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Abstract

The present work develops a comparative performance of artificial neurons obtained in terms of the recently in-

troduced real-valued Jaccard and coincidence indices and respective functionals. The interiority index and classic

cross-correlation are also included in our study. After presenting the basic concepts related to multisets and the

adopted similarity metrics, including new results about the generalization of the family of real-valued Jaccard and

conicidence indices to higher orders, we proceed to studying the response of a single neuron, not taking into account

the output non-linearity (e.g. sigmoid), respectively to the detection of a gaussian stimulus in presence of displacement,

magnification, intensity variation, noise and interference from additional patterns. It is shown that the real-valued Jac-

card and coincidence approaches are substantially more robust and effective than the interiority index and the classic

cross-correlation. The coincidence based neurons are shown to have the best overall performance for the considered

type of data and perturbations. The reported concepts, methods, and results, have substantial implications not only

for patter recognition and deep learning, but also regarding neurobiology and neuroscience.

“Flower patches on the hill, never the same along the years.’

LdaFC

1 Introduction

A great deal of human perception and cognition, as well as

of many other living beings, relies on the neuronal trans-

duction and processing of several types of information.

From a simplified mathematical perspective, a neuron has

been understood to involve two main stages: (i) an inner

product between the input stimulus and the respective

synaptic weights, yielding an accumulated value; and (ii)

the application of a non-linear function, such as a sig-

moid, over that value, yielding or not an action potential

(e.g. [1, 2]).

This type of operation can be effectively summarized

in the concept of receptive field (e.g. [3, 4]) respectively

defined in some input stage space. For instance, the gan-

glion cells of the retina (e.g. [?]) have been characterized

by respective receptive fields defined in the visual space

(scene) or along the retina surface. The mathematical

modeling of these receptive fields therefor provides an ef-

fective manner for representing and better understanding

neuronal operation according to a systemic representation

which is directly related to the concepts of correlation,

convolution and point-spread functions.

In addition to its dynamic properties along time, the

shape of receptive fields has been understood to play an

important role in detecting and processing information.

Indeed, a more elaborated dendritic arborization will tend

to have enhanced chances of receiving synaptic connec-

tions. The importance of the neuronal geometry seems

to be so important that it often adapts to the type of

function the neuron performs.

In the present work, we re-assess the functioning of

single neurons in terms of recently introducted multiset-

based similarity indices. More specifically, instead of

using the traditional inner product, we apply the real-

valued Jaccard, interiority, and coincidence similarity

metrics [5, 6, 7]. Of particular interest is the fact that,

though extremely simple, these metrics implement an ac-

tion that, though analogous to the classic inner product,

is non-linear as a consequence of the use of the maximum

and minimum binary operators (in the sense of having

two arguments).

We start by presenting the basic multiset concepts

(e.g. [8, 9, 10, 11, 12, 13]), as well as the recently intro-

duced real-valued Jaccard and coincidence indices [5, 6, 7].

In addition to discussing the intrinsic, though limited,

ability of the real product between two scalars in pro-

viding information about their respective similarity, we

shown how the common product and real-valued Jaccard
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index can be derived in a logical manner starting from the

totally strict similarity comparison provided by the Kro-

necker delta function. Unlike in a recent study [5], which

approached the subject of similarity more generally, the

neuronal perspective adopted in this work allowed atten-

tion to be focused on similarity comparisons where one

of the arguments are kept constant, therefore correspond-

ing to stable synaptic weights. New results are reported

regarding the generalization of the multiset similarity in-

dices to higher orders, yielding a generic similarity func-

tion that converges to the Kronecker delta product for

infinite order.

A systematic approach is then proposed and applied for

comparing the performance of neurons in pattern recogni-

tion, while adopting the standard cross-correlation as well

as the interiority, real-valued Jaccard and coincidence in-

dices [5, 6, 7]. The comparison is performed with respect

to varying patter position, intensity, scale, noise levels,

and presence of additional interfering patterns.

Several interesting results are report that, all in all, con-

firm that the coincidence index provides the most strict

and detailed recognition, followed by the real-valued Jac-

card and interiority indices. The classic cross-correlation

resulted almost useless for the considered task and type

of data. These results have many implications and ap-

plications to several related areas, some of which are also

briefly discussed.

2 The Common Product and Re-

lated Indices

Given any two real values x and y, their product con-

stitutes one of the most frequently performed algebraic

operation in science and technology, not to mention daily

activities.

