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Selection-mutation dynamics with asymmetrical

reproduction kernels

Benôıt Perthame*§ Martin Strugarek*�§ Cécile Taing�§

November 10, 2021

Abstract

We study a family of selection-mutation models of a sexual population structured by a
phenotypical trait. The main feature of these models is the asymmetric trait heredity or
fecundity between the parents : we assume that each individual inherits mostly its trait from
the female or that the trait acts on the female fecundity but does not affect male. Following
previous works inspired from principles of adaptive dynamics, we rescale time and assume
that mutations have limited effects on the phenotype. Our goal is to study the asymptotic
behavior of the population distribution. We derive non-extinction conditions and BV estimates
on the total population. We also obtain Lipschitz estimates on the solutions of Hamilton-
Jacobi equations that arise from the study of the population distribution concentration at
fittest traits. Concentration results are obtained in some special cases by using a Lyapunov
functional.

2010 Mathematics Subject Classification. 35F21, 35B40, 35Q92, 45K05
Keywords and phrases. Integro-differential equations; Asymptotic analysis; Adaptive dynamics;
Population biology;

1 Introduction

We study mathematically a family of models of selection-mutation for sexual populations structured
with a continuous phenotype, which we call ”trait” and denote by x ∈ R. We assume that all
individuals compete for survival because they share the same resources. This assumption implies
the boundedness of the total population.

Although our approach is formal and mathematical, the models under study arise in various
biological problems, as cell alignment [14] or protein exchanges [2, 27]. Our specific motivation
comes from insecticide resistance. This phenomenon has been observed among insects of interest
for human health, in particular in species of mosquitoes that are vectors for dengue (in the Aedes
genus) or malaria (in the Anopheles genus). For this specific problem of selection-mutation, the trait
variable should contain, for instance, the expression level for the kdr gene (knock-down resistance,
see [30]). The present study is part of a more general program on the analysis of models, and their
control, in the context of evolutionary epidemiology (see [29, 37] and the references therein).

Because of this motivation, our models have a sexual reproduction kernel. This is not the case
in similar selection-mutation models developed for bacteria or resistance to treatment in cancer
(see, e.g., [33, 25]), where the reproduction is clonal. The major feature of equations for sexual
reproduction is to yield nonlinear and nonlocal birth terms with a quadratic aspect, though 1-
homogeneous. All models studied in the present paper are derived from the general form

ε∂tnε(t, x) =
1

ρε(t)

∫∫
R2

Kε(x, y, z)nε(t, y)nε(t, z)dy dz −R(x, ρε(t))nε(t, x),

ρε(t) =

∫
R
nε(t, x)dx, nε(0, x) = n0ε(x).

(1)
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The variable t stands for time, nε(t, x) ∈ [0,+∞) is the population number density at time t and
trait x and ρε(t) is the total population. The positive function R is the saturation term, which
contains the death rate and the insecticide effect. Competition is taken into account through the
dependency of R in its second argument.

In equation (1), we interpret y (the second argument for Kε) as the female trait, and z (the
third argument) as the male trait. Thus x 7→ Kε(x, y, z) is equal to the distribution of individuals
that are born from any encounter between a female of trait y and a male of trait z, per unit of time.
Of course, this model is valid only assuming that the sex ratio is constant in time and independent
of the trait. We make this simplification in order to obtain a single equation rather than a system.

It is worth highlighting that we aim here at general properties and methods for dealing with the
nonlinear and nonlocal birth term, rather than at a realistic model for the evolution of a specific
trait (see [38, 39] for more realistic models). We hope that the techniques developed here will
successfully apply to such specific contexts.

The relationships between sexual selection and speciation are not well understood. Models of
sexual reproduction have already been discussed in different contexts. Studies of individual-based
models of sexual population were performed to determine the necessary conditions to evolutionary
branching in [16, 23, 40], with a structure in genetic types (see [4, 5] for a review of mathematical
models of population genetics). In [11] for instance, the authors investigate a stochastic birth
and death process model for sexually reproducing diploids with Lotka-Volterra type dynamics and
single locus genetics. At the small mutation steps limit, they derive a differential equation in
allele space, referred to as a form of the canonical equation of the adaptive dynamics. In [12],
another stochastic birth and death process model is studied with sexual reproduction according to
mating preferences and a space structure with patches. In this case, reproductive isolation between
patches occurs, and the authors prove that the time needed for this isolation to occur is a function
of the population size. In the framework of insecticide resistance, a deterministic system with three
genotypes (two alleles at a single locus) was studied in [36], with a focus on the “reversal time”
that is a measure of the persistence of resistance in a population after exposition to insecticide.

From a large population point of view, in [28] the authors considered sexual populations struc-
tured by a trait and a space variable in a non-homogeneous environment, and after performing an
asymptotic limit and a simplification of the model, they derived an estimate of the invasion speed
or extinction speed of the population. In [3], the authors study the same kind of models as in the
present paper, where the traits of the newborns are distributed through a gaussian kernel centered
on the mean of the parents’ traits and with a constant variance, as in [18], which is the so-called
infinitesimal model. They prove the existence of principal eigenelements for the corresponding
eigenproblem, using the Schauder fixed point theorem. This work has been extended in [6] with
the study of the same stationary problem at the asymptotic of vanishing variance. In the same
regime, the associated Cauchy problem has then been investigated in [31], showing that solutions
can be approximated by Gaussian profiles with small variance.

The main results of this paper concern the behavior of ρε and nε in the asymptotic of large
time scale and mutations with limited effect on the phenotype. We consider two particular classes
of reproduction kernels in equation (1) which share the common property of an asymmetric struc-
ture. Indeed, back to the insecticide resistance modeling, it has been observed that good resistance
levels also result in a high fitness cost, and especially on the fecundity. We simply assume here
that either fecundity is female-trait-dependent, or that new individuals inherit mostly their trait
from the female. Since female mosquitoes have a longer lifespan than male ones, they will be
more susceptible to be affected by insecticides and to become resistant. Also, females will perform
several ovipositions during their lives, suggesting a higher impact of acquired resistance on female
fecundity.

We consider a first class of models, with asymmetric fecundity (AF in short),

ε∂tnε(t, x) =
1

ρε(t)

∫∫
R2

B(y)αε(x, y, z)nε(t, y)nε(t, z)dy dz −R(x, ρε(t))nε(t, x), (AF)

where B is a positive function and represents the crossing fecundity, which is assumed to depend
only on female’s trait, αε(·, y, z) is the probability distribution of the offspring from a y female and
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a z male. Then the reproduction kernel reads

Kε(x, y, z) = B(y)αε(x, y, z), with

∫
R
αε(x, y, z) dx = 1 for all y, z ∈ R. (2)

The second class of models features an asymmetric trait heredity (ATH in short), which
reads

ε∂tnε(t, x) =
1

ρε(t)

∫∫
R2

K0(x− z)Gε(x− y)nε(t, y)nε(t, z)dy dz −R(x, ρε(t))nε(t, x), (ATH)

where
Kε(x, y, z) = K0(x− z)Gε(x− y), (3)

with K0 a positive function, and Gε the rescaling of a positive function G by letting

Gε(x− z) =
1

ε
G

(
x− z
ε

)
, with

∫
R
G(z)dz = 1.

We can write the ATH equation under the following form

ε∂tnε(t, x) =
1

ρε(t)
[K0 ∗ nε(t, ·)Gε ∗ nε(t, ·)] (x)−R(x, ρε(t))nε(t, x).

Our convergence proof uses two ingredients. Firstly, we identify a consistent limit object as
ε → 0, which is a constrained Hamilton-Jacobi equation. Secondly, we obtain compactness esti-
mates on the solutions at the ε-level in order to be able to extract converging subsequences and to
use the stability property of viscosity solutions. The most intricate step is this second ingredient
which we conclude thanks to a new Bounded Variation (BV in short) estimate for ρε.

To better show the technical ideas and highlight the new arguments, we first study a model
without mutations, which is a particular case of the two classes of models presented above. We
also assume for this model that the saturation function R does not depend on the trait variable
and is such that R(x, ρ) ≡ νρ, with ν > 0. The model with no mutations reads

ε∂tnε(t, x) =

(
1

ρε(t)
K0 ∗ nε(t, ·)(x)− νρε(t)

)
nε(t, x), (nM)

This equation can be written under the form of equation (AF) with

B ≡
∫
R
K0(z) dz, and αε(x, y, z) =

1

B
K0(x− z)δ0(x− y),

and also under the form of (ATH) with
Gε = δ0.

We also consider a generalization of (nM) with

ε∂tnε(t, x) =
( 1

ρε(t)

∫
KS(x, y)nε(t, y)dy −

(
R0(x) +R1(ρε)

))
nε(t, x), (gnM)

for some symmetric kernel KS : R2 → R+, and obtain Lyapunov convergence results for (gnM).

