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Selection-mutation dynamics with asymmetrical

reproduction kernels

Benôıt Perthame∗†¶ Martin Strugarek ‡∗¶ Cécile Taing§¶

April 7, 2022

Abstract

We study a family of selection-mutation models of a sexual population structured by a phenotyp-

ical trait. The main feature of these models is the asymmetric trait heredity or fecundity between

the parents : we assume that each individual inherits mostly its trait from the female or that the

trait acts on the female fecundity but does not affect male. Following previous works inspired from

principles of adaptive dynamics, we rescale time and assume that mutations have limited effects on

the phenotype. Our goal is to study the asymptotic behavior of the population distribution. We

derive non-extinction conditions and BV estimates on the total population. We also obtain Lipschitz

estimates on the solutions of Hamilton-Jacobi equations that arise from the study of the population

distribution concentration at fittest traits. Concentration results are obtained in some special cases

by using a Lyapunov functional.

2010 Mathematics Subject Classification. 35F21, 35B40, 35Q92, 45K05
Keywords and phrases. Integro-differential equations; Asymptotic analysis; Adaptive dynamics; Popula-
tion biology;

1 Introduction

We study mathematically a family of models of selection-mutation for sexual populations structured with
a continuous phenotype, which we call ”trait” and denote by x ∈ R, and we present different methods
that apply to some specific cases. All models studied in the present paper are derived from the general
form 





ǫ∂tnǫ(t, x) =
1

ρǫ(t)

∫∫

R2

Kǫ(x, y, z)nǫ(t, y)nǫ(t, z)dy dz −R(x, ρǫ(t))nǫ(t, x),

ρǫ(t) =

∫

R

nǫ(t, x)dx, nǫ(0, x) = n0
ǫ(x).

(1)

The variable t stands for time, nǫ(t, x) ∈ [0,+∞) is the population number density at time t and with
trait x, and ρǫ(t) is the total population. The positive function R represents the saturation term and
comprises intrinsic mortality and the effects of competition through the nonlocal term ρǫ. Indeed, we
assume that all individuals compete for survival because they share the same resources, which implies the
boundedness of the total population. In this framework, the integral term ρǫ is refered as the competition
term and R is increasing with respect to this quantity. Since we consider sexual population, the major
feature of the equations under study is to yield nonlinear and nonlocal birth terms with a quadratic aspect,
though 1-homogeneous. In equation (1), we interpret y (the second argument for Kǫ) as the female trait,
and z (the third argument) as the male trait. Thus x 7→ Kǫ(x, y, z) is equal to the distribution of
individuals that are born from any encounter between a female of trait y and a male of trait z, per unit of
time. Of course, this model is valid only assuming that the sex ratio is constant in time and independent
of the trait. We make this simplification in order to obtain a single equation rather than a system.
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Our specific motivation comes from insecticide resistance. This phenomenon has been observed among
insects of interest for human health, in particular in species of mosquitoes that are vectors for diseases like
dengue (in the Aedes genus) or malaria (in the Anopheles genus). For this specific problem of selection-
mutation, the trait variable should contain, for instance, the expression level for the kdr gene (knock-down
resistance, see [30]). The present study is part of a more general program on the analysis of models, and
their control, in the context of evolutionary epidemiology (see [29, 37] and the references therein).

Because of this motivation, our models have a sexual reproduction kernel. This is not the case in
similar selection-mutation models developed for bacteria or resistance to treatment in cancer (see, e.g.,
[33, 25]), where the reproduction is clonal. The same kind of kernels arise in various biological problems,
as cell alignment [14] or protein exchanges [2, 27], and in more realistic models of trait-structured sexual
populations (see [38, 39] for some examples in numerical frameworks).

The main results of this paper concern the behavior of ρǫ and nǫ in the asymptotic of large time scale
and mutations with limited effect on the phenotype. Because the general equation (1) is out of reach
with the methods we use here, inherited from asexual reproduction, we consider two particular classes
of reproduction kernels in equation (1). They share the common property of an asymmetric structure
which is biologically relevant. Indeed, back to the insecticide resistance modeling, it has been observed
that good resistance levels also result in a high fitness cost, and especially on the fecundity. We simply
assume here that either fecundity is female-trait-dependent, or that new individuals inherit mostly their
trait from the female. Since female mosquitoes have a longer lifespan than male ones, they will be more
susceptible to be affected by insecticides and to become resistant. Also, females will perform several
ovipositions during their lives, suggesting a higher impact of acquired resistance on female fecundity.

We consider a first class of models, with asymmetric fecundity (AF in short),

ǫ∂tnǫ(t, x) =
1

ρǫ(t)

∫∫

R2

B(y)αǫ(x, y, z)nǫ(t, y)nǫ(t, z)dy dz −R(x, ρǫ(t))nǫ(t, x), (AF)

where B is a positive function and represents the crossing fecundity, which is assumed to depend only on
female’s trait, and αǫ(·, y, z) is the probability distribution of the offspring from a y female and a z male.
Then the reproduction kernel reads

Kǫ(x, y, z) = B(y)αǫ(x, y, z), with

∫

R

αǫ(x, y, z) dx = 1 for all y, z ∈ R. (2)

The second class of models features an asymmetric trait heredity (ATH in short), which reads

ǫ∂tnǫ(t, x) =
1

ρǫ(t)

∫∫

R2

K0(x− z)Gǫ(x− y)nǫ(t, y)nǫ(t, z)dy dz −R(x, ρǫ(t))nǫ(t, x), (ATH)

where
Kǫ(x, y, z) = K0(x− z)Gǫ(x− y), (3)

with K0 a positive function, and Gǫ the rescaling of a positive function G by letting

Gǫ(x− z) =
1

ǫ
G

(
x− z

ǫ

)

, with

∫

R

G(z)dz = 1.

We can write the ATH equation under the following form

ǫ∂tnǫ(t, x) =
1

ρǫ(t)
[K0 ∗ nǫ(t, ·)Gǫ ∗ nǫ(t, ·)] (x) −R(x, ρǫ(t))nǫ(t, x).

For some particular forms of these two classes of models, we use three ingredients, inspired from meth-
ods used in asexual population models, to state convergence results. Firstly, we derive some Bounded
Variation (BV in short) estimates for ρǫ. Secondly, we prove concentration of the population by a Lya-
punov stability property. Finally,we identify a consistent limit object as ǫ → 0, which is a constrained
Hamilton-Jacobi equation, and we obtain compactness estimates on the solutions at the ǫ-level in order
to be able to extract converging subsequences and to use the stability property of viscosity solutions.

To better show the technical ideas and highlight the new arguments, we begin with studying two
simplified models which are particular cases of the two classes presented above. The simplifications are
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that
• we ignore mutations, therefore the dynamics is simply generated by adaptation and competition between
pre-existing traits,
• we assume that the saturation function R does not depend on the trait variable and is such that
R(x, ρ) ≡ νρ, with ν > 0 which allows for some specific algebraic manipulations.

The model with no mutations reads

ǫ∂tnǫ(t, x) =

(
1

ρǫ(t)
K0 ∗ nǫ(t, ·)(x) − νρǫ(t)

)

nǫ(t, x), (nM)

This equation can be written under the form of equation (AF) with

B ≡
∫

R

K0(z) dz, and αǫ(x, y, z) =
1

B
K0(x− z)δ0(x− y),

and also under the form of (ATH) with
Gǫ = δ0.

Because it is very specific, we also introduce a generalization of (nM) and consider more general birth
and competiton

ǫ∂tnǫ(t, x) =
( 1

ρǫ(t)

∫

KS(x, y)nǫ(t, y)dy −
(
R0(x) +R1(ρǫ)

))

nǫ(t, x), (gnM)

for some symmetric kernel KS : R2 → R+. With this generality, we show in Section 3.3 how to built a
Lyapunov convergence results for (gnM) based on tools from game theory. The method is based on the

reduction to some kind of replicator equation for the quantity q(t, x) := nǫ(ǫt,x)
ρǫ(ǫt)

, which satisfies another

equation in closed form.

The relationships between sexual reproduction and selection are not well understood. Models of
sexual reproduction have already been discussed in different contexts. Studies of individual-based models
of sexual population were performed to determine the necessary conditions to evolutionary branching
in [16, 23, 40], with a structure in genetic types (see [4, 5] for a review of mathematical models of
population genetics). In [11] for instance, the authors investigate a stochastic birth and death process
model for sexually reproducing diploids with Lotka-Volterra type dynamics and single locus genetics. At
the small mutation steps limit, they derive a differential equation in allele space, referred to as a form
of the canonical equation of the adaptive dynamics. In [12], another stochastic birth and death process
model is studied with sexual reproduction according to mating preferences and a space structure with
patches. In this case, reproductive isolation between patches occurs, and the authors prove that the time
needed for this isolation to occur is a function of the population size. In the framework of insecticide
resistance, a deterministic system with three genotypes (two alleles at a single locus) was studied in [36],
with a focus on the “reversal time” that is a measure of the persistence of resistance in a population after
exposition to insecticide.

From a large population point of view, in [28] the authors considered sexual populations structured
by a trait and a space variable in a non-homogeneous environment, and after performing an asymptotic
limit and a simplification of the model, they derived an estimate of the invasion speed or extinction speed
of the population. In [3], the authors study the same kind of models as in the present paper, where the
traits of the newborns are distributed through a gaussian kernel centered on the mean of the parents’
traits and with a constant variance, as in [18], which is the so-called infinitesimal model. They prove
the existence of principal eigenelements for the corresponding eigenproblem, using the Schauder fixed
point theorem. This work has been extended in [6] with the study of the same stationary problem at
the asymptotic of vanishing variance. In the same regime, the associated Cauchy problem has then been
investigated in [31], showing that solutions can be approximated by Gaussian profiles with small variance.

The paper is organized as follows. In Section 2, we state our assumptions and results. We also
establish some non-extinction conditions and bounds on the total population. In Section 3, we focus on
the models without mutations (nM)-(gnM) in order to introduce the main arguments that will be used
for the more general cases. In particular, we derive BV estimates for the total population, and prove a
Lyapunov stability result for the population distribution. In Section 4, we address the derivation of BV
estimates for the (ATH) and (AF) models when R only depends on the total population variable and we
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explain the difficulties encountered when R is generic. Also, discuss the settings of the Lyapunov method
applied to these mutation models. Finally in Section 5, we deal with the Hamilton-Jacobi approach. To
conclude we identify some difficulties raised by the application of our methods to the general case of (1)
and other possible approaches.