There are some quite interesting properties of the prod-

uct xy that, perhaps as a consequence of being so ubiq-

uitous, are not commonly realized. The first is that the

product follows the following sign rule:

sign {x} sign {y} sign {xy}
− − +

− + −
+ − −
+ + +

(1)

Consequently, the classic product between two real val-

ues is capable of expressing whether the two values x and

y point toward the same direction along the real line, in

which case sign {xy} = +1, or if they oppose one another,

yielding sign {xy} = −1.

This important property of the classic real product

hints at a yet more important respective feature, namely

the fact that the classic real product provides a measure-

ment of similarity between the two values x and y [5]. It

is this particular feature of the product that confers to the

inner product between two vectors some ability for quan-

tifying the similarity of those vectores. More specifically,

the traditional inner product between any two vectors ~v

and ~p in an N−dimensional space is defined as:

〈~v, ~p〉 =

N∑
i=1

vipi = |~v| |~p| cos(θ) (2)

where θ is the smallest angle between the two vectors.

Provided the magnitudes of ~v adn ~p are kept constant, the

inner product will provide an indication of the angular

and orientation similarity between these two vectors.

However, the potential of the scalar product as a sim-

ilarity property is hard to be realized because it varies

so much with the magnitude of x and y. Nevertheless,

provided we have that |x| ≤ 1 and |y| ≤ 1, we have that

−1 ≤ xy ≤ 1.

Despite its intrinsic ability for quantifying similarity, as

well as it extensive application in operations as the inner

product, the real product has two important shortcom-

ings. First, it is relatively difficult to be implemented in

computational hardware or even in analog circuits. Sec-

ond, it has been shown that the real product tends to be

too tolerant regarding the provided indication of similar-

ity [7, 5].

Similarity measurements are typically performed by bi-

nary operators, which is the mathematical term for indi-

cating that the operation takes two values as input.

The considered neuronal operation as a quantification

of similarity addressed in this work provides an interesting

perspective from which to address this operation. More

specifically, if we consider that the similarity is to be mea-

sured between the synaptic weight y and respective input

x, we can simplify the otherwise binary operation as an

operation only on x, with y being understood as a param-

eter. Figure 1 illustrates the real product seen from this

perspective, assuming synaptic weight y = 2.

This result well-illustrates the limitation of the tradi-

tional real product for quantifying similarity. Though the

similarity will increase for |x| increasing from 0 to 1, it

will continue to increase thereafter. In fact, we have that:

lim
x→∞

=∞ (3)

As developed in [5], the prototypical function for quan-

tifying similarity in the most strict manner possible con-

sists in the Kronecker delta function, which can be written

as:

δx,y =

{
1 whenever x = y

0 otherwise
(4)
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Figure 1: The quantification of similarity between two real values

as implemented by the real product xy, with y = 2. Effectively, this

curve would indicate how similar to 2 the values of x are.

Though this function cannot provide information about

the alignment of the values x and y, it can be readily

modified as:

δ̃x,y =


1 whenever x = y

−1 whenever x = −y
0 whenever |x| 6= |y|

(5)

Figure 2 illustrates this function for y = 2, i.e. δ̃x,2.

Figure 2: The Kronecker function modified to take into account the

relative alignment of the real values x and y = 2, which is now

reflected in the respective sign.

The problem with this generalized Kronecker delta

function is that it is simply too strict in its evaluation

of the similarity between x and y.

Remarkably, there is another particularly interesting

possibility to quantify the similarity between two real val-

ues, and it involves the so-called common product [7, 5]:

x ◦ y = sxy min {sxx, syy} (6)

where sx = sign(x), sy = sign(y), and sxy is the con-

joint sign function sxy = sxsy.

This function was developed [5, 6, 7] by applying mul-

tiset concepts (e.g. [8, 9, 10, 11, 12, 13]). In particular,

it can be understood as a modification of the intersection

between two functions in order to consider the common or

shared area of the functions with respect to the horizontal

axis, hence the name common.

Observe that the term common product has been

used [7, 6, 5] also to identify the functional over the el-

ementwise application of the above equation. For sim-

plicity’s sake, we will use this terminology in a common

manner, as the respective context should be enough for

specifying if it is being meant its application elemenwise

or as a functional.

Interestingly, this product has surprising properties, in-

cluding: (i) it is extremely simple to be implemented,

e.g. in electronic circuits [14]; (ii) it is conceptually sim-

ple; (iii) it obeys the sign rules in Equation 1; and (iv) it

implements a much more strict quantification of similarity

than the conventional product [5] which is, at the same

time, more tolerant and than the generalized Kronecker

delta function above.

