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Robustness of iterated function systems of Lipschitz maps

Introduction

Let (X, d) be a Polish space equipped with its Borel σ-algebra X . The random variables (r.v.) are assumed to be dened on a probability space (Ω, F, P), and i.i.d. is the short-hand for independent and identically distributed. Throughout the paper we are concerned with iterated function systems of Lipschitz maps according to the following denition.

Denition 1.1 (IFS of Lipschitz maps) Let (V, V) be a measurable space, and let {ϑ n } n≥1 be a sequence of V-valued i.i.d. random variables, with common distribution denoted by ν. Let

∀n ≥ 1, ∀f ∈ B a , |P n f -π(f )1 X | a ≤ C a ρ n a |f | a . (4) 
The V a -geometric ergodicity of IFS has been extensively studied (see e.g.[MT93, Als03, GHL11, Wu04, DMPS18] and references therein). The common starting point in most of these works is that P satises the so-called drift condition under the moment/contractive Condition (C a ) below (e.g. see [START_REF] Duo | Random Iterative Models[END_REF]), for which we introduce the following notations. If ψ : (X, d) →(X, d)

is a Lipschitz continuous function, we dene L(ψ) := sup d ψ(x), ψ(y) d(x, y) , (x, y) ∈ X 2 , x ̸ = y .

(

) 5 
For all v ∈ V, set L F (v) := L F (•, v) to simplify. That F is Lipschitz continuous in the rst variable in Denition 1.1 reads as L F (v) < ∞ for any v ∈ V. Then, for every a ∈ [1, +∞), Condition (C a ) writes as follows.

Condition (C a ). The function F (•, •) and the sequence {ϑ n } n≥1 satisfy:

E d x 0 , F (x 0 , ϑ 1 ) a < ∞ (6a) E [L F (ϑ 1 ) a ] < 1. (6b) 
The condition a ≥ 1 in Condition (C a ) is just a technical assumption for applying Hölder inequality for instance. In fact Condition (C a ) can be considered with a > 0 by replacing the initial distance d with d α for some α ∈ (0, 1). Let us specify Condition (C a ) for the so-called vector autoregressive models.

Example 1.1 (Vector AutoRegressive model (VAR)) Assume that X := R q for some q ≥ 1. Let ∥ • ∥ be any norm of R q , and dene d(x, y) := ∥x -y∥ the associated distance. Consider V a (x) := (1 + ∥x∥) a with a ∈ [1, +∞) (here x 0 := 0), and let {X n } n∈N be the following IFS

X 0 ∈ R q , ∀n ≥ 1, X n := AX n-1 + ϑ n . (7) 
Here F (x, v) := Ax + v where A = (a ij ) is a xed real q × q-matrix. This is called a vector or multivariate autoregressive model. We have L F (v) = ∥A∥ where ∥A∥ denotes the induced norm of A corresponding to ∥ • ∥, and d 0, F (0, v) = ∥v∥. Consequently, Condition (C a ) holds for some a ∈ [1, +∞) provided that

E ∥ϑ 1 ∥ a < ∞ and ∥A∥ < 1. (8) 
Moreover, if ϑ 1 has a probability density function (p.d.f.) on R q , then P is V a -geometrically ergodic. More precisely Inequality (4) holds for any ρ a ∈ (∥A∥, 1), see Remark 4.2.

The aim of this work is to use the results of [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF][START_REF] Hervé | Approximating Markov chains and V -geometric ergodicity via weak perturbation theory[END_REF][START_REF] Rudolf | Perturbation theory for Markov chains via Wasserstein distance[END_REF] to investigate the robustness rst of the V a -geometrical ergodicity property (4), second of the stationary distribution π, third of the probability distribution of X n . This study is made with respect to parametric variations of both the function F and the p.d. of the noise r.v. ϑ n in (1). For this purpose, let us introduce the following denition.

Denition 1.2 (Parametric perturbation of IFS) Let us introduce the parameter θ := (ξ, γ) taking values in a subset Θ of some metric space. Let F ξ : (X × V, X ⊗ V) →(X, X ) and let {ϑ (γ) n } n≥1 be a sequence of V-valued r.v. both satisfying the assumptions of Denition 1.1. The common parametric p.d. of {ϑ (γ) n } n≥1 is denoted by ν γ . For any θ ∈ Θ, the process

{X (θ)
n } n∈N is the X-valued IFS of Lipschitz maps given by

X (θ) 0 ∈ X, ∀n ≥ 1, X (θ) n := F ξ (X (θ) n-1 , ϑ (γ) n ). (9) 
The transition kernel of the Markov chain {X (θ) n } n∈N is denoted by P θ , and µ θ is the p.d. of X (θ) 0 .

The Markov chain {X (θ)

n } n∈N must be thought of as a perturbed model of some ideal model {X (θ 0 ) n } n∈N with θ 0 ∈ Θ, where Θ denotes the interior of Θ. Next, pick θ 0 ∈ Θ and let us introduce the following assumptions:

(H 1 ) There exists a ≥ 1 such that P θ 0 is V a -geometrically ergodic with stationary distribution denoted by π θ 0 , that is P θ 0 satises (4) for some ρ a ∈ (0, 1) and C a > 0.

(H 2 ) M a := sup θ∈Θ E d x 0 , F ξ x 0 , ϑ (γ) 1 a 1/a < ∞.

(H 3 ) κ a := sup θ∈Θ E L F ξ ϑ (γ) 1 a 1/a < 1.

(H 4 ) ∆ θ := ∥P θ -P θ 0 ∥ 0,a ----→ θ → θ 0 0, where ∥P θ -P θ 0 ∥ 0,a := sup

f ∈B 0 , |f | 0 ≤1 |P θ f -P θ 0 f | a .
Assumption (H 1 ) is the natural starting point for our perturbation issues. Note that the assumptions (H 2 )(H 3 ) are nothing else but the uniform version with respect to θ of Condition (C a ). As a by-product it follows from (H 2 )(H 3 ) that each P θ satises a drift condition with respect to the function V a . More precisely, let κ ∈ (κ a , 1). Then the following uniform in θ ∈ Θ drift condition holds true (see Appendix A):

∀θ ∈ Θ, P θ V a ≤ δ a V a + K a with δ a := κ a and K a := (1 + κ a + M a ) a (1 + M a ) a (κ -κ a ) a . ( 10 
)
This implies that, for every θ ∈ Θ, P θ admits an invariant probability measure denoted by π θ . The following natural questions are much more dicult to address: Is the map θ → π θ continuous with respect to the total variation distance? Under Assumption (H 1 ), do the perturbed transition kernels P θ satisfy the V a -geometrical ergodicity when θ is close to θ 0 ? In our context of parametric perturbation of IFS, these questions are addressed in the following theorem using the results of [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF][START_REF] Hervé | Approximating Markov chains and V -geometric ergodicity via weak perturbation theory[END_REF][START_REF] Rudolf | Perturbation theory for Markov chains via Wasserstein distance[END_REF].

Theorem 1.1 Under the assumptions (H 1 )(H 4 ), the following properties hold.

(P 1 ) For every ρ ∈ (ρ a , 1) there exist an open neighbourhood V θ 0 of θ 0 and a positive constant R such that

∀θ ∈ V θ 0 , ∀n ≥ 1, ∀f ∈ B a , |P n θ f -π θ (f )1 X | a ≤ R ρ n |f | a . (P 2 ) lim θ → θ 0 ∥π θ -π θ 0 ∥ TV = 0.
More precisely:

∀θ ∈ Θ, ∥π θ -π θ 0 ∥ TV ≤ exp(1) K a D [ln(∆ -1 θ )] -1 a (1 -δ a )(1 -ρ a ) ∆ θ ln(∆ -1 θ ) (11) 
provided that ∆ θ ∈ (0, exp(-1)), where the constants ρ a , C a , δ a and K a are given in (H 1 ) and (10), and D a = 2C a (K a + 1).