2 Main results

In order to introduce our main results, we need several assumptions where we use the following notations.
We denote by M1

+(R) the set of probability measures on R, by M+(R) the set of finite mass nonnegative
measures and by Cb(R,R+) the space of continuous and bounded functions on R with values in R+. Also,
for a ∈ R, we use the notation a− = max(−a, 0).

2.1 Assumptions and statements

The initial data is denoted by n0
ǫ(x) and, to prove a BV bound on ρǫ, which plays a fundamental role

hereafter, the inital total density is usually assumed to satisfy

ǫ(ρ̇ǫ)−(0) is uniformly bounded. (4)

We take the value (ρ̇ǫ)−(0) from the equation under consideration. For instance, for the model (nM), it
is defined by

ǫρ̇ǫ(0) =

∫

n0
ǫ(x)

K0 ∗ n0
ǫ

ρ0ǫ
(x) dx − ν(ρ0ǫ)

2.

The function R stands for the death rate and the competition effects. We make the standard assump-
tion that it increases with the total population:

∀x, ρ, ∂ρR(x, ρ) > 0. (5)

For models with no mutations (nM) and asymmetric trait heredity (ATH), we assume

K0 ∈ Cb(R,R+) is an even kernel, K(z) = K(−z). (6)

The symmetry is not always needed but the positivity of the symmetric part of the kernel is fundamental,
this is why we underline this property. Continuity is needed because the kernel acts on measures in the
limit when ǫ vanishes.

For equation (nM), we state the following theorem which is proved in Section 3.1.

Theorem 1 (BV bound for model (nM)). We assume (6) and let nǫ be the solution of (nM) with an
initial data n0

ǫ satisfying (4).
Then, for all T > 0, ρǫ is uniformly bounded in BV (0, T ). Namely, we obtain

∫ T

0

|ρ̇ǫ(t)| dt ≤ ρM +
2ǫ

κ′′m
(ρ̇ǫ)−(0),

∫ T

0

∫

R

nǫ

(K0 ∗ nǫ

ρǫ
− νρǫ

)2
dx dt = O(ǫ), (7)

with ρM and κ′′m defined later on. This implies that, up to extraction of subsequences, there exist limits
ρǫ → ρ in L1(0, T ), and nǫ −⇀ n ∈ L∞

t (0, T ;M+(R)) in the sense of measures.

The first bound in (7) gives compactness in L1
loc for ρǫ(t), which is useful for nonlinear terms. Formally,

the second bound in (7) means that the support on the limit measure n is supported by the points x̄(t)
where K0 ∗ n(t, x) = νρ(t) which are expected to be discrete (if not unique for all t). This question is
studied in Section 3.2.

For the model with asymmetric fecundity (AF), we need the following assumption on B and α:

∃C > 0, ∀ǫ > 0, ∀φ ∈ M1
+(R),

∫∫∫

R3

αǫ(x, y, z)B(x)B(y)φ(y)φ(z)dx dy dz −
(∫

R

B(y)φ(y)dy

)2

≥ −Cǫ.
(8)
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Firstly, when B is constant, this assumption is obviously satisfied. Secondly, for φ a Dirac mass at xM ,
this assumption reduces to

∫

R

αǫ(x, xM , xM )B(x)dx −B(xM ) ≥ − C

B(xM )
ǫ,

Recalling that
∫
αǫ(x, y, z)dx = 1 for all y, z, this implies that as ǫ vanishes, αǫ(·, xM , xM ) is concentrated

at points where B is equal to its maximum B(xM ), which is a restrictive necessary condition for (8) to
hold. Thirdly, we state a sufficient condition: if αǫ(·, y, z) → α0(y, z) ∈ M1

+(R) with either

∀ y, z,
∫

R

α0(y, z)(x)B(x)dx ≥ B(y),

or

∀ y, z,
∫

R

α0(y, z)(x)B(x)dx ≥ B(z),

and if convergence is sufficiently fast, then (8) holds. In the first case this is a consequence of the Cauchy-
Schwarz inequality, and in the second case we simply obtain that the left-hand side in (8) converges to 0
as ǫ vanishes. In particular, we may assume αǫ(x, y, z) = 1

ǫG
(
x−y
ǫ

)
or 1

ǫG
(
x−z
ǫ

)
for some appropriate

kernel G. These situations are those we have in mind, although (8) in all generality may allow for some
other cases.
All in all, (8) means that the fecundity is improved from that of parents with the same trait. More
generally, the fecundity variation from one generation to the next is controlled from below by that of the
parents. Unsurprisingly, this dissipative feature implies that the variations of ρǫ can be controlled at the
limit ǫ→ 0, as stated in the following result whose proof is given in Section 4.1.

Proposition 1 (BV bound for (AF)). Let nǫ be the solution of (AF) with initial data n0
ǫ satisfying (4).

Assume that R(x, ρ) = νρ and (8).
Then, for all T > 0, ρǫ is uniformly bounded in BV (0, T ) and we have

∫ T

0

|ρ̇ǫ(t)| dt ≤ ρM +
2ǫ

νρm
(ρ̇ǫ)−(0) +

2C

νρm

(

T +
ǫ

νρm
(e−

νρmT
ǫ − 1)

)

,

with C, ρM and ρm defined later on. This implies that, up to extraction of subsequences, there exist limits
ρǫ → ρ in L1(0, T ), and nǫ −⇀ n ∈ L∞

t (0, T ;M+(R)) in the sense of measures.

In order to apply the same technique as for the model without mutations addressed in Section 3, we
need a convergence assumption on Gǫ as ǫ vanishes. More precisely, we assume that there exists C ∈ R

∗
+

such that
∀ǫ > 0, ∀φ ∈W 1,1 with ‖φ′‖L1 ≤ 1, ∀ψ ∈ L∞ with ‖ψ‖L∞ ≤ 1,
∣
∣
∣

∫

R

ψ(x)(Gǫ ∗ φ)(x)dx −
∫

R

ψ(x)φ(x)dx
∣
∣
∣ ≤ Cǫ.

(9)

This assumption on the convergence of Gǫ as ǫ vanishes holds in the typical case where Gǫ is Gaussian
with variance ǫ2. Specifically, we write Gǫ(x) =

1
(2πǫ2)1/2

e−x2/2ǫ2 .

We obtain the following result whose proof is given in Section 4.1.

Proposition 2 (BV bound for (ATH)). Let nǫ be the solution to (ATH) associated with initial data n0
ǫ

satisfying (4). Assume (6), (9), that that K0 belongs to W 1,1 and the following (”non-extinction” in this
case) condition

∃η0 > 0, ∀ǫ > 0, ηǫ := inf
φ∈M1

+(R)

∫

K0 ∗ φ ·Gǫ ∗ φdx ≥ η0. (10)

Then ρǫ is uniformly bounded in BV (0, T ). Namely, we have

∫ T

0

|ρ̇ǫ(t)| dt ≤ ρM + 2(ρ̇ǫ(0))−
ǫ

C1
(1 − e−C1T/ǫ) + 2

ǫC2

C2
1

(e−C1T/ǫ − 1) + 2
C2

C1
T.

Then, up to extraction there exist ρ ∈ L1
loc(0,∞) and n ∈ L∞

t (0, T ;M+(R)) such that (ρǫ) converges
towards ρ in L1

loc(0,∞), and (nǫ) towards n in the sense of measures, when ǫ vanishes.
Moreover, for all T > 0, we have

∫ T

0

∫

R

(Gǫ ∗ nǫ)

[
K0 ∗ nǫ

ρǫ
− νρǫ

]2

dx dt = O(ǫ).

5



For the generalized no mutation model (gnM), a Lyapunov structure is identified under the following
assumptions on KS : R2 → R+, R0 : R → R+ and R1 : R+ → R+ :

KS ∈ Cb(R2,R+) is symmetric: ∀x, y ∈ R, KS(x, y) = KS(y, x), (11)

∀ξ ∈ M+(R)\{0},
∫∫

R2

KS(x, y)ξ(x)ξ(y)dxdy > 0, (12)

supp(q0) is compact or R0 is proper, with q0 =
n0
ǫ

ρ0ǫ
, (13)

R1 is increasing and proper, (14)

∃!xM ∈ supp(q0), y 7→ KS(xM , y)−R0(y) reaches its maximum at xM . (15)

In this framework, a stability result is obtained for the population density δxM .

Theorem 2 (Local stability of xM ). Under assumptions (11)-(15), the Dirac mass δxM is locally asymp-
totically stable for (gnM).

This result is based on the construction of a Lyapunov functional which has been advocated for these
problems of adaptive dynamics, e.g., in [22]. Here it relies on the particular structure of (gnM), which can
be reduced to a continuous replicator equation. Then, we can apply game theoretical methods following
[9, 10, 34, 35].

In the general case of a death rate depending on both traits and the total population, Lyapunov
functionals are not available and the methods Theorem 2 do not apply. Therefore, following [17, 32, 26], we

may try to express concentration of nǫ at a point x̄ as in a low temperature Gaussian 1√
2πǫ

exp(− |x−x̄|2
2ǫ ).

Because the quadratic form is too specific for our problem, we rather perform the Hopf-Cole transform

uǫ(t, x) = ǫ lnnǫ(t, x),

and apply a Hamilton-Jacobi approach. The limiting function u = limǫ→0 uǫ will give the concentration

shape analogous to − |x−x̄|2
2 but specific to the problem at hand. In particular, the population concen-

trates on the points where u(t, x) vanishes. When there is a unique point, monomorphism occurs but
polymorphism is possible. The existence of such a limit is asserted by the

Theorem 3 (Lipschitz estimates for uǫ). Under some assumptions on the initial data u0ǫ , for both models
(AF) and (ATH), the corresponding uǫ are locally Lipschitz uniformly in ǫ.

Moreover, we have a global upper bound on uǫ. Namely, there exists a constant C, such that

uǫ(t, x) ≤ ǫ ln

(

C +
C(1 + t)

ǫ

)

.

