of a given similar-

ity index, unless these trends are extreme. Indeed, there

are situations in which it may be interesting to imple-

ment a more yielding quantification, which tends to favor

false negatives. At the same time, a more strict similarity

quantification can be particularly interesting in other sit-

uations in which false positives have higher costs and need

to be minimized and/or enhance accuracy is expected in

the quantification. In summary, the localization of the

position of the peak tends to be substantially more ro-

bust and accurate in the case of the coincidence than the

inner product similarity.

For these reasons, it becomes particularly interesting to

consider similarity measurements involving one or more

parameters that can be used to control how strict the

quantification is, so that this can be adapted to a wide

range of situations and applications. Approaches such as

multiresolution or multiscale have been developed with

that finality in mind. The present work describes a related

approach in which a parameter D is used to control how

strict the Jaccard and coincidence similarity indices are.
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4 Multiset Similarities in One-

Dimensional Spaces

The considered neuronal application of similarity compar-

ison addressed in this work provides an interesting per-

spective from which to address this issue and its related

aspects. More specifically, if we consider that the simi-

larity is to be measured between the synaptic weight y

and respective input x, we can simplify the otherwise bi-

nary operation as an operation only on x (i.e. a function

of x), with y being understood as a parameter. Figure 5

illustrates the real product seen from this perspective, as-

suming synaptic weight y = 2.

Figure 5: The quantification of similarity between two real values

as implemented by the real product xy, with y = 2 has severe

limitations. The curve should indicate how similar to 2 the values

of x are, but monotonically increasing values are obtained instead.

This result well illustrates the limitation of the tradi-

tional real product for quantifying similarity. Though the

similarity will increase for |x| increasing from 0 to 1, it

will continue to increase thereafter. In fact, we have that:

lim
x→∞

xy =∞ (7)

with y = 2.

As developed in [13], the prototypical function for quan-

tifying similarity in the most strict manner possible con-

sists in the Kronecker delta function, which can be written

as:

δx,y =

{
1 whenever x = y

0 otherwise
(8)

Though this function cannot provide information about

the alignment of the values x and y, it can be readily

generalized as:

δ̃x,y =


1 whenever x = y

−1 whenever x = −y
0 whenever |x| 6= |y|

(9)

Figure 6: The Kronecker function modified to take into account the

relative alignment of the real values x and y = 2, which is now

reflected in the respective sign.

Figure 6 illustrates this function for y = 2, i.e. δ̃x,2.

The binary Kronecker function generalized to quantify

signed similarity is shown in Figure 7.

Figure 7: The binary Kronecker function modified to take into ac-

count the relative alignment of the real values x and y.

The problem with this generalized Kronecker delta

function is that it is simply too strict in its evaluation

of the similarity between two real values x and y.

We have from Equation 5 that, when applied on real

values x and y in R, the cosine similarity effectively acts

as the Kronecker delta function on those two values, there-

fore presenting rather limited potential for comparing the

similarity between x and y.

Interestingly, there is another particularly interesting

possibility to quantify the similarity between two real val-

ues taking possibly negative values [28, 29, 30, 13]. In par-

ticular, the basic scalar version of the operator in [29, 30]

follows the same sign rules as the above discussed inner

product while involving only the minimum binary opera-

tion:

x u y = sxy min {sxx, syy} (10)

where sx = sign(x), sy = sign(y), and sxy is the con-

joint sign function sxy = sxsy.

This operator has also been verified [31, 18, 13] to corre-

spond to the signed intersection between multisets taking

real, possibly negative values, being dierctoy related to

real-valued adaptations of the Jaccard similarity index.
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In particular, it can be understood as a modification of

the intersection between two functions in order to con-

sider the common or shared area of the functions with

respect to the horizontal axis.

Interestingly, this product has surprising properties, in-

cluding: (i) it is extremely simple to be implemented [29,

30], e.g. in analog electronic circuits [32]; (ii) it is concep-

tually simple; (iii) it obeys the sign rules in Equation 3;

(iv) its magnitude is bound by the absolute value of the

minimum between x and y; (v) unlike the cosine similar-

ity when applied to 1D spaces (x, y ∈ R), the real-valued

Jaccard index is not limited to yielding ±1 values, but is

instead capable of providing a detailed quantification of

the respective similarity.

It is therefore interesting to consider this function from

the neuronal perspective, i.e. with one of its values kept

constant so as to correspond with the respective weights.

Figure 8 illustrates the operation x u y for y = 2, which

can be understood as being analogous to the ‘receptive

field’ of a respective neuron in the one-dimensional space

R.

Figure 8: The operation x u y assuming y = 2, i.e. x u 2. Now we

have that −2 ≤ x u 2 ≤ 2 The obtained profile can be understood

as being analogous to the ‘receptive field’ of a respective neuron

operating in a one-dimensional input space.

It is now clear that this operation, when one of its ar-

gument is kept constant, corresponds to a clipped version

of the real product 2x as in our previous example. The

saturation observed for x > 2 is a critical feature in which

it implies x u y to become bound by the fixed value.

However, maximum similarity will be observed for any

value of x larger than 2. An interesting manner to cir-

cumvent this saturation problem consists of adopting the

following normalization:

J(x, y) =
sxy min {sxx, syy}

max {sxx, syy}
=
f u g
f t̃g

(11)

so that −1 ≤ x u y ≤ 1.

The above normalized version of the operation x u y
has been verified to correspond to the real-valued Jac-

card index applied to two real scalar values [13, 18, 14].

As with the product, cosine similarity and Eucliden dis-

tance, the Jaccard index is commutative with respect to

the two compared values, a propriety that extends to any

dimension of the feature space.

Observe that, as with the standard Jaccard similarity

index, the respective multiset version above capable of

operation on real values is not defined for the comparison

between two null sets or feature vectors, as it diverges to

0/0.

Figure 9 illustrates both the function n(x, y) =

max {sxx, syy} and the resulting real-valued Jaccard in-

dex.

Figure 9: The normalizing function n(x, 2) = max {sxx, 2} and the

normalized operator which corresponds to the real-valued Jaccard

index J(x, 2) applied to real scalar values.

The normalizing function that constitutes the denom-

inator has a direct correspondence with the generalized

multiset concept of absolute union [31]. Observe that this

function increases linearly with x. As a consequence, the

division by the normalizing function will penalize the simi-

larities for |x| > 2, yielding to two respective peaks in the

real-valued Jaccard index JR(x, 2), providing enhanced

quantification selectivity. Interestingly, this resulting in-

dex can therefore be understood as a less strict version of

the generalized Kronecker delta (compare Figs. 6 and 9b),

while being also more strict than the real product (as a

consequence of the saturation).

