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Abstract: RGB optical imaging is a marker-free, contactless, and non-invasive technique that is able
to monitor hemodynamic brain response following neuronal activation using task-based and resting-
state procedures. Magnetic resonance imaging (fMRI) and functional near infra-red spectroscopy
(fNIRS) resting-state procedures cannot be used intraoperatively but RGB imaging provides an
ideal solution to identify resting-state networks during a neurosurgical operation. We applied
resting-state methodologies to intraoperative RGB imaging and evaluated their ability to identify
resting-state networks. We adapted two resting-state methodologies from fMRI for the identification
of resting-state networks using intraoperative RGB imaging. Measurements were performed in
3 patients who underwent resection of lesions adjacent to motor sites. The resting-state networks
were compared to the identifications provided by RGB task-based imaging and electrical brain
stimulation. Intraoperative RGB resting-state networks corresponded to RGB task-based imaging
(DICE : 0.55 ± 0.29). Resting state procedures showed a strong correspondence between them
(DICE : 0.66 ± 0.11) and with electrical brain stimulation. RGB imaging is a relevant technique for
intraoperative resting-state networks identification. Intraoperative resting-state imaging has several
advantages compared to functional task-based analyses: data acquisition is shorter, less complex,
and less demanding for the patients, especially for those unable to perform the tasks.

Keywords: resting-state; functional connectivity; intraoperative imaging; optical imaging; RGB imaging

1. Introduction

Non-invasive functional brain mapping is an imaging technique that allows the
locating of functional areas of the patient’s brain. This technique is used during brain tumor
resection surgery to indicate to the neurosurgeon the cortical tissues which should not be
removed without cognitive impairment. Functional magnetic resonance imaging (fMRI) [1]
is the preoperative gold standard for identifying the patient’s functional areas. However,
after the patient’s craniotomy, a brain shift invalidates the relevance of neuronavigation to
localize functional areas during surgery [2]. To avoid localization errors, intraoperative MRI
has been suggested, but it complicates the surgical procedure and is, therefore, rarely used.
For these reasons, electrical brain stimulation (EBS) [3] is preferred during neurosurgery,
but this technique is mainly limited by its low spatial resolution (≈5 mm [4]) and has the
potential risk to trigger epileptic seizures. Optical imaging provides an ideal solution for
intraoperative functional brain mapping because the analysis of the light absorption allows
to monitor the brain activity (motor or sensory tasks for example) with quantification of
the concentration changes in oxy- (∆CHbO2 ) and deoxygenated hemoglobin (∆CHb) in brain
cortex [5–12].
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As opposed to functional task-based analyses, resting-state functional connectivity
aims to identify the low frequency cortical hemodynamic fluctuations (<0.1 Hz) that reflect
the patient neuronal activity at rest and that are linked to resting-state networks [13]. These
fluctuations can occur in the absence of a task, and are often correlated between functionally
related areas. Resting-state imaging has several advantages compared to functional task-
based analyses: data acquisition is shorter, less complex, and less demanding for the
patients, especially for those unable to perform the tasks. This technique is widely used
in fMRI studies [14–17], could be used to plan tumor resection [15] when patients are
under general anesthesia [18,19]. Using optical imaging, resting-state techniques have been
adapted to functional near-infrared spectroscopy (fNIRS) devices [20,21] for continuous
bedside monitoring and wide field devices for studying neurovascular coupling in mice
brains [22,23]. To our knowledge, intraoperative implementation of optical resting-state
has never been proposed in the literature. Main issues come from the partial access to the
brain cortex, whereas the models of resting-state used whole brain imaging.

In these works, we demonstrate that intraoperative optical resting-state can be im-
plemented intraoperatively using two standard fMRI resting state techniques (the seed
correlation and the independent component analyses [13]). The cortical areas identified
with optical resting-state maps correspond to those identified by optical functional task-
based analysis and EBS [3] with patients who are awake or under general anesthesia. These
results could help to guide the neurosurgeon surgical gesture, have the potential to reduce
the duration of surgical operations while improving patient and neurosurgeon comfort.