Consequently, we can extract from uǫ a sequence which converges locally uniformly to a limit u(t, x) ≤ 0
and the limiting concentration points of nǫ are included in the set {u(t, x) = 0}.

The proof of this theorem and its consequences are the topic of Section 5. It requires specific assump-
tions in both cases (AF or ATH), which are too long for this general presentation, and thus are specified
in the corresponding sections.

2.2 Boundedness of the total population and non-extinction

In preparation to prove these theorems, we begin with some controls of the total population, ρǫ, which,
in full generality satisfies

ǫρ̇ǫ(t) =

∫

R

( ∫∫

R2

Kǫ(x, y, z)
nǫ(t, z)

ρǫ(t)
nǫ(t, y)dy dz −R(x, ρǫ(t))nǫ(t, x)

)

dx. (16)

We define

KM := sup
0<ǫ≤1

sup
φ∈M+

1 (R)

sup
y

∫∫

R2

Kǫ(x, y, z)dxφ(z)dz < +∞, (17)

and, to ensure that ρǫ remains bounded along all trajectories, we complement (5) with

∃Rm : R+ → R+, increasing, with Rm(0) = 0, Rm(+∞) = +∞,

and ∀x, R(x, ρ) ≥ Rm(ρ), ρM := R−1
m (KM ).

(18)

We first observe the following boundedness result:

6



Proposition 3 (Upper bound for ρǫ). Under assumptions (5), (18) and (17), all trajectories of (1) are
forward-ρM -bounded from above in ρǫ, by which we mean that ρ̇ǫ(t) < 0 as long as ρǫ(t) > ρM .

Indeed, using the equation (16) and the assumptions (18) and (17), we may write

ǫρ̇ǫ(t) ≤ ρǫ(t)[KM −Rm(tρǫ(t))],

from which the result follows immediately.

Conversely, we can study conditions that ensure non-extinction of the population: ρǫ(t) ≥ ρm > 0.
As a first example, let

κm(ρ) := inf
0<ǫ≤1

inf
φ∈M1

+(R)
inf
y

∫∫

R2

Kǫ(x, y, z)dxφ(z)dz −R(y, ρ) (19)

Proposition 4 (Lower bound for ρǫ under assumption (19)). Under assumption (5) and if there exists
ρm > 0 such that κm(ρm) = 0, with κm defined in (19), then all trajectories of (1) are forward-ρm-
bounded from below in ρǫ, by which we mean that ρ̇ǫ(t) > 0 as long as ρǫ(t) < ρm.

This again follows from (16), writing this time the lower control

ǫρ̇ǫ(t) ≥ κm(ρ),

and remembering that ∂ρR(x, ρ) ≤ 0, we infer that κm is non-decreasing which gives ρ̇ǫ(t) ≥ 0 for ρ ≤ ρm.

However, κm(0) > 0 is not expected to be a necessary condition. It is an open and challenging question
to determine more general conditions for non-extinction, and study the set of extinction trajectories in
cases when these conditions are not met.

For instance, a second non-extinction result is

κ′m(ρ) := inf
0<ǫ≤1

inf
φ∈M1

+(R)

∫

R

(
∫∫

R2

Kǫ(x, y, z)dxφ(z)dz −R(y, ρ)
)
φ(y)dy. (20)

Proposition 5 (Lower bound for ρǫ with a condition on (20)). Under assumption (5) and if there exists
ρm > 0 such that κ′m(ρm) = 0 then all trajectories of (1) are forward-ρm-bounded from below in ρǫ.

This time we factorize ρǫ in the integral of (16), and using the special choice φ = nǫ

ρǫ
we may write

the lower control

ǫρ̇ǫ(t) ≥ ρǫ(t)

∫∫∫

R3

Kǫ(x, y, z)dxφ(z)φ(y)dxdydz − ρǫ(t)

∫

R

R(x, ρ)φ(x)dx ≥ ρǫ(t)κ
′
m(ρǫ).

Then, we conclude as before..

And likewise, assume that

∃RM : R+ → R+, increasing, with RM (0) ≥ 0,

RM (+∞) = +∞ and ∀x, R(x, ρ) ≤ RM (ρ),
(21)

and

κ′′m := inf
0<ǫ≤1

inf
φ∈M1

+(R)

∫∫∫

R3

Kǫ(x, y, z)φ(y)φ(z) dx dy dz > RM (0). (22)

Then, we have the

Proposition 6 (Lower bound for ρǫ with condition (22)). Assume (21) and (22). Then all trajectories
of (1) are forward-ρm-bounded from below in ρǫ, with ρm = R−1

M (κ′′m) > 0.

This result follows from the same type of calculation, writing

ρ̇ǫ ≥
(
κ′′m −RM (ρǫ)

)
ρǫ.
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3 The models without mutations

In order to see clearly the kind of results to be expected, we first study in details a very simple example,
which is equation (nM). The form of the birth rate assumes that the trait is perfectly transmitted from
the females to their progeny, and the cross-fecundity between a male of trait z and a female of trait x
depends only on the distance between x and z through K0.

Assumptions (5) and (18) (for Rm = νρ) obviously hold in case (nM). Assumption (17) holds with
KM = maxxK0(x). Therefore we can apply Proposition 3 and the total population remains bounded
ρǫ(t) ≤ ρM .

We can also verify non-extinction. Since κm(ρ) = infK0 − ρ the non-extinction condition from
Proposition 4 holds if and only if infxK0(x) > 0. However, even when infxK0(x) = 0, following [22] in
the context of entropy-based stability, we may assume that K0 is such that

κ′′m = inf
φ∈M1

+(R)

∫

R

(
K0 ∗ φ

)
(x)φ(x) dx > 0,

and then, the assumptions of Proposition 6 holds which gives a lower bound on ρǫ

3.1 Proof of Theorem 1 and BV estimates

We begin with proving the BV bound, which is the main result from which the other follow easily. To do
so, we follow the strategy which is to first control the decay rate of ρǫ as elaborated in [32]. We depart
from equation (nM), that we reformulate as

ǫρ̇ǫ(t) =

∫

R

nǫ(t, x)
K0 ∗ nǫ(t, ·)

ρǫ(t)
(x) dx − νρ2ǫ . (23)

In order to differentiate it, we first use assumption (6) which yields

d

dt

∫

R

nK0 ∗ n = 2

∫

R

nK0 ∗ (∂tn),

and consequently, we find from equation (23)

ǫρ̈ǫ = −νρǫρ̇ǫ − νρǫρ̇ǫ −
ρ̇ǫ
ρ2ǫ

∫

R

nǫK0 ∗ nǫ +
1

2ρǫ

d

dt

∫

R

nǫK0 ∗ nǫ +
1

ρǫ

∫

R

∂tnǫK0 ∗ nǫ.

We rewrite this as

ǫρ̈ǫ = −νρǫρ̇ǫ −
ρ̇ǫ
2ρ2ǫ

∫

R

nǫK0 ∗ nǫ +
1

2

d

dt

( 1

ρǫ

∫

R

nǫK0 ∗ nǫ − νρ2ǫ

)

+
1

ǫ

∫

R

(nǫ(K0 ∗ nǫ)
2

ρ2ǫ
− νnǫK0 ∗ nǫ

)
.

Inserting the equation (23) in this equality, we get

ǫ

2
ρ̈ǫ = − ρ̇ǫ

2ρ2ǫ

∫

R

nǫK0 ∗ nǫ +
1

ǫ

∫

R

nǫ

(K0 ∗ nǫ

ρǫ
− νρǫ

)2
. (24)

Several conclusions follow from (24). Firstly, ρ̈ǫ ≥ − ρ̇ǫ

ǫρ2
ǫ

∫

R
nǫK0 ∗ nǫ, hence if ρ̇ǫ = 0 then ρ̈ǫ ≥ 0. In

particular, ρǫ has no strict local maximum. We can conclude that ρǫ is either decreasing, increasing or
decreasing-increasing, and since it is bounded, ρǫ(t) must converge to some finite value ρ∞ǫ as t goes to
+∞.

Secondly, let bǫ(t) :=
1

ρ2
ǫ(t)

∫

R
nǫ(t, x)(K0 ∗ nǫ(t, ·))(x)dx ≥ κ′′m > 0. Then from (24),

d

dt
(ρ̇ǫ)− ≤ −κ

′′
m

ǫ
(ρ̇ǫ)−.

As a consequence we can control the decay of ρ̇ǫ thanks to the inequality (ρ̇ǫ)−(t) ≤ e−
κ′′
mt

ǫ (ρ̇ǫ)−(0)
which is bounded thans to assumption (4). Next, to control the BV norm, we use the upper bound ρM
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mentioned above, and write

∫ T

0

|ρ̇ǫ(t)| dt ≤
∫ T

0

ρ̇ǫ(t) dt+ 2

∫ T

0

(ρ̇ǫ)− (t)dt

≤ ρM + 2(ρ̇ǫ)−(0)

∫ T

0

e−
κ′′
mt

ǫ dt

≤ ρM + 2(ρ̇ǫ)−(0)
ǫ

κ′′m

(
1− e−

κ′′
mT

ǫ

)
.

Therefore, under the mild assumption (4) on the initial data, the family (ρǫ)ǫ is uniformly bounded in
BV (R+).

We can now establish the second bound in (7). Going back to equation (24), and integrating it over
[0, T ] for T > 0, we obtain

∫ T

0

∫

R

nǫ

(K0 ∗ nǫ

ρǫ
− νρǫ

)2
dx dt = ǫ

∫ T

0

ρ̇ǫ
2ρ2

∫

R

nǫK0 ∗ nǫ dx dt+
ǫ2

2
(ρ̇ǫ(T )− ρ̇ǫ(0)). (25)

Since we have already proved that ρǫ is locally BV , uniformly in ǫ, and using the assumptions (4) and
(6), we deduce that

∫ T

0

∫

R

nǫ

(K0 ∗ nǫ

ρǫ
− νρǫ

)2
dx dt = O(ǫ),

which is the second bound in (7).
The other conclusions of Theorem 1 are standard function analytic consequences.

3.2 Concentration in Dirac masses

We now comment on the consequences on the second bound in (7). Formally, at the limit ǫ → 0, the
previous estimate yields

∫

R

n(t, x)
(K0 ∗ n(t, ·)

ρ(t)
(x)− νρ(t)

)2

dx = 0. (26)

We may try to find admissible solutions of (26) under the form of combinations of Dirac masses

n =
N∑

i=1

ρiδxi , ρi > 0, with
N∑

i=1

ρi = ρ.