The paper is organized as follows. In Section 2, we state our assumptions and results. We
also establish some non-extinction conditions and bounds on the total population. In Section 3,
we focus on the models without mutations (nM)-(gnM) in order to introduce the main arguments
that will be used for the more general cases. In particular, we derive BV estimates for the total
population, and prove a Lyapunov stability result for the population distribution. In Section 4, we
address the derivation of BV estimates for the (ATH) and (AF) models when R only depends on
the total population variable and we explain the difficulties encountered when R is generic. Also,
we briefly discuss the settings of the Lyapunov method applied to these mutation models. Finally
in Section 5, we deal with the Hamilton-Jacobi approach. To conclude we identify some difficulties
raised by the application of our methods to the general case of (1) and other possible approaches.
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2 Main results

2.1 Assumptions and statements

The function R stands for the death rate and the competition effects. We make the standard
assumption that it increases with the total population:

∀x, ρ, ∂ρR(x, ρ) > 0. (4)

Some more specific results are obtained when R has the very simple form

R(x, ρ) = νρ, ∀x ∈ R, with ν > 0. (5)

We also assume usually that the initial data satisfies

ε(ρ̇ε)−(0) =

(∫
n0ε(x)

K0 ∗ n0ε
ρ0ε

(x) dx− ν(ρ0ε)
2

)
−

is uniformly bounded, (6)

where, for a ∈ R, we use the notation a− = max(−a, 0).

For models with no mutations (nM) and asymmetric trait heredity (ATH), we assume

K0 ∈ Cb(R,R+) is a symmetric kernel, (7)

where Cb(R,R+) is the space of continuous and bounded functions on R with values in R+.

For equation (nM), we have the following theorem which is proved in Section 3.

Theorem 1 (BV bound for model (nM)). Let T > 0 and let nε be the solution to (nM) associated
with initial data n0ε . We assume (6) and (7).

Then, ρε is uniformly bounded in BV (0, T ). Namely, we obtain∫ T

0

|ρ̇ε(t)| dt ≤ ρM + 2(ρ̇ε)−(0)
ε

κ′′m

(
1− e−

κ′′mT
ε

)
,

with ρM and κ′′m defined later on. This implies that, up to extraction of subsequences, there exist
limits ρε → ρ in L1(0, T ), and nε −⇀ n ∈ L∞t (0, T ;M+(R)) in the sense of measures.

Moreover, we have ∫ T

0

∫
R
nε
(K0 ∗ nε

ρε
− νρε

)2
dx dt = O(ε). (8)

For the model with asymmetric fecundity (AF), we need the following assumption on B and α:

∃C > 0,∀ε > 0,∀φ ∈M1
+(R),∫∫∫

R3

αε(x, y, z)B(x)B(y)φ(y)φ(z)dx dy dz −
(∫

R
B(y)φ(y)dy

)2

≥ −Cε.
(9)

This assumption means that the fecundity variation from one generation to the next is controlled
and in fact is non-decreasing as ε goes to 0. We obtain the following result whose proof is given in
Section 4.1.

Corollary 1 (BV bound for (AF)). Let T > 0 and let nε be the solution to (AF) associated with
initial data n0ε . Assume (5) and (9).

Then, ρε is uniformly bounded in BV (0, T ). Namely, we have∫ T

0

|ρ̇ε(t)| dt ≤ ρM + 2(ρ̇ε)−(0)
ε

νρm

(
1− e−

νρmT
ε

)
+ 2

C

νρm

(
T +

ε

νρm
(e−

νρmT
ε − 1)

)
,

with C, ρM and ρm defined later on. This implies that, up to extraction of subsequences, there
exist limits ρε → ρ in L1(0, T ), and nε −⇀ n ∈ L∞t (0, T ;M+(R)) in the sense of measures.
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For (ATH), we also need to assume that, for all φ ∈W 1,1, Gε ∗ φ = φ+O(ε), in the sense

1

ε‖φ‖Lip
‖Gε ∗ φ− φ‖L1 is uniformly bounded in ε. (10)

Additionally, we assume that K0 belongs to W 1,1, and

ε(ρ̇ε)−(0) =

(∫
K0 ∗ n0ε
ρ0ε

(x)Gε ∗ n0ε(x) dx− ν(ρ0ε)
2

)
−

is uniformly bounded, (11)

which replaces assumption (6). We obtain the following result whose proof is given in Section 4.1.

Corollary 2 (BV bound for (ATH)). Let nε be the solution to (ATH) associated with initial data
n0ε . Assume (7), (10), (11) and the following (”non-extinction” in this case) condition

∃η0 > 0, ∀ε > 0, ηε := inf
φ∈M1

+(R)

∫
K0 ∗ φ ·Gε ∗ φdx ≥ η0. (12)

Then ρε is uniformly bounded in BV (0, T ). Namely, we have∫ T

0

|ρ̇ε(t)| dt ≤ ρM + 2(ρ̇ε(0))−
ε

C1
(1− e−C1T/ε) + 2

εC2

C2
1

(e−C1T/ε − 1) + 2
C2

C1
T.

Then, up to extraction there exist ρ ∈ L1
loc(0,∞) and n ∈ L∞t (0, T ;M+(R)) such that (ρε) con-

verges towards ρ in L1
loc(0,∞), and (nε) towards n in the sense of measures, when ε vanishes.

Moreover, for all T > 0, we have∫ T

0

∫
R

(Gε ∗ nε)
[
K0 ∗ nε
ρε

− νρε
]2
dx dt = O(ε).

For the generalized no mutation model (gnM), a Lyapunov structure is identified under the
following assumptions on KS : R2 → R+, R0 : R→ R+ and R1 : R+ → R+ :

KS ∈ Cb(R2,R+) is symmetric: ∀x, y ∈ R, KS(x, y) = KS(y, x), (13)

∀ξ ∈M+(R)\{0},
∫∫

R2

KS(x, y)ξ(x)ξ(y)dxdy > 0, (14)

supp(q0) is compact or R0 is proper, (15)

R1 is increasing and proper, (16)

∃!xM ∈ supp(q0), y 7→ KS(xM , y)−R0(y) reaches its maximum at xM . (17)

In this framework, a Lyapunov stability result is obtained for the state δxM .

Theorem 2. Under assumptions (13)-(17), δxM is asymptotically stable for (gnM).

In the general case of a death rate depending on both traits and the total population, we can
perform the Hopf-Cole transform

uε(t, x) = ε lnnε(t, x),

and apply a Hamilton-Jacobi approach. For the models under investigation, we obtain the following
result that is the topic of Section 5.

Theorem 3 (Lipschitz estimates for uε). Under some assumptions on the initial data u0ε , for both
models (AF) and (ATH), the corresponding uε are locally Lipschitz uniformly in ε.

Moreover, we have a global upper bound on uε. Namely, there exists a constant C, such that

uε(t, x) ≤ ε ln

(
C +

C(1 + t)

ε

)
.

The specific assumptions required for the proof of this theorem in each case (AF or ATH) are
specified in the corresponding section.
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2.2 Boundedness of the total population and non-extinction

In preparation to prove these theorems, we begin with some controls of the total population, ρε,
which, in full generality satisfies

ερ̇ε(t) =

∫
R

(∫∫
R2

Kε(x, y, z)
nε(t, z)

ρε(t)
nε(t, y)dy dz −R(x, ρε(t))nε(t, x)

)
dx.

To ensure that ρε remains bounded along all trajectories, we complement (4) with

∃Rm : R+ → R+, increasing, with Rm(0) = 0,

Rm(+∞) = +∞ and ∀x, R(x, ρ) ≥ Rm(ρ), ρM := R−1m (KM ).
(18)

We also assume that

KM := sup
0<ε≤1

sup
φ∈M+

1 (R)
sup
y

∫∫
R2

Kε(x, y, z)dxφ(z)dz < +∞. (19)

The following boundedness result is straightforward:

Proposition 1 (Upper bound for ρε). Under assumptions (4), (18) and (19), all trajectories of (1)
are forward-ρM -bounded from above in ρε, by which we mean that ρ̇ε(t) < 0 as long as ρε(t) > ρM .

Conversely, we can study conditions that ensure non-extinction of the population: ρε(t) ≥ ρm >
0. As a first example, let

κm(ρ) := inf
0<ε≤1

inf
φ∈M1

+(R)
inf
y

∫∫
R2

Kε(x, y, z)dxφ(z)dz −R(y, ρ), (20)

where M1
+(R) is the set of probability measures on R.

Proposition 2 (Lower bound for ρε under assumption (20)). Under assumption (4) and if there
exists ρm > 0 such that κm(ρm) = 0, with κm defined in (20), then all trajectories of (1) are
forward-ρm-bounded from below in ρε, by which we mean that ρ̇ε(t) > 0 as long as ρε(t) < ρm.

However, κm(0) > 0 is not expected to be a necessary condition. It is an open and challenging
question to determine more general conditions for non-extinction, and study the set of extinction
trajectories in cases when these conditions are not met.

For instance, a second non-extinction result is

κ′m(ρ) := inf
0<ε≤1

inf
φ∈M1

+(R)

∫
R

( ∫∫
R2

Kε(x, y, z)dxφ(z)dz −R(y, ρ)
)
φ(y)dy. (21)

Proposition 3 (Lower bound for ρε with a condition on (21)). Under assumption (4) and if there
exists ρm > 0 such that κ′m(ρm) = 0 then all trajectories of (1) are forward-ρm-bounded from below
in ρε.