(P 3 ) We have for every n ≥ 1 and for every θ ∈ Θ

µ θ P θ n -µ θ 0 P θ 0 n T V ≤ C a ρ a n sup |f |≤V µ θ (f )-µ θ 0 (f ) + exp(1) G a D [ln(∆ -1 θ )] -1 a 1 -ρ a ∆ θ ln(∆ -1 θ ) provided that ∆ θ ∈ (0, exp(-1)), with G a := max K a /(1-δ a ) , µ θ 0 (V a ) . In particular, if X (θ) 0 and X (θ 0 ) 0 have the same p.d. µ then: lim θ → θ 0 ∥µP θ n -µP θ 0 n ∥ T V = 0.
In the general framework of V -geometrically ergodic Markov chains, Property (P 1 ) and the rst statement in (P 2 ) are proved in [FHL13, Th. 1] by using the Keller-Liverani perturbation theorem [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF] 1 . Inequality (11) in (P 2 ) follows from [HL14a, Prop. 2.1] or [RS18, (3.19)].

The formulation [START_REF] Rudolf | Perturbation theory for Markov chains via Wasserstein distance[END_REF](3.19)] has been preferred to that in [HL14a, Prop. 2.1] in connection with Property (P 3 ). Property (P 3 ) is proved in [RS18, Th. 3.2] by using the Wasserstein 1 the real-valued parameter ε in [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF] may be replaced with the Θ-valued parameter θ.

distance associated with a suitable metric on X dened from the Lyapunov function V , as introduced in [START_REF] Hairer | Yet another look at Harris' ergodic theorem for Markov chains[END_REF]. The goal of this work is to present various applications when both the function F and the p.d. ν of the noise in Denition 1.1 are perturbed, and to show that the weak continuity Assumption (H 4 ) is well suited to such a case. This last claim is highlighted by the following rst simple application, where only the p.d. of the noise is perturbed.

Example 1.2 (IFS with perturbed noise) Consider the generic IFS introduced in Denition 1.1 with noise p.d. ν 0 . Its transition kernel P ν 0 is given by

∀f ∈ B 0 , (P ν 0 f )(x) = f (F (x, y)) dν 0 (y).
Let us consider the specic perturbation scheme

X (θ) 0 ∈ X, ∀n ≥ 1, X (θ) n := F (X (θ) n-1 , ϑ (γ) n ),
where {ϑ (γ) n } n≥1 is a sequence of V-valued i.i.d. r.v, with common parametric p.d. denoted by ν γ . That is, we consider an IFS with perturbed noise but xed function F (e.g. the matrix A is xed in the VAR model introduced in Example 1.1). For any

f ∈ B 0 such that |f | 0 ≤ 1, we have ∀x ∈ X, (P νγ f )(x) -(P ν 0 f )(x) ≤ ∥ν γ -ν 0 ∥ T V . (12) 
It follows that

∥P νγ -P ν 0 ∥ 0,a ≤ ∥P νγ -P ν 0 ∥ 0,0 := sup f ∈B 0 , |f | 0 ≤1 |P νγ f -P ν 0 f | 0 ≤ ∥ν γ -ν 0 ∥ T V .
Hence (H 4 ) is satised provided that lim ∥ν γ -ν 0 ∥ T V = 0.

In Section 2, a second application of Theorem 1.1, which again illustrates the interest of (H 4 ), is provided for the real-valued Markov chain X n := αX n-1 + σ(X n-1 )ϑ n , for which all the data α, σ(•) and the p.d. of the noise ϑ 1 are perturbed. This Markov chain is called an AutoRegressive process of order 1 with AutoRegressive Conditional Heteroscedastic errors of order 1 (AR(1)-ARCH(1)). Such autoregressive models with conditional heteroscedastic errors were introduced to allow the conditional variance of a time series models to depend on past information. It turns out that such processes t very well to many types of econometrics and nancial data where stochastic volatility must be taken into account (e.g. see [START_REF] Tsay | Analysis of nancial time series[END_REF]). Note that the perturbation results of Section 2 can be extended to multivariate AR(p)-ARCH(q) processes with any order (p, q) (see [START_REF] Meitz | A note on the geometric ergodicity of a nonlinear AR-ARCH model[END_REF]) thanks to the material provided in Section 5. In Section 3, a third application is presented in the framework of roundo errors. In applied mathematics, any analytic material must be run on computer to get practical answers. This concerns simulation, approximation, numerical schemes and so on. Thus, when a Markov model is implemented on computer, the original transition kernel P is replaced with a perturbed one, say P , and their dierence may have a great impact on the results. Such changes in computer simulations induced by oating point roundo error were discussed in [START_REF] Roberts | Convergence properties of perturbed Markov chains[END_REF][START_REF] Breyer | A note on geometric ergodicity and oating-point roundo error[END_REF]. In this case, the perturbed transition kernel takes the form P (x, A) := P (x, h -1 (A)), where P is the transition kernel of a xed IFS and where h : X → X is close to the identity map. The weak continuity assumption (H 4 ) is still proved to be well adapted as illustrated in Proposition 3.1 for VAR models dened in Example 1.1. Note that the function F ξ in (9) is xed in Example 1.2, so that we did not have to divide by V (x) to prove (H 4 ). Indeed the inequality ∥P νγ - 

P ν 0 ∥ 0,0 ≤ ∥ν γ -ν 0 ∥ T V in
{X (θ)
n } n∈N dened by: X (θ) 0 is a given real-valued r.v. and ∀n ≥ 1,

X (θ) n := F ξ (X (θ) n-1 , ϑ (γ) n ) (13) 
where

F ξ (x, v) = αx + v (β + λx 2 ) 1/2 with constants α ∈ R, β > 0, λ > 0, {ϑ (γ) 
n } n∈N has common p.d.f. ν γ and is independent of

X (θ) 0 . Therefore, we have θ = (ξ, γ) with ξ := (α, β, λ) ∈ R × (0, +∞) 2 and γ ∈ Γ where Γ is some metric space (typically Γ ⊂ R). Thus Θ is a subset of R×(0, +∞) 2 ×Γ. Here d(x; x 0 ) = |x-x 0 | and x 0 := 0 so that V a (x) = (1+|x|) a . The Markov kernel P θ of {X (θ) n } n∈N is given by P θ (x, A) := R 1 A (y) p θ (x, y) dy (A ∈ X ) with p θ (x, y) := β + λx 2 -1/2 ν γ y -αx β + λx 2 1/2 . ( 14 
)
Next, let us report the following observations with respect to basic quantities required in the assumptions (H 2 ) and (H 3 ) .

1. It can be checked (see Lemma B.1) that

L F ξ (ϑ 1 ) = max |α - √ λϑ 1 |; |α + √ λϑ 1 | . (15) 
Hence, the real number κ a in (H 3 ) is

κ a = sup θ∈Θ R max |α - √ λv|; |α + √ λv| a ν γ (v)dv 1/a . ( 16 
)
2. The real number M a in (H 2 ) is given by

M a := sup θ∈Θ β E ϑ (γ) 1 a 1/a = sup θ∈Θ β R |v| a ν γ (v)dv 1/a . ( 17 
)
Note that, if β lies in a compact set, then M a < ∞ under the following uniform moment condition for the p.d.f. of ϑ

(γ) 1 : sup γ∈Γ R |v| a ν γ (v)dv < ∞.
Let us formulate the assumptions under which the conclusions of Theorem 1.1 hold true for {X

(θ) n } n∈N . Let θ 0 = (α 0 , β 0 , λ 0 , γ 0 ) ∈ Θ.
We denote by L 1 (R) the usual Lebesgue space and by ∥ • ∥ L 1 (R) its norm.

(H' 123 ) There exists a ≥ 1 such that (a) For every r > 0, the function

y → g θ 0 ,r (y) := inf x∈[-r,r] p θ 0 (x, y) = inf x∈[-r,r] β 0 + λ 0 x 2 -1/2 ν γ 0 y -α 0 x β 0 + λ 0 x 2 1/2
is positive on a subset of [-r, r] which has a positive Lebesgue's measure.

(b) M a < ∞, where M a is given in (17).

(c) κ a < 1, where κ a is given in ( 16).