Inserting this expresion in (26), we obtain

N∑

i=1

ρi

( N∑

j=1

ρj
ρ
K0(xi − xj)− νρ

)2

= 0.

In other words, we need to impose

N∑

j=1

ρj
ρ
K0(xi − xj) = νρ ∀ i = 1, ..., N. (27)

We define the matrix K with entries of indices (i, j) given by K0(xi − xj) and our problem is reduced
to finding a positive vector P such that

KP = 1, ρi = νPiρ
2 and ρ = 1/(ν1TP ).

Even though the matrix K is symmetric with positive coefficients and constant main diagonal equal to
K0(0), and one can find invertibility conditions, it remains unclear whether P := K−1

1 > 0 or not.
For this reason, an alternative viewpoint using a Lyapunov functional helps describing the asymptot-

ically stable solutions, as detailed below.
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3.3 A Lyapunov concentration result: proof of Theorem 2

We consider the special form of equation (1) given by (gnM). Then, we consider an initial data n0 ∈
M+(R) and define the probability measures

q(t, x) :=
nǫ(ǫt, x)

ρǫ(ǫt)
, q0 :=

n0

ρ0
,

There is a closed form equation for q, namely







∂tq(t, x) = q(t, x)
(
∫

R

KS(x, y)q(t, y)dy −R0(x)
)

− q(t, x)

∫

R

q(t, x′)
(
∫

R

KS(x
′, y)q(t, y)dy −R0(x

′)
)
dx′,

q(0, x) = q0(x).

(28)

Therefore we simply need to study the asymptotic behavior of q as t → +∞ to be able to describe that
of nǫ as ǫ→ 0.

Notice that Equation (28) has a replicator-type structure, as it can be written under the form

∂tq(t, x) = q(t, x)

[

G(x, q(t, ·)) −
∫

R

q(t, x)G(x, q(t, ·))dx
]

,

where G(x, q(t, ·)) :=
∫

R
KS(x, y)q(t, y)dy is the effective growth rate, or fitness, of q(t, x) and the integral

term
∫

R
q(t, x)G(x, q(t, ·))dx the average of this growth rate in the population. This structure means

that the frequency of the x-carrying individuals in the population evolves with the deviation of its
corresponding fitness from the mean fitness in the population.

Thanks to the structure of (28), we obtain the asymptotic stability of δxM stated in Theorem 2, by
using the Lyapunov method for stability. The rest of this section is devoted to the proof of this result,
which relies on a strict Lyapunov stability argument stated in [34, Theorem 4.4] and [35]. This type
of convergence result has appeared in the economic literature devoted to game theory with continuous
strategy space, which we denote here by P (for “phenotype”). For instance it is stated in [10, Theorem
3.a] and follows from [9, Theorem 2].

First, we get a Lyapunov functional for (28) by defining

J(q) :=
1

2

∫∫

R2

KS(x, y)q(x)q(y)dxdy −
∫

R

R0(x)q(x)dx. (29)

Indeed, along an orbit of (28) we have, thanks to (11),

d

dt
J(q(t, ·)) =

∫

R

q(t, x)
(
∫

R

KS(x, y)q(t, y)dy −R0(x)
)2
dx

−
(∫

R

q(t, x)
(
∫

R

KS(x, y)q(t, y)dy −R0(x)
)
dx
)2

≥ 0,

with equality (by the Cauchy-Schwarz inequality) if and only if

∫

R

KS(x, y)q(t, y)dy −R0(x) ≡ C ∈ R on supp(q(t, ·)),

so that we have strict monotonicity except if q(t, ·) is a rest point for the dynamics of (28). This Lyapunov
functional can be seen as an embodiment of the “positive correlation” property from game dynamics (see
[20]), and this feature has been exploited to get a gradient flow formulation of a non-local model with a
diffusion term in [21], where the kernel acts for death induced by competition rather than for birth as is
the case here.

In order to use the Lyapunov functional properly, we need {q(t, ·), t ≥ 0} ⊂ M1
+(R) to be relatively

compact for a topology for which J is continuous and Fréchet-differentiable. This is the case if either
q0 is compactly supported in R, or if K is bounded and R0 is proper (by Prokhorov’s theorem), for the
weak-⋆ topology on M1

+(R), hence the use of (13)
The study of the maximizer sets for J is greatly simplified by (12):
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Lemma 1. Under (12), the functional J is strictly convex on the convex set M1
+(R).

Therefore its local maximum points are extreme points of M1
+(R), that is Dirac masses. The Dirac

mass δx is a local maximizer of J only if y 7→ KS(x, y)−R0(y) reaches its maximum at x.

Proof. For q1, q2 ∈ M1
+(R) and θ ∈ [0, 1] we compute

J(θq1 + (1− θ)q2) =

∫∫

R2

KS

(
θ2q1q1 + (1− θ)2q2q2 + 2θ(1− θ)q1q2

)
−
∫

R

R0

(
θq1 + (1 − θ)q2

)

= θJ(q1) + (1− θ)J(q2)− θ(1− θ)

∫∫

R2

KS(x, y)(q1 − q2)(x)(q1 − q2)(y)dxdy.

Therefore (12) (with ξ = q1 − q2) implies that J is strictly convex.
If J reaches a local maximum at ξ ∈ M1

+(R) belonging to some interval (ξ−, ξ+), that is ξ = θξ− +
(1 − θ)ξ+ for some θ ∈ (0, 1) with ξ± ∈ M1

+(R), then for ǫ > 0 small enough we have

J(ξ) <
1

2

(
J(ξ + ǫ(ξ+ − ξ−)) + J(ξ − ǫ(ξ+ − ξ−))

)
≤ J(ξ),

where the left inequality holds by strict convexity and the right one by the local maximum condition.
This is absurd, hence local maxima are only reached at extreme points.

The support of an extreme probability measure must be reduced to a singleton: otherwise, we can
construct a segment on which the measure lies by exchanging mass between any two separable points of
the support. Conversely, a Dirac mass is obviously extreme, as any segment to which it belongs would
consist of probability measures with the same support, reduced to a singleton.

Then, the first-order optimality condition for J at δx reads: for all admissible perturbation h,
∫

R

(
K(x, y)−R0(y)

)
h(y)dy ≤ 0,

and admissible perturbations have the general form h = −δx + h0, with h0 ∈ M1
+(R), whence the last

point.

Thanks to (15) we get that {δxM} is a local maximizer set of J for which J is a strict Lyapunov function
(and that there is no other local maximizer set of J). Then, it follows that {δxM} is asymptotically stable.

4 Models with mutations

To take into account mutations lead to much more elaborate tools that extend the methodology set in the
previous section. Our main results are BV estimates stated in Propositions 1 and 2, which derivations
can be understood in view of the simpler case in Section 3.1.

We begin with BV estimates on ρǫ assuming that R(x, ρ) = νρ and then we address the difficulties
encountered when R has a general form and finally the Lyapunov method. .

4.1 BV estimate for the AF model. Proof of Proposition 1

Although the asymptotic behavior of nǫ solution to (1) may be difficult to obtain in general, under some
assumptions on K and R, the total population ρǫ can be proved to have bounded variations.

Recall that, integrating equation (1), we have

ǫρ̇ǫ =
1

ρǫ

∫∫∫

R3

Kǫ(x, y, z)nǫ(t, y)nǫ(t, z)dx dy dz −
∫

R

R(x, ρǫ)nǫ(t, x) dx.

The proofs of Propositions 1 and 2 rely on estimates obtained through the equation satisfied by ρ̈ǫ. In
general, we start from

ǫρ̈ǫ =− ρ̇ǫ
ρ2ǫ

∫∫∫

R3

Kǫ(x, y, z)nǫ(t, y)nǫ(t, z)dx dy dz

+
1

ρǫ

∫∫∫

R3

Kǫ(x, y, z)
(
∂tnǫ(t, y)nǫ(t, z) + nǫ(t, y)∂tnǫ(t, z)

)
dx dy dz

− ρ̇ǫ

∫

R

∂ρR(x, ρ)nǫ(t, x)dx

− 1

ǫ

∫

R

R(x, ρǫ)
( 1

ρǫ

∫∫

R2

Kǫ(x, y, z)nǫ(t, y)nǫ(t, z)dy dz −R(x, ρǫ)nǫ(t, x)
)

dx.

(30)
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Proof of Proposition 1. We treat the case of the model with asymmetric fecundity. Then, ρǫ satisfies

ǫρ̇ǫ =

∫

R

B(x)nǫ(t, x)dx − νρ2ǫ ,

and (30) reads

ǫρ̈ =

∫

B(x)∂tnǫ(t, x)dx − 2νρǫρ̇ǫ

=− νρǫρ̇ǫ +
ν2

ǫ
ρ3ǫ −

νρǫ
ǫ

∫

B(x)nǫ(t, x)dx

+
1

ǫρǫ

∫∫∫

αǫ(x, y, z)B(x)B(y)nǫ(t, y)nǫ(t, z)dx dy dz −
νρǫ
ǫ

∫

B(x)nǫ(t, x)dx.

We rewrite the last equation as

ǫ
d

dt
ρ̇ǫ = −νρǫρ̇ǫ +

demographic stabilization
︷ ︸︸ ︷

ρǫ
ǫ

(∫
B(x)nǫ(t, x)dx

ρǫ
− νρǫ

)2

+
1

ǫρǫ

(∫∫∫

αǫ(x, y, z)B(x)B(y)nǫ(t, y)nǫ(t, z)dx dy dz −
(
∫

B(x)nǫ(t, x)dx
)2
)

︸ ︷︷ ︸

mixing-induced fecundity variation

. (31)

In order to apply the same technique as for the simple case (nM) in Section 3.1, we need to assume
that the mixing-induced fecundity variation term is bounded from below. Under assumption (8), we
obtain from (31) and Proposition 3

ǫ
d

dt
ρ̇ǫ ≥ −νρǫρ̇ǫ − C. (32)

From Proposition 6, we deduce
d

dt
(ρ̇ǫ)− ≤ −νρm

ǫ
(ρ̇ǫ)− +

C

ǫ
,

and thus

(ρ̇ǫ)−(t) ≤ e−
νρmt

ǫ (ρ̇ǫ)−(0) +
C

νρm

(
1− e−

νρmt
ǫ

)
.