And likewise, let

κ′′m := inf
0<ε≤1

inf
φ∈M1

+(R)

∫∫∫
R3

Kε(x, y, z)φ(y)φ(z) dx dy dz. (22)

Then, assuming also

∃RM : R+ → R+, increasing, with RM (0) ≥ 0,

RM (+∞) = +∞ and ∀x, R(x, ρ) ≤ RM (ρ),
(23)

we have ρ̇ ≥
(
κ′′m −RM (ρ)

)
ρ.

Proposition 4 (Lower bound for ρε with a condition on (22)). Assume (23) holds and κ′′m >
RM (0) defined in (22). Then all trajectories of (1) are forward-ρm-bounded from below in ρε, with
ρm = R−1M (κ′′m) > 0.
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3 The model without mutations

In order to see clearly the kind of results to be expected, we first study in detail a very simple
example, which is equation (nM). The form of the birth rate assumes that the trait is perfectly
transmitted from the females to their progeny, and the cross-fecundity between a male of trait z
and a female of trait x depends only on the distance between x and z through K0.

Assumptions (4) and (18) (for Rm = νρ) obviously hold in case (nM). Assumption (19) holds
with KM = maxxK0(x). However, κm(ρ) = inf K0 − ρ so the non-extinction condition from
Proposition 2 holds if and only if infxK0(x) > 0.

Even though infxK0(x) = 0, following [21] in the context of entropy-based stability, we may
assume that K0 is such that

κ′′m = inf
φ∈M1

+(R)

∫
R

(
K0 ∗ φ

)
(x)φ(x) dx > 0,

and then, Proposition 4 holds.

3.1 Proof of Theorem 1

We prove the BV bound stated in Theorem 1. From equation (nM) we can compute

ερ̇ε(t) =

∫
R
nε(t, x)

K0 ∗ nε(t, ·)
ρε(t)

(x) dx− νρ2ε .

Assuming (7) yields d
dt

∫
R nK0 ∗ n = 2

∫
R nK0 ∗ (∂tn). Hence

ερ̈ε = −νρερ̇ε − νρερ̇ε −
ρ̇ε
ρ2ε

∫
R
nεK0 ∗ nε +

1

2ρε

d

dt

∫
R
nεK0 ∗ nε +

1

ρε

∫
R
∂tnεK0 ∗ nε.

We rewrite this as

ερ̈ε = −νρερ̇ε −
ρ̇ε

2ρ2ε

∫
R
nεK0 ∗ nε +

1

2

d

dt

( 1

ρε

∫
R
nεK0 ∗ nε − νρ2ε

)
+

1

ε

∫
R

(nε(K0 ∗ nε)2

ρ2ε
− νnεK0 ∗ nε

)
,

and since ερ̇ε = 1
ρε

∫
R nεK0 ∗ nε − νρ2ε , we get

ε

2
ρ̈ε = − ρ̇ε

2ρ2ε

∫
R
nεK0 ∗ nε +

1

ε

∫
R
nε
(K0 ∗ nε

ρε
− νρε

)2
. (24)

Several conclusions follow from (24). Firstly, ρ̈ε ≥ − ρ̇ε
ερ2ε

∫
R nεK0 ∗ nε, hence if ρ̇ε = 0 then

ρ̈ε ≥ 0. In particular, ρε has no strict local maximum. We can conclude that ρε is either decreasing,
increasing or decreasing-increasing, and since it is bounded, ρε(t) must converge to some finite value
ρ∞ε as t goes to +∞.

Secondly, let bε(t) := 1
ρ2ε(t)

∫
R nε(t, x)(K0 ∗ nε(t, ·))(x)dx ≥ κ′′m > 0. Then from (24),

d

dt
(ρ̇ε)− ≤ −

κ′′m
ε

(ρ̇ε)−.

Hence (ρ̇ε)−(t) ≤ e−
κ′′mt
ε (ρ̇ε)−(0). We write∫ T

0

|ρ̇ε(t)| dt ≤
∫ T

0

ρ̇ε(t) dt+ 2

∫ T

0

(ρ̇ε)− (t)dt

≤ ρM + 2(ρ̇ε)−(0)

∫ T

0

e−
κ′′mt
ε dt

≤ ρM + 2(ρ̇ε)−(0)
ε

κ′′m

(
1− e−

κ′′mT
ε

)
.

Therefore, under the mild assumption (6), the family (ρε)ε is uniformly bounded in BV (R+).
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We now establish equation (8). Going back to equation (24), and integrating this one over
[0, T ] for T > 0, we obtain∫ T

0

∫
R
nε
(K0 ∗ nε

ρε
− νρε

)2
dx dt = ε

∫ T

0

ρ̇ε
2ρ2

∫
R
nεK0 ∗ nε dx dt+

ε2

2
(ρ̇ε(T )− ρ̇ε(0)). (25)

Since ρε is locally BV uniformly in ε and using (6) and (7), we deduce that∫ T

0

∫
R
nε
(K0 ∗ nε

ρε
− νρε

)2
dx dt = O(ε),

which is equation (8).

3.2 Concentration in Dirac masses

Formally, at the limit ε→ 0 the previous estimate yields∫
R
n(t, x)

(K0 ∗ n(t, ·)
ρ(t)

(x)− νρ(t)
)2
dx = 0. (26)

It turns out that combinations of Dirac masses are admissible solutions to (26), n =
∑N
i=1 ρiδxi ,

ρi > 0 with
∑N
i=1 ρi = ρ, and

N∑
i=1

ρi

( N∑
j=1

ρj
ρ
K0(xi − xj)− νρ

)2
= 0,

then for all i ∈ {1, . . . , N}, we have

N∑
j=1

ρj
ρ
K0(xi − xj) = νρ. (27)

We define the matrix K, whose coefficient with indices (i, j) is equal to K0(xi − xj). K is
symmetric with positive coefficients and constant main diagonal equal to K0(0). If the family
(xi)1≤i≤N is given, the problem amounts to finding a positive vector P such that KP = 1. Then
we obtain ρi = νPiρ

2 and ρ = 1/(ν1TP ).
One readily checks that, if

max
i 6=j

K0(xi − xj) <
K0(0)

N − 1
,

then K is invertible (in this case indeed, K is strictly diagonally dominant). It is worth noting
that if N = 2 and maxK0 = K0(0), with the maximum of K0 being reached only at 0, then this
is always satisfied. However, in the generic case when (xi)i is such that K is invertible, it remains
unclear whether P := K−11 > 0 or not.

In spite of this, an alternative viewpoint using a Lyapunov functional helps describing the
asymptotically stable solutions, as detailed below.

3.3 A Lyapunov concentration result: proof of Theorem 2

We consider the special form of equation (1) given by (gnM). Then, we define

q(t, x) := nε(εt, x)/ρε(εt), and q0(x) := n0(x)/

∫
R
n0 ∈M1

+(R),

for some initial data n0 ∈M+(R). There is a closed form equation for q, namely
∂tq(t, x) = q(t, x)

( ∫
R
KS(x, y)q(t, y)dy −R0(x)

)
− q(t, x)

∫
R
q(t, x′)

( ∫
R
KS(x′, y)q(t, y)dy −R0(x′)

)
dx′,

q(0, x) = q0(x).

(28)

8



Therefore we simply need to study the asymptotic behavior of q as t→ +∞ to be able to describe
that of nε as ε→ 0.

Notice that Equation (28) has a replicator-type structure, as it can be written under the form

∂tq(t, x) = q(t, x)

[
G(x, q(t, ·))−

∫
R
q(t, x)G(x, q(t, ·))dx

]
,

where G(x, q(t, ·)) :=
∫
RKS(x, y)q(t, y)dy is the effective growth rate, or fitness, of q(t, x) and

the integral term
∫
R q(t, x)G(x, q(t, ·))dx the average of this growth rate in the population. This

structure means that the frequency of the x-carrying individuals in the population evolves with
the deviation of its corresponding fitness from the mean fitness in the population.

Thanks to the structure of (28), we obtain the asymptotic stability of δxM stated in Theorem 2,
by using a Lyapunov’s method for stability. The rest of this section is devoted to the proof of this
result, which relies on a strict Lyapunov stability argument stated in [34, Theorem 4.4] and [35].
This type of convergence result has appeared in the economic literature devoted to game theory
with continuous strategy space, which we denote here by P (for “phenotype”). For instance it is
stated in [10, Theorem 3.a] and follows from [9, Theorem 2].

First, we get a Lyapunov functional for (28) by defining

J(q) :=
1

2

∫∫
R2

KS(x, y)q(x)q(y)dxdy −
∫
R
R0(x)q(x)dx. (29)

Indeed, along an orbit of (28) we have, thanks to (13),

d

dt
J(q(t, ·)) =

∫
R
q(t, x)

( ∫
R
KS(x, y)q(t, y)dy −R0(x)

)2
dx

−
(∫

R
q(t, x)

( ∫
R
KS(x, y)q(t, y)dy −R0(x)

)
dx
)2
≥ 0,

with equality (by the Cauchy-Schwarz inequality) if and only if∫
R
KS(x, y)q(t, y)dy −R0(x) ≡ C ∈ R on supp(q(t, ·)),

so that we have strict monotonicity except if q(t, ·) is a rest point for the dynamics of (28). This
Lyapunov functional can be seen as an embodiment of the “positive correlation” property from
game dynamics (see [20]), and this feature has been exploited to get a gradient flow formulation
of a non-local model with a diffusion term in [22], where the kernel acts for death induced by
competition rather than for birth as is the case here.