2. Material and Methods
2.1. Intraoperative Procedure

The study was conducted at the neurological center of the Pierre Wertheimer hospital
in Bron, France. Three patients presenting a tumor close to the motor cortex area were
included in the study. All experiments were approved by the local ethics committee of Lyon
University Hospital (France) and the participating patients signed written consent. The
videos were acquired with the wide field optical device described in [7] after the patient’s
craniotomy and before the brain tumor resection surgery. For each patient, resting-state
and task-based data were acquired. For task-based data, motor cortex stimulation was
performed by repetitive, alternating hand opening and closing at≈1 Hz (successive periods
of 20 s of rest followed by 20 s of stimulation). For resting-state data, patients stayed at rest
and the acquisition duration was at least 1 min 40 s, which corresponds to the minimum
acquisition time required to obtain accurate and stable mapping of brain connectivity
network in children using fNIRS [24] and in adult using fMRI [25]. Information on patients
and acquisitions is summarized in Table 1.

The neurosurgeon performed EBS after RGB imaging using a bipolar electrode (Nim-
bus Medtronic neurostimulator). A biphasic current was used (pulsating frequency: 60 Hz,
pulse width: 1 ms). The current was first set to 1 mA, and increased to 6 mA. When a
functional area was identified by EBS, the neurosurgeon placed a colored pastille on the
patient cortex and a RGB image was acquired to store the position of the functional area in
the RGB image.
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Table 1. Information on patients and acquisitions.

Patient 1 Patient 2 Patient 3

Gender Female Male Female

Age 37 57 45

Tumor Low grade glioma Lung cancer
metastasis Low grade glioma

Surgical window Right hemisphere Right hemisphere Right hemisphere

General status Awake General anesthesia Awake

Task-based analysis

Task Left-hand movement Left-hand movement Left-hand movement
performed by the

patient
performed by an
external person

performed by the
patient

Number of
cycles 2 3 3

Acquisition
duration 1 min 2 min 2 min

Resting-state analysis

Patient status
Looked at a medical

practitioner
Under general

anesthesia
Looked at a medical

practitioner
and did not make any

movements
and did not make any

movements
and did not make any

movements

Acquisition
duration 1 min 40 s 2 min 20 s 2 min 20 s

2.2. Functional Analyses

Once the video was acquired, the quantitative model described in [7] was applied. A
schematic overview of these processing steps is represented in Figure 1.

Figure 1. Overview of the algorithm [7] for the computation of concentration changes time curves, the calculation of
functional maps (task-based and resting-state maps) and the comparison of functional areas identified by functional maps.
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The first image of the video sequence was segmented into three classes: gray matter,
surface blood vessel, and buried blood vessel. The objective is to use in the modified
Beer–Lambert law, and this for each pixel of the camera, the appropriate mean path
length of photons travelled in tissue. For this purpose Monte Carlo simulations were
performed using MCX software [26]. For each frame of the video, the repetitive brain
motion was compensated [27,28]. The slow drift of RGB intensities was corrected due to
tissue desiccation [29] and a low-pass filtering was performed to isolate slow hemodynamic
fluctuations (cut-off frequency: 0.08 Hz [13,20,21]). Then, ∆CHbO2 and ∆CHb time curves
were computed for each camera pixel using the modified Beer–Lambert law [7,8]. To
compute these concentration changes time curves, a software developed in C++ was used.
This software is based on the Qt framework (v5.9.4) and open source libraries (OpenCV
(v3.2.0) [30] and FFTW (v3.3.7) [31]). Then, several analyses were performed to identify
functional brain maps. A task-based (see Section 2.2.1) and resting-state analyses (see
Section 2.2.2) were computed. The extent of functional brain areas was identified with
a thresholding operation (see Section 2.2.3). Finally, the binary functional maps were
compared to each other with the calculation of the DICE and overlap coefficients (see
Section 2.2.3).

2.2.1. Task-Based Functional Analysis

The task-based analysis consisted in analyzing the correlation between measured and
theoretical cortical hemodynamic changes. The theoretical hemodynamic time curve (H)
was obtained by convolving the hemodynamic impulse response function [32] to a rectan-
gular function that represented the patient’s physiological events (0: rest, 1: stimulation).
Theoretical ∆CHbO2 and ∆CHb time curves were obtained by multiplying H by 1 and −1,
respectively. The Pearson correlation coefficient was computed between the theoretical and
measured ∆CHbO2 and ∆CHb time curves to produce task-based maps. For this analysis,
the C++ software was used.

2.2.2. Resting-State Analyses

The seed correlation [20] analysis and the independent component analysis (ICA) [33,34]
are the main resting-state functional connectivity analyses.