It is therefore interesting to consider this function from

the neuronal perspective, i.e. with one of its values kept

constant. Figure 3 illustrates the common product for

y = 2.

Figure 3: The common product assuming y = 2, i.e. x ◦ 2. Now we

have that −2 ≤ x ◦ 2 ≤ 2.

It is now clear that the common product with one of its

argument kept constant corresponds to a clipped version

of the real product 2x. The saturation of the common

product for x > 2 is a critical feature in which it implies

x ◦ y to become bound by the fixed value.

However, maximum similarity will be observed for any

value of x larger than 2. An interesting manner to cir-

cumvent this problem consists of normalizing the common

product as follows:

JR(x, y) =
sxy min {sxx, syy}

max {sxx, syy}
(7)

so that −1 ≤ x ◦ y ≤ 1. This normalized version of the

common product corresponds to the real-valued Jaccard

index applied to two scalar values [5, 6, 7].

Figure 4 illustrates both the function n(x, y) =

max {sxx, syy} and the resulting real-valued Jaccard in-

dex.

The normalizing function has a direct correspon-
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Figure 4: The normalizing function n(x, 2) = max {sxx, 2} and the

normalized common product, which becomes the real-valued Jac-

card index J(x, 2) applied to scalar values.

dence with the multiset concept of real-valued functions

union [6]. Observe that this function increases linearly

with x. As a consequence, the division of the common

product by the normalizing function will penalize the sim-

ilarities fro |x| > 2, yielding to two respective peaks in

the real-valued Jaccard index J(x, 2). Interestingly, this

resulting index can therefore be understood as a more tol-

erant version of the generalized Kronecker delta (compare

Figs. 2 and 4b).

The developments presente above make it clear that it

is possible to define an infinity of other similarity indices.

For instance, it is possible to control the sharpness of the

similarity peaks by using other products and normaliz-

ing functions. As an example if even sharper peaks are

required, we can make:

S2(x, y) =
sxy [min {sxx, syy}]2

max {x2, y2}
(8)

Figure 5 illustrates this function for y = 2.

The above development can be generalized to any de-

gree D even as:

SD(x, y) =
sxy [min {sxx, syy}]D

max {xD, yD}
(9)

Observe that the similarity function SD(x, y) tends to

the generalized Kronecker delta function when D → ∞,

Figure 5: The normalizing function n(x, 2) = max {sxx, 2} and the

normalized common product, which becomes the real-valued Jac-

card index J(x, 2) applied to scalar values.

Figure 6: Even sharper similarity quantification through the func-

tion SD=10(x, 2).

i.e.:

lim
D→∞

SD(x, y) = δ̃(x, y) (10)

However, for simpilcity’s sake, we will consider only the

real-valued Jaccard index in our subsequent performance

analysis, which can be understood as the above construc-

tion when D = 0. A more systematic study of higher

values of D will be reported elsewhere.

Now, the functional version of the common product can

be stated [5, 6, 7] as:

� f(x), g(x)�=

ˆ
S

sfg min {sff, sgg} dx (11)

where f(x) and g(x) are real functions and S is their
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common support.

We can immediately make:

JR(x, y) =

´
S
sfg min {sff, sgg} dx´
S

max {sff, sgg} dx
(12)

Observe that the functional versions of the real-valued

Jaccard index performs a division of functionals instead

of a functional of a division. This is an important con-

sequence of of both f(x) and g(x) being considered to

correspond to generalized versions of multisets to real val-

ues [5, 7, 6].

The fact that traditional Jaccard index has been

shown [7] not to be able to take into account the relative

interiority between the two compared sets motivated the

coincidence index, which combines the real-valued Jac-

card index with the interiority (or homogeneity) between

the two functions.

The interiority index for real valued functions can be

expressed [5, 7, 6] as:

I(x, y) =

´
S

min {sff, sgg} dx
max {Sf , Sg}

(13)

where Sf =
´
S
sff(x)dx and Sg =

´
S
sgg(x)dx.

So that the coincidence index expressing the similarity

between the two functions f(x) and g(x) can be simply

expressed as:

c(x, y) = JR(x, y)I(x, y) (14)

Observe that the type of denominator in the interior-

ity Equation 13 avoids a respective scalar version as de-

veloped above for the real-valued Jaccard index. For the

same reason, it is also not viable to derive a scalar version

of the coincidence index. At the same time, higher order

versions of the coincidence index can be readily obtained

in a manner analogue to the above developments.