In order to use the Lyapunov functional properly, we need {q(t, ·), t ≥ 0} ⊂ M1
+(R) to be

relatively compact for a topology for which J is continuous and Fréchet-differentiable. This is the
case if either q0 is compactly supported in R, or if K is bounded and R0 is proper (by Prokhorov’s
theorem), for the weak-? topology on M1

+(R), hence the use of (15)
The study of the maximizer sets for J is greatly simplified by (14):

Lemma 1. Under (14), the functional J is strictly convex on the convex set M1
+(R).

Therefore its local maximum points are extreme points of M1
+(R), that is Dirac masses. The

Dirac mass δx is a local maximizer of J only if y 7→ KS(x, y)−R0(y) reaches its maximum at x.

Proof. For q1, q2 ∈M1
+(R) and θ ∈ [0, 1] we compute

J(θq1 + (1− θ)q2) =

∫∫
R2

KS

(
θ2q1q1 + (1− θ)2q2q2 + 2θ(1− θ)q1q2

)
−
∫
R
R0

(
θq1 + (1− θ)q2

)
= θJ(q1) + (1− θ)J(q2)− θ(1− θ)

∫∫
R2

KS(x, y)(q1 − q2)(x)(q1 − q2)(y)dxdy.

Therefore (14) (with ξ = q1 − q2) implies that J is strictly convex.
If J reaches a local maximum at ξ ∈ M1

+(R) belonging to some interval (ξ−, ξ+), that is
ξ = θξ− + (1− θ)ξ+ for some θ ∈ (0, 1) with ξ± ∈M1

+(R), then for ε > 0 small enough we have

J(ξ) <
1

2

(
J(ξ + ε(ξ+ − ξ−)) + J(ξ − ε(ξ+ − ξ−))

)
≤ J(ξ),
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where the left inequality holds by strict convexity and the right one by the local maximum condi-
tion. This is absurd, hence local maxima are only reached at extreme points.

The support of an extreme probability measure must be reduced to a singleton: otherwise, we
can construct a segment on which the measure lies by exchanging mass between any two separable
points of the support. Conversely, a Dirac mass is obviously extreme, as any segment to which it
belongs would consist of probability measures with the same support, reduced to a singleton.

Then, the first-order optimality condition for J at δx reads: for all admissible perturbation h,∫
R

(
K(x, y)−R0(y)

)
h(y)dy ≤ 0,

and admissible perturbations have the general form h = −δx + h0, with h0 ∈M1
+(R), whence the

last point.

Thanks to (17) we get that {δxM } is a local maximizer set of J for which J is a strict Lyapunov
function (and that there is no other local maximizer set of J). Then, it follows that {δxM } is
asymptotically stable.

4 Models with mutations

With the above methodology set, we can extend it to the more elaborate cases when we include
mutations.

4.1 BV estimates on the total population

We begin with BV estimates on ρε assuming that R is independent of the trait variable and features
a linear dependency on ρ, as it is specified in assumption (5). Thereafter we address the difficulties
encountered when R has a general form.

4.1.1 Linear dependency on the competition variable in the AF model

Although the asymptotic behavior of nε solution to (1) may be difficult to obtain in general, under
some assumptions on K and R, the total population ρε can be proved to have bounded variations.

Recall that, integrating equation (1), we have

ερ̇ε =
1

ρε

∫∫∫
R3

Kε(x, y, z)nε(t, y)nε(t, z)dx dy dz −
∫
R
R(x, ρε)nε(t, x) dx.

The proofs of Corollaries 1 and 2 rely on estimates obtained through the equation satisfied by ρ̈ε.
In general, we start from

ερ̈ε =− ρ̇ε
ρ2ε

∫∫∫
R3

Kε(x, y, z)nε(t, y)nε(t, z)dx dy dz

+
1

ρε

∫∫∫
R3

Kε(x, y, z)
(
∂tnε(t, y)nε(t, z) + nε(t, y)∂tnε(t, z)

)
dx dy dz

− ρ̇ε
∫
R
∂ρR(x, ρ)nε(t, x)dx

− 1

ε

∫
R
R(x, ρε)

( 1

ρε

∫∫
R2

Kε(x, y, z)nε(t, y)nε(t, z)dy dz −R(x, ρε)nε(t, x)
)
dx.

(30)

Proof of Corollary 1. We treat the case of the model with asymmetric fecundity. Then, ρε satisfies

ερ̇ε =

∫
R
B(x)nε(t, x)dx− νρ2ε ,
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and (30) reads

ερ̈ =

∫
B(x)∂tnε(t, x)dx− 2νρερ̇ε

=− νρερ̇ε +
ν2

ε
ρ3ε −

νρε
ε

∫
B(x)nε(t, x)dx

+
1

ερε

∫∫∫
αε(x, y, z)B(x)B(y)nε(t, y)nε(t, z)dx dy dz −

νρε
ε

∫
B(x)nε(t, x)dx.

We rewrite the last equation as

ε
d

dt
ρ̇ε = −νρερ̇ε +

demographic stabilization︷ ︸︸ ︷
ρε
ε

(∫
B(x)nε(t, x)dx

ρε
− νρε

)2

+
1

ερε

(∫∫∫
αε(x, y, z)B(x)B(y)nε(t, y)nε(t, z)dx dy dz −

( ∫
B(x)nε(t, x)dx

)2)
︸ ︷︷ ︸

mixing-induced fecundity variation

. (31)

In order to apply the same technique as for the simple case (nM) in Section 3.1, we need to
assume that the mixing-induced fecundity variation term is bounded from below. Under assump-
tion (9), we obtain from (31) and Proposition 1

ε
d

dt
ρ̇ε ≥ −νρερ̇ε − C. (32)

From Proposition 4, we deduce

d

dt
(ρ̇ε)− ≤ −

νρm
ε

(ρ̇ε)− +
C

ε
,

and thus

(ρ̇ε)−(t) ≤ e−
νρmt
ε (ρ̇ε)−(0) +

C

νρm

(
1− e−

νρmt
ε

)
.

Then we use the same argument as in the case without mutations, which proves uniform bound-
edness of ρε in BV (0, T ) for all T > 0.

We discuss here assumption (9). Firstly, when B is constant, this assumption is obviously
satisfied. Secondly, by taking φ concentrated at a point xM where B reaches its maximum, we
obtain for some C > 0 ∫

R
αε(x, xM , xM )B(x)dx ≥ B(xM )− Cε, ∀ε > 0.

Recalling that
∫
αε(x, y, z)dx = 1 for all y, z, this implies that as ε vanishes, αε(·, xM , xM ) is

concentrated at points where B is equal to its maximum B(xM ), which is a restrictive necessary
condition for (9) to hold. Thirdly, we state a sufficient condition: if αε(·, y, z)→ α0(y, z) ∈M1

+(R)
with either

∀ y, z,
∫
R
α0(y, z)(x)B(x)dx ≥ B(y),

or

∀ y, z,
∫
R
α0(y, z)(x)B(x)dx ≥ B(z),

and if convergence is sufficiently fast, then (9) holds. In the first case this is a consequence of the
Cauchy-Schwarz inequality, and in the second case we simply obtain that the left-hand side in (9)
converges to 0 as ε vanishes. In particular, we may assume αε(x, y, z) = 1

εG
(
x−y
ε

)
or 1

εG
(
x−z
ε

)
for some appropriate kernel G. These situations are those we have in mind, although (9) in all
generality may allow for some other cases.

All in all, (9) means that the trait inheritance pattern αε does not allow next generation’s
fecundity to get smaller than the one of the current generation as ε goes to 0. Unsurprisingly, this
dissipative feature implies that the variations of ρε can be controlled at the limit ε→ 0, as stated
in Corollary 1.
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4.1.2 Linear dependency on the competition variable in the ATH model

We now address the model with asymmetric trait heredity, i.e., the ATH model (ATH).
In order to apply the same technique as for the model without mutations addressed in Section 3,

we need the convergence assumption (10) on Gε as ε goes to 0. More precisely, we assume that
there exists C ∈ R∗+ such that

∀ε > 0,∀φ ∈W 1,1 with ‖φ′‖L1 ≤ 1,∀ψ ∈ L∞ with ‖ψ‖L∞ ≤ 1,∣∣∣ ∫
R
ψ(x)(Gε ∗ φ)(x)dx−

∫
R
ψ(x)φ(x)dx

∣∣∣ ≤ Cε. (33)

This assumption on the convergence of Gε as ε vanishes holds in the typical case where Gε is
Gaussian with variance ε2. Specifically, we write Gε(x) = 1

(2πε2)1/2
e−x

2/2ε2 . Then we compute∣∣∣ ∫
R
ψ(x)(Gε ∗ φ)(x)dx−

∫
R
ψ(x)φ(x)dx

∣∣∣ ≤ ∫
R
|ψ(x)||Gε ∗ φ(x)− φ(x)|dx

≤
∫∫

R2

1

(2πε2)1/2
e−

(x−y)2

2ε2 |φ(y)− φ(x)|dy dx.