(H' 4 ) lim γ → γ 0 ∥ν γ -ν γ 0 ∥ L 1 (R) =0.
Proposition 2.1 Under the conditions (H' 123 )(H' 4 ) for the AR(1)-ARCH(1) processes given in (13), the assertions (P 1 )-(P 2 )-(P 3 ) of Theorem 1.1 hold.

Proof. Let θ 0 = (α 0 , β 0 , λ 0 , γ 0 ) ∈ Θ and let a ≥ 1 provided by (H' 123 ). As already discussed the conditions (H' 123 )-(b)-(c) imply that the assumptions (H 2 ) and (H 3 ) of Theorem 1.1 hold.

Moreover, use (47) to state that there exist δ a < 1, K a > 0 and r a > 0 such that

P θ 0 V a ≤ δ a V a + K a 1 [-ra,ra] . Next, Condition (H' 123 )-(a) ensures that ∀x ∈ [-r a , r a ], ∀A ∈ X , P θ 0 (x, A) ≥ φ ra,θ 0 (A)
with the positive measure φ r,θ 0 (dy) = g θ,r (y) dy. In others words, S = [-r a , r a ] is a small set for P θ 0 . Moreover φ r,θ 0 (S) > 0 from (H' 123 )-(a). Then Assumption (H 1 ) holds true, see

[MT93][Bax05, Th 1.1].
The following lemma asserts that Assumption (H 4 ) holds true under Condition (H' 4 ), so that the proof is complete.

□ Lemma 2.1 If lim γ → γ 0 ∥ν γ -ν γ 0 ∥ L 1 (R) = 0 then lim θ → θ 0 ∥P θ -P θ 0 ∥ 0,a = 0. Proof. Let f ∈ B 0 be such that |f | 0 ≤ 1. We have ∀x ∈ X, |(P θ f )(x) -(P θ 0 f )(x)| V a (x) = | R p θ (x, y) -p θ 0 (x, y) f (y)dy| V a (x) ≤ R p θ (x, y) -p θ 0 (x, y) dy V a (x) . Let ε > 0. Since the last term is bounded from above by 2/V a (x) and lim x → +∞ V a (x) = +∞, there exists B > 0 such that |x| > B =⇒ ∀θ ∈ Θ, |(P θ f )(x) -(P θ 0 )f (x)| V a (x) < ε 2 . ( 18 
)
It follows that the conclusion of the lemma holds true provided that, under the condition

lim γ → γ 0 ∥ν γ -ν γ 0 ∥ L 1 (R) = 0, we have ∀A > 0, lim θ → θ 0 sup |x|≤A R |p θ (x, y) -p θ 0 (x, y)|dy V a (x) = 0. (19) 
Indeed, ( 18) and ( 19) with A = B ensure that ∥P θ -P θ 0 ∥ 0,a < ε when θ is suciently close to θ 0 . Let us prove (19). It follows from ( 14) that

R |p θ (x, y) -p θ 0 (x, y))|dy = R β + λx 2 -1/2 ν γ y -αx β + λx 2 1/2 -β 0 + λ 0 x 2 -1/2 ν γ 0 y -α 0 x β 0 + λ 0 x 2 1/2 dy ≤ R β + λx 2 -1/2 ν γ y -αx β + λx 2 1/2 -ν γ 0 y -α 0 x β 0 + λ 0 x 2 1/2 dy (20) + R ν γ 0 y -α 0 x β 0 + λ 0 x 2 1/2 β + λx 2 -1/2 -β 0 + λ 0 x 2 -1/2 dy. (21) 
First, using the change of variables z = (y -αx)/(β + λx 2 ) 1/2 in the integral (20) and the triangle inequality we obtain

(20) = R ν γ (z) -ν γ 0 β + λx 2 β 0 + λ 0 x 2 1/2 z + x α -α 0 (β 0 + λ 0 x 2 ) 1/2 dz ≤ R |ν γ (z) -ν γ 0 (z)| dz + R ν γ 0 (z) -ν γ 0 b β,λ (x)z + a α (x) dz (22) where b β,λ (x) := β + λx 2 β 0 + λ 0 x 2 1/2 and a α (x) := x α -α 0 (β 0 + λ 0 x 2 ) 1/2 .
The rst integral in (22) does not depend on x and is equal to ∥ν γ -ν γ 0 ∥ L 1 (R) which converges to 0 when γ → γ 0 from the assumption. Now let A > 0 be xed. It follows from Lemma B.2 that lim (β,λ) →(β 0 ,λ 0 ) sup |x|≤A |b β,λ (x) -1| = 0 and lim α → α 0 sup |x|≤A a α (x) = 0. Then under Condition (H' 4 ), Lemma B.3 allows us to conclude that the second integral in ( 22) is such that lim

(α,β,λ) →(α 0 ,β 0 ,λ 0 ) sup |x|≤A R ν γ 0 (z) -ν γ 0 b β,λ (x)z + a α (x) dz = 0.
Second, let us consider the integral (21). We must show that the supremum of this integral on x ∈ [-A, A] converges to 0 when (β, λ) →(β 0 , λ 0 ). We obtain for any x ∈ R such that |x| ≤ A:

(21) = β + λx 2 -1/2 -β 0 + λ 0 x 2 -1/2 × R ν γ 0 y -α 0 x β 0 + λ 0 x 2 1/2 dy = β 0 + λ 0 x 2 -1/2 1 b β,λ (x) -1 × R ν γ 0 y -α 0 x β 0 + λ 0 x 2 1/2 dy = 1 -b β,λ (x) b β,λ (x) R ν γ 0 (z) dy (change of variables z = (y -α 0 x)/ β 0 + λ 0 x 2 1/2 ) ≤ |1 -b β,λ (x)| b β (A) with b β (A) := β/(β 0 + λ 0 A 2 ) 1/2 ≤ min |x|≤A b β,λ (x)
and R ν γ 0 (z)dz = 1. We know that lim (β,λ) →(β 0 ,λ 0 ) sup |x|≤A |b β,λ (x) -1| = 0 from Lemma B.2, so that the expected convergence holds.

□

Remark 2.1 If the p.d.f. ν γ 0 of the noise of the unperturbed AR(1)-ARCH(1) process is continuous on R, then Condition (H' 123 )-(a) (stated to prove (H 1 )) can be omitted in Proposition 2.1. Actually, under the condition R L F ξ 0 (v) a ν γ 0 (v) dv < 1 which is contained in (H' 123 )-(c), Assumption (H 1 ) holds with any real number ρ a (and the associated constant

C a ) such that R L F ξ 0 (v) a ν γ 0 (v) dv 1/a < ρ a < 1.
Indeed the kernel p θ 0 (x, y) given by ( 14) is continuous, so that Remark 4.3 and Proposition 4.2 ensure that, under the conditions (H' 123 )-(b) and (H' 123 )-(c), P θ 0 satises (4) for any ρ a satisfying the above condition. In other words, if the p.d.f. ν γ 0 is continuous on R, then only the conditions (H' 123 )-(b) and (H' 123 )-(c) with Θ = {θ 0 } are useful to obtain (H 1 ).

Remark 2.2 It is well-known from Scheé's lemma [START_REF] Scheé | A useful convergence theorem for probability distributions[END_REF] that the almost everywhere pointwise convergence of the p.d.f. ν γ to the p.d.f. ν γ 0 when γ → γ 0 provides the L 1 (R)-convergence required in (H' 4 ).