Discrete respective versions of the above equations are

adopted in the following developments.

3 Single Neuron Comparison

In this section, we perform a comparison of single neurons

defined respectively to the real-valued Jaccard, interiority,

and coincidence indices, as well as to the classic inner

product.

This comparison is developed by taking into account

several possible effects commonly found regarding pat-

tern recognition by single neuronal cells, including: (a)

relative position displacements; (b) stimulus size varia-

tion; (c) stimulus intensity variation; (d) noise; and (e)

presence of more than a single pattern in the stimulus.

The reference input stimulus will be a circularly sym-

metry two-dimensional gaussian function centered at the

stimulus space, given as:

g(x, y) = e−0.5(
d(x,y)
σ )

2

(15)

where: d(x, y) =
√
x2 + y2 (16)

Unless stated otherwise , we adopt σ = 100 in an 200×
200 image support.

Figure 7 presents the values of the four considered

methods respective to relative displacements from 0 to

30 discrete steps (pixels). Full similarity has been duly

identified by all methods regarding null displacement, as

could be expected. However, as soon as one of the pat-

terns shifts, the values of all indices are decreased. The

sharpest decrease is verified for the coincidence approach,

which is known [7, 5] to provide a more strict quantifica-

tion of pairwise similarity. The classic cross correlation

presented the slowest decrease between all methods, ex-

cept for displacements above 12 pixes, in which case all the

indices values are already very small. This is in agreement

with the identification of product based similarities [7, 5]

to be particularly tolerant to pairwise differences. The

real-valued Jaccard approach yielded the second fastest

decreasing values.

Figure 7: Similarity values obtained by the four considered meth-

ods respectively to relative displacements of two identical gaus-

sians. The coincidence method allowed the fastest, and therefor

most strict, quantification of the similarity, while the classic cross

correlation yielded the most tolerant and least discriminative re-

sults.

Next, we analyse the similarity quantification in terms

of varying intensities of one of the two identical gaus-

sians, though one of them was displaced by 2 pixels along

both axes in order to impose a more challenging similarity

quantification. The considered intensity changes varied in

a range from 0 to 3. The results are depicted in Figure 8.

Particularly interesting results can be discerned from
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Figure 8: Quantification of the similarity between two circularly

symmetric gaussians with the same dispersion, but one of them

multiplied by a scaling factor from 0 to 3. In order to impose a

more challenging demand, one of the gaussians was always shifted

by 2 pixels along each axes. The best results are again observed for

the coincidence method, followed by the real-valued Jaccard and

interiority approaches. The classic cross correlated revealed to be

completely insensitive to the intensity changes.

this figure. Of greatest notice is the complete insensitiv-

ity of the classic cross-correlation method to the intensity

variations. Though this feature can be helpful in some

applications where intensity variance is desired, it will

completely fail in cases where more strict quantifications

of similarity are required to take into account also the

relative intensities. The best results in this sense have

been obtained with respect to the coincidence method-

ology, followed by the real-valued Jaccard, and then the

interiority.

It is also worth noticing that the two multiset-based

methodologies present two main behaviors. From intensi-

ties ranging from 0 to 1, meaning that one of the patterns

is less intense than the reference, both these methods

present an almost linear increase up to identical intensity.

The maximum similarity value 1 was not obtained in this

case because of the small imposed relative displacement

of 2 pixels along each axes. From this peak, the similar-

lity values then decrease progressively as the intensities,

which now correspond to magnifications, increase.

The results of the study of the effect of the pattern

width on the respective matching is shown in Figure 9.

The width, which corresponded to the standard devia-

tion of the circularly symmetric gaussian, given in Equa-

tion 15, varied from 0 to 100.

Both the real-valued Jaccard and the coindicence match

values presented a linear increase from 0 to 1. The clas-

sic cross-correlation presented an initially steep increasing

Figure 9: The similarity between the two patterns in terms of the

variation of the width, corresponding to the standard deviation, of

one of them. The similarity for the real-time Jaccard and coinci-

dence approaches varies linearly from 0 to 1. The cross correlation

presents a steep initial variation followed by a saturation. The kept

constant at 1, which is expected given that one of the patterns is

always interior to the other.

profile followed by a saturation. As expected, the interi-

ority index was kept constant with value 1, reflecting the

fact that one of the patterns is always interior to the other

in this particular experiment. The real-valued Jaccard

and coincidence indices represent a suitable choice in case

the similarity is to reflect the width discrepancy in a linear

manner. The classic cross correlation again resulted more

tolerant to the implemented variation, reaching relatively

high values sooner than the multiset-based methods.