We apply the change of variables ŷ = ε−1(y − x), then dŷ = ε−1dy, and we obtain∣∣∣ ∫
R
ψ(x)(Gε ∗ φ)(x)dx−

∫
R
ψ(x)φ(x)dx

∣∣∣ ≤ (2π)−1/2
∫∫

R2

e−ŷ
2/2|φ(x+ εŷ)− φ(x)|dŷ dx

≤ 2‖φ′‖L1

(2π)1/2
ε.

Proof of Corollary 2. Departing from (ATH), the equation satisfied by ρε reads

ε
d

dt
ρε(t) =

∫
R

(
1

ρε(t)
K ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)− νρε(t)nε(t, x)

)
dx.

Differentiating this equation, we obtain

ερ̈ε(t) =
1

ρε(t)

∫
R

[
K0 ∗ ∂tnε(t, ·)(x)Gε ∗ nε(t, ·)(x) +K0 ∗ nε(t, ·)(x)Gε ∗ ∂tnε(t, ·)(x)

]
dx

− νρε(t)ρ̇ε(t)− ν
∫
R
∂tnε(t, x)ρε(t)dx

− ρ̇ε(t)

ρ2ε(t)

∫
R

[K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)] dx.

By the same trick as in Section 3, assuming (7) induces

ερ̈ε(t) =
1

2ρε(t)

d

dt

[∫
R
K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)dx

]
+

1

ρε(t)

∫
R

[Gε ∗ (K0 ∗ nε(t, ·))(x)∂tnε(t, x)] dx

− νρε(t)ρ̇ε(t)− ν
∫
R
∂tnε(t, x)ρε(t)dx

− ρ̇ε(t)

ρ2ε(t)

∫
R

[K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)] dx.

Then we compute

ερ̈ε(t) =− νρε(t)ρ̇ε(t) +
1

2ρε(t)

d

dt

[∫
R
K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)dx

]
+

1

ερε(t)

∫
R
Gε ∗ (K0 ∗ nε(t, ·))(x)

[
1

ρε(t)
K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)− νnε(t, x)ρε(t)

]
dx

− ν

ε
ρε(t)

∫
R

[
1

ρε(t)
K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)− νnε(t, x)ρε(t)

]
dx

− ρ̇ε(t)

ρ2ε(t)

∫
R

[K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)] dx,
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and get

ερ̈ε(t) =− νρε(t)ρ̇ε(t) +
1

2

d

dt

[∫
R

1

ρε(t)
K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)dx

]
− 1

2

ρ̇ε(t)

ρ2ε(t)

∫
R

[K0 ∗ nε(t, ·)(x)Gε ∗ nε(t, ·)(x)] dx

+
1

ε

∫
R

(Gε ∗ nε)
[
Gε ∗ (K0 ∗ nε)

(K0 ∗ nε)
ρ2ε

− 2νK0 ∗ n
]
dx

+
1

ε
ν2ρ2ε

∫
R
Gε ∗ nε dx.

We rewrite this as

ερ̈ε(t) =− νρε(t)ρ̇ε(t)−
1

2

ρ̇ε(t)

ρ2ε(t)

∫
R
K0 ∗ nε(t, ·)Gε ∗ nε(t, ·)

+
1

ε

∫
R

(Gε ∗ nε)
[

(K0 ∗ nε)
ρε

− νρε
]2
dx

+
1

ερ2ε(t)

∫
R

(K0 ∗ nε)(Gε ∗ nε)
(
Gε ∗ (K0 ∗ nε)−K0 ∗ nε

)
dx.

Now we use the convergence assumption (33) on Gε. We simply need to check that φ(x) :=∫
K0(x− y)nε(t, y)dy is in W 1,1. This is obvious since φ′ = K ′0 ∗ nε. Hence we have

ε

2
ρ̈ε(t) =− νρε(t)ρ̇ε(t)−

1

2

ρ̇ε(t)

ρ2ε(t)

∫
R
K0 ∗ nε(t, ·)Gε ∗ nε(t, ·)

+
1

ε

∫
R

(Gε ∗ nε)
[

(K0 ∗ nε)
ρε

− νρε
]2
dx+O(1).

(34)

Thanks to (12), we deduce the inequality

ε

2

d

dt
(ρ̇ε(t))− ≤ −

(1

2
η0 + νρε(t)

)
(ρ̇ε(t))− +O(1).

Then, we conclude that ρε is bounded in BVloc(R+) uniformly in ε. Indeed, we obtain that for
some constants C1, C2 > 0,

(ρ̇ε(t))− ≤ e−C1t/ε
(

(ρ̇ε(0))− +
C2

ε

∫ t

0

eC1t
′/εdt′

)
,

hence

(ρ̇ε(t))− ≤ (ρ̇ε(0))−e
−C1t/ε +

C2

C1

(
1− e−C1t/ε

)
.

As in the proof of Theorem 1, we deduce that for all T > 0, (ρε)ε is uniformly in ε bounded in
BV ([0, T ]) with assumption (11) on the initial data. Going back to (34), we derive the estimate,
for T > 0, ∫ T

0

∫
R
(Gε ∗ nε)

[
K0 ∗ nε
ρε

− νρε
]2
dx dt = O(ε),

as in the proof of Theorem 1.

4.1.3 Extensions and open questions for the general case

Firstly, we address the case of a general saturation term for the AF model, featuring the competition
effect and the trait-dependency:

R ∈ C1(Rd × R+;R+), K(x, y, z) = B(y)αε(x, y, z), ∀y, z,
∫
R
αε(x, y, z)dx = 1.

Thus in this case, ρε satisfies

ερ̇ε =

∫
R

(B(x)−R(x, ρε))nε(t, x)dx

13



Then, deriving this equation, we find

ε
d

dt
ρ̇ε =

∫
R

(
B(x)−R(x, ρε)

)
∂tnε(t, x)dx− ρ̇ε

∫
R
∂ρR(x, ρε)nε(t, x)dx

=− ρ̇ε
∫
R
∂ρR(x, ρε)nε(t, x)dx+

1

ε

∫
R
nε(t, x)

(
B(x)−R(x, ρε)

)2
+

1

ε

∫
R

(
B(x)−R(x, ρε)

)( 1

ρε

∫∫
R2

αε(x, y, z)B(y)nε(t, y)nε(t, z)dy dz −B(x)nε(t, x)
)
dx

The last term can be seen as the integral of the net fitness B − R(·, ρε) weighted by a fecundity
deviation ∆nε(t,·)B, with

∫
∆nε(t,·)B(x)dx = 0.

To apply the same argument as before, we need to assume

∃C > 0, ∀ε > 0, ∀y, z, ∀φ ∈ L1
+ with ‖φ‖L1 = 1,∥∥∫∫

R2

αε(·, y, z)B(y)φ(y)φ(z)dydz −B(·)φ(·)
∥∥
L1 ≤ Cε,

(35)

and also
∀ρ ≤ ρM , Cf (ρ) := ‖B(·)−R(·, ρ)‖∞ <∞, Cf = sup

0≤ρ≤ρM
Cf (ρ). (36)

Under assumptions (35) and (36), this additional term is treated as in the case (5), replacing the
negative constant on the right-hand side of (32) by −ρMCCf , which gives

ε
d

dt
ρ̇ε(t) ≥ −ρ̇ε

∫
R
∂ρR(x, ρε)nε(t, x)dx− ρMCCf .

Therefore, similarly to the proof of Corollary 1 we obtain

Corollary 3. Assume (35) and (36). Then, for all T > 0, (ρε)ε is uniformly in ε bounded
in BV ([0, T ]).

Secondly, we address the case of a general death term for the ATH model:

R ∈ C1(Rd × R+;R+), Kε(x, y, z) = Gε(x− z)K0(x− y).

In order to see clearly where the difficulty lies, we replace Gε(x− z) by δx=z (letting ε→ 0 in this
term only). For simplicity, we define

ζ(t, x) :=
K0 ∗ nε(t, ·)(x)

ρε(t)
, Q(t) :=

∫
R
∂ρR(x, ρε(t))nε(t, x)dx.

After computations similar to the previous ones, we find

1

2
ε
d

dt
ρ̇ε = − ρ̇ε

2ρε

∫
R
nεζ +

1

ε

∫
R
nε

[
ζ2 −Rζ +

R+Q

2

(
R− ζ

)]
, (37)

and the term in 1
ε rewrites ∫

R
n(ζ − R+Q

2
)(ζ −R).

Meanwhile, one can check that

ερ̇ε =

∫
R
nε(ζ −R).

When ρ̇ε ≤ 0 we would like to prove that the term in 1
ε in (37) is non-negative. We could be

less restrictive and simply require ρ̈ε ≥ 0. This reads (with qε(t, x) = nε(t, x)/ρε(t)):∫
R
qε(t, x)

(
ζ(t, x)−R(x, ρε(t))

)(
ζ(t, x)− R(x, ρε(t)) +Q(t)

2
−
∫
R
qε(t, y)ζ(t, y)dy

)
dx ≥ 0

if ∫
R
qε(t, x)

(
ζ(t, x)−R(x, ρε(t))

)
dx ≤ 0.

We do not treat the general case but a straightforward computation gives

Lemma 2. If R(x, ρ) = R1(ρ) and ρR′1(ρ) ≥ R1(ρ), then ρ̇ε ≤ 0 implies ρ̈ε ≥ − ρ̇ε
2ρε

∫
nζ. Then in

particular for all T > 0, (ρε)ε is uniformly in ε bounded in BV ([0, T ]).