Then we use the same argument as in the case without mutations, which proves uniform boundedness of
ρǫ in BV (0, T ) for all T > 0.

4.2 BV estimate for the ATH model. Proof of Proposition 2

We now address the model with asymmetric trait heredity (ATH).
Then we compute

∣
∣
∣

∫

R

ψ(x)(Gǫ ∗ φ)(x)dx −
∫

R

ψ(x)φ(x)dx
∣
∣
∣ ≤

∫

R

|ψ(x)||Gǫ ∗ φ(x) − φ(x)|dx

≤
∫∫

R2

1

(2πǫ2)1/2
e−

(x−y)2

2ǫ2 |φ(y)− φ(x)|dy dx.

We apply the change of variables ŷ = ǫ−1(y − x), then dŷ = ǫ−1dy, and we obtain

∣
∣
∣

∫

R

ψ(x)(Gǫ ∗ φ)(x)dx −
∫

R

ψ(x)φ(x)dx
∣
∣
∣ ≤ (2π)−1/2

∫∫

R2

e−ŷ2/2|φ(x + ǫŷ)− φ(x)|dŷ dx

≤ 2‖φ′‖L1

(2π)1/2
ǫ.

Proof of Proposition 2. Departing from (ATH), the equation satisfied by ρǫ reads

ǫ
d

dt
ρǫ(t) =

∫

R

(
1

ρǫ(t)
K ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x) − νρǫ(t)nǫ(t, x)

)

dx.
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Differentiating this equation, we obtain

ǫρ̈ǫ(t) =
1

ρǫ(t)

∫

R

[

K0 ∗ ∂tnǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x) +K0 ∗ nǫ(t, ·)(x)Gǫ ∗ ∂tnǫ(t, ·)(x)
]

dx

− νρǫ(t)ρ̇ǫ(t)− ν

∫

R

∂tnǫ(t, x)ρǫ(t)dx

− ρ̇ǫ(t)

ρ2ǫ(t)

∫

R

[K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x)] dx.

By the same trick as in Section 3, assuming (6) induces

ǫρ̈ǫ(t) =
1

2ρǫ(t)

d

dt

[∫

R

K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x)dx
]

+
1

ρǫ(t)

∫

R

[Gǫ ∗ (K0 ∗ nǫ(t, ·))(x)∂tnǫ(t, x)] dx

− νρǫ(t)ρ̇ǫ(t)− ν

∫

R

∂tnǫ(t, x)ρǫ(t)dx

− ρ̇ǫ(t)

ρ2ǫ(t)

∫

R

[K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x)] dx.

Then we compute

ǫρ̈ǫ(t) =− νρǫ(t)ρ̇ǫ(t) +
1

2ρǫ(t)

d

dt

[∫

R

K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x)dx
]

+
1

ǫρǫ(t)

∫

R

Gǫ ∗ (K0 ∗ nǫ(t, ·))(x)
[

1

ρǫ(t)
K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x) − νnǫ(t, x)ρǫ(t)

]

dx

− ν

ǫ
ρǫ(t)

∫

R

[
1

ρǫ(t)
K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x) − νnǫ(t, x)ρǫ(t)

]

dx

− ρ̇ǫ(t)

ρ2ǫ(t)

∫

R

[K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x)] dx,

and get

ǫρ̈ǫ(t) =− νρǫ(t)ρ̇ǫ(t) +
1

2

d

dt

[∫

R

1

ρǫ(t)
K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x)dx

]

− 1

2

ρ̇ǫ(t)

ρ2ǫ (t)

∫

R

[K0 ∗ nǫ(t, ·)(x)Gǫ ∗ nǫ(t, ·)(x)] dx

+
1

ǫ

∫

R

(Gǫ ∗ nǫ)

[

Gǫ ∗ (K0 ∗ nǫ)
(K0 ∗ nǫ)

ρ2ǫ
− 2νK0 ∗ n

]

dx

+
1

ǫ
ν2ρ2ǫ

∫

R

Gǫ ∗ nǫ dx.

We rewrite this as

ǫρ̈ǫ(t) =− νρǫ(t)ρ̇ǫ(t)−
1

2

ρ̇ǫ(t)

ρ2ǫ(t)

∫

R

K0 ∗ nǫ(t, ·)Gǫ ∗ nǫ(t, ·)

+
1

ǫ

∫

R

(Gǫ ∗ nǫ)

[
(K0 ∗ nǫ)

ρǫ
− νρǫ

]2

dx

+
1

ǫρ2ǫ(t)

∫

R

(K0 ∗ nǫ)(Gǫ ∗ nǫ)
(

Gǫ ∗ (K0 ∗ nǫ)−K0 ∗ nǫ

)

dx.

Now we use the convergence assumption (9) on Gǫ. We simply need to check that φ(x) :=
∫
K0(x−

y)nǫ(t, y)dy is in W 1,1. This is obvious since φ′ = K ′
0 ∗ nǫ. Hence we have

ǫ

2
ρ̈ǫ(t) =− νρǫ(t)ρ̇ǫ(t)−

1

2

ρ̇ǫ(t)

ρ2ǫ(t)

∫

R

K0 ∗ nǫ(t, ·)Gǫ ∗ nǫ(t, ·)

+
1

ǫ

∫

R

(Gǫ ∗ nǫ)

[
(K0 ∗ nǫ)

ρǫ
− νρǫ

]2

dx+O(1).

(33)
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Thanks to (10), we deduce the inequality

ǫ

2

d

dt
(ρ̇ǫ(t))− ≤ −

(1

2
η0 + νρǫ(t)

)
(ρ̇ǫ(t))− +O(1).

Then, we conclude that ρǫ is bounded in BVloc(R+) uniformly in ǫ. Indeed, we obtain that for some
constants C1, C2 > 0,

(ρ̇ǫ(t))− ≤ e−C1t/ǫ
(

(ρ̇ǫ(0))− +
C2

ǫ

∫ t

0

eC1t
′/ǫdt′

)

,

hence

(ρ̇ǫ(t))− ≤ (ρ̇ǫ(0))−e
−C1t/ǫ +

C2

C1

(
1− e−C1t/ǫ

)
.

As in the proof of Theorem 1, we deduce that for all T > 0, (ρǫ)ǫ is uniformly in ǫ bounded in
BV ([0, T ]) with assumption (4) on the initial data. Going back to (33), we derive the estimate, for
T > 0,

∫ T

0

∫

R

(Gǫ ∗ nǫ)

[
K0 ∗ nǫ

ρǫ
− νρǫ

]2

dx dt = O(ǫ),

as in the proof of Theorem 1.

4.3 Extensions and open questions for the general case

As a first possible extension, we address the case of a general saturation term for the AF model, featuring
the competition effect and the trait-dependency:

R ∈ C1(Rd × R+;R+), K(x, y, z) = B(y)αǫ(x, y, z), ∀y, z,
∫

R

αǫ(x, y, z)dx = 1. (34)

To apply the same argument as before, we need to assume

∃C > 0, ∀ǫ > 0, ∀y, z, ∀φ ∈ L1
+ with ‖φ‖L1 = 1,

∥
∥

∫∫

R2

αǫ(·, y, z)B(y)φ(y)φ(z)dydz −B(·)φ(·)
∥
∥
L1 ≤ Cǫ,

(35)

and also
∀ρ ≤ ρM , Cf (ρ) := ‖B(·)−R(·, ρ)‖∞ <∞, Cf = sup

0≤ρ≤ρM

Cf (ρ). (36)

We are going to establish the following BV estimate

Corollary 1. Assume (34), (35) and (36). Then, for all T > 0, (ρǫ)ǫ is uniformly in ǫ bounded
in BV ([0, T ]).

In the case at hand, ρǫ satisfies

ǫρ̇ǫ =

∫

R

(B(x)−R(x, ρǫ))nǫ(t, x)dx.

Differentiating this equation, we find

ǫ
d

dt
ρ̇ǫ =

∫

R

(
B(x)−R(x, ρǫ)

)
∂tnǫ(t, x)dx − ρ̇ǫ

∫

R

∂ρR(x, ρǫ)nǫ(t, x)dx

=− ρ̇ǫ

∫

R

∂ρR(x, ρǫ)nǫ(t, x)dx +
1

ǫ

∫

R

nǫ(t, x)
(
B(x)−R(x, ρǫ)

)2

+
1

ǫ

∫

R

(
B(x)−R(x, ρǫ)

)( 1

ρǫ

∫∫

R2

αǫ(x, y, z)B(y)nǫ(t, y)nǫ(t, z)dy dz −B(x)nǫ(t, x)
)

dx.

The last term can be seen as the integral of the net fitness B−R(·, ρǫ) weighted by a fecundity deviation
∆nǫ(t,·)B, with

∫
∆nǫ(t,·)B(x)dx = 0.

Under assumptions (35) and (36), this additional term is treated as in the case R(x, ρ) = νρ, replacing
the negative constant on the right-hand side of (32) by −ρMCCf , which gives

ǫ
d

dt
ρ̇ǫ(t) ≥ −ρ̇ǫ

∫

R

∂ρR(x, ρǫ)nǫ(t, x)dx − ρMCCf .
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and, following the proof the proof of Proposition 1, we obtain Corollary 1.

A second possible extension is a general death term for the ATH model:

R ∈ C1(Rd × R+;R+), Kǫ(x, y, z) = Gǫ(x− z)K0(x− y). (37)

In order to see clearly where the difficulty lies, we replace Gǫ(x− z) by δx=z (letting ǫ → 0 in this term
only) and prove the

Corollary 2. If R(x, ρ) = R1(ρ) and ρR′
1(ρ) ≥ R1(ρ), then ρ̇ǫ ≤ 0 implies ρ̈ǫ ≥ − ρ̇ǫ

2ρǫ

∫
nζ. Then in

particular for all T > 0, (ρǫ)ǫ is uniformly in ǫ bounded in BV ([0, T ]).

Notice that, for instance, the assumption on R1 holds for R1(ρ) = νργ for some γ ≥ 1.