The developments presented above make it clear that it

is possible to define an infinity of other similarity indices.

For instance, it is possible to control the sharpness of the

similarity peaks by using other products and normalizing

functions.
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As an example, if even sharper peaks are required, we

can make:

J3(x, y) = J(x, y)3 (12)

Figure 10 illustrates this function for y = 2.

Figure 10: The similarity function J3(x, 2), when compared to the

real-valued Jaccard index, is characterized by a sharper peak, there-

fore implying even more strict similarity quantification.

The above development can be generalized to any non-

negative integer degree D odd as:

JD(x, y) = J(x, y)D (13)

Figure 11: Similarity quantification through the function

SD=9(x, 2).

An adaptation can be also implemented in case we need

to consider D even. It is also possible to have less strict

similarity comparison by adopting D < 1, which also re-

quires some adaptation of Equation 13.

Observe that the similarity function SD(x, y) tends to

the generalized Kronecker delta function when D → ∞,

D odd, i.e.:

lim
D→∞

SD(x, y) = δ̃(x, y) (14)

However, for simplicity’s sake, we will consider only the

real-valued Jaccard index in our subsequent performance

analysis, which can be understood as the above construc-

tion when D = 0. A more systematic study of higher

values of D will be reported opportunely.

Given that the Jaccard similarity index has been ver-

ified not to be able to take into account the relative in-

teriority (or overlap, e.g. [33]) between the two compared

vectors, the coincidence similarity has been proposed as

a respective complementation, consisting of the product

between the real-valued Jaccard and interiority indices:

CR(~x, ~y) = JR(~x, ~y) IR(~x, ~y) (15)

Since the coincidence index does not distinguish from

the respective real-valued Jaccard index for the one-

dimensional input (i.e. x, y,∈ R), we now assume

that the two values to be compared are vectors in an

N−dimensional space, i.e. ~x, ~y ∈ RN .

In this case, the real-valued Jaccard index can be ex-

pressed as:

JR(~x, ~y) =

∑N
i=1 sxiyi min {sxixi, syiyi}∑N

i=1 max {sxixi, syiyi}
(16)

The interiority index for real valued vectors can be ex-

pressed [13, 14, 18] as:

I(~x, ~y) =

∑N
i=1 min {sxixi, syiyi}

max {S~x, S~y}
(17)

where:

S~x =

N∑
i=1

sxixi (18)

S~y =

N∑
i=1

syiyi (19)

It is interesting to observe that both the Jaccard and

interiority indices, as with the Euclidean distance, are in-

variant to permutations of the indexing i of the input

components, in the sense that any changes in the order

of the two input vectors will yield identical results. The

permutation invariance of similarity or distance indices,

which implies that they cannot take into account the sense

of eventual input rotations or reflections, is compatible

with the fact that the order of the features in pattern

recognition systems can rarely be specified.

5 Multiset Similarities in Two-

Dimensional Spaces

Having presented and discussed the properties of the in-

ner product and real-valued Jaccard similarity indices re-

spectively to comparing two real values x and y, we now
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extend that discussion to two dimensional spaces, so that

now we are interested in comparing the similarity between

two real-valued vectors ~x = [x1, y1]T and ~y == [x2, y2]T ,

with ~x, ~y ∈ R2.

Figure 12 presents the cosine similarity calculated be-

tween a reference vector ~y = [1, 2]T and vectors ~x =

[x1, y1]T with 4 ≤ x1, y1 ≤ 4.

Figure 12: Cosine similarity values (shown in grayscale from dark to

bright) obtained for the cosine similarity index between a reference

vector ~y = [1, 2]T and vectors ~x = [x1, y1]T with 4 ≤ x1, y1 ≤ 4.

The maximum similarity takes place for the angle sec-

tor containing the vector ~y, but any other vector with the

same angle will imply identical cosine similarity, there-

fore illustrating the fact that the cosine similarity cannot

distinguish between any two vectors with the same ori-

entation but distinct magnitudes. In addition, observe

that the gray levels undergo rather little variations for

vectors with orientations similar to that of ~y = [1, 2]T .

These issues can have severe impact on the pattern recog-

nition performance of individual neurons based on the co-

sine similarity. Analogous implications are expected for

N−dimensional input.

Figure 13 depicts the similarity values obtained for the

real-valued Jaccard index considering the same compari-

son problem as before. The surface in this and the subse-

quent figures in this section are shown with substantially

reduced gray level resolution (comparatively to that in

Fig. 12) in order to make the underlying geometry of the

surfaces more discernible in terms of respective level set

curves.

Unlike the results obtained for the cosine similarity,

now we have a well-defined and delimited peak (bright

gray levels) corresponding to the position ~y = [1, 2]T .

Figure 13: Jaccard similarity values (D = 1) obtained when com-

paring two real-valued vectors ~x = [x1, y1]T and ~y = [1, 2]T , with

4 ≤ x1, y1 ≤ 4.

As expected, a minimum peak is also observed at ~y =

[−1,−2]T . The enhanced specificity and strictness of the

comparison implemented by the real-valued Jaccard in-

dex, when compared to the cosine similarity results in

Figure 12, are striking. As in the one-dimensional case

discussed in the previous section, the real-valued Jaccard

similarity index has been able to quantify the input sim-

ilarity with great accuracy while preserving a good level

of generalization.

The Jaccard similarity presents an intrinsic geometry

and symmetry worth focusing attention on. Figure 14

depicts a diagram of the equisimilarity region defined by

making JR(~x, ~y) equal to a constant value d.

Figure 14: The basic construction characterizing the equisimilarity

region for the real-valued Jaccard, defined by the position of vectors

~v2 = [x2, y2]T when compared to a reference vector ~v1 = [x1, y1]T

and fixed Jaccard similarity value J = d.
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While keeping x1 fixed, and assuming y2 > y1, we can

write:

d = J (~v1, ~v2) =
y1 + y2

y1 + y2 + d
=
y1 + y2 − e
y1 + y2

(20)

which implies:

c =
(y1 + y2) (1− d)

d
(21)

e = (y1 + y2) (1− d) (22)

It also follows that:

d =
e

c
(23)

meaning that the equisimilarity regions tends to a sym-

metric diamond when d→ 1.

Now, if we scale both vectors as ~v1,s = κ~v2 and

~v2,s = κ~v2, with κ ∈ R, it follows that the dimensions of

the respectively scaled region are cs = κc and es = κe, in-

dicating that the size of the equisimilarity region changes

linearly with the scaling of the vectors being compared.