Robustness of IFS under roundo error

From [START_REF] Roberts | Convergence properties of perturbed Markov chains[END_REF][START_REF] Breyer | A note on geometric ergodicity and oating-point roundo error[END_REF], the eect of roundo errors using a Markov chain with transition kernel P yields to consider a Markov chain with perturbed transition kernel of the form P (x, A) := P (x, h -1 (A)), where h : X → X is such that h(x) is close to x. Let us consider an X-valued IFS as dened in Denition 1.1. Let (h θ ) θ∈Θ be a family of functions on X such that h θ → id when θ → θ 0 in a sense to be specied later, where id denotes the identity map on X, Θ is a subset of a metric space and θ 0 ∈ Θ. Then the associated roundo IFS {X

(θ) n } n∈N is dened by X (θ) 0 ∈ X, ∀n ≥ 1, X (θ) n = F θ (X (θ) n-1 , ϑ n ) where F θ (x, v) := h θ (F (x, v)) and F θ 0 (x, v) = id(F (x, v)) = F (x, v).
The perturbed/roundo transition kernels associated with {X

(θ) n } n∈N (or (h θ ) θ∈Θ ) are given by ∀f ∈ B 0 , ∀x ∈ X, (P θ f )(x) = P (f • h θ )(x) = V f (h θ • F )(x, v) dν(v). ( 23 
)
When the Markov kernel P θ 0 is assumed to be V -geometrically ergodic, the rst natural question is to know whether P θ remains V -geometrically ergodic for θ close to θ 0 . The simplest way used in [START_REF] Roberts | Convergence properties of perturbed Markov chains[END_REF] to study this question is to assume that h θ → id uniformly on R q when θ → θ 0 (i.e. ∀x ∈ R q , ∥h(x) -x∥ ≤ ε(θ) with lim θ → θ 0 ε(θ) = 0). However, as mentioned in [START_REF] Breyer | A note on geometric ergodicity and oating-point roundo error[END_REF], this assumption is too restrictive in practice since the roundo errors for some x ∈ R q is obviously proportional to x. In [START_REF] Breyer | A note on geometric ergodicity and oating-point roundo error[END_REF], the authors introduced the following weaker assumption ∥h(x) -x∥ ≤ ε(θ)∥x∥ with lim θ → θ 0 ε(θ) = 0, and proved that the V -geometric ergodicity property is stable for the roundo Markov kernels under some mild assumptions on the function V . Below, as a by-product of Theorem 1.1, we nd again this result in the specic instance of the roundo process associated with a VAR model {X n } n∈N , but more importantly the sensitivity of the p.d. of X (θ) n and of the stationary distribution of

{X (θ)
n } n∈N when θ → θ 0 is addressed too. These two issues are not investigated in [START_REF] Breyer | A note on geometric ergodicity and oating-point roundo error[END_REF].

Let {X n } n∈N be a R q -valued VAR model as dened in Example 1.1. To simplify we assume that, for some p ≥ 1, Θ is an open subset of R p containing θ 0 := 0 (the null vector of R p ), and we consider a family (h θ ) θ∈Θ of functions on X := R q such that h 0 = id. Thus the roundo process {X

(θ) n } n∈N associated with F θ (x, y) := h θ (Ax + v) is the Markov chain with transition kernel P θ (see (23)) ∀f ∈ B 0 , ∀x ∈ X, (P θ f )(x) = R q f h θ (Ax + v) dν(v). ( 24 
)
If g : R q → R q is dierentiable and if z ∈ R q , we denote by ∇g(z) the Jacobian matrix of g at z, and we set ∥∇g∥ ∞ := sup z∈R q ∥∇g(z)∥, where ∥ • ∥ here denotes the induced matrix-norm of Example 1.1. For the sake of simplicity the norms chosen on R q and R p are both denoted by ∥ • ∥. We introduce the following assumptions in order to apply Theorem 1.1 to {X (θ) n } n∈N :

(H 1 ) ∥A∥ < 1 and there exists a ≥ 1 such that E ∥ϑ 1 ∥ a < ∞.

(H 2 ) sup θ∈Θ R q ∥h θ (v)∥ a ν(v) dv < ∞.
(H 3 ) For every θ ∈ Θ, h θ is dierentiable on R q with sup θ∈Θ ∥∇h θ ∥ ∞ < ∥A∥ -1 .

(H 4 ) (a) The p.d. of ϑ 1 admits a bounded continuous p.d.f. ν satisfying the following monotonicity-type condition: There exists M > 0 such that for every z 1 , z

2 ∈ R q M ≤ ∥z 1 ∥ ≤ ∥z 2 ∥ =⇒ ν(z 2 ) ≤ ν(z 1 ).
(b) For every θ ∈ Θ, the map h θ is a C 1 -dieomorphism on R q with inverse function denoted by g θ , and the following conditions hold:

i. ∃c ∈ (0, 1), ∀θ ∈ Θ, ∀z ∈ R q , ∥g θ (z) -z∥ ≤ c∥z∥. ii. ∀z ∈ R q , lim θ → 0 g θ (z) = z.
iii. sup θ∈Θ ∥∇g θ ∥ ∞ < ∞, and lim θ → 0 ∇g θ = id uniformly on each balls of R q centred at 0, that is:

∀A > 0, ∀η > 0, ∃α > 0, ∀θ ∈ Θ, ∥θ∥ < α, sup ∥z∥≤A ∥∇g θ (z) -id∥ < η.
Proposition 3.1 Under the conditions (H 1 )(H 4 ) for a VAR process as dened in Example 1.1, the assertions (P 1 )(P 3 ) of Theorem 1.1 hold for every real number ρ a ∈ (∥A∥, 1) (and associated constant C a ).

Remark 3.1 Condition (H 4 )-(b) focuses on the inverse function g θ of h θ because g θ naturally occurs in the proof after a change of variable. Note that, as in [START_REF] Breyer | A note on geometric ergodicity and oating-point roundo error[END_REF], the uniform convergence lim θ → 0 g θ = id (or lim θ → 0 h θ = id) is not required on the whole space R q in the above assumptions. For instance the roundo functions h θ (x) = x + θx (simple perturbation of id on R) satisfy the above assumptions, but neither the convergence lim θ → 0 g θ = id, nor the convergence lim θ → 0 h θ = id, are uniform on R.

Proof. Recall that θ 0 = 0 here. We know that Assumption (H 1 ) holds, see Remark 4.2. Next, for any θ ∈ Θ and z ∈ R q , set Γ θ (z) = | det ∇g θ (z)|. Then, using (24), P θ has the form

∀f ∈ B 0 , ∀x ∈ R q , (P θ f )(x) = R q f (z) ν g θ (z) -Ax Γ θ (z) dz (25) 
from the change of variable z = h θ (Ax + v). Recall that P θ is the transition kernel of the R q -valued IFS {X

(θ) n } n∈N associated with F θ (x, v) := h θ (Ax + v).
Then (H 2 ) is nothing else but (H 2 ) (here x 0 = 0), while (H 3 ) is implied by (H 3 ) from Taylor's inequality applied to h θ .

Next we prove (H 4 ). For every r > 0, let B(0, r)

= {z ∈ R q : ∥z∥ ≤ r}. Let f ∈ B 0 be such that |f | 0 ≤ 1, and let x ∈ R q . Fix ε > 0. First let K ≡ K(ε) > 0 be such that (1 + K) -a < ε/2. Then ∀x ∈ R q \ B(0, K), (P θ f )(x) -(P 0 f )(x) V (x) ≤ 2 V (x) < ε. (26) 
Now we assume that x ∈ B(0, K). Note that

(P θ f )(x) -(P 0 f )(x) ≤ R q ν g θ (z) -Ax Γ θ (z) -ν(z -Ax) dz (27) 
since g 0 = id. Set d := 2/(1 -c) where c is given in (H 4 )-(b)-i. Note that ∥Ax∥ ≤ K and that (H 4 )-(b)-i provides: ∀z ∈ R q , ∥g θ (z)∥ ≥ (1 -c)∥z∥. Then we have for every z ∈ R q such that ∥z∥ ≥ dK

∥g θ (z) -Ax∥ ≥ ∥g θ (z)∥ -∥Ax∥ ≥ (1 -c)∥z∥ -K ≥ (1 -c)∥z∥ - 1 d ∥z∥ ≥ 1 -c 2 ∥z∥.
It follows from (H 4 )-(a) that we have for every θ ∈ Θ

∥z∥ ≥ B ≡ B(ε) := max (dM, dK) =⇒ ν g θ (z) -Ax ≤ ν d -1 z . Since the function z → ν(d -1 z) is Lebesgue-integrable on R q , we can choose C ≡ C(ε) > 0 such that ∥z∥≥C ν(d -1 z) dz ≤ ε/2(γ + 1) where γ := sup θ∈Θ sup z∈R q Γ θ (z).
Note that γ < ∞ from the rst condition of (H 4 )-(b)-iii and from the continuity of det(•).