The seed correlation analysis analyzes the correlation between measured ∆CHbO2
and ∆CHb time curves and those measured at the level of a seed region. The seed was
represented as a 20 pixels diameter disk (1.2 mm diameter) located on the motor area
identified by EBS. ∆CHbO2 and ∆CHb time curves measured at the level of the seed were
averaged over its surface and were compared to the other time curves measured on the
surface of the patient’s cortex using the Pearson correlation coefficient to produce two
resting-state seed maps. For this analysis, the C++ software was used.

The ICA identifies original signals from a mixture of signals by assuming that the
original signals are independent of each other. In our analysis, the original signal was ∆Cn
(n: HbO2 or Hb) and had a dimension of P× T (with P the number pixels of the image and
T the number of frames acquired). Input data were normalized as follow:

∆C′n(p, t) =
∆Cn(p, t)− µn(p)

σn(p)
, (1)

where µn(p) and σn(p) are the temporal mean and standard deviation of ∆Cn measured
for the pixel p respectively. The normalization transforms the temporal vector ∆Cn(p) to
∆C′n(p) which is zero-mean and has unit variance. The matrix ∆C′n can be expressed as a
linear combination of K sources:

∆C′n = A× S. (2)
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S is a matrix of dimension K × T and denotes the concentration changes sources in the
patient brain. A is the mixing matrix of dimension P×K that express the spatial distribution
of the sources. ICA decomposition leads to the estimation of the K sources:

∼
S = W × ∆C′n. (3)

∼
S is the estimated sources (dimension K× T) and W is an unmixing matrix of dimension
K× P. The spatial distribution of the sources A can be estimated by calculating the pseudo-
inverse of the matrix W.

Using the FastICA algorithm [35] from the scikit-learn Python library (v0.18.1) [36],
the normalized concentration changes matrix was decomposed into K independent sources.
The number of independent components depends on the size of analyzed data. Between
10 and 20 independent components were used to analyze data acquired by a high-density
diffuse optical tomography device [33]. Since our field of view was smaller and as only
the sensorimotor function was exposed, we have chosen a smaller number of independent
sources: K = 5. The estimated matrix A (Ã) was reconstructed into 5 images to illustrate
the spatial distribution of hemodynamics fluctuations sources. The 5 images were sorted
by their variance (from the smallest to the largest value).

2.2.3. Comparison of Identified Functional Areas

The task-based maps were compared to the resting-state maps to evaluate the iden-
tification performance of cortical functional zones. For this purpose, the NumPy Python
library (v1.19.4) [37] was used. Each task-based and resting-state image was thresholded to
obtain a binary image. The threshold value T was applied to the images:

T =

{
µI + α.σI if µI ≥ 0
µI − α.σI , otherwise

(4)

µI is the mean value of the image I, σI its standard deviation and α ∈ [0; 1] is the severity
criterion of the thresholding operation equal to 0.75. Morphological opening and closing
operations were applied to the binary image to remove isolated pixels and to close holes. A
20 pixel wide circular structuring element was used.

The DICE coefficient [38] was computed between binary task-based (X in Equation (5))
and resting-state seed or ICA maps (Y in Equation (5)). We also computed this metric
between binary resting-state seed (X in Equation (5)) and ICA maps (Y in Equation (5)):

DICE(X, Y) =
2|X ∩ Y|
|X|+ |Y| , (5)

where |X| and |Y| are the cardinalities of the two sets calculated after the thresholding
operation (see Equation (4)).

Resting-state fMRI is likely to reveal the whole motor cortex, whereas a single body
segment (e.g., face, hand) would be obtained with task-based fMRI. To evaluate this case,
the overlap coefficient [15] was computed between binary task-based (X in Equation (6))
and resting-state seed or ICA maps (Y in Equation (6)).

Overlap(X, Y) =
|X ∩ Y|
|X| , (6)

where |X| and |Y| are the cardinalities of the two sets calculated after the thresholding
operation (see Equation (4)).