For simplicity, we define

ζ(t, x) :=
K0 ∗ nǫ(t, ·)(x)

ρǫ(t)
, Q(t) :=

∫

R

∂ρR(x, ρǫ(t))nǫ(t, x)dx.

After computations similar to the previous ones, we find

1

2
ǫ
d

dt
ρ̇ǫ = − ρ̇ǫ

2ρǫ

∫

R

nǫζ +
1

ǫ

∫

R

nǫ

[

ζ2 −Rζ +
R+Q

2

(
R− ζ

)]

, (38)

and the term in 1
ǫ rewrites

∫

R

n(ζ − R+Q

2
)(ζ −R).

Meanwhile, one can check that

ǫρ̇ǫ =

∫

R

nǫ(ζ −R).

When ρ̇ǫ ≤ 0 we would like to prove that the term in 1
ǫ in (38) is non-negative. We could be less

restrictive and simply require ρ̈ǫ ≥ 0. This reads (with qǫ(t, x) = nǫ(t, x)/ρǫ(t)):

∫

R

qǫ(t, x)
(
ζ(t, x)−R(x, ρǫ(t))

)(

ζ(t, x) − R(x, ρǫ(t)) +Q(t)

2
−
∫

R

qǫ(t, y)ζ(t, y)dy
)

dx ≥ 0

if ∫

R

qǫ(t, x)
(
ζ(t, x) −R(x, ρǫ(t))

)
dx ≤ 0.

A straightforward computation gives the Corollary 2 but other (more general) cases can be treated
similarly.

4.4 Discussion on the Lyapunov approach

We may also discuss the Lyapunov approach applied to reproduction terms including mutations. As in
Section 3.3, we define qǫ(t, x) := nǫ(ǫt, x)/ρǫ(ǫt). For equation (1), assuming R(x, ρ) = R0(x) + R1(ρ),
we find







∂tqǫ(t, x) =

∫∫

R2

Kǫ(x, y, z)qǫ(t, y)qǫ(t, z)dydz −R0(x)qǫ(t, x)

− qǫ(t, x)
( ∫∫∫

R3

Kǫ(x
′, y, z)qǫ(t, y)qǫ(t, z)dx

′dydz −
∫

R

R0(x
′)qǫ(t, x

′)dx′
)

,

qǫ(0, x) = q0ǫ (x).

(39)

A natural candidate Lyapunov functional is given by

Jǫ(q) :=
1

2

∫∫∫

R3

KS
ǫ (x, y, z)q(y)q(z)dxdydz −

∫

R

R0(x)q(x)dx,

KS
ǫ (x, y, z) :=

Kǫ(x, z, y) +Kǫ(x, y, z)

2
.
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Then, we can compute along an orbit of (39)

d

dt
Jǫ(qǫ(t, ·)) =

∫

R

∂tqǫ(t, y)
(
∫∫

R2

KS
ǫ (x, y, z)qǫ(t, z)dzdx−R0(y)

)
dy

=

∫

· · ·
∫

R5

KS
ǫ (x, y, z)K

S
ǫ (y, y

′, z′)qǫ(t, y
′)qǫ(t, z

′)qǫ(t, z)dz
′dy′dzdydx

−
∫∫∫

R3

KS
ǫ (x, y, z)

(
R0(x) +R0(y)

)
qǫ(t, y)qǫ(t, z)dxdydz +

∫

R

qǫ(t, x)R
2
0(x)dx

−
( ∫∫∫

R3

KS
ǫ (x, y, z)qǫ(t, y)qǫ(t, z)dxdydz −

∫

R

qǫ(t, y)R0(y)dy
)2

.

In the special case R0 ≡ 0, to get a non-decreasing Jǫ along orbits, we need to assume

∀ξ ∈ M1
+(R),

∫

· · ·
∫

R5

KS
ǫ (x, y, z)K

S
ǫ (y, y

′, z′)ξ(y′)ξ(z′)ξ(z)dz′dy′dzdydx

≥
( ∫∫∫

R3

KS
ǫ (x, y, z)ξ(y)ξ(z)dxdydz

)2

, (40)

which could be interpreted as an increase of fecundity from parents to offspring, with equality only if the
dynamic is at rest, that is

∫∫

R2

KS
ǫ (·, y, z)ξ(y)ξ(z) dydz is constant on supp(ξ).

In other words, to obtain a Lyapunov functional requires a perfect analogue of the Cauchy-Schwarz
inequality.

When R0 6= 0, this Lyapunov functional also applies for (AF) with constant B, that is under the
assumption

∃B > 0, ∀y, z,
∫

R

Kǫ(x, y, z)dx = B.

Then, we write Kǫ = Bαǫ and get Jǫ(q) = B
2 −

∫

R
q(y)R0(y)dy so that

d

dt
Jǫ(qǫ(t, ·)) =

∫

R

qǫ(t, y)R
2
0(y)dy −

(
∫

R

qǫ(t, y)R0(y)dy
)2

+B
(
∫

R

qǫ(t, y)R0(y)dy −
∫∫∫

R3

R0(x)αǫ(x, y, z)qǫ(t, y)qǫ(t, z)dxdydz
)
.

To get that Jǫ is non-decreasing along orbits, one possible additional assumption is therefore

∀ξ ∈ M1
+(R),

∫

R

R0(y)ξ(y)dy ≥
∫∫∫

R3

R0(x)αǫ(x, y, z)ξ(y)ξ(z)dxdydz, (41)

which could be interpreted as a decrease of the death rate from parents to offspring.

These two conditions could be combined for more generality. However, more realistic assumptions
such as (8), (35) or (9) do not imply that Jǫ itself is a non-decreasing Lyapunov function, but rather that
along an orbit of (39),

d

dt
Jǫ(qǫ(t, ·)) = j0(qǫ(t, ·)) + ǫj1ǫ (qǫ(t, ·)),

where j1ǫ is uniformly bounded, and j0(q) ≥ 0 with equality if and only if q is a rest point of the limit
dynamics. In other words, we get Lyapunov stability asymptotically as ǫ → 0. The possible outcomes of
this approach are still to be investigated.

5 The Hamilton-Jacobi equation

In the context of evolutionary dynamics, the Hamilton-Jacobi approach has been introduced in [17] and
then developed in [32, 26] to study the concentration effect for phenotypically structured PDE models of
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asexual populations. This approach consists in determining the possible Dirac distributions through the
zeros of uǫ defined from the Hopf-Cole transform

uǫ(t, x) = ǫ lnnǫ(t, x).

In the mentioned works, the convergence of uǫ as ǫ goes to 0 is rigorously established and the limit u
satisfies a constrained Hamilton-Jacobi equation, using the theory of viscosity solutions (see [13, 1] for
an introduction). The constraint on the solution u reads

max
x∈R

u(t, x) = 0, ∀t > 0,

and comes from the control in L1 of the total population. Then, some properties on the concentration
points can be derived from the study of this constrained Hamilton-Jacobi equation and the solution u. In
some particular cases, it is proved that the population density remains monomorphic, that is composed
of a single Dirac mass, and then a form of canonical equation is derived, giving the dynamics of the
dominant trait.

In the present work, this Hamilton-Jacobi structure arises in the different situations that were pre-
viously studied. We prove in this section Theorem 3, which states different results on the regularity of
uǫ and a constraint on the limit u. Then, we deal with the limiting Hamilton-Jacobi equations and the
consequences of Theorem 3 to discuss the potential concentration points.

The statements of Theorem 3 concern, for both models (AF) and (ATH), the convergence of uǫ
as ǫ vanishes, up to extratction of subsequences, and the existence of a uniform upper bound on uǫ that
converges to 0. To prove the first point, we derive a priori estimates on uǫ, and then on its derivatives,
in order to use compactness arguments. The second point relies on these derived estimates.

The uniqueness of the solution to the limit equation has not been proved in our context (see [7] for the
most general result so far), thus we only derive convergence up to extraction of subsequences. Moreover,
the stability result is not complete : the convergence of uǫ to a solution of the limiting constrained
Hamilton-Jacobi equation, at least in the sense of viscosity, remains to be rigorously proved. The main
obstacles to the proof we encounter are the time-dependency of the coefficients and their lack of regularity.

In this section, we first derive the limiting Hamilton-Jacobi equations associated to some particular
forms of (AF) and (ATH), and introduce the assumptions that are needed in the proof of Theorem 3.
The proof is deferred to Appendix A. Then, we discuss the formal limits of uǫ and nǫ, regarding the
concentration of the population. Finally we present the consequences in the case of the no mutation
model (nM), for which we can conclude the monomorphic behavior of the population density.

5.1 Derivation of the constrained H-J equations

Asymmetric fecundity: we use the particular form αǫ(x, y, z) =
1
ǫα
(
x−z
ǫ , y

)
, that is

Kǫ(x, y, z) = B(y)
1

ǫ
α

(
x− z

ǫ
, y

)

with

∫

R

α(z′, y)dz′ = 1 for all y,

and we define

rǫ(t, x) := R(x, ρǫ(t)), qǫ(t, y) =
nǫ(t, y)

ρǫ(t)
. (42)

With these notations, and going back to (AF), the equation on uǫ reads

∂tuǫ(t, x) =

∫

R

B(y)qǫ(t, y)

∫

R

α(z, y)e
uǫ(t,x−ǫz)−uǫ(t,x)

ǫ dz dy − rǫ(t, x), (43)

and we compute the formal limiting equation

∂tu(t, x) =

∫

R

B(y)q(t, y)

∫

R

α(z, y)e−∂xu(t,x)·zdz dy − r(t, x)

=

∫

R

B(y)q(t, y)L[α(·, y)](∂xu(t, x))dy − r(t, x),

(44)

with L[α(·, y)] the Laplace transform of α(·, y) for all y:

L[α](p) :=
∫

R

α(z)e−p·zdz,
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for α a probability density function.

Asymmetric trait heredity: The interest of this problem comes from the time- and trait-dependent
coefficients of the Hamiltonian. We use the generic form

Kǫ(x, y, z) = Gǫ(x− z)K1(x, y).