Set D = max(B, C). We deduce from the triangular inequality that for every θ ∈ Θ

∥z∥≥D ν g θ (z) -Ax Γ θ (z) -ν(z -Ax) dz ≤ (γ + 1) ∥z∥≥C ν(d -1 z) dz ≤ ε 2 . ( 28 
)
Now we investigate the integrand in (27) for z ∈ B(0, D) (recall that x ∈ B(0, K)). First, setting m := sup u∈R q ν(u), we have for every z ∈ B(0, D) and for every x ∈ B(0, K)

ν g θ (z) -Ax Γ θ (z) -ν(z -Ax) ≤ γ ν g θ (z) -Ax -ν(z -Ax) + m Γ θ (z) -1 . ( 29 
)
We have: ∀z ∈ B(0, D), ∥g θ (z)∥ ≤ (1 + c)D (use (H 4 )-(b)-i). From the standard statement for uniform convergence of dierentiable functions, we deduce from the conditions (H 4 )-(b)-ii and (H 4 )-(b)-iii that lim θ → 0 g θ = id uniformly on B(0, D). Let ℓ D denote the volume of B(0, D) with respect to Lebesgue's measure on R q . From the previous uniform convergence and from the uniform continuity of ν on B(0, (1+c)D+K), there exists an open neighbourhood

V 0 of θ = 0 in R p such that ∀θ ∈ V 0 , ∀z ∈ B(0, D), ∀x ∈ B(0, K), ν g θ (z) -Ax -ν(z -Ax) < ε 4γℓ D . Moreover there exists an open neighbourhood V ′ 0 ⊂ V 0 of θ = 0 in R p such that ∀θ ∈ V ′ 0 , ∀z ∈ B(0, D), Γ θ (z) -1 < ε 4mℓ D
from (H 4 )-(b)-iii and from the uniform continuity of the function det(•) on every compact subset of the set M q (R) of real q × q-matrices. Then it follows from (29) that

∀θ ∈ V ′ 0 , ∀z ∈ B(0, D), ∀x ∈ B(0, K), ν g θ (z) -Ax Γ θ (z) -ν(z -Ax) ≤ ε 2ℓ D .
Integrating this inequality on B(0, D)

gives ∀θ ∈ V ′ 0 , ∀x ∈ B(0, K), ∥z∥≤D ν g θ (z) -Ax Γ θ (z) -ν(z -Ax) dz ≤ ε 2 . ( 30 
)
We deduce from ( 27), ( 28) and (30) that ∀θ ∈ V ′ 0 , ∀x ∈ B(0, K),

(P θ f )(x) -(P 0 f )(x) V (x) ≤ (P θ f )(x) -(P 0 f )(x) ≤ ε
This inequality combined with (26) gives (H 4 ).

□ 4 V a -geometric ergodicity of IFS For a ≥ 1, dene for any x ∈ X, p(x) := 1 + d(x, x 0 ), so that V a (x) := p(x) a , and let us introduce the following space L a :

L a := f : X → C : m a (f ) := sup |f (x) -f (y)| d(x, y) (p(x) + p(y)) a-1 , (x, y) ∈ X 2 , x ̸ = y < ∞ . (31)
Such Lipschitz-weighted spaces have been introduced in [START_REF] Page | Théorèmes de renouvellement pour les produits de matrices aléatoires. Équations aux diérences aléatoires[END_REF] to obtain the quasi-compactness of Lipschitz kernels (see also [START_REF] Milhaud | étude de l'estimateur du maximum de vraisemblance dans le cas d'un processus autorégressif : convergence, normalité asymptotique, vitesse de convergence[END_REF][START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF][START_REF] Duo | Random Iterative Models[END_REF][START_REF] Benda | A central limit theorem for contractive stochastic dynamical systems[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]). Note that, for f ∈ L a , we have for all x ∈ X:

|f (x)| ≤ |f (x 0 )| + 2 a-1 m a (f ) V a (x) so that |f | a < ∞ for any f ∈ L a .
Hence L a ⊂ B a . Moreover L a is a Banach space when equipped with the norm ∀f ∈ L a , ∥f ∥ a := m a (f ) + |f | a .

(32) Let {X n } n∈N be an IFS of Lipschitz maps as in Denition 1.1. For all x ∈ X and v ∈ V, we set F v x := F (x, v). Recall that we have set L F (v) := L(F v ) in Section 1. Since F is xed in this section, we simply write L(v) for L F (v). Similarly, for every (v 1 , . . . , v n ) ∈ V n (n ∈ N * ), dene:

F vn:v 1 := F vn • • • • • F v 1 and L(v n : v 1 ) := L(F vn:v 1 ). ( 33 
)
By hypothesis we have L(v) < ∞, thus L(v n : v 1 ) < ∞. Note that, for each a ≥ 1, the limit

κa := lim n → +∞ E [L(ϑ n : ϑ 1 ) a ] 1 na
exists in [0, +∞], since the sequence (E[L(ϑ n : ϑ 1 ) a ]) n∈N * is sub-multiplicative. In this section we rst present standard contraction/moment Condition ( C a ) (counterpart of (C a ) in Section 1) for P given in (3) to have a geometric rate of convergence on L a (see Proposition 4.1). Then the passage to the V a -geometric ergodicity is addressed in Proposition 4.2.

Condition ( C a ). For some a ∈ [1, +∞):

E d x 0 , F (x 0 , ϑ 1 ) a < ∞ (34a) κ a < 1. (34b)
Note that Condition (34b) is equivalent to the following one

∃N ∈ N * , E [L(ϑ N : ϑ 1 ) a ] < 1 (35)
and Condition (C a ) in Section 1 corresponds to (34a) and to (35) with N = 1.

The properties of the next proposition can be derived from the results of [Duf97, Chapter 6], also see [START_REF] Benda | A central limit theorem for contractive stochastic dynamical systems[END_REF] for the existence and uniqueness of the invariant distribution. For convenience, in Appendix C, the properties (36a) and (36b) are proved with explicit constants under the assumptions (34a) and (35) with N = 1 (i.e. E[L(ϑ 1 ) a ] < 1).

Proposition 4.1 ([Duf97, Chapter 6]) Under Condition ( C a ), P has a unique invariant distribution on (X, X ), denoted by π, and we have π(d(x 0 , •) a ) < ∞. Moreover the Markov kernel P continuously acts on L a , and for any κ ∈ ( κ a , 1), there exists positive constants c ≡ c κ and c ′ ≡ c ′ κ such that:

∀f ∈ L a , ∀n ≥ 1, |P n f -π(f )1 X | a ≤ c κ n m a (f ) (36a) ∀f ∈ L a , ∀n ≥ 1, ∥P n f -π(f )1 X ∥ a ≤ c ′ κ n ∥f ∥ a . (36b) 
In particular, if

κ 1,a := E[L(ϑ 1 ) a ] 1/a < 1, then ∀f ∈ L a , ∀n ≥ 1, |P n f -π(f )1 X | a ≤ c 1 κ 1,a n m a (f ), (37) 
where the constant c 1 is dened by c 1 := ξ (a-1)/a ∥π∥ 1 1 + ∥π∥ a a-1 , with

ξ := sup n≥1 sup x∈X (P n V a )(x) V a (x) < ∞ and ∥π∥ b := X V b (y) dπ(y) 1 b for b := 1, a.
Under Condition ( C a ), Property (36a) with f := V a and n := 1 gives P V a ≤ ξ 1 V a for some ξ 1 ∈ (0, +∞), so that P continuously acts on B a . But it is worth noticing that Property (36a) (or (37)) does not provide the V a -geometric ergodicity (4) since (36a) (or (37)) is only established for f ∈ L a . Under Condition ( C a ) Alsmeyer proved in [Als03, Prop. 5.2] that, if {X n } n∈N is Harris recurrent and the support of π has a non-empty interior, then {X n } n∈N is V a -geometrically ergodic. Under Condition ( C a ), the Markov chain {X n } n∈N is shown to be V a -geometrically ergodic in [Wu04, Prop. 7.2] provided that P and P N for some N ≥ 1 are Feller and strongly Feller respectively. An alternative approach is proposed in Proposition 4.2 below. The bound (38) is the same as in [Wu04, Prop. 7.2], but the Feller-type assumptions of [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF] are replaced with the following one: P ℓ : B 0 → B a for some ℓ ≥ 1 is compact (see Remark 4.2 for comparisons). Proposition 4.2 Let us assume that Condition ( C a ) holds true and that P ℓ : B 0 → B a for some ℓ ≥ 1 is compact. Then P is V a -geometrically ergodic, and the spectral gap ρ Va (P ) of P on B a (i.e. the inmum bound of the positive real numbers ρ a such that Property (4) holds true) satises the following bound:

ρ Va (P ) ≤ κ a . (38)
Proof. To avoid confusion, we simply denote by P the action of P (x, dy) on B a , and we denote by P |La the restriction to P on L a . Let δ and κ be such that κ a < κ < δ < 1. Then there exists N ∈ N * such that c κ N m a (V a ) ≤ δ N , where c ≡ c κ is dened in (36a). Then Property (36a) applied to f := V a gives: P N V a ≤ δ N V a + π(V a ). We deduce from [HL14a, Prop. 5.4 and Rk. 5.5] that P is a power bounded quasi-compact operator on B a and that its essential spectral radius r ess (P ) satises r ess (P ) ≤ κ a since δ is arbitrarily close to κ a (e.g. see [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF] for the denition of the quasi-compactness and of the essential spectral radius of a bounded linear operator). From these properties it follows that the adjoint operator P * of P is quasi-compact on the dual space B ′ a of B a and that r ess (P * ) ≤ κ a .

Next, let us establish that P is V a -geometrically ergodic from [HL14b, Prop. 2.1]. Let r 0 ∈ ( κ a , 1). Prove that λ := 1 is the only eigenvalue of P on B a such that r 0 ≤ |λ| ≤ 1. Let λ ∈ C be such an eigenvalue. Then λ is also an eigenvalue of P * since P and P * have the same spectrum and r ess (P * ) ≤ κ a < |λ|. Thus there exists f

′ ∈ B ′ a such that f ′ • P = λf ′ . But f ′ is also in L ′ a since we have: ∀f ∈ L a , |⟨f ′ , f ⟩| ≤ ∥f ′ ∥ B ′ a |f | a ≤ ∥f ′ ∥ B ′ a ∥f ∥ a .
This proves that λ is an eigenvalue of the adjoint of P |La . Hence λ is a spectral value of P |La . More precisely λ is an eigenvalue of P |La since, from (36b), P |La is quasi-compact on L a and r ess (P |La ) ≤ κ a < r 0 ≤ |λ|. Finally we have λ = 1. Indeed, if λ ̸ = 1, then any f ∈ L a satisfying P f = λf is such that π(f ) = 0, thus f = 0 from (36b) (pick κ ∈ ( κ a , r 0 )). Now prove that 1 is a simple eigenvalue of P on B a . Using the previous property and the fact that P is power bounded and quasi-compact on B a , we know that P n → Π with respect to the operator norm on B a , where Π is the nite rank eigen-projection on Ker(P -I) = Ker(P -I) 2 . The last equality holds since P is power bounded on B a . Set m := dim Ker(P -I). From [Wu04, Prop. 4.6] (see also [START_REF] Hervé | Quasi-compactness and mean ergodicity for Markov kernels acting on weighted supremum normed spaces[END_REF]Th. 1]), there exist m linearly independent nonnegative functions f 1 , . . . , f m ∈ Ker(P -I) and probability measures µ 1 , . . . , µ m ∈ Ker(P * -I) satisfying µ k (V a ) < ∞ such that: ∀f ∈ B a , Πf = m k=1 µ k (f ) f k . That 1 is a simple eigenvalue of P on B a then follows from the rst assertion of Proposition 4.1.

From [HL14b, Prop. 2.1] and the previous results, we have proved that, for any r 0 ∈ ( κ a , 1), we have ρ Va (P ) ≤ r 0 . Thus ρ Va (P ) ≤ κ a . □ Remark 4.1 Inequality (38) means that, for any real number ρ ∈ ( κ a , 1), there exists a constant C ≡ C ρ such that

∀n ≥ 1, ∀f ∈ B a , |P n f -π(f ) 1 X | a ≤ C ρ n |f | a .
Unfortunately neither the proof of Proposition 4.1, nor that of [Wu04, Prop. 7.2], give any information on the constant C. Computing such an explicit constant C is an intricate issue which is not addressed in this work (e.g. see [MT94, LT96, Bax05, HL14a, HL14b] and the reference therein). It is worth mentioning that explicit bounds on ρ and C are also provided in [START_REF] Galtchouk | Geometric ergodicity for classes of homogeneous Markov chains[END_REF] for a parametrized family of transition kernels.

Remark 4.2 Assume that every closed ball of X is compact. Let {X n } n∈N be a Markov chain such that its transition kernel P satises the following hypothesis: There exist a positive measure η on (X, X ) and a measurable function K : X 2 →[0, +∞) such that:

∀x ∈ X, P (x, dy) = K(x, y) dη(y).

(

) 39 
If P ℓ is strongly Feller for some ℓ ≥ 1, then P 2ℓ is compact from B 0 to B a (e.g. see[GHL11, Lemma 3]). Hence, if P admits a kernel as in (39), then assuming that P N is strongly Feller for some N in [Wu04, Prop. 7.2] is more restrictive than the compactness hypothesis of Proposition 4.2. A detailed comparison with the approach [Wu04, Prop. 7.2] is provided in [START_REF] Guibourg | Quasi-compactness of Markov kernels on weighted-supremum spaces and geometrical ergodicity[END_REF] for general Markov kernels. Finally, note that the transition kernel P of an VAR process (see Example 1.1) is always strongly Feller. Indeed, let f ∈ B 0 such that ∥f ∥ 0 ≤ 1.

Then we have

∀(x, x ′ ) ∈ R q × R q , (P f )(x ′ ) -(P f )(x) ≤ R q ν(y -A(x ′ -x)) -ν(y) dy.
Since t → ν(• -t) is continuous from R q to the Lebesgue space L 1 (R q ), it follows that P is strongly Feller. Thus the V a -geometric ergodicity of P claimed in Example 1.1 follows from Proposition 4.2. See also [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF]Sect. 8].

Remark 4.3 If {X n } n∈N is an IFS of Lipschitz maps as in Denition 1.1 such that its transition kernel P satises Assumption (39) with K continuous in the rst variable, then P is strongly Feller, thus P 2 is compact from B 0 to B a , so that the conclusions of Proposition 4.2 hold true under Condition ( C a ). Indeed we have for all (x, x ′ ) ∈ X 2 and for any f ∈ B 0

(P f )(x ′ ) -(P f )(x) ≤ X K(x ′ , y) -K(x, y) dη(y).
Since K(•, •) ≥ 0, K(•, y)dη(y) = 1, and lim x ′ → x K(x ′ , y) = K(x, y), we deduce from Scheé's theorem that lim x ′ → x X |K(x ′ , y) -K(x, y)| dη(y) = 0. This proves the desired statement. Note that the previous argument even shows that {P f, |f | 0 ≤ 1} is equicontinuous, so that the compactness of P : B 0 → B 1 can be directly proved from Ascoli's theorem.

Remark 4.4 In the proof of Proposition 4.2 the drift inequality P N V a ≤ δ N V a + π(V a ) has been written with any δ ∈ ( κ a , 1) by using Property (36a) of Proposition 4.1 in order to deduce the bound r ess (P ) ≤ κ a on the essential spectral radius of P (acting on B a ). This bound was sucient since the remainder of the proof of Proposition 4.2 is based on Property (36b) from which we deduce the bound r ess (P |La ) ≤ κ a . Actually, for any δ ∈ ( κ a a , 1), the drift inequality P N V a ≤ δ N V a + K with some N ≥ 1 and K > 0 can be derived from Condition ( C a ) by adapting the proof in Appendix B (with here P θ 0 = P and Θ = {θ 0 }). Then the more accurate bound r ess (P ) ≤ κ a a can be derived from [HL14a, Prop. 5.4 and Rem. 5.5] under the compactness assumption of Proposition 4.2. See also [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF]Prop. 7.2] which provides the same bound under Feller-type assumptions.