For instance, this is the case if R1(ρ) = νργ for some γ ≥ 1.
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4.2 Discussion on the Lyapunov approach

We may also discuss the Lyapunov approach applied to reproduction terms including mutations.
As in Section 3.3, we define qε(t, x) := nε(εt, x)/ρε(εt). For equation (1), assuming R(x, ρ) =
R0(x) +R1(ρ), we find

∂tqε(t, x) =

∫∫
R2

Kε(x, y, z)qε(t, y)qε(t, z)dydz −R0(x)qε(t, x)

− qε(t, x)
(∫∫∫

R3

Kε(x
′, y, z)qε(t, y)qε(t, z)dx

′dydz −
∫
R
R0(x′)qε(t, x

′)dx′
)
,

qε(0, x) = q0ε (x).

(38)

A natural candidate Lyapunov functional is given by

Jε(q) :=
1

2

∫∫∫
R3

KS
ε (x, y, z)q(y)q(z)dxdydz −

∫
R
R0(x)q(x)dx,

KS
ε (x, y, z) :=

Kε(x, z, y) +Kε(x, y, z)

2
.

Then, we can compute along an orbit of (38)

d

dt
Jε(qε(t, ·)) =

∫
R
∂tqε(t, y)

( ∫∫
R2

KS
ε (x, y, z)qε(t, z)dzdx−R0(y)

)
dy

=

∫
· · ·
∫
R5

KS
ε (x, y, z)KS

ε (y, y′, z′)qε(t, y
′)qε(t, z

′)qε(t, z)dz
′dy′dzdydx

−
∫∫∫

R3

KS
ε (x, y, z)

(
R0(x) +R0(y)

)
qε(t, y)qε(t, z)dxdydz +

∫
R
qε(t, x)R2

0(x)dx

−
(∫∫∫

R3

KS
ε (x, y, z)qε(t, y)qε(t, z)dxdydz −

∫
R
qε(t, y)R0(y)dy

)2
.

In the special case R0 ≡ 0, to get a non-decreasing Jε along orbits, we need to assume

∀ξ ∈M1
+(R),

∫
· · ·
∫
R5

KS
ε (x, y, z)KS

ε (y, y′, z′)ξ(y′)ξ(z′)ξ(z)dz′dy′dzdydx

≥
(∫∫∫

R3

KS
ε (x, y, z)ξ(y)ξ(z)dxdydz

)2
, (39)

which could be interpreted as an increase of fecundity from parents to offspring, with equality only
if the dynamic is at rest, that is∫∫

R2

KS
ε (·, y, z)ξ(y)ξ(z) dydz is constant on supp(ξ).

In other words, to obtain a Lyapunov functional requires a perfect analogue of the Cauchy-Schwarz
inequality.

When R0 6= 0, this Lyapunov functional also applies for (AF) with constant B, that is under
the assumption

∃B > 0, ∀y, z,
∫
R
Kε(x, y, z)dx = B.

Then, we write Kε = Bαε and get Jε(q) = B
2 −

∫
R q(y)R0(y)dy so that

d

dt
Jε(qε(t, ·)) =

∫
R
qε(t, y)R2

0(y)dy −
( ∫

R
qε(t, y)R0(y)dy

)2
+B

( ∫
R
qε(t, y)R0(y)dy −

∫∫∫
R3

R0(x)αε(x, y, z)qε(t, y)qε(t, z)dxdydz
)
.

To get that Jε is non-decreasing along orbits, one possible additional assumption is therefore

∀ξ ∈M1
+(R),

∫
R
R0(y)ξ(y)dy ≥

∫∫∫
R3

R0(x)αε(x, y, z)ξ(y)ξ(z)dxdydz, (40)
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which could be interpreted as a decrease of the death rate from parents to offspring.

These two conditions could be combined for more generality. However, more realistic assump-
tions such as (9), (35) or (33) do not imply that Jε itself is a non-decreasing Lyapunov function,
but rather that along an orbit of (38),

d

dt
Jε(qε(t, ·)) = j0(qε(t, ·)) + εj1ε (qε(t, ·)),

where j1ε is uniformly bounded, and j0(q) ≥ 0 with equality if and only if q is a rest point of the
limit dynamics. In other words, we get Lyapunov stability asymptotically as ε → 0. The possible
outcomes of this approach are still to be investigated.

5 The Hamilton-Jacobi equation

In the context of evolutionary dynamics, the Hamilton-Jacobi approach has been introduced in [17]
and then developed in [32, 26] to study the concentration effect for phenotypically structured PDEs.
This consists in determining the possible Dirac distributions through the zeros of uε defined from
the Hopf-Cole transform

uε(t, x) = ε lnnε(t, x).

In the mentioned works, the convergence of uε as ε goes to 0 is rigorously established and the
limit u satisfies a constrained Hamilton-Jacobi equation, using the theory of viscosity solutions
(see [13, 1] for an introduction). The constraint on the solution u reads

max
x∈R

u(t, x) = 0, ∀t > 0,

and comes from the control in L1 of the total population. Then, some properties on the concen-
tration points can be derived from the study of this constrained Hamilton-Jacobi equation and the
solution u. In some particular cases, it is proved that the population density remains monomor-
phic, that is composed of a single Dirac mass, and then a form of canonical equation is derived,
giving the dynamics of the dominant trait.

In the present work, this Hamilton-Jacobi structure arises in the different situations that were
previously studied. We show in this section different results obtained on the regularity of uε. Then,
we deal with the limiting equations as ε goes to 0, and discuss the potential concentration points.

The convergence of uε to a solution of the limiting constrained Hamilton-Jacobi equation, at
least in the sense of viscosity, remains to be rigorously proved. The main obstacles to the proof we
encounter are the time-dependency of the coefficients and their lack of regularity.

5.1 Derivation of the constrained H-J equations

Asymmetric fecundity: we use the particular form

Kε(x, y, z) = B(y)
1

ε
α

(
x− z
ε

, y

)
with

∫
R
α(z′, y)dz′ = 1 for all y,

and we define

bε(t, x) := R(x, ρε(t)), qε(t, y) =
nε(t, y)

ρε(t)
. (41)

In this case, the equation on uε reads

∂tuε(t, x) =

∫
R
B(y)qε(t, y)

∫
R
α(z, y)e

uε(t,x−εz)−uε(t,x)
ε dz dy − bε(t, x), (42)

and we compute the formal limiting equation

∂tu(t, x) =

∫
R
B(y)q(t, y)

∫
R
α(z, y)e−∂xu(t,x)·zdz dy − b(t, x)

=

∫
R
B(y)q(t, y)L[α(·, y)](∂xu(t, x))dy − b(t, x),

(43)
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with L[α(·, y)] the Laplace transform of α(·, y) for all y:

L[α](p) :=

∫
R
α(z)e−p·zdz,

for α a probability density function.

Asymmetric trait heredity: The interest of this problem comes from the time- and trait-
dependent coefficients of the Hamiltonian. We use the generic form

Kε(x, y, z) = Gε(x− z)K1(x, y).

After the change of variable z′ = x−z
ε , the equation on uε reads

∂tuε(t, x) =
1

ρε(t)

∫
R
K1(x, y)nε(t, y)dy ·

∫
R
G(z′)e

uε(t,x−εz′)−uε(t,x)
ε dz′ − bε(t, x). (44)

For clarity, we define

aε(t, x) :=

∫
R
K1(x, y)qε(t, y)dy. (45)

At the limit ε→ 0, we obtain the formal limiting equation

∂tu(t, x) = a(t, x)

∫
R
G(z)e−∂xu(t,x)·zdz − b(t, x)

= a(t, x)L[G](∂xu(t, x))− b(t, x),

(46)

with a and b the formal limits of aε and bε defined in (45) and (41), and L[G] the Laplace transform
of G. From now on, we choose G such that its Laplace transform is well defined on R.

In the case G is the gaussian density, the equation on uε reads

∂tuε(t, x) = aε(t, x)

∫
R

1√
2π
e−
|z|2
2 e

uε(t,x−εz)−uε(t,x)
ε dz − bε(t, x). (47)

Then, passing formally to the limit ε→ 0, we arrive at

∂tu(t, x) = a(t, x)

∫
R

1√
2π
e−
|z|2
2 e−∂xu(t,x)·zdz − b(t, x)

= a(t, x) e
(∂xu(t,x))

2

2 − b(t, x).

The statements of Theorem 3 concern, for both models, the convergence of uε as ε vanishes,
and the existence of a uniform upper bound on uε that converges to 0. To prove the first point, we
derive a priori estimates on uε, and then on its derivatives, in order to use compactness arguments.
The second point relies on these derived estimates.

The uniqueness of the solution to the limit equation has not been proved in our context (see [7]
for the most general result so far), thus we only derive convergence up to extraction of subsequences.
Moreover, the stability result is not complete, since we do not have convergence results on the
coefficients of the corresponding equations.

The complete proof of Theorem 3 is deferred to Appendix A, since it uses quite standard and
technical arguments. We mostly focus on Equation (47), but the methods are identical for the
generic ATH case. The proof of the theorem in the AF case is similar and we also give the formal
ideas where it is necessary.