In other words, the real-valued Jaccard similarity nat-

urally implements the often sought scaling invariance, be-

ing normalized respectively to the magnitude of the vec-

tors. This is in contrast to the Euclidean distance, which

has constant equisimilarity region, so that normalization

with respect to scale requires additional calculations of

vector magnitudes and respective divisions. Thus, the

Jaccard similarity values are relative to the vectors mag-

nitude. Figure 15 illustrates several equisimilarity regions

for the real-values Jaccard similarity. An analogous prop-

erty characterizes the coincidence similarity index, as it

derives directly from the Jaccard index.

Figure 16 presents the coincidence similarity values ob-

tained for the same comparison problem. An even more

strict comparison can be obtained. Observe also, in com-

parison with the surface in Figure 13, the distinct shape

of the level-set contours, which reflect the incorporation

of the interiority index into the Jaccard similarity quan-

tification.

Even stricter, sharper comparisons can be obtained by

using D > 1. Figure 17 presents the similarity surface

obtained for the real-valued Jaccard index with D = 9.

Substantially sharper peaks are obtained at the expense

of reduced generalization capabaility.

As described in [15], both the real-valued Jaccard and

real-valued coincidence indices can be generalized to in-

corporate a parameter α, 0 ≤ α ≤ 1, controlling the rela-

tive contribution of the pairwise features with the same or

opposite signs on the resulting similarity values. In case

α > 0.5, the contribution of the pairwise features with

Figure 15: The real-valued Jaccard similarity index is naturally nor-

malized with respect to the scaling of the magnitudes of the com-

pared vectors. This figure illustrates several equisimilarity regions

obtained for the real-valued Jaccard similarity with J = d = 0.95.

Observe the linear scale of the regions size with the position of the

reference vector.

Figure 16: The coincidence similarity obtained while comparing

two real-valued vectors ~v1 = [x1, y1]T and ~v2 = [1, 2]T , with 4 ≤
x1, y1 ≤ 4.

the same sign will be enhanced, with the opposite taking

place for α. When α = 0.5, this index becomes identical

to its parameterless version. The availability of the pa-

rameter α has been verified to enhance the level of details

and modularity when of the application of the coincidence

for translating datasets described by respective features

into complex networks (e.g. [15]).

Figures 18 and Figures 19 presents the coincidence val-

ues obtained for the same comparison problem as above,

but with α = 0.7 and α = 0.3, respectively.
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Figure 17: The Jaccard similarity obtained for D = 9 while com-

paring two real-valued vectors ~v1 = [x1, y1]T and ~v2 = [1, 2]T , with

4 ≤ x1, x2 ≤ 4.

Figure 18: The coincidence similarity obtained for D = 1 with α =

0.7 while comparing two real-valued vectors ~v1 = [x1, y1]T and ~v2 =

[1, 2]T , with 4 ≤ x1, y1 ≤ 4. The maximum and minimum obtained

coincidence values are 0.691 and −0.296, respectively, confirming

the enhancement of the contribution of pairwise features with the

same sign.

The effect of emphasizing the relevance of pairwise fea-

tures have the same or opposite signs is marked in these

figures, confirming the importance of the additional pa-

rameter α in controlling how aligned or anti-aligned pairs

of features are taking into account, which can lead to en-

hanced comparison details. Observe also that the adop-

tion of α 6= 0.5 implies in the positive and negative peaks

to become asymmetric, with the peak with the lower mag-

nitude becoming smaller and less sharp.

Figure 19: The coincidence similarity obtained for D = 1 with α =

0.3 while comparing two real-valued vectors ~v1 = [x1, y1]T and ~v2 =

[1, 2]T , with 4 ≤ x1, y1 ≤ 4. The maximum and minimum obtained

coincidence values are 0.296 and −0.691, respectively, confirming

the enhancement of the contribution of pairwise features with the

same sign.

6 Membership Interpretation of

Multiset Similarity

One additional interesting characteristic of multiset-based

similarity approaches, as with the Jaccard and coinci-

dence indices, consists in that a powerful intuition re-

garding the basis of the similarity quantification can be

obtained in terms of the the concept of membership and

respective graphical representations. This important as-

pect is addressed in the present section. For simplicity’s

sake, we will be constrained to the case in which all values

to be compared are non-negative. The extension to real

values can be obtained by using the real-valued versions

of these two multiset similarity indices [14, 13].

We start by going back to the definition of the tradi-

tional Jaccard index, as in Equation 1. Here, we have to

set operations, namely union and intersection. It is of

particular interest to observe that this classic definition

of the Jaccard index therefore relies on the relevant con-

cept of membership between elements to the respectively

compared sets.

In multiset theory (e.g. [18]), the repetition of elements

in multisets is allowed, leading to the concept of multiplic-

ity of each element. Thus, a multiset A can be represented

in terms of ordered pairs [a,ma], where a is the elements

identifier, which can be categorical or numeric, while na
quantifies how many entries of element a are found in the

multiset A. For instance, a multiset A containing three

apples, two pears and five oranges can be represented as:
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A = {[apple, 3] , [pear, 2] , [orange, 5]} (24)

The set of all possible elements is often called the sup-

port of the respective multiset. In the previous example

we would have SA = {apple, pear, orange}.
As discussed in [14, 13], real-valued functions of the

type f(x) can be immediately mapped into a multisets

with an infinite number of elements by understanding the

element identifiers xi as the abscissa value, while the func-

tion value f(xi) at that element is mapped into the re-

spective multiplicity, i.e.:

f = {[x1,mx1
= f(x1)] , [x2,mx2

= f(x2)] , . . .]} (25)

For simplicity’s sake, in the present work we restrict our

attention to samples of N values of the function, therefore

yielding discrete functions (which can be represented as

vectors), and non-negative values of multiplicity.

The multiset operations of union and intersection be-

tween two functions f and g with a shared support S can

now be defined as:

f ∪ g =

= {[x1,max {f(x1), g(x1)}] , [x2,max {f(x2), g(x2)}] , . . .}
(26)

f ∩ g =

= {[x1,min {f(x1), g(x1)}] , [x2,min {f(x2), g(x2)}] , . . .}
(27)

The Jaccard similarity index can now be defined as:

J (f, g) =

∑N
i=1 min {f(xi), g(xi)}∑N
i=1 max {f(xi), g(xi)}

(28)

Now, it happens that these two operations have a pow-

erful intuitive geometrical interpretation in terms of the

visualization of the two functions and their respective ar-

eas. Consider the situation depicted in Figure 20, pre-

senting two discrete functions f(xi) and g(xi), with xi
equally spaced along the function domain x.