We now proceed to the consideration of additive sym-

metric uniform noise to one of the patterns. More specif-

ically, the following noise levels are added:

X [x, y] = X [x, y] +
i

Nns
[u(x, y)− 0.5] (17)

with i = 0, 1, . . . , Nns and where u(x, y) is a scalar uni-

form random field taking values in [0.1]. We henceforth

adopt Nns = 20. A total of 20 experiments were per-

formed for each of these levels, the respective average and

standard deviation being then considered as results.

Figure 10 illustrates the similarity values obtained by

the four methods with respect to increasing levels of noise.

Several aspects of interest can be identified from this fig-

ure. First, we have that the interiority similarity accounts

for the slowest decreasing similarity values. This can be

explained by the fact that the noisy versions of one of the

patterns, despite being jagged, will be mostly interior to

the other. The fastest decreasing profiles are those ob-

tained for the real-valued Jaccard and coincidence meth-

ods, which also resulted very similar one another. This

indicates that these two multiset-based approaches are

the most sensitive to the pattern modifications induced by
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the increasing levels of noise. The classic cross-correlation

yielded an intermediate result between the interiority and

multiset-based methods, again reflecting its increase tol-

erance to perturbations.

Figure 10: Similarity values obtained by the four considered meth-

ods respectively to increasing noise levels. The interiority approach

is the most tolerant, followed by the classic cross-correlation, and

then the two multiset-based methods. Though these curves corre-

spond to respective averages ± standard deviations, the latter are

generally very small to be visualized.

The last considered type of perturbation concerns the

signed addition of whole gaussian patterns into one of the

images. From 1 to 5 such patterns have been added into

one of the images at uniformly random positions. The

results are shown in Figure 11.

While the interiority and classic cross-correlation pre-

sented total tolerance to the added interference, a mod-

erate discrimination can be observed in the case of the

real-valued Jaccard and coincidence results, which present

total overlap in the figure.

All in all, the several analysis reported in this section

further substantiated the tendency of the multiset-based

approaches to provide a more accurate and discrimina-

tive quantification of the stimulus recognition than the

interiority and cross-correlation based methods. Signif-

icant differences in the specificity of the response have

been observed in several cases, especially varying inten-

sities, widths, and noise. Given their markedly more

strict and discriminative characteristics, the real-valued

and Jaccard, and even more so the coincidence approach,

therefore correspond to the best choice, among the con-

sidered possibilities, for implementing pattern recognition

with high levels of accuracy.

There is an important issue to be further discussed here,

Figure 11: Similarity values obtained in presence of added interfer-

ence corresponding to signed addition of from 1 to 5 gaussian pat-

terns at uniformly random positions in the image. The curves corre-

spond to the average ± standard deviations. Identical results have

been obtained for the real-valued Jaccard and coincidence based

similarities.

and it regards the interplay between discriminative and

tolerant (or invariant) performance. One first important

point concerns the fact that these are opposite properties,

in the sense that a neuron that is too tolerant will provide

no specific response, and vice versa. Another critical issue

concerns the fact that, taken independently, neither of

these two properties are necessarily good or bad. As in

an engineering problem, the best solution will be that

which best suits the specific requirements.

However, in the context of effective recognition of sev-

eral types of patterns in the real world, in presence of all

the considered perturbations, perhaps the proper solution

is a balanced combination of discriminative and tolerant

abilities. Actually, there is a formal solution to this dual-

ity between specificity and generality that is not so often

realized. It concerns the fact that it is indeed possible to

achieve both characteristics in a synergistic manner, not

as a kind of trade-off or balance. This solution consists in

having sets of neurons, each of which highly discrimina-

tive and specific, whose combined operation provides for

the requested levels of tolerance and generalizations.

Thus, while each instance of the presented pattern will

be accurate and specifically identified accurately by suc-

cessive individual cells. However, at the overall group

level, substantial tolerance will be achieved for several in-

stances and perturbations of the presented stimuli. Nev-

ertheless, this ideal architecture can only be achieved at

expense of substantial informational resources, be then

biological or artificial. These flexible and highly discrim-

inative ensembles, which constitute the ideal solution for
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many circumstances, are henceforth denominated syner-

gistic neuronal systems.