Assumptions for Theorem 3: We assume on the function R

∃C0 > 0, ∀ρm ≤ ρ ≤ ρM , ∀x ∈ R, R(x, ρ) ≤ C0(1 + |x|), (48)

∃Lb > 0,∀ρm ≤ ρ ≤ ρM , ∀x ∈ R, |∂xR(x, ρ)| ≤ Lb. (49)

We choose the positive function K1 bounded

∃K̄ > 0,∀x, y ∈ R, K1(x, y) ≤ K̄, (50)
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and such that,

∃λ > 0,∃Cλ > 0,∀ε > 0, t ≥ 0, x ∈ R, e
|∂xaε(t,x)|
λaε(t,x) λaε(t, x) ≤ Cλ. (51)

This assumption is satisfied for example when K1 is bounded and there exists a constant LK such
that

|∂xK1(x, y)| ≤ LK |K1(x, y)|, ∀x, y ∈ R,

or, when K1 induces a gaussian type distribution for aε, that is,

aε(t, x) ∼ Ce
−(x−m)2

σ2 .

We also assume on the initial condition

u0ε(x) ≤ −A|x|+ C, ‖∂xu0ε‖ ≤ L0. (52)

For the model with asymmetric fecundity, we assume that B and α are positive and bounded.

5.2 Limiting equations and polymorphism

In the context of viscosity solutions, cf. [13, 1], we may establish the formal limit of the constrained
Hamilton-Jacobi equations to study the potential concentration points.

5.2.1 Limiting Hamilton-Jacobi equations

By Lipschitz regularity, as it is classically proved with the Hamilton-Jacobi approach to adaptive
dynamics, the limit function u satisfies the constraint

max
x∈R

u(t, x) = 0, ∀t > 0.

Then, when u is differentiable at maximum points, we deduce that ∂tu equals 0 and, going back
to (43) and (46), we obtain, for n̄ the formal limit of nε,

supp n̄ ⊂ {(t, x) ∈ (0,∞)× R|B(x)− b(t, x) = 0}, in case (AF),

supp n̄ ⊂ {(t, x) ∈ (0,∞)× R|a(t, x)− b(t, x) = 0}, in case (ATH).

It would be then interesting to determine the conditions required to have these null sets reduced
to an isolated point. If, for all t > 0, we identify a unique point x̄(t) satisfying

B(x̄(t))− b(t, x̄(t)) = B(x̄(t))−R(x̄(t), ρ̄(t)) = 0, in case (AF),

a(t, x̄(t))−R(x̄(t), ρ̄(t)) = 0, in case (ATH),

then the population is monomorphic, that composed of a single Dirac mass located on x̄(t).
Provided some regularity properties on uε, we could derive a canonical equation for both (AF)
and (ATH).

5.2.2 An example where the population has to be monomorphic

Going back to (nM), we define n ∈ M+(R) as an Evolutionary Stable Distribution (ESD) in the
sense of [15, 21] by

K0 ∗ n = νρ2 on supp(n), (53)

K0 ∗ n ≤ νρ2 on R, (54)

where ρ =
∫
n. The interest of the ESD concept is huge: it is readily established that a stationary

solution to (nM) is asymptotically stable if and only if it satisfies (53) and (54).
If we assume that K0 is radial-decreasing, then we prove that extreme points in supp(n) (if

it is bounded) cannot support a positive Dirac mass, by using (54). In particular, among all
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combinations of Dirac masses, only the single-point measure nx(x) := K0(0)/νδx=x is an ESD.
Indeed, assume that n̄ is composed of k ≥ 2 Dirac masses located on (xi)1≤i≤k, then defining

K(x) := K0 ∗ n̄(x) =

k∑
i=1

ρiK0(x− xi),

we deduce from (53) and (54) that K is maximal on the support of n̄, that is the points xi.
With no loss of generality, we assume that the sequence (xi) is ordered and x1 = mini xi. Then,
differentiating K, we obtain

K
′
(x1) =

∑
i≥1

ρiK
′
0(x1 − xi) > 0,

which contradicts the optimality of K on the support of n̄. Hence the population, at the asymptotic
limit, cannot be polymorphic.

6 Conclusion and perspectives

We investigated adaptive dynamics for population dynamics model including sexual reproduction,
when the trait is mainly inherited from the mother. We determined non-extinction conditions and
a control on the total population. In the particular case of a saturation term R depending only
on the competition, we derived BV estimates on the total population. In general, estimating the
variations of ρε when R depends on both trait variable and competition seems difficult, and a
Lyapunov functional approach yields complementary results under some structure conditions. An
open problem is to find another method allowing for more appropriate assumptions in order to get
stability results.

Concerning the sequences uε = ε lnnε associated to each model, we obtained local Lipschitz
estimates uniform in ε. To deduce the convergence of uε to the solution of the limiting Hamilton-
Jacobi equation with constraint, we still need time compactness on the coefficients of (42) and (44).
As a special case of both, for the Hamilton-Jacobi equation associated to the model without
mutations (gnM), if we provide some convergence result on

∫
K(x, y) ∗ nε(t, y)/ρε(t) and on ρε,

then, up to extraction of a subsequence, the limit function u has an explicit formulation and its
maximum points can be described. In general, Hamilton-Jacobi equations with time- and space-
dependent coefficients are difficult to deal with when there is a lack of regularity. The authors
in [24] developed a theory of stochastic viscosity solutions to tackle nonlinear stochastic PDEs. In
particular, they prove existence, regularity and uniqueness results for the viscosity solution when
the time-dependent coefficient of the Hamiltonian can be written as the derivative of a trajectory.
This theory does not apply to our models since the coefficients in front of the gradient-dependent
term are not under the form of a time derivative.

Another question is the determination of a convenient framework to observe Dirac concentra-
tions. The convergence of the population distribution to a sum of Dirac masses illustrates the
selection of well-adapted or dominant phenotypical traits. In [26, 8], the Hamilton-Jacobi ap-
proach enables to characterize the dynamics of the dominant traits under specific assumptions of
regularity. In our framework, the required hypotheses to prove Dirac concentrations are to be
clarified.

Using the Wasserstein distance has been recently developed in [27, 14, 19] to derive asymptotics
of population distributions for similar equations. It is proved that specific cases of the sexual
reproduction operator, possibly in an infinitesimal model, induce a control, possibly a contraction,
for the Wasserstein distance on the phenotypical trait space. It could be interesting to further
explore this method in full generality.
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A Proof of Theorem 3

A.1 A priori bounds

We begin with the estimates for the ATH case, and especially with a gaussian trait female heredity
distribution.

Lemma 3. Let uε be solution to equation (42) or (47). Then, there exist constants C1 > 0 and
C2 > 0, such that for all t > 0, x ∈ R and ε > 0 we have

−C1(1 + t)(1 + |x|) ≤ uε(t, x) ≤ −A|x|+ C2(1 + t).

We prove this lemma in the case of a gaussian trait female heredity distribution, but the
argument exactly applies to equation (44) in the generic ATH case.

Proof. We first prove the lower bound

uε(t, x) ≥ −C1(1 + t)(1 + |x|).

Indeed, because aε ≥ 0 and L(G) ≥ 0, we deduce from (48) that

∂tuε ≥ −bε(t, x) ≥ −C0(1 + |x|).

From (52) we obtain
uε(t, x) ≥ inf

ε
u0ε(0)− inf

ε
‖∂xu0ε‖ − C0t(1 + |x|).

Hence the lower bound.
We also derive the inequality

uε(t, x) ≤ −A|x|+ C2(1 + t),

where C2 = K̄ 1√
2π

∫
e−|z|

2/2eA|z|dz. Indeed, defining v(t, x) := −A|x|+ C2(1 + t), we compute

∂tv(t, x)− aε(t, x)

∫
1√
2π
e−|z|

2/2e
v(t,x−εz)−v(t,x)

ε dz ≥ C2 − K̄
1√
2π

∫
e−|z|

2/2eA|z|dz ≥ 0.

Thus, v is a super-solution of (47), and since u0(x) ≤ v(0, x) we deduce that uε(t, x) ≤ v(t, x) by
a comparison principle argument.

We obtain the same kind of bounds for the asymmetric fecundity case, with the constant
C2 := supy B(y)

∫
α(z, y)e|A|zdz..

A.2 Regularity in space

We prove the following

Lemma 4. Let uε be the solution to the equation (47). For λ > 0 given by (51) and for all
t > 0, x ∈ R, we have

|∂xuε(t, x)| ≤ ‖∂xu0ε‖L∞ + (Cλ + Lb)t+ λ

(
sup
ε
‖u0ε‖L∞ + C1(1 + t)(1 + |x|)

)
.

This implies that uε is Lipschitz in space, uniformly in ε and locally in time.

Proof. We use the notations

pε(t, x) = ∂xuε(t, x), p(t, x) = ∂xu(t, x).

Differentiating (47), pε satisfies

∂tpε(t, x) = ∂xaε(t, x) ·
∫

1√
π
e−|z|

2

e
uε(t,x−εz)−uε(t,x)

ε dz

+ aε(t, x)

∫
1√
π
e−|z|

2

e
uε(t,x−εz)−uε(t,x)

ε

(
pε(t, x− εz)− pε(t, x)

ε

)
dz − ∂xbε(t, x).
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Let λ > 0. We define

wλε (t, x) = pε(t, x) + λuε(t, x), Dε(t, x, z) =
uε(t, x− εz)− uε(t, x)

ε
.