The sum of the values
∑N

i=1 min {f(xi), g(xi)} can be

immediately understood as being proportional to the area

of the function f(x) along the N samples support. Inter-

estingly, this interpretation does not require any adja-

cency or order relationship between the coordinates xi,

because the are under the function is invariant to permu-

tations of those elements. A similar interpretation readily

holds for the union multiset operation.

Now, the numerator in Equation 28 can be associated

to being proportional to the area below the minimum be-

tween the two function values, corresponding to the area

shared by the two functions, while the denominator is

Figure 20: Two functions f(x) and g(x) sampled at equally spaced

xi abscissa values. These two discrete functions can be exactly rep-

resented as respective multisets. For simplicity’s sake it is assumed

that f(x) ≥ 0 and g(x) ≥ 0. The common (or shared) area between

these two functions is proportional to the multiset intersection be-

tween them. The area of the outline of the two functions (maxi-

mum values between them) is proportional to the multiset union

(e.g. [14, 13]). Though the two functions may intersect one another

at several points, for simplicity’s sake this is not illustrated in this

figure.

proportional to the area defined by the maximum values

between the two functions ordinates, which can be under-

stood as the outline of the two functions.

The above developments means that the Jaccard in-

dex as defined in Equation 28 can now be conceptually

understood as corresponding to the ratio between the

area shared by the the two functions and the area of

the functions outline. Thus, when f(x) = g(x), we have

that the shared and outline areas are identical, leading to

J (f, g) = 1. When any of the two functions is null, we

have J (f, g) = 1. As with the traditional Jaccard index,

the result is not defined when both input functions are

null. When f(x) and g(x) are similar, the shared and

outline areas will be similar, leading to high Jaccard val-

ues. However, if f(x) and g(x) are different, small values

will be respectively obtained.

The interiority index can also be understood in an man-

ner analogous to the Jaccard index as developed above.

More specifically, it corresponds to the area of the shared

region divided by the smallest area between the two func-

tions. For instance, the situation shown in Figure ?? is

characterized by having interiority index equal to 1 be-

cause one of the functions is contained completely within

the other. The coincidence index can then be immedi-

ately understood as corresponding to the product of the

Jaccard and interiority indices.

The interesting geometrical interpretation of the Jac-

card index developed above provides a particularly valu-

able resource for better understanding and applying both

the multiset Jaccard and multiset coincidence similari-

ties. One of the most important implications of the above

developed interpretations of the Jaccard and coincidence

indices is that the obtained similarity values can be under-

stood as depending on ratios between areas, being there-
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fore completely independent of geometrical transforma-

tions such as rotation as is the case, for instance, of the

Euclidean distance. Instead, those two indices are di-

rectly related not to the concept of distances, but to the

also important notion of membership of each element re-

spectively to the two multisets. As such, the obtained

similarity quantifications related to how much the two

functions coincide geometrically (permutation invariant),

and not to formal metrics such as the Euclidean distance.

In the case of the Euclidean distance, even if its val-

ues are permutation invariant, the respective translational

and rotational invariance usually is almost never verified

in typical feature spaces, as discussed in Section 2. At the

same time, it is interesting to realize that the vectors that

are equidistant (in the Euclidean sense) from a given a ref-

erence function (template) actually imply non-equivalent

multiset similarities, therefore implying distinct relative

membership relationships between the compared vectors

(or functions, or multisets). All in all, the relative mem-

bership property does not rely on having the adopted fea-

tures to correspond to an orthonormal system of coordi-

nates, while the interpretation of equidistance and rota-

tion does.

In summary, a good deal of the effectiveness of the Jac-

card and coincidence similarities ultimately stems from

being based on relative membership quantifications that

are effectively appreciated in terms of the conceptual in-

terpretations in terms of areas of functions as developed

in this section.

7 Sensitivity to Localized Pertur-

bations

When dealing with the features to be input to a pattern

recognition system such as a neuronal cell, standardiza-

tion of each of the individual features along its ensemble

is often adopted as a means to normalize the dispersion of

each feature so it has null mean and unit standard devia-

tion. This is implemented in order to avoid that features

taking larger or shifted values predominate over the other

features with smaller magnitude. In other words, every

effort is often made so that no individual feature dominate

the results.

This same concern extends naturally to the effect of

variations of any of the features magnitude on the overall

result. That is important in cases such in which some

of the features are too noisy or not particularly relevant,

which is often the case.

This section addresses the sensitivity of the Jaccard and

cosine similarities, as well as the normalized Euclidean

distance with respect to small perturbations to any of the

isolated components of the two vectors to be compared.

We focus on the situation in whch all xi, yi are positive,

with yi > xi, ∀i, but the results are similar for the other

cases. In this case, the Jaccard similarity can be simplified

as:

JR(~x, ~y) =

∑N
i=1 xi∑N
i=1 yi

(29)

so that the respective variation implied by the small

perturbation ∂xi can be immediately obtained as:

∂JR(~x, ~y)

∂xi
=

1∑N
i=1 yi

(30)

From the definition of Euclidian distance, we have:

E(~x, ~y) = 2

√√√√ N∑
i=1

(xi − yi)2 (31)

When normalized by the average of the magnitudes of

~x and ~y, this distance becomes:

E(~x, ~y) = 2

√∑N
i=1 (xi − yi)2

||~x||+ ||~y||
(32)

Assuming that the variation ∂x1 does not significantly

change ||~x||, we can derive the following approximation:

∂E(~x, ~y)

∂xi
≈ xi − yi
||~x||+ ||~y||

(33)

from which we can infer that small perturbations to

any individual component xi will imply variations of the

normalized Euclidean distance that are not only propor-

tional to the magnitude of xi, but also depend strongly on

yi. Of particular relevance is the fact that, for a specific

component i, when xi is similar to yi, small perturbations

of the former will have little effect on the distance vari-

ations, indicating that the contribution of that specific

features to the resulting distance is small when the com-

pared data are similar. However, when the two values xi
and yi are markedly different, the localize perturbations

will have stronger effect on the result. This implies that

perturbations (error or noise) in components that are sub-

stantially different between the two compared vectors can

have pronounced effect on the resulting distance. This sit-

uation is completely different from that observed for the

Jaccard similarity, as the localized perturbations will all

have the same influence on the resulting similarity value

irrespectively to the values of xi and yi.