The immediate consequence of the above considerations

is that it becomes critically to have the means for imple-

menting strict, discriminative pattern recognition at the

smallest informational and energetic expenses. From this

perspective, the multised-based similarity identification

constitute a particularly interesting resource given their

conceptual and informationally simple operation, allied

to their substantially more strict and discriminative op-

eration as verified in this work with respect to several

perturbations and in [15] with respect to coexisting pat-

terns.

Interestingly, it has been proposed recently that the

multiset-operations can be implemented in extremely ef-

ficient manner in analog electronics, using only a few op-

erational amplifiers and analog switches [14], which makes

the mutiset-based approaches, and in particular the coin-

cidence index, components of choice for the development

of real-time pattern recognition systems.

It remains an issue of great interest to contemplate

how befitted for implementation in biological hardware

the multiset-operations ultimately are.

4 Concluding Remarks

The present work has developed a study of the applica-

tion of the multiset-derived similarity indices, especially

the common product, to artificial and biological neurons.

More specifically, these indices are considered for substi-

tuting the inner product performed between the image

stimulus and respective matrix of synaptic weights.

After presenting an overview of the related multiset

concepts and developments that led to the real-valued

Jaccard and coincidence index, including new results re-

garding higher order respective versions, we proceeded to

a systematic comparison of artificial neurons performing

pattern recognition in presence of several types of pertur-

bations. More specifically, the pattern to be recognized is

stored in the synaptic weights, while the similarity com-

parison is performed by using the several considered in-

dices.

The results largely confirm the enhanced potential of

the coincidence index, followed by the real-valued Jaccard

index, for performing strict similarity quantification. This

makes these types of artificial neurons primary choices for

implementations and applications involving strict patter

recognition. The duality between specificity and gener-

ality in this type of task has also been discussed, and it

has been argued that the ideal solution is to have large

ensembles of highly specific and strict neurons, each of

which adapted for taking into account specific geometric

transformations so as to allow respective invariance.

Now, a particularly interesting issue arises regarding

the fact that, given the substantial advantages of neu-

rons based on the coincidence or real-valued Jaccard in-

dices, why would they have not been adopted in biological

neuronal networks aimed at effective pattern recognition?

Why would the otherwise much less efficient inner prod-

uct be instead implemented by the dendritic integration

of the synaptic input?

There are two possible answers to this important ques-

tion. First, we have that the biological hardware is

intrinsically unsuitable for implementing the multiset-

related operations. Interestingly, recent developments

have shown that these operations can be very effectively

implemented in analog hardware [14], but this does not

necessarily extend to biology, though much of the neu-

ronal operation is a correlate of electric and even elec-

tronic counterparts. If that is so that biology is intrinsi-

cally unsuitable for performing multiset-operations, these

alternatives remain valid for implementations in other

types of hardware.

The second possible answer is that the biological neu-

ronal cells actually implement multiset-related functions.

Indeed, consider the profile of the common product shown

in Figure 3, which is the basis for all effective indices de-

veloped and applied in the present work. This function,

which resembles a sigmoid, could be applied not at the im-

plantation cone, but at each of the synapses. Indeed, the

observed saturation could correspond to the saturation of

the synaptic activation and/or of the local polarization of

the interior of the cell. The sum corresponding to the nu-

merator of Equation 7 would then correspond to the com-

bination of the diffusive charge effect at the implantation

cone. As for the denominator of that same equation, it is

possible that other intracellular mechanisms are activated

by the synaptic activity that effectively contribute to the

inhibition of the action potential. These inhibitory effects

could be similarity integrated at the implantation cone,

accounting for the denominator in Equation 7. There

are other possible mechanisms that could account for the

implementation of multiset-like neuronal operations. For

instance, the denominator of Equation 7 could correspond

to inhibitory effects received from other cells associated

to the same receptive field that would therefore counter-

balance the net depolarization of the excitatory cell im-

plementing the numerator integration.

Though these are currently hypothetical, further con-

sideration and experimental developments can help veri-

fying these possibilities.

The concepts, methods, and results reported in the

present work have several potential implications in a wide

range of areas, including neuroscience and pattern recog-

nition, therefore paving the way to a large number of fur-
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ther developments. Some examples include further stud-

ies of the possible relationships with biological cells, the

consideration of other types of stimuli, as well as the eval-

uation of the here introduced higher order versions of the

real-valued Jaccard and coincidence indices.
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