Then, wλε satisfies

∂tw
λ
ε = aε ·

∫
1√
π
e−|z|

2

eDε(t,x,z)
(
wλε (t, x− εz)− wλε (t, x)

ε

)
dz

− λ
[
aε ·

∫
1√
π
e−|z|

2

eDε(t,x,z)(Dε(t, x, z)− 1)

]
dy

+ ∂xaε ·
∫

1√
π
e−|z|

2

eDε(t,x,z)dz − (∂xbε + λbε).

Then, using (49), we have

∂tw
λ
ε − Lb − aε ·

∫
1√
π
e−|z|

2

eDε
(
wλε (t, x− εz)− wλε (t, x)

ε

)
dz

≤
∫

1√
π
e−|z|

2

eDε [∂xaε + λaε − λaεDε] dz.

Defining f(D) := eD(∂xaε + λaε − λaεD), the maximum of f on R is reached at D∗ := ∂xaε
λaε

and
equals

e
∂xaε
λaε λaε ≤ Cλ,

from (51). Then we have the upper bound

wλε (t, x) ≤ max
R

wλε (0, x) + Ct, C = Cλ + Lb,

which implies the upper bound on pε

pε(t, x) ≤ ‖∂xu0ε‖L∞ + Ct+ λ

(
sup
ε
‖u0ε‖L∞ + C1(1 + t)(1 + |x|)

)
.

We have the same estimate for −pε.

For the AF model, we have the following estimate on the derivative in space of uε:

Lemma 5. Let uε be the solution of equation (42). Then, for all t > 0, x ∈ R and ε > 0, we have

|∂xuε(t, x)| ≤ ‖∂xu0ε‖L∞ + Lbt.

This implies that uε is Lipschitz in space, uniformly in ε and locally in time.

We address the limit equation

∂tp(t, x) = (−∂xp(t, x))

∫
B(y)q(t, y)

∫
zα(z, y)e−p(t,x)·zdzdy − ∂xb(t, x), (55)

and give formal arguments, since the proof for the ε-level problem is similar to the one of the ATH
case. We compute that w(t) := ‖∂xu0ε‖L∞ + Lbt is a super-solution of (55). Since p(0, x) ≤ w(0)
for all x ∈ R, we deduce that, from the comparison principle, uε is Lipschitz in space, uniformly
in ε and locally in time.

A.3 Regularity in time

In the ATH case, since we proved that uε is uniformly Lipschitz in space locally in time, we can
deduce that ∂tuε is locally uniformly bounded.

Lemma 6. Let uε be the solution to equation (44) and let T > 0 and r > 0 be fixed. Assume (49)
and (50). Then, there exists C(T, r) > 0 such that, for all t ∈ [0, T ], x ∈ B(0, r), we have

|∂tuε| ≤ C(T, r) + sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r)).

This implies that uε is Lipschitz in time, uniformly in ε.
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Proof. Let T > 0 and R > r > 0 be fixed with R large enough. We choose some constants L1 and
L2 such that

uε(t, x) < −L1, ∀(t, x) ∈ [0, T ]× R\B(0, R),

|pε| < L2, ∀(t, x) ∈ [0, T ]×B(0, R).

Then, we obtain for t ∈ [0, T ], x ∈ B(0, r),

|∂tuε| ≤ sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r))

+
1

ρε(t)

∫
K(x, z)nε(t, z)dz ·

(∫
|x−εy|<R

e−|y|
2

eL2ydy +

∫
|x−εy|>R

e−|y|
2

e
uε(t,x−εy)−uε(t,x)

ε dy

)
.

Thus, for ε small enough, and assuming that

uε(t, x) > −L1, ∀t ∈ [0, T ],∀x ∈ B(0, r),

uε(t, x) < −L1, ∀t ∈ [0, T ],∀x ∈ R\B(0, R),

we have

|∂tuε| ≤ K

(∫
|x−εy|<R

e−|y|
2

eL2ydy +

∫
|x−εy|>R

e−|y|
2

e
−L1−uε(t,x)

ε dy

)
+ sup

0≤ρ≤ρM
‖R(·, ρ)‖L∞(B(0,r))

≤ K

(∫
e−|y|

2

eL2ydy +

∫
|x−εy|>R

e−|y|
2

dy

)
+ sup

0≤ρ≤ρM
‖R(·, ρ)‖L∞(B(0,r))

≤ K
(∫

e−|y|
2

eL2ydy +
√
π

)
+ sup

0≤ρ≤ρM
‖R(·, ρ)‖L∞(B(0,r)).

Hence the local uniform bound on ∂tuε.

The proof is similar for the AF case.

Lemma 7. Let uε be the solution to equation (42) and let T > 0 and r > 0 be fixed. Then, there
exists C(T, r) > 0 such that, for all t ∈ [0, T ], x ∈ B(0, r), we have

|∂tuε| ≤ C(T, r) + sup
0≤ρ≤ρM

‖R(·, ρ)‖L∞(B(0,r)).

This implies that uε is Lipschitz in time, uniformly in ε.

A.4 A more precise upper bound

The following argument concerns both cases and gives a sharper upper bound on uε.

Lemma 8. Let uε be the solution to equation (42) or (44). Then, for all x, y ∈ R, we have

uε(t, x) ≤ ε ln
(
ρMmx,

C(1+t)
ε

)
,

where mx,A > 0 is the minimum on R of gx,A : y 7→ A 1+max(|x|,|y|)
1−e−|y−x|A(1+max(|x|,|y|)) .

In addition, if A > 0 we have A < mx,A ≤ A+ 3/2. Thus, we obtain the global upper bound

uε(t, x) ≤ ε ln
(
ρM (3/2 + C(1 + t)/ε)

) ε→0−−−→ 0.

Proof. For all z ∈ (x, y), by the mean value theorem there exists θε(t, x, z) between x and y such
that

uε(t, z) = uε(t, x) + (z − x)∂xuε(t, θε(t, x, z)).

In addition, by the previous point there exists C (independent of t, x and ε) such that for all t, x,
|∂xuε(t, x)| ≤ C(1 + t)(1 + |x|). Hence

uε(t, z) ≥ uε(t, x)− (z − x)C(1 + t)
(
1 + max(|x|, |y|)

)
.
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Since we have, for x < y, ∫ y

x

e
uε(t,z)

ε dz ≤ ρM ,

we deduce that

εe
uε(t,x)

ε
1− e−(y−x)

C(1+t)(1+max(|x|,|y|))
ε

C(1 + t)
(
1 + max(|x|, |y|)

) ≤ ρM , ∀y.

Then, we compute

uε(t, x) ≤ ε ln
( ρMC(1 + t)

(
1 + max(|x|, |y|)

)
ε
(
1− e−(y−x)

C(1+t)(1+max(|x|,|y|))
ε

)),
and this holds for all y > x. We can also choose y < x and get in more generality

uε(t, x) ≤ ε ln
( ρMC(1 + t)

(
1 + max(|x|, |y|)

)
ε
(
1− e−|y−x|

C(1+t)(1+max(|x|,|y|))
ε

)) = ε ln
(
ρMgx,C(1+t)

ε
(y)
)
.

Observe that gx,A is positive and goes to +∞ at y = ±∞ and at y = x. Minimizing in y, we find
that

uε(t, x) ≤ ε ln
(
ρMmx,

C(1+t)
ε

)
.

To conclude we first remark that if A > 0 and x, y ∈ R, then we have

1 + max(|x|, |y|)
1− e−|y−x|A(1+max(|x|,|y|) > 1,

so gx,A(y) > A for all y ∈ R and thus mx,A > A. Then, with A > 0 we also have

g1/A,A(−1/A) =
A+ 1

1− e−2(1+A)
≤ A+ 3/2,

which implies mx,A ≤ A+ 3/2. Thus, we obtain the global upper bound

uε(t, x) ≤ ε ln
(
ρM (3/2 + C(1 + t)/ε)

) ε→0−−−→ 0.

The proof of Theorem 3 is achieved.
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[7] Vincent Calvez and King-Yeung Lam. Uniqueness of the viscosity solution of a constrained
Hamilton-Jacobi equation. Calc. Var. Partial Differential Equations, 59(5):Paper No. 163, 22,
2020.

23



[8] Nicolas Champagnat and Pierre-Emmanuel Jabin. The evolutionary limit for models of popu-
lations interacting competitively via several resources. J. Differential Equations, 251(1):176–
195, 2011.

[9] M.W. Cheung. Pairwise comparison dynamics for games with continuous strategy space. J.
Econ. Theory, 153:344–375, 2014.

[10] M.W. Cheung. Imitative dynamics for games with continuous strategy space. Games and
Economic Behavior, 99:206–223, 2016.

[11] Pierre Collet, Sylvie Méléard, and Johan A. J. Metz. A rigorous model study of the adaptive
dynamics of Mendelian diploids. J. Math. Biol., 67(3):569–607, 2013.

[12] Camille Coron, Manon Costa, Hélène Leman, and Charline Smadi. A stochastic model for
speciation by mating preferences. J. Math. Biol., 76(6):1421–1463, May 2018.

[13] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions
of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.
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