Figure 21 illustrates the relative variations of the nor-

malized Euclidean distance, as well as Jaccard and cosine

similarities in terms of the magnitude of small perturba-

tions to a single component, assuming N = 100, each of

the components of ~x drawn from a normal distribution

with average 10 and standard deviation 3, and ~y obtained

14



by adding ~x to 0.1 multiplied by a vector with coordinates

drawn from a normal distribution with mean 1 and stan-

dard deviation 5. The values were obtained from 10000

random experiments.

Figure 21: Relative variations of the Jaccard and cosine similarities,

as well as the normalized Euclidean distance, to small perturbations

of a single component xi of one of the vectors being compared.

Values are shown as average ± standard deviation, in terms of the

magnitude of the individual perturbations. The stabilities of the two

similarities, regarding both the average and standard deviations of

the relative variations, are substantially smaller than that of the

normalized Euclidean distance.

Though respective to a specific configuration, these re-

sults still illustrate that the normalized Euclidean dis-

tance is particularly sensitive to small perturbations on

the magnitude of any of the components of the vectors be-

ing compared. This often represents a substantial short-

coming while comparing vectors and recognizing patterns,

especially with some of the components are particularly

noisy or not so much relevant to the pattern analysis.

Given that the sensitivity of the coincidence similarity

can be verified to be comparable to that of the Jaccard

similarity, and considering that the cosine similarity im-

plements little strict comparisons, we have that the Jac-

card and coincidence similarities tend to have substantial

advantages regarding the stability of the obtained results

respectively to perturbations implied by some of the com-

ponents of the vectors being compared.

8 Generalized Multiset Neurons

Traditional implementations of artificial neuronal net-

works, as integrate-and-fire models as McCulloch and

Pitts and perceptrons (e.g. [1, 2]), often involve the in-

ner product of the input signal with the respective synap-

tic weights (bilinear operation) followed by a non-linearity

output function. As such, these neurons implement linear

discrimination.

The multiscale neurons described so far in the present

work involve a comparison between two vectors, one of

which can be understood as a template, while the other

corresponds to the input signal to be compared with the

template. We have seen in the previous section that these

neurons have 2D receptive fields that resemble diamonds.

In addition to being able to compare generic templates in

any dimension, it is also possible to use this type of neu-

ron to implement binary decision regions. This can be

accomplished by incorporating a non-linear output func-

tion, as in the integrate-and-fire paradigm that receives

the Jaccard value as input, while the output intensity can

be understood as an indication of the certainty of the

template recognition.

The hard limit and sigmoid functions are frequently

adopted for implementing the output stage of neuronal

cells. There are several types of sigmoid functions, but in

this work we adopt the following definition:

f(x) =
1

1 + e−(a(x−T ))
(34)

where a controls the sharpness of the transition from 0

to 1 and T specifies the value of x where the transition

takes place.

Figure 22(a) illustrates one neuron of this type (Jaccard

similarity) considering N−dimensional input, while some

possible 2−dimensional decision regions illustrated in (b).

Interestingly, each real-valued Jaccard or coincidence

neuron on 2D inputs spaces can be understood as im-

plementing four linear discriminations, corresponding to

each of the sides of the respective diamond decision re-

gion, which means that each of these types of neurons

effectively corresponds to four more traditional linear dis-

criminant neurons based on the inner product and hard

limit output function.

Another interesting possibility is to connect the output

from multiset neurons to other multiset neurons, therefore

defining multilayer neuronal multiset networks.

Though it may firstly appear that the multiset neurons

implement more specific decision regions, they are in fact

much more generic and versatile than integrate-and-fire

neurons. In order to harness the full potential of multiset

neurons, it is necessary to incorporate a small modifica-

tion in the sense that each synaptic input is multiplied

by a respective weight, as illustrated in Figure 23, while

a possible respective decision region is exemplified in Fig-

ure 24. This decision region corresponds to the product of

two decision regions of two individual geminis with hard

limit output, followed by a pointwise product (or logical

and). Five neurons of the integrate-and-fire traditional

type would be otherwise required for implementing this

type of decision region. Much more general and versatile
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(a)

(b)

Figure 22: A generalized multiset neuron with N inputs incorpo-

rating a non-linear hardlimiting output function, and examples of

single neuron 2D receptive fields (b) obtained by varying the sigmoid

parameters and template coordinates.

combinations of decision regions can be obtained in ana-

logue manner. These neurons are henceforth referred to

as generalized multiset neurons, or geminis (GMNs) for

short.

Figure 23: The gemini neuron. The generalization of multiset neu-

rons to incorporate non-linear output function as well as synaptic

weights associated to each of its inputs. The comparison part of

the neuron can be based on the real-valued Jaccard or coincidence

similarities with generic parameter configurations.

The fact that the basic decision region of a multiset

neuron is a diamond, while a half-plan is obtained for

integrate-and-fire neurons, allows impressive possibilities

Figure 24: The decision regions (a,b) of two gemini neurons with

hard-limit outputs are multiplied in pointwise manner yielding an

elaborate decision region which would otherwise require at least

5 more traditional linear discriminant integrate-and-fire neuronal

cells.

for obtained quite elaborate and generic decision regions

by combining the input from just a few geminis.

9 Single Neuron Comparison

In this section, we perform a comparison of single neurons

defined respectively to the real-valued Jaccard, interior-

ity, and coincidence indices, as well as to the classic inner

product. The similarity indices are considered for imple-

menting the synaptic efficiency and dendritic integration

of stimuli up to the implantation cone. Therefore, the

intrinsic non-linearity of the latter is not considered in

this work. The non-linearity here is accounted by the

multiset-based operations implemented at each synapsis.

This comparison is developed by taking into account

several possible effects commonly found regarding pattern

recognition by single neuronal cells, including: (a) relative

position displacements; (b) stimulus size variation (scal-

ing); (c) stimulus intensity variation; (d) noise; and (e)

presence of more than a single pattern in the stimulus.

The reference input stimulus will be a circularly sym-

metry two-dimensional gaussian function centered at the

stimulus space, given as:

g(x, y) = e−0.5(
d(x,y)
σ )

2

(35)

where: d(x, y) =
√
x2 + y2 (36)

Unless otherwise stated, we adopt σ = 100 in an 200×
200 image support.