Finally, we tested if the functional brain areas identified by EBS corresponded to the
identifications provided by the task-based and resting-state maps by testing if EBS results
were included in the binary task-based and resting-state maps.
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3. Results

The task-based and resting-state maps computed for the three patients are represented
in Figures 2 and 3. The seed and ICA analysis were used in Figures 2 and 3, respectively.
Each motor area identified by EBS was indicated by a white spot and the letter M. The white
spot also indicated the seed area used for the resting-state seed analysis. The areas delimited
by green contours indicated the contours of the binary task-based and resting-state maps
obtained after the thresholding operations, see Equation (4). In Figure 2, the colorbar
indicated the range of variation of Pearson correlation coefficients. In Figure 3, it illustrated
the spatial distribution of hemodynamic fluctuations in ICA images. The values of the DICE
and overlap coefficients computed between the task-based and resting-state seed maps are
indicated in Table 2. The values of the DICE and overlap coefficients computed between
the task-based and resting-state ICA binary maps and the DICE coefficients computed
between the resting-state seed and ICA binary maps are indicated in Table 3.

Table 2. DICE and overlap coefficients computed between task-based (tb) and resting-state seed
(rsseed) binary maps.

Patient 1 Patient 2 Patient 3

HbO2
DICE(tb, rsseed) 0.85 0.77 0.12

Overlap(tb, rsseed) 0.86 0.64 0.11

Hb
DICE(tb, rsseed) 0.84 0.78 0.10

Overlap(tb, rsseed) 0.89 0.65 0.09

Figure 2. In the first column, the first image of the video sequence acquired for the three patients was represented (I(0)).
In the second and third columns, the HbO2 and Hb task-based maps were plotted, respectively. In the fourth and fifth
columns, the HbO2 and Hb resting-state seed maps were plotted, respectively. The seeds used for the computation of the
resting-state maps were indicated by white spots and were located at the level of the motor area identified by electrical brain
stimulation (letter M). The colorbar indicated the Pearson correlation coefficient values computed for each pixel. The green
contours plotted in task-based and resting-state maps delimited the extent of the thresholded images (see Equation (4)). For
patient 2 maps, the dotted white circle delimited the patient’s tumor. For patients 1 and 3, tumors were not observable on
optical images.
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Figure 3. In the first column, the task-based maps were plotted. The spatial distribution of ∆CHbO2 and ∆CHb fluctuations
identified by ICA were represented in other columns. In columns 2 to 6, matrices Ã1 to Ã5 were represented for each
chromophore and for each patient. Each motor area identified by electrical brain stimulation was indicated by a white
spot and by the letter M. The colorbar indicated the range of variation of the Pearson correlation coefficient (task-based
maps) and the range of variation of the ICA matrices. The resting-state ICA matrices were normalized with respect to the
absolute value of their maximum, keeping zero in the center of the color scale. The green contours plotted in task-based and
resting-state maps delimited the extent of the thresholded images (see Equation (4)). For patient 2 maps, the dotted white
circle delimited the patient’s tumor. For patients 1 and 3, tumors were not observable on optical images.

Table 3. DICE and overlap coefficients computed between task-based (tb) and resting-state ICA (rsICA) maps. The DICE
coefficients computed between resting-state seed (rsseed) and ICA (rsICA) maps are also indicated.

Patient 1 Patient 2 Patient 3

Ã1 Ã2 Ã3 Ã4 Ã5 Ã1 Ã2 Ã3 Ã4 Ã5 Ã1 Ã2 Ã3 Ã4 Ã5

HbO2

DICE(tb, rsICA) 0.49 0.25 0.50 0.57 0.20 0.47 0.73 0.14 0.00 0.07 0.20 0.12 0.13 0.06 0.06

Overlap(tb, rsICA) 0.52 0.24 0.46 0.52 0.19 0.44 0.60 0.11 0.00 0.06 0.19 0.12 0.12 0.07 0.06

DICE(rsseed, rsICA) 0.46 0.31 0.49 0.52 0.20 0.55 0.87 0.15 0.00 0.03 0.46 0.35 0.60 0.10 0.23

Hb

DICE(tb, rsICA) 0.59 0.74 0.06 0.14 0.26 0.75 0.00 0.05 0.51 0.07 0.15 0.16 0.21 0.08 0.20

Overlap(tb, rsICA) 0.70 0.70 0.06 0.14 0.25 0.77 0.00 0.04 0.41 0.06 0.15 0.15 0.18 0.08 0.18

DICE(rsseed, rsICA) 0.60 0.70 0.16 0.23 0.17 0.69 0.00 0.00 0.65 0.07 0.14 0.57 0.03 0.41 0.12
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For patient 1 and 2, the task-based maps corresponded to the resting-state seed maps
(0.77 ≤ DICE ≤ 0.85) but were not entirely included in the resting-state seed maps
(0.64 ≤ Overlap ≤ 0.89). For patient 3, the task-based masks did not match the resting-
state seed maps (DICE ≤ 0.12) and were hardly included in the resting-state seed maps
(Overlap ≤ 0.11).