5 Further applications Theorem 1.1 has been applied in Section 2 for the real-valued AR(1) with ARCH(1) errors models (see Proposition 2.1), and in Section 3 for roundo errors of an VAR model (see Proposition 3.1). Although these applications have been presented for specic IFS, it is worth noticing that they give a general road map to investigate the issues (P 1 )-(P 2 )-(P 3 ) of Section 1 for other instances of R q -valued IFS, provided that the p.d. of the noise ν γ in Denition 1.2 admits an p.d.f. with respect to Lebesgue's measure on V = R q and that the change of variable v → z = F ξ (x, v) is feasible for every x ∈ R q , where F ξ (•, •) is the perturbed function involved in Denition 1.2. In Subsection 5.1 we propose two examples to support this claim. Finally in Subsection 5.2 we discuss the robustness of IFS of Lipschitz maps under perturbation by some thresholding and truncation.

A general non-linear time series model

Denoting by GL q (R) the set of invertible real q × q-matrices, consider an IFS {X n } n∈N of the form

∀n ≥ 1, X n = ψ(X n-1 ) + B(X n-1 ) ϑ n (40) 
where ψ : R q → R q , B : R q → GL q (R) and where the random variables {ϑ n } n≥1 have common p.d.f. ν. If B(x) = I q for any x ∈ R q where I q is the identity q × q-matrix, this Markov As a generalization of Section 2, consider the following general parametric perturbation of the R q -valued IFS {X n } n∈N dened in (40):

∀n ≥ 1, X (θ) n = ψ ξ (X (θ) n-1 ) + B ξ (X (θ) n-1 ) ϑ (γ)
n with some parametrized maps ψ ξ : R q → R q and B ξ : R q → GL q (R), and with an i.i.d. sequence {ϑ

(γ)
n } n≥1 of R q -valued r.v. with common parametric p.d.f. denoted by ν γ (hence θ = (ξ, γ)). Then, noticing that for every x ∈ R q the change of variable v → z := ψ ξ (x) + B ξ (x) v is valid and leads to P θ (x,

A) := R 1 A (z) p θ (x, z) dz (A ∈ X ) with p θ (x, z) := det B ξ (x) -1 ν γ B ξ (x) -1 (z -ψ ξ (x)) (41) 
the following remarks are relevant to investigate the assumptions (H 1 )(H 4 ) of Theorem 1.1.

(R1) If the p.d.f. ν γ 0 of the unperturbed IFS (corresponding to some θ 0 = (ξ 0 , γ 0 )), as well as the functions ψ ξ 0 and B ξ 0 , are continuous on R q , then it follows from Remark 4.3 and Proposition 4.2 that P θ 0 is V a -geometrically ergodic provided that the unperturbed IFS satises Condition (C a ). More precisely, in this case, Assumption (H 1 ) holds with any real number ρ a (and the associated constant C a ) such that

E L F ξ 0 ϑ (γ 0 ) 1 a 1/a < ρ a < 1 where F ξ 0 (x, v) = ψ ξ 0 (x) + B ξ 0 (x) v.
(R2) The moment/contractive conditions (6a) and (6b) related to θ 0 = (ξ 0 , γ 0 ) in (R1), involve some expectations which depend on the above function F ξ 0 and on the p.d.f. ν γ 0 .

Then the conditions (H 2 ) and (H 3 ) consist in assuming that these expectations are respectively bounded and strictly less than 1 in a uniform way on the parameters θ := (ξ, γ) near θ 0 = (ξ 0 , γ 0 ) (reducing the set Θ if necessary).

(R3) Thanks to Formula (41), Condition (H 4 ) holds provided that for every A > 0 lim

θ → θ 0 sup ∥x∥≤A R q p θ (x, z) -p θ 0 (x, z) (1 + ∥x∥) a dz = 0
since the previous integral is less than 2/(1 + A) a for ∥x∥ > A. Moreover the above integral on R q can be decomposed on some ball of R q and on its complementary in order to use uniform continuity and decay properties of the kernel p θ (•, •) (see the proof of Proposition 5.1 in Appendix D).

Next, as a generalization of Section 3, consider the IFS dened by (40) under roundo error. If (h θ ) θ∈Θ is the roundo family with h θ close to h 0 = id when θ → 0, then the roundo transition kernel P θ (x, A) = P (x, h -1 θ (A)) writes as P θ (x, A)

:= R 1 A (z) p θ (x, z) dz with p θ (x, z) := Γ θ (z) ν B(x) -1 (g θ (z) -ψ(x)) (42)
from the change of variable v → z := h θ (ψ(x) + B(x)v), where g θ denotes the inverse function of h θ and Γ θ (z) := det B ξ (x)

-1 | det ∇g θ (z)|. Using here the kernels in (42), the remarks (R1)(R3) then hold.

Robustness of IFS under thresholding/truncation

Here we consider X := R d (d ≥ 1) equipped with the euclidean norm ∥•∥, and V := R q (q ≥ 1) equipped with some norm still denoted by ∥ • ∥ for the sake of simplicity. Let {X n } n∈N be an IFS of Lipschitz maps

X 0 ∈ R d , ∀n ≥ 1, X n := F (X n-1 , ϑ n ) (43) 
with F : R d × R q → R d and {ϑ n } n≥1 satisfying the assumptions of Denition 1.1. Suppose that the p.d. of ϑ 1 is absolutely continuous with respect to Lebesgue's measure on R q , with p.d.f. denoted by ν. Assume that {X n } n∈N is V -geometrically ergodic. Then, a natural question is: What happens if we consider a perturbation of the IFS (43) by some thresholding and/or truncation? Such an issue may be raised as soon as a numerical implementation of the model is considered. Thus, let us investigate the robustness of the IFS (43) when thresholding the function F on the innite set X and truncating the p.d.f. ν on R q . More precisely, for any ξ ∈ (0, +∞) let Φ ξ : R d → R d be the following thresholding function at level ξ:

∀x ∈ R d , Φ ξ (x) = min ξ ∥x∥ , 1 x = x if ∥x∥ ≤ ξ ξ x ∥x∥ if ∥x∥ > ξ. (44)
Moreover, for any γ ∈ (0, +∞), dene the truncated p.d.f. ν γ at level γ by:

∀v ∈ R q , ν γ (v) = c γ ν(v) 1 B(0,γ) (v) with c γ := B(0,γ) ν(v) dv -1
where B(0, γ) denotes the ball centred at 0 with radius γ in R q . Then, according to Denition 1.2, we consider the following perturbed IFS {X

(θ) n } n∈N X (θ) 0 ∈ X, ∀n ≥ 1, X (θ) n := F ξ (X (θ) n-1 , ϑ (γ) n ) with F ξ (x, v) := Φ ξ F (x, v) (45) 
where the sequence {ϑ

(γ)
n } n≥1 of R q -valued i.i.d. r.v. is assumed to admit the common p.d.f. ν γ .