Going back to (ATH), and after the change of variable z′ = x−z
ǫ , the equation on uǫ reads

∂tuǫ(t, x) =
1

ρǫ(t)

∫

R

K1(x, y)nǫ(t, y)dy ·
∫

R

G(z′)e
uǫ(t,x−ǫz′)−uǫ(t,x)

ǫ dz′ − rǫ(t, x). (45)

For clarity, we define

kǫ(t, x) :=

∫

R

K1(x, y)qǫ(t, y)dy. (46)

At the limit ǫ→ 0, we obtain the formal limiting equation

∂tu(t, x) = k(t, x)

∫

R

G(z)e−∂xu(t,x)·zdz − r(t, x)

= k(t, x)L[G](∂xu(t, x))− r(t, x),

(47)

with a and b the formal limits of aǫ and bǫ defined in (46) and (42), and L[G] the Laplace transform of
G. From now on, we choose G such that its Laplace transform is well defined on R.

In the case G is the gaussian density, the equation on uǫ reads

∂tuǫ(t, x) = kǫ(t, x)

∫

R

1√
2π
e−

|z|2

2 e
uǫ(t,x−ǫz)−uǫ(t,x)

ǫ dz − rǫ(t, x). (48)

Then, passing formally to the limit ǫ→ 0, we arrive at

∂tu(t, x) = k(t, x)

∫

R

1√
2π
e−

|z|2

2 e−∂xu(t,x)·zdz − r(t, x)

= k(t, x) e
(∂xu(t,x))2

2 − r(t, x).

The complete proof of Theorem 3 is deferred to Appendix A, since it uses quite standard and technical
arguments. We mostly focus on Equation (48), but the methods are identical for the generic ATH case.
The proof of the theorem in the AF case is similar and we also give the formal ideas where it is necessary.

Assumptions for Theorem 3: We assume on the function R

∃C0 > 0, ∀ρm ≤ ρ ≤ ρM , ∀x ∈ R, R(x, ρ) ≤ C0(1 + |x|), (49)

∃Lr > 0, ∀ρm ≤ ρ ≤ ρM , ∀x ∈ R, |∂xR(x, ρ)| ≤ Lr. (50)

We choose the positive function K1 bounded

∃K̄ > 0, ∀x, y ∈ R, K1(x, y) ≤ K̄, (51)

and such that,

∃λ > 0, ∃Cλ > 0, ∀ǫ > 0, t ≥ 0, x ∈ R, e
|∂xkǫ(t,x)|
λkǫ(t,x) λkǫ(t, x) ≤ Cλ. (52)

This assumption is satisfied for example when K1 is bounded and there exists a constant LK such that

|∂xK1(x, y)| ≤ LK |K1(x, y)|, ∀x, y ∈ R,

or, when K1 induces a gaussian type distribution for aǫ, that is,

kǫ(t, x) ∼ Ce
−(x−m)2

σ2 .

We also assume on the initial condition

u0ǫ(x) ≤ −A|x|+ C, ‖∂xu0ǫ‖ ≤ L0. (53)

For the model with asymmetric fecundity, we assume that B and α are positive and bounded.
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5.2 Limiting Hamilton-Jacobi equations

In the context of viscosity solutions, cf. [13, 1], the use of the stability property enables to prove the
convergence of uǫ to a solution to the corresponding constrained Hamilton-Jacobi equation, from which
we can deduce some information on the potential concentration points. Despite the lack of regularity of
the considered Hamiltonians, we make here some comments on the limiting equations we obtained.

As it is classically proved with the Hamilton-Jacobi approach to adaptive dynamics, the limit function
u satisfies the constraint

max
x∈R

u(t, x) = 0, ∀t > 0, (54)

because of the control on the total population density. Then, when u is differentiable at maximum points,
we deduce that ∂tu and ∂xu are equal to 0 and, going back to (44) and (47), we obtain, for n̄ the formal
limit of nǫ,

supp n̄ ⊂ {(t, x) ∈ (0,∞)× R|b(t)− r(t, x) = 0}, in case (AF), (55)

supp n̄ ⊂ {(t, x) ∈ (0,∞)× R|k(t, x)− r(t, x) = 0}, in case (ATH), (56)

where b(t) and k(t, x) are the limits

b(t) =

∫

R

B(y)q(t, y)dy, k(t, x) =

∫

R

K1(x, y)q(t, y)dy. (57)

It would be then interesting to determine the conditions required to have these null sets reduced to
an isolated point. If, for all t > 0, we identify a unique point x̄(t) satisfying

b(t)− r(t, x̄(t)) = b(t)−R(x̄(t), ρ̄(t)) = 0, in case (AF),

k(t, x̄(t))−R(x̄(t), ρ̄(t)) = 0, in case (ATH),

then the population is monomorphic, that composed of a single Dirac mass located on x̄(t).

Apart from providing a description of the behavior of uǫ, and then of nǫ, as ǫ vanishes, the constrained
Hamilton-Jacobi equation usually enables to identify the set of points where the population would con-
centrate. Thence, we can derive under specific regularity assumptions a canonical equation, which is a
differential equation giving the dynamics of the dominant trait in a monomorphic population. But in
the cases considered in the present work, because of the form of the reproduction terms, the Hamilto-
nians feature integral terms of the measure qǫ, whose limits are not explicit as ǫ goes to 0. Thus, the
identification of monomorphic or polymorphic limit is a difficult question.

However, we show a particular case where we deduce a monomorphic state from the study of the
population at equilibrium. More precisely, we prove that the population cannot be composed of several
Dirac masses.

We go back to (nM) and define n ∈ M+(R) as an Evolutionary Stable Distribution (ESD) in the
sense of [15, 22], that is

K0 ∗ n = νρ2 on supp(n), (58)

K0 ∗ n ≤ νρ2 on R, (59)

where ρ =
∫
n. The interest of the ESD concept is huge: it is readily established that a stationary

solution to (nM) is asymptotically stable if and only if it satisfies (58) and (59).
If we assume that K0 is radial-decreasing, then we prove that extreme points in supp(n) (if it is

bounded) cannot support a positive Dirac mass, by using (59). In particular, among all combinations of
Dirac masses, only the single-point measure nx(x) := K0(0)/νδx=x is an ESD.

Indeed, assume that n̄ is composed of k ≥ 2 Dirac masses located on (xi)1≤i≤k, then defining

K(x) := K0 ∗ n̄(x) =
k∑

i=1

ρiK0(x− xi).

Then, we deduce from (58) and (59) that K is maximal on the support of n̄, that is the points xi. With
no loss of generality, we assume that the sequence (xi) is ordered and x1 = mini xi. Then, differentiating
K, we obtain

K
′
(x1) =

∑

i≥1

ρiK
′
0(x1 − xi) > 0,
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which contradicts the optimality of K on the support of n̄. Hence the population, at the asymptotic
limit, cannot be polymorphic.

6 Conclusion and perspectives

We investigated adaptive dynamics for population dynamics model including sexual reproduction, when
the trait is mainly inherited from the mother. We determined non-extinction conditions and a control on
the total population. In the particular case of a saturation term R depending only on the competition,
we derived BV estimates on the total population. In general, estimating the variations of ρǫ when R
depends on both trait variable and competition seems difficult, and a Lyapunov functional approach
yields complementary results under some structure conditions. An open problem is to find another
method allowing for more appropriate assumptions in order to get stability results.

Concerning the sequences uǫ = ǫ lnnǫ associated to each model, we obtained local Lipschitz estimates
uniform in ǫ. To deduce the convergence of uǫ to the solution of the limiting Hamilton-Jacobi equation
with constraint, we still need time compactness on the coefficients of (43) and (45). As a special case of
both, for the Hamilton-Jacobi equation associated to the model without mutations (gnM), if we provide
some convergence result on

∫
K(x, y) ∗ nǫ(t, y)/ρǫ(t) and on ρǫ, then, up to extraction of a subsequence,

the limit function u has an explicit formulation and its maximum points can be described. In general,
Hamilton-Jacobi equations with time- and space-dependent coefficients are difficult to deal with when
there is a lack of regularity. The authors in [24] developed a theory of stochastic viscosity solutions to
tackle nonlinear stochastic PDEs. In particular, they prove existence, regularity and uniqueness results
for the viscosity solution when the time-dependent coefficient of the Hamiltonian can be written as the
derivative of a trajectory. This theory does not apply to our models since the coefficients in front of the
gradient-dependent term are not under the form of a time derivative.

Another question is the determination of a convenient framework to observe Dirac concentrations.
The convergence of the population distribution to a sum of Dirac masses illustrates the selection of well-
adapted or dominant phenotypical traits. In [26, 8], the Hamilton-Jacobi approach enables to characterize
the dynamics of the dominant traits under specific assumptions of regularity. In our framework, the
required hypotheses to prove Dirac concentrations are to be clarified.

Using the Wasserstein distance has been recently developed in [27, 14, 19] to derive asymptotics of
population distributions for similar equations. It is proved that specific cases of the sexual reproduction
operator, possibly in an infinitesimal model, induce a control, possibly a contraction, for the Wasserstein
distance on the phenotypical trait space. It could be interesting to further explore this method in full
generality.
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A Proof of Theorem 3

A.1 A priori bounds

We begin with the estimates for the ATH case, and especially with a gaussian trait female heredity
distribution.

Lemma 2. Let uǫ be solution to equation (43) or (48). Then, there exist constants C1 > 0 and C2 > 0,
such that for all t > 0, x ∈ R and ǫ > 0 we have

−C1(1 + t)(1 + |x|) ≤ uǫ(t, x) ≤ −A|x|+ C2(1 + t).

We prove this lemma in the case of a gaussian trait female heredity distribution, but the argument
exactly applies to equation (45) in the generic ATH case.
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Proof. We first prove the lower bound

uǫ(t, x) ≥ −C1(1 + t)(1 + |x|).

Indeed, because kǫ ≥ 0 and L(G) ≥ 0, we deduce from (49) that

∂tuǫ ≥ −rǫ(t, x) ≥ −C0(1 + |x|).

From (53) we obtain
uǫ(t, x) ≥ inf

ǫ
u0ǫ(0)− inf

ǫ
‖∂xu0ǫ‖ − C0t(1 + |x|).

Hence the lower bound.
We also derive the inequality

uǫ(t, x) ≤ −A|x|+ C2(1 + t),

where C2 = K̄ 1√
2π

∫
e−|z|2/2eA|z|dz. Indeed, defining v(t, x) := −A|x|+ C2(1 + t), we compute

∂tv(t, x) − kǫ(t, x)

∫
1√
2π
e−|z|2/2e

v(t,x−ǫz)−v(t,x)
ǫ dz ≥ C2 − K̄

1√
2π

∫

e−|z|2/2eA|z|dz ≥ 0.