Figure 25 presents the values of the four considered

methods respective to relative displacements from 0 to

30 discrete steps (pixels). Full similarity has been duly

identified by all methods regarding null displacement, as

could be expected. However, as soon as one of the pat-

terns shifts, the values of all indices are decreased. The

sharpest decrease is verified for the coincidence approach,

which is known [14, 13] to provide a more strict quantifi-

cation of pairwise similarity.
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The classic cross correlation presented the slowest de-

crease between all methods, except for displacements

above 12 pixes, in which case all the indices values are

already very small. This is in agreement with the iden-

tification of product based similarities [14, 13] to be par-

ticularly tolerant to pairwise differences. The real-valued

Jaccard approach yielded the second fastest decreasing

values.

Figure 25: Similarity values obtained by the four considered meth-

ods respectively to relative displacements of two identical gaussians.

The coincidence method allowed the fastest, and therefore most

strict, quantification of the similarity, while the classic cross corre-

lation yielded the most tolerant and least discriminative results.

Next, we analyze the similarity quantification in terms

of varying intensities of one of the two identical gaus-

sians, though one of them was displaced by 2 pixels along

both axes in order to impose a more challenging similarity

quantification. The considered intensity changes varied in

a range from 0 to 3. The results are depicted in Figure 26.

Particularly interesting results can be discerned from

this figure. Of greatest notice is the complete insensitiv-

ity of the classic cross-correlation method to the intensity

variations. Though this feature can be helpful in some

applications where intensity variance is desired, it will

completely fail in cases where more strict quantifications

of similarity are required to take into account also the

relative intensities. The best results in this sense have

been obtained with respect to the coincidence methodol-

ogy, followed by the real-valued Jaccard approach. The

interiority yielded a counter intuitive result, in the sense

that it presented the smallest value precisely when the

two compared patterns have the same intensity. That is

so because of the 2 pixels displacements along the two

axes.

It is also worth noticing that the two multiset-based

Figure 26: Quantification of the similarity between two circularly

symmetric gaussians with the same dispersion, but one of them

multiplied by a scaling factor from 0 to 3. In order to impose a

more challenging demand, one of the gaussians was always shifted

by 2 pixels along each axis. The best results are again observed for

the coincidence method, followed by the real-valued Jaccard and

interiority approaches. The classic cross correlated revealed to be

completely insensitive to the intensity changes.

methodologies present two main behaviors. From intensi-

ties ranging from 0 to 1, meaning that one of the patterns

is less intense than the reference, both these methods

present an almost linear increase up to identical intensity.

The maximum similarity value 1 was not obtained in this

case because of the small imposed relative displacement

of 2 pixels along each axes. From this peak, the similar-

ity values then decrease progressively as the intensities,

which now correspond to magnifications, increase.

The results of the study of the effect of the pattern

width (or scaling) on the respective matching is shown in

Figure 27. The width, which corresponded to the stan-

dard deviation of the circularly symmetric gaussian, given

in Equation 35, varied from 0 to 100.

Both the real-valued Jaccard and the coincidence match

values presented a linear increase from 0 to 1. Recall that,

in this experiment, both compared patterns correspond to

circularly symmetric gaussians with σ = 100 pixels.

The classic cross-correlation presented an initially steep

increasing profile followed by a saturation. As expected,

the interiority index was kept constant with value 1, re-

flecting the fact that one of the patterns is always inte-

rior to the other in this particular experiment. The real-

valued Jaccard and coincidence indices represent a suit-

able choice in case the similarity is to reflect the width

discrepancy in a linear manner. The classic cross corre-

lation again resulted more tolerant to the implemented

variation, reaching relatively high values sooner than the
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Figure 27: The similarity between the two patterns in terms of the

variation of the width, corresponding to the standard deviation, of

one of them. The similarity for the real-time Jaccard and coinci-

dence approaches varies linearly from 0 to 1. The cross correlation

presents a steep initial variation followed by a saturation. The kept

constant at 1, which is expected given that one of the patterns is

always interior to the other.

multiset-based methods.

We now proceed to the consideration of additive sym-

metric uniform noise to one of the patterns. More specif-

ically, the following noise levels are added:

X [x, y] = X [x, y] +
i

Nns
[u(x, y)− 0.5] (37)

with i = 0, 1, . . . , Nns and where u(x, y) is a scalar uni-

form random field taking values in [0.1]. We henceforth

adopt Nns = 20. A total of 20 experiments were per-

formed for each of these levels, the respective average and

standard deviation being then considered as results.

Figure 28 illustrates the similarity values obtained by

the four methods with respect to increasing levels of noise.

Several aspects of interest can be identified from this fig-

ure. First, we have that the interiority similarity accounts

for the slowest decreasing similarity values. This can be

explained by the fact that the noisy versions of one of the

patterns, despite being jagged, will be mostly interior to

the other.

The fastest decreasing profiles are those obtained for

the real-valued Jaccard and coincidence methods, which

also resulted very similar one another. This indicates that

these two multiset-based approaches are the most sensi-

tive to the pattern modifications induced by the increas-

ing levels of noise. The classic cross-correlation yielded an

intermediate result between the interiority and multiset-

based methods, again reflecting its increase tolerance to

perturbations.

The last considered type of perturbation concerns the

signed addition of whole gaussian patterns into one of the

Figure 28: Similarity values obtained by the four considered meth-

ods respectively to increasing noise levels. The interiority approach

is the most tolerant, followed by the classic cross-correlation, and

then the two multiset-based methods. Though these curves corre-

spond to respective averages ± standard deviations, the latter are

generally very small to be visualized.

images. From 1 to 5 such patterns have been added into

one of the images at uniformly random positions. The

patterns can be added while being multiplied by +1 or

−1, chosen in uniformly random manner. The results are

shown in Figure 29.

Figure 29: Similarity values obtained in presence of added interfer-

ence corresponding to signed addition of from 1 to 5 gaussian pat-

terns at uniformly random positions in the image. The curves corre-

spond to the average ± standard deviations. Identical results have

been obtained for the real-valued Jaccard and coincidence based

similarities.

While the interiority and classic cross-correlation pre-

sented total tolerance to the added interference, a mod-
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erate discrimination can be observed in the case of the

real-valued Jaccard and coincidence results, which present

total overlap in the figure.

All in all, the several analysis reported in this section

further substantiated the tendency of the multiset-based

approaches to provide a more accurate and discrimina-

tive quantification of the stimulus recognition than the

interiority and cross-correlation based methods. Signif-

icant differences in the specificity of the response have

been observed in several cases, especially varying inten-

sities, widths, and noise. Given their markedly more

strict and discriminative characteristics, the real-valued

and Jaccard, and even more so the coincidence approach,

therefore correspond to the best choice, among the con-

sidered possibilities, for implementing more strict pattern

recognition with high levels of accuracy.