For patient 1, on images Ã1 (HbO2 and Hb), Ã2 (Hb), Ã3 (HbO2), and Ã4 (HbO2), the
binary masks corresponded to those identified on the task-based maps (0.49 ≤ DICE ≤ 0.74
and 0.46 ≤ Overlap ≤ 0.70). When comparing resting-state seed and ICA images, the
strongest DICE coefficients were obtained with the images Ã4 for HbO2 (DICE = 0.52)
and Ã2 for Hb (DICE = 0.70). For patient 2, on images Ã1 (HbO2 and Hb), Ã2 (HbO2)
and Ã4 (Hb), the binary masks corresponded to those identified on the task-based maps
(0.47 ≤ DICE ≤ 0.75 and 0.41 ≤ Overlap ≤ 0.77). When comparing resting-state seed and
ICA images, the strongest DICE coefficients were obtained with the images Ã2 for HbO2
(DICE = 0.60) and Ã1 for Hb (DICE = 0.77). For the patient 3, no ICA binary masks
corresponded to those identified on the task-based maps. When comparing resting-state
seed and ICA images, the strongest DICE coefficients were obtained with the images Ã3
for HbO2 (DICE = 0.60) and Ã2 for Hb (DICE = 0.57).

4. Discussion

The results of this study showed that seed correlation and ICA resting-state methods
are capable of identifying functional brain areas using intraoperative RGB imaging. Three
patients were included in this study, including two patients in awake surgery and one
patient under general anesthesia. It is interesting to note that the resting-state methods
allow the identification of functional areas for the patient under general anesthesia and for
the two patients who underwent awake surgery. However, the robustness and performance
of these methods need to be evaluated on a larger number of patients. Intraoperative resting-
state imaging has several advantages compared to task-based analyses: data acquisition is
shorter, less complex, and less demanding for the patients, especially for those unable to
perform the tasks.

The functional areas identified by the resting-state analyses present a strong similarity
with those obtained with the task-based analysis. When comparing HbO2 and Hb task-
based maps to resting-state seed maps and resting-state ICA maps Ã4 HbO2 and Ã2 Hb
for patient 1, Ã2 HbO2 and Ã1 Hb for patient 2 and Ã1 HbO2 and Ã3 Hb for patient 3,
the mean and standard deviation of the DICE coefficient are 0.55 and 0.29, respectively
(this notation is indicated mean ± standard deviation in the rest of the manuscript). The
large dispersion of the DICE coefficient is due to the low values computed for patient 3.
For patients 1 and 2, the values of the DICE coefficient computed between the task-based
maps and resting-state seed maps (HbO2 and Hb maps) are included between 0.77 and
0.85 (DICE : 0.81 ± 0.03), which indicates a strong similarity between resting-state seed
and task-based maps. These resting-state seed maps also present a strong overlap with the
task-based maps (Overlap : 0.76 ± 0.11). For patient 3, the values of the DICE coefficient
are very low (for HbO2 and Hb maps, DICE(tb, rsseed) ≤ 0.12) which indicates that the
resting-state seeds maps do not match the task-based maps. Although the resting-state
seed analysis makes it possible to identify a cortical area close to the motor area, the low
values of the DICE coefficient are mainly due to the incorrect functional identification
provided by the task-based analysis, which was not due to improper image acquisition.
In order to increase the robustness of the task-based analysis, the patient’s Hb and HbO2
response function to an impulse stimulus could be experimentally measured. These
response functions are patient dependent and differ depending on the type of cortical
tissue [39]. Moreover, the neurovascular system evolves with age, which implies a change
in hemodynamic response [32] and the progression of gliomas over time implies a change
in the hemodynamic response [23].