Thus, v is a super-solution of (48), and since u0(x) ≤ v(0, x) we deduce that uǫ(t, x) ≤ v(t, x) by a
comparison principle argument.

We obtain the same kind of bounds for the asymmetric fecundity case, with the constant C2 :=
supy B(y)

∫
α(z, y)e|A|zdz..

A.2 Regularity in space

We prove the following

Lemma 3. Let uǫ be the solution to the equation (48). For λ > 0 given by (52) and for all t > 0, x ∈ R,
we have

|∂xuǫ(t, x)| ≤ ‖∂xu0ǫ‖L∞ + (Cλ + Lr)t+ λ

(

sup
ǫ

‖u0ǫ‖L∞ + C1(1 + t)(1 + |x|)
)

.

This implies that uǫ is Lipschitz in space, uniformly in ǫ and locally in time.

Proof. We use the notations

pǫ(t, x) = ∂xuǫ(t, x), p(t, x) = ∂xu(t, x).

Differentiating (48), pǫ satisfies

∂tpǫ(t, x) = ∂xkǫ(t, x) ·
∫

1√
π
e−|z|2e

uǫ(t,x−ǫz)−uǫ(t,x)
ǫ dz

+ kǫ(t, x)

∫
1√
π
e−|z|2e

uǫ(t,x−ǫz)−uǫ(t,x)
ǫ

(
pǫ(t, x− ǫz)− pǫ(t, x)

ǫ

)

dz − ∂xrǫ(t, x).

Let λ > 0. We define

wλ
ǫ (t, x) = pǫ(t, x) + λuǫ(t, x), Dǫ(t, x, z) =

uǫ(t, x− ǫz)− uǫ(t, x)

ǫ
.

Then, wλ
ǫ satisfies

∂tw
λ
ǫ = kǫ ·

∫
1√
π
e−|z|2eDǫ(t,x,z)

(
wλ

ǫ (t, x− ǫz)− wλ
ǫ (t, x)

ǫ

)

dz

− λ

[

kǫ ·
∫

1√
π
e−|z|2eDǫ(t,x,z)(Dǫ(t, x, z)− 1)

]

dy

+ ∂xkǫ ·
∫

1√
π
e−|z|2eDǫ(t,x,z)dz − (∂xrǫ + λrǫ).
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Then, using (50), we have

∂tw
λ
ǫ − Lr − kǫ ·

∫
1√
π
e−|z|2eDǫ

(
wλ

ǫ (t, x− ǫz)− wλ
ǫ (t, x)

ǫ

)

dz

≤
∫

1√
π
e−|z|2eDǫ [∂xkǫ + λkǫ − λkǫDǫ] dz.

Defining f(D) := eD(∂xkǫ + λkǫ − λkǫD), the maximum of f on R is reached at D∗ := ∂xkǫ

λkǫ
and equals

e
∂xkǫ
λkǫ λkǫ ≤ Cλ,

from (52). Then we have the upper bound

wλ
ǫ (t, x) ≤ max

R

wλ
ǫ (0, x) + Ct, C = Cλ + Lr,

which implies the upper bound on pǫ

pǫ(t, x) ≤ ‖∂xu0ǫ‖L∞ + Ct+ λ

(

sup
ǫ

‖u0ǫ‖L∞ + C1(1 + t)(1 + |x|)
)

.

We have the same estimate for −pǫ.

For the AF model, we have the following estimate on the derivative in space of uǫ:

Lemma 4. Let uǫ be the solution of equation (43). Then, for all t > 0, x ∈ R and ǫ > 0, we have

|∂xuǫ(t, x)| ≤ ‖∂xu0ǫ‖L∞ + Lrt.

This implies that uǫ is Lipschitz in space, uniformly in ǫ and locally in time.

We address the limit equation

∂tp(t, x) = (−∂xp(t, x))
∫

B(y)q(t, y)

∫

zα(z, y)e−p(t,x)·zdzdy − ∂xr(t, x), (60)

and give formal arguments, since the proof for the ǫ-level problem is similar to the one of the ATH case.
We compute that w(t) := ‖∂xu0ǫ‖L∞ +Lrt is a super-solution of (60). Since p(0, x) ≤ w(0) for all x ∈ R,
we deduce that, from the comparison principle, uǫ is Lipschitz in space, uniformly in ǫ and locally in
time.

A.3 Regularity in time

In the ATH case, since we proved that uǫ is uniformly Lipschitz in space locally in time, we can deduce
that ∂tuǫ is locally uniformly bounded.

Lemma 5. Let uǫ be the solution to equation (45) and let T > 0 and r̄ > 0 be fixed. Assume (50) and
(51). Then, there exists C(T, r̄) > 0 such that, for all t ∈ [0, T ], x ∈ B(0, r̄), we have

|∂tuǫ| ≤ C(T, r̄) + sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r̄)).

This implies that uǫ is Lipschitz in time, uniformly in ǫ.

Proof. Let T > 0 and R̄ > r̄ > 0 be fixed with R̄ large enough. We choose some constants L1 and L2

such that
uǫ(t, x) < −L1, ∀(t, x) ∈ [0, T ]× R\B(0, R̄),

|pǫ| < L2, ∀(t, x) ∈ [0, T ]×B(0, R̄).

Then, we obtain for t ∈ [0, T ], x ∈ B(0, r̄),

|∂tuǫ| ≤ sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r̄))

+
1

ρǫ(t)

∫

K(x, z)nǫ(t, z)dz ·
(
∫

|x−ǫy|<R̄

e−|y|2eL2ydy +

∫

|x−ǫy|>R̄

e−|y|2e
uǫ(t,x−ǫy)−uǫ(t,x)

ǫ dy

)

.
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Thus, for ǫ small enough, and assuming that

uǫ(t, x) > −L1, ∀t ∈ [0, T ], ∀x ∈ B(0, r̄),

uǫ(t, x) < −L1, ∀t ∈ [0, T ], ∀x ∈ R\B(0, R̄),

we have

|∂tuǫ| ≤ K

(
∫

|x−ǫy|<R̄

e−|y|2eL2ydy +

∫

|x−ǫy|>R̄

e−|y|2e
−L1−uǫ(t,x)

ǫ dy

)

+ sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r̄))

≤ K

(
∫

e−|y|2eL2ydy +

∫

|x−ǫy|>R̄

e−|y|2dy

)

+ sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r̄))

≤ K

(∫

e−|y|2eL2ydy +
√
π

)

+ sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r̄)).

Hence the local uniform bound on ∂tuǫ.

The proof is similar for the AF case.

Lemma 6. Let uǫ be the solution to equation (43) and let T > 0 and r > 0 be fixed. Then, there exists
C(T, r) > 0 such that, for all t ∈ [0, T ], x ∈ B(0, r), we have

|∂tuǫ| ≤ C(T, r̄) + sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r̄)).

This implies that uǫ is Lipschitz in time, uniformly in ǫ.

A.4 A more precise upper bound

The following argument concerns both cases and gives a sharper upper bound on uǫ.

Lemma 7. Let uǫ be the solution to equation (43) or (45). Then, for all x, y ∈ R, we have

uǫ(t, x) ≤ ǫ ln
(
ρMmx,C(1+t)

ǫ

)
,

where mx,A > 0 is the minimum on R of gx,A : y 7→ A 1+max(|x|,|y|)
1−e−|y−x|A(1+max(|x|,|y|)) .

In addition, if A > 0 we have A < mx,A ≤ A+ 3/2. Thus, we obtain the global upper bound

uǫ(t, x) ≤ ǫ ln
(
ρM (3/2 + C(1 + t)/ǫ)

) ǫ→0−−−→ 0.

Proof. For all z ∈ (x, y), by the mean value theorem there exists θǫ(t, x, z) between x and y such that

uǫ(t, z) = uǫ(t, x) + (z − x)∂xuǫ(t, θǫ(t, x, z)).

In addition, by the previous point there exists C (independent of t, x and ǫ) such that for all t, x,
|∂xuǫ(t, x)| ≤ C(1 + t)(1 + |x|). Hence

uǫ(t, z) ≥ uǫ(t, x)− (z − x)C(1 + t)
(
1 + max(|x|, |y|)

)
.

Since we have, for x < y,
∫ y

x

e
uǫ(t,z)

ǫ dz ≤ ρM ,

we deduce that

ǫe
uǫ(t,x)

ǫ
1− e−(y−x)C(1+t)(1+max(|x|,|y|))

ǫ

C(1 + t)
(
1 + max(|x|, |y|)

) ≤ ρM , ∀y.

Then, we compute

uǫ(t, x) ≤ ǫ ln
( ρMC(1 + t)

(
1 + max(|x|, |y|)

)

ǫ
(
1− e−(y−x)C(1+t)(1+max(|x|,|y|))

ǫ

)

)

,
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and this holds for all y > x. We can also choose y < x and get in more generality

uǫ(t, x) ≤ ǫ ln
( ρMC(1 + t)

(
1 + max(|x|, |y|)

)

ǫ
(
1− e−|y−x|C(1+t)(1+max(|x|,|y|))

ǫ

)

)

= ǫ ln
(
ρMgx,C(1+t)

ǫ

(y)
)
.

Observe that gx,A is positive and goes to +∞ at y = ±∞ and at y = x. Minimizing in y, we find that

uǫ(t, x) ≤ ǫ ln
(
ρMmx,C(1+t)

ǫ

)
.

To conclude we first remark that if A > 0 and x, y ∈ R, then we have

1 + max(|x|, |y|)
1− e−|y−x|A(1+max(|x|,|y|) > 1,

so gx,A(y) > A for all y ∈ R and thus mx,A > A. Then, with A > 0 we also have

g1/A,A(−1/A) =
A+ 1

1− e−2(1+A)
≤ A+ 3/2,

which implies mx,A ≤ A+ 3/2. Thus, we obtain the global upper bound

uǫ(t, x) ≤ ǫ ln
(
ρM (3/2 + C(1 + t)/ǫ)

) ǫ→0−−−→ 0.

The proof of Theorem 3 is achieved.
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