There is an important issue to be further discussed here,

and it regards the interplay between discriminative and

tolerant (or invariant) performance. One first important

point concerns the fact that these seem to be opposite

properties, in the sense that a neuron that is too tolerant

will provide no specific response, and vice versa. Another

critical issue concerns the fact that, taken independently,

neither of these two properties are necessarily good or

bad. As in an engineering problem, the best solution will

be that which best suits the specific requirements.

However, in the context of effective recognition of sev-

eral types of patterns in typical applications, in pres-

ence of all the considered perturbations, perhaps the most

proper solution is a balanced combination of discrimina-

tive and tolerant abilities. Actually, there is a formal

solution to this duality between specificity and generality

that is not so often realized. It concerns the fact that

it is indeed possible to achieve both characteristics in a

synergistic manner, not as a kind of trade-off or balance.

This solution consists of having sets of neurons, each of

which highly discriminative and specific, whose combined

operation provides for the requested levels of tolerance

and generalizations.

Thus, while each instance of the presented pattern will

be accurate and specifically identified by successive indi-

vidual cells, at the overall group level substantial toler-

ance will be achieved for several instances and perturba-

tions of the presented stimuli. Nevertheless, this ideal ar-

chitecture can only be achieved at expense of substantial

informational resources, be then biological or artificial.

These flexible and highly discriminative ensembles, which

constitute the ideal solution for many circumstances, are

henceforth denominated synergistic neuronal systems.

The immediate consequence of the above considerations

is that it becomes critical to have the means for imple-

menting strict, discriminative pattern recognition at the

smallest informational and energetic expenses. From this

perspective, the multised-based similarity identification

constitute a particularly interesting resource given their

conceptual and informationally simple operation, allied

to their substantially more strict and discriminative op-

eration as verified in this work with respect to several

perturbations and in [26] with respect to coexisting pat-

terns.

Interestingly, it has been proposed recently that the

multiset operations can be implemented in extremely effi-

cient manner in analog electronics, using only a few oper-

ational amplifiers and analog switches [32], which makes

the mutiset-based approaches, and in particular the coin-

cidence index, components of choice for the development

of real-time pattern recognition systems.

It remains an issue of great interest to contemplate

how befitted for implementation in biological hardware

the multiset operations ultimately are.

10 Strictness Effect

In this section we study the effect of having more strict

coincidence comparison, controlled by the parameter D,

on the similarity values obtained with respect to the con-

sidered input perturbations.

Figure 30 illustrates the coincidence values obtained for

D = 1, 3, 5, 7, 9, 11 respectively to relative displacement

between the reference and input gaussians. It can be read-

ily verified that the obtained coincidence values decrease

steadily with D, indicating that progressively more strict

comparisons imply in reducing the obtained coincidence

values.

Figure 30: Similarity values obtained by the coincidence similarity

for D = 1, 3, 5, 7, 9, 11 respectively to relative displacements of two

identical gaussians.

The effect of increasing D on the coincidence values

obtained with respect to modification of the intensity of
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the input is shown in Figure 31. Again, the results indi-

cate smaller indications of the presence of the reference

pattern as the coincidence becomes more strict. Similar

effect can be verified respectively to variation of the input

width (Fig. 32), noise and interference.

Figure 31: Quantification of the similarity between two circularly

symmetric gaussians with the same dispersion, but one of them

multiplied by a scaling factor from 0 to 3. The similarity values

correspond to the coincidence index for D = 1, 3, 5, 7, 9, 11.

Figure 32: The coincidence similarity between the two patterns in

terms of the variation of the width, corresponding to the standard

deviation, of one of them.

11 Application Example: Image

Segmentation

Among the several methods typically involved in image

analysis, the segmentation of the objects of interest con-

stitutes what is possibly the most difficult and challenging

task (e.g. [34, 35]). Basically, given an image containing

several objects, as well as possibly a background, the task

of segmentation consists in identifying the regions in the

image that correspond to the objects of interest. Observe

that image segmentation therefore corresponds to a pat-

tern recognition problem in which each image pixel is to

be classified as belonging or not to the objects of interest.

In the present section we illustrate the impressive po-

tential of multiset neurons based on the real-valued Jac-

card and coincidence similarity indices, for performing su-

pervised image segmentation. For generality’s sake, we

will consider the RGB (color) image with size 300 × 319

pixels shown in Figure 33. The objects of interest will con-

sist of the small leaves in the background of the image.

Observe that these leaves have intense variation of hues,

intensities, contrast and even focus, which contribute to

making this problem a particular challenge. In particu-

lar, these leaves have tons of brown and red, in addition to

green, which makes their separation from the other image

objects especially difficult.

Figure 33: The image considered for illustrating the suggested mul-

tiset neuron based segmentation method. This RGB image has size

300×319 pixels, containing flowers against a varied background that

includes small leaves with varying hues, intensity, contract and fo-

cus. The identification of the green leaves constitutes a particularly

challenging problem in image processing and analysis.

The method proposed here, which is as simple as it

is powerful, consists of taking a few samples of typical

pixels belonging to the objects of interest, and then taking

the R, G, and B values. A multiset neuron with hard

limit output (see Fig. 22) will be assigned to recognize

each of these Ns samples. The template vector of each

of these neurons corresponds to the RGB values of the

sampled pixel as well as of its w neighbors (e.g. within a
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square of size 2w + 1). Having thus trained the system,

the image segmentation proper consists of obtaining the

real-valued Jaccard or coincidence values by comparing

the template with each of the image pixels for each of

the multiset neurons, and the resulting similarity value

is then thresholded by T (hard-limiting output function).

In the present examples, no pre-processing is performed

on the original image.

A logical or is then performed between the obtained

outputs of the Ns neurons, and the original image pixel is

understood to belong to the objects of interest whenever

at least one of the neurons yields a true value. Several

other types of features can be adopted, including statistics

of the RGB values (e.g. average and statistical moments),

as well as entropy and other indices, around each of the

sample points.

Figure 34 illustrates the results obtained by taking just

Ns = 5 pixels samples taken mostly at the lower right

portion of the image, respectively to the real-valued Jac-

card multiset neurons (a) with T = 0.78, and coincidence

multiset neurons (b) with T = 0.74. For comparison’s

sake, a smaller threshold has been adopted in the latter

case, since the coincidence is more strict than the Jaccard

similarity. In both cases, we adopted w = 1, implying a

total of 3(2w + 1)2 = 27 features (or number of synaptic

inputs) for each neuron. The processing, which involves

just the parameters T and w, took less than half a minute

in a standard personal computer.