For patients 1 and 2, the resting-state ICA maps (Ã4 HbO2 and Ã2 Hb for patient 1
and Ã2 HbO2 and Ã1 Hb for patient 2) present a strong similarity with the task-based
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maps (DICE : 0.69 ± 0.06). This mean value is 15% lower than the one obtained with the
resting-state seed maps, and the standard deviation is 133% higher than the one obtained
with the resting-state seed maps. These differences are due to the detection of several
other cortical networks using the ICA method, see Figure 3. These resting-state ICA maps
also present a strong overlap with the task-based maps (Overlap : 0.65 ± 0.09). This
mean value is 14% lower than the one obtained with the resting-state seed maps, and
the standard deviation is 18% lower than the one obtained with the resting-state seed
maps. For patient 3, the values of the DICE coefficient are very low (for HbO2 and Hb
maps, DICE(tb, rsICA) ≤ 0.21) which indicates that the resting-state seeds maps do not
match the task-based maps. However, the resting-state ICA maps Ã2 makes it possible
to identify a cortical area close to the motor area. When comparing the resting-state seed
and ICA analyses, we notice that the ICA maps Ã4 HbO2 and Ã2 Hb for patient 1, Ã2
HbO2 and Ã1 Hb for patient 2 and Ã3 HbO2 and Ã2 Hb for patient 3 present a strong
similarity with the resting-state seed maps (DICE : 0.66 ± 0.11). These results suggest
that the resting-state seed and ICA analyses are more robust that the task-based analysis
for identifying functional brain areas.

For the patient 2, the tumor is directly observable on the RGB image. The binary masks
on images Ã2 Hb , Ã3 HbO2 and Ã5 Hb are connected to the tumor. In these images, the
resting-state ICA analysis seems to highlight patterns of spatial hemodynamic fluctuations
close to the tumor and is likely to indicate an abnormal functional connectivity provoked by
the tumor. Indeed, a fMRI resting-state study showed that abnormal functional connectivity
could be detected not only adjacent to the visible tumor but also in distant brain tissue,
even in the contralesional hemisphere [40]. Montgomery et al. [23] also demonstrated that
tumor growth in an awake mouse brain disrupts the synchrony of both neuronal activity
and hemodynamics, but did not directly assess the coupling relationship between neuronal
activity and hemodynamics.

5. Conclusions

The resting-state seed method could be roughly represented as a “digital EBS” in
the sense that the neurosurgeon has to select a portion of the cortex (seed) to identify
the connected portion of tissue. However, the neurosurgeon must have an idea of the
position of the functional area. In case the tumor has strongly displaced the functional areas,
this method can be put in default. This issue could be addressed by using preoperative
fMRI maps to automatically place the resting-state seeds. Thresholding operations (see
Equation (4)) can be automated by using a linear general model combined with random
field theory [41]. The optical resting-state maps could be projected on a three dimension
neuroanatomy atlas, which would help to obtain a better understanding of the extent of the
seed correlation and ICA maps. This would also allow to establish a comparison between
optical resting-state maps and fMRI pre-operative maps. As opposed to fMRI and fNIRS
resting-state analyses [17,33], the spatial patterns expressed in the ICA method cannot be
sorted by comparing the patterns in the images to neuroanatomy atlas. This issue will
be addressed in a future study by comparing optical and fMRI resting-state maps. The
ICA method was implemented with 5 independent components. Li et al. [42] proposed a
method to estimate the number of independent components for fMRI data, this method
could be adapted to our data in future studies. In this feasibility study, resting-state maps
were compared to task-based maps using the DICE and Overlap coefficients. The objective
was to show that fMRI resting-state methods can be used to retrieve intraoperative resting
state maps using RGB imaging. In a future study, a threshold value of the DICE and
overlap coefficients could be defined to validate intraoperative resting-state maps against
task based maps. For this purpose, a validated database containing task-based and resting-
state functional maps is needed, which implies a larger number of patients, as well as a
suitable methodology to compare the measured data with the database.

In this study, we present the methodology for the identification of resting-state net-
works using RGB imaging during neurosurgery. The detection of functional brain areas
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using the resting-state seed and ICA analyses presented a strong similarity with those iden-
tified with a task-based analysis. These areas corresponded to the identification provided
by EBS when patients are awake and under general anesthesia. This work demonstrates
that RGB imaging combined with quantitative modeling of brain hemodynamic biomark-
ers can robustly assess functional brain areas during patient rest and before brain tumor
resection surgery. This reinforces the relevance of using conventional RGB imaging for
intraoperative functional brain imaging.
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