Though similar, the results obtained for the Jaccard

and coincidence similarity present some differences that

are consequence of the more strict quantification of the

similarity between the pixel properties which is charac-

teristic of the coincidence approach. Both results can be

considered to be particularly satisfactory, involving min-

imal computational resources.

The segmentation of the cores and petals of the flow-

ers by using a coincidence neuronal multiset network with

T = 0.78 and w = 1 is illustrated in Figures 35 (a) and

(b), respectively. Again, just Ns = 5 pixels were sampled

from the flowers that are most at the forefront. Remark-

able results have been again been obtained.

Figure 36 shows the segmentation of the flower cores

with the same network as in Figure 35, but incorporat-

ing an output sigmoid function (Eq. 34) with a = 20 and

T = 0.83, accounting for a graded resulted instead of the

binary decisions implemented by the hard limiting func-

tion adopted in the previous examples. Observe that the

additional obtained details appear with reduced intensity,

which is a consequence of the sigmoid acting only on the

similarity values resulting from the real-value coincidence

(a)

(b)

Figure 34: Segmentation of the small leaves in Fig. 33 obtained by

using multiset neurons based on real-valued Jaccard (a) and coin-

cidence (b) similarity with w = 1. Only 5 samples (pixels, marked

by respective cross-hairs in the image) belonging to the objects of

interest were used to train the system, which adopted T = 0.78 and

T = 0.74 respectively to the Jaccard and coincidence approaches.

The time required for training is just a few seconds, and the whole

identification of the regions takes less than half a minute in a stan-

dard personal computer. The multiset neuronal network included

only 5 neurons with sharp non-linear output.

The multiset neurons can also be applied to segment

gray-level images as that shown in Figure 37(a). The

segmentation results, using coincidence neurons with w =

1 and T = 0.85 are presented in Figure 37(b). The sample

points being chosen at the brighter background, and the

result was complemented in order to reveal the portions

of the image that do not belong to the background.
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(a)

(b)

Figure 35: Segmentation of the cores (a) and petals (b) of the flowers

in Fig. 33 obtained by a simple neuronal multiset network with

Ns = 5 neurons based on the coincidence similarity, with T = 0.8

(cores), T = 0.83 (petals) and w = 1. The chosen samples are

marked by the green cross-hairs.

12 Concluding Remarks

The present work has developed a study of the applica-

tion of the multiset-derived similarity operations, espe-

cially the real-valued Jaccard and coincidence indices, to

artificial neurons. More specifically, these indices are con-

sidered for substituting the inner product performed be-

tween the image stimulus and respective matrix of synap-

tic weights.

After presenting an overview of the related multiset

concepts and developments that led to the real-valued

Figure 36: Segmentation of the cores of the flowers in Fig. 33 ob-

tained by a neuronal of generalized multiset network with Ns = 5

neurons with based on the coincidence similarity, with T = 0.75 and

w = 1, incorporating a sigmoid output function with a = 30 and

the same T = 0.83 as in Fig. 35. The pixels intensity is proportional

to the estimated similarity with the trained pixels.

Jaccard and coincidence index, including new results re-

garding higher order respective versions, we proceeded to

a systematic comparison of artificial neurons performing

pattern recognition in presence of several types of pertur-

bations. More specifically, the pattern to be recognized is

stored in the synaptic weights, while the similarity com-

parison is performed by using the several considered in-

dices.

The results largely confirm the enhanced potential of

the coincidence index, followed by the real-valued Jaccard

index, for performing strict similarity quantification. This

makes these types of artificial neurons primary choices for

implementations and applications involving strict patter

recognition. The duality between specificity and gener-

ality in this type of task has also been discussed, and it

has been argued that the ideal solution is to have large

ensembles of highly specific and strict neurons, each of

which adapted for taking into account specific geometric

transformations so as to allow respective invariance.

Now, a particularly interesting issue arises regarding

the fact that, given the substantial advantages of neu-

rons based on the coincidence or real-valued Jaccard in-

dices, why would they have not been adopted in biological

neuronal networks aimed at effective pattern recognition?

Why would the otherwise much less efficient inner prod-

uct be instead implemented by the dendritic integration

of the synaptic input?

There are at least two possible answers to this impor-

tant question. First, we have that the biological hard-
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(a)

(b)

Figure 37: Segmentation of a gray level image (a) performed by

a coincidence neuronal network with Ns = 5 samples (identified

by the cross-hairs) and respective neurons with w = 1 and T =

0.83, with complementation of the logical or between the respective

outputs being performed in order to reveal the objects that are not

part of the background.

ware would be intrinsically unsuitable for implementing

the multiset-related operations. Interestingly, recent de-

velopments have shown that these operations can be very

effectively implemented in analog electronics [32], but this

does not necessarily extend to biology, though much of

the neuronal operation is a correlate of electric and even

electronic counterparts. If it happens that biology is in-

trinsically unsuitable for performing multiset operations,

these alternatives remain still valid for implementations

in other types of hardware.

The second possible answer is that the biological neu-

ronal cells actually implement multiset-related functions.

Indeed, consider the profile of the operation x u y shown

in Figure 8, which is the basis for all effective indices de-

veloped and applied in the present work. This function,

which resembles a sigmoid, could be applied not at the im-

plantation cone, but at each of the synapses. Indeed, the

observed saturation could correspond to the saturation of

the synaptic activation and/or of the local polarization

of the interior of the cell. The sum corresponding to the

numerator of Equation 11 would then correspond to the

combination of the diffusive charge effect at the implan-

tation cone.

As for the denominator of that same equation, it is pos-

sible that other intracellular mechanisms are activated by

the synaptic activity that effectively contribute to the in-

hibition of the action potential. These inhibitory effects

could be similarity integrated at the implantation cone,

accounting for the denominator in Equation 11. There

are other possible mechanisms that could account for the

implementation of multiset-like neuronal operations. For

instance, the denominator of Equation 11 could corre-

spond to inhibitory effects received from other cells as-

sociated to the same receptive field that would therefore

counterbalance the net depolarization of the excitatory

cell implementing the numerator integration.

Though these are currently hypothetical, further con-

sideration and experimental developments can help veri-

fying these possibilities.

The concepts, methods, and results reported in the

present work have several potential implications in a wide

range of areas — including neuroscience, pattern recog-

nition and deep learning — therefore paving the way to

a large number of further developments. Some examples

include further studies of the possible relationships with

biological cells, the consideration of other types of stim-

uli, as well as the evaluation of the here introduced higher

order versions of the real-valued Jaccard and coincidence

indices.
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