Note that the stability of quantitative bounds for Markov chains via truncation rather than thresholding is studied in [START_REF] Medina-Aguayo | Perturbation bounds for Monte Carlo within Metropolis via restricted approximations[END_REF]. However it is worth mentioning that we cannot set Φ ξ (x) = 0 for x ∈ R d such that ∥x∥ > ξ as in [MARS20, Subsection 3.2, Th. 9]) since the resulting perturbed process is no more an IFS of Lipschitz maps. Morevover, note that the study of {X (θ) n } n∈N does not t to the framework of Section 3. Indeed, the family {F ξ , ξ > 0} does not satisfy the assumptions of Section 3 since Φ ξ is neither bijective nor dierentiable. By contrast, each function Φ ξ is 1-Lipschitz (i.e. L(Φ ξ ) = 1) and this property is well suited to our perturbation approach. Therefore, the next Proposition 5.1 is stated in the general framework of Denition 1.1 up to the slight condition of absolute continuity of the p.d. of ϑ 1 with respect to Lebesgue's measure on R q . The proof of Proposition 5.1 is postponed to Appendix D. Proposition 5.1 Assume that the unperturbed IFS {X n } n∈N given in (43) satises Denition 1.1 with ϑ 1 having an p.d.f. on R q . Moreover suppose that Assumption (H 1 ) holds for some a ≥ 1 and that

M a := E ∥F 0, ϑ 1 ∥ a 1/a < ∞, κ a := E L F ϑ 1 a 1/a < 1 and E[∥ϑ 1 ∥ a ] < ∞. (46)
Let κ a ∈ ( κ a , 1), and let Θ := (0, +∞) × (γ 0 , +∞) with γ 0 > 0 dened by the condition:

∀γ > γ 0 , c γ ≤ (κ a / κ a ) a .
Then the perturbed IFS {X (θ) n } n∈N dened by (45) with θ ∈ Θ satises the assertions (P 1 )(P 3 ) of Theorem 1.1 with ∆ θ → 0 when ξ → +∞ and γ → +∞.

More precisely, for every ε ∈ (0, 2) dene A ε = 2 a ε -a -1. Then we have ∆ θ ≤ ε provided that θ := (ξ, γ) ∈ Θ is such that

|c γ -1| + 1 + κ a κ a a E ∥ϑ 1 ∥ a γ a + (2A ε κ a ) a + (2 M a ) a ξ a ≤ ε.
A Proof of (10)

Suppose that the assumptions (H 2 )-(H 3 ) are fullled. Then we prove the drift inequality (10) in Section 1. In fact, for any κ ∈ (κ a , 1), we prove that the following strengthened inequality holds:

∀θ ∈ Θ, P θ V a ≤ δ a V a + K a 1 [-ra,ra] (47) 
where the constants δ a < 1 and K a > 0 are given in (10), and where r a := (1 + M a + κ aκ)/(κ -κ a ). We have for any θ ∈ Θ and any x ∈ X

(P θ V a )(x) V a (x) 1/a = E 1 + d(F ξ (x, ϑ (γ) 1 ); x 0 ) 1 + d(x; x 0 ) a 1/a ≤ E 1 + d F ξ (x, ϑ (γ) 1 ); F ξ (x 0 , ϑ (γ) 1 ) + d(F ξ (x 0 , ϑ (γ) 1 ); x 0 ) 1 + d(x; x 0 ) a 1/a ≤ E 1 1 + d(x; x 0 ) + L F ξ (ϑ (γ) 1 ) + d(F ξ (x 0 , ϑ (γ) 1 ); x 0 ) 1 + d(x; x 0 ) a 1/a ≤ 1 1 + d(x; x 0 ) + E L F ξ (ϑ (γ) 1 ) a 1/a + E d(F ξ (x 0 , ϑ (γ) 
1 ); x 0 ) a 1/a 1 + d(x; x 0 ) (Holder inequality).

It follows from the assumptions (

H 2 )-(H 3 ) that ∀θ ∈ Θ, ∀x ∈ X, (P θ V a )(x) V a (x) 1/a ≤ 1 1 + d(x; x 0 ) + κ a + M a 1 + d(x; x 0 ) . (48) 
For any κ ∈ (κ a , 1), set r a := (1 + M a + κ a -κ)/(κ -κ a ) > 0. Then we have for every x ∈ X such that d(

x; x 0 ) > r a 1 + M a 1 + d(x; x 0 ) ≤ 1 + M a 1 + r a = κ -κ a .
It follows that for every θ ∈ Θ and for every x ∈ X such that d(x; x 0 ) > r a

(P θ V a )(x) ≤ κ a V a (x). (49) 
Moreover, for every θ ∈ Θ and for every x ∈ X such that d(x; x 0 ) ≤ r a , we deduce from (48) that

(P θ V a )(x) ≤ F a V a (x) ≤ F a (1 + r a ) a (50) 
where F a := (1 + κ a + M a ) a . Finally combining (49) and ( 50) provides (47), thus (10), with δ a := κ a a < 1 and K a := F a (1 + r a ) a > 0.

B Complements on Proposition 2.1

First we prove Property (15).

Lemma B.1 Let (α, β, λ) ∈ R × (0, +∞) 2 and:

∀(x, v) ∈ R 2 , F (x, v) := αx + v β + λx 2 .
Then we have for every

v ∈ R L(v) := sup (x,y)∈R 2 ,x̸ =y F (x, v) -F (y, v) |x -y| = max |α - √ λv|; |α + √ λv| . (51) 
Proof. Let v ∈ R be xed, and dene: ∀x ∈ R, Lemma B.2 Let (α 0 , β 0 , λ 0 ) ∈ R × (0, +∞) 2 . For any (α, β, λ) ∈ R × (0, +∞) 2 and for any

F v (x) := F (x, v). Then ∀x ∈ R, F ′ v (x) = α + λxv (β + λx 2 ) 1/2 and F ′′ v (x) = λβv (β + λx 2 ) 3/2 . Property (51) is obvious if v = 0. Assume that v > 0. Then F ′ v is strictly increasing, so that inf x∈R F ′ v (x) = lim x → -∞ F ′ v (x) = α - √ λv ≤ α + √ λv = lim x → +∞ F ′ v (x) = sup x∈R F ′ v (x). Then L(v) ≤ max(|α - √ λv|; |α + √ λv|) follows from Taylor's inequality. If v < 0, then F ′ v is strictly decreasing, so that inf x∈R F ′ v (x) = lim x → +∞ F ′ v (x) = α + √ λv ≤ α - √ λv = lim x → -∞ F ′ v (x) = sup x∈R F ′ v (x),
x ∈ R, dene b β,λ (x) := β + λx 2 β 0 + λ 0 x 2 1/2 and a α (x) := x α -α 0 β 0 + λ 0 x 2 .
Then for any A > 0 lim

(β,λ) →(β 0 ,λ 0 ) sup |x|≤A b β,λ (x) -1 = 0 and lim α → α 0 sup |x|≤A a α (x) = 0.
Proof. Let A > 0. We have for any

x ∈ R such that |x| ≤ A b β,λ (x) 2 -1 = β + λx 2 β 0 + λ 0 x 2 -1 = β -β 0 + (λ -λ 0 )x 2 β 0 + λ 0 x 2 ≤ 1 β 0 |β -β 0 | + |λ -λ 0 |A 2 . Therefore we have lim (β,λ) →(β 0 ,λ 0 ) sup |x|≤A |b β,λ (x) 2 -1| = 0. Since 1 + b β,λ (x) ≥ 1, we have |b β,λ (x) -1| ≤ |b β,λ (x) 2 -1|, so that the rst convergence is proved. The second one holds since sup |x|≤A a α (x) ≤ A |α -α 0 |/ √ β 0 . □ Lemma C.1 We have: ∀n ≥ 1, ∀(µ 1 , µ 2 ) ∈ M a × M a E ∆ n (µ 1 , µ 2 ) ≤ ξ a-1 a κ n 1,a E[d(X µ 1 0 , X µ 2 0 )] ∥µ 1 ∥ a + ∥µ 2 ∥ a a-1 . ( 52 
)
Furthermore we have for all f ∈ L a :

E |f (X µ 1 n ) -f (X µ 2 n )| ≤ ξ a-1 a m a (f ) κ n 1,a E[d(X µ 1 0 , X µ 2 0 )] ∥µ 1 ∥ a + ∥µ 2 ∥ a a-1 . (53) 
Proof. Note that X µ n = F ϑn:ϑ 1 X µ 0 from Denition 1.1 and the notations introduced in (33).

If a := 1, then (52) follows from the independence of the ϑ n 's and from the denition of L(v) and κ 1,a . Now assume that a ∈ (1, +∞). Without loss of generality, one can suppose that the sequence {ϑ n } n≥1 is independent from (X µ 1 0 , X µ 2 0 ). Also note that, if µ ∈ M a , then we have E p(X µ n ) a = X (P n V a )(x)dµ(x) ≤ ξ ∥µ∥ a a .

From Holder's inequality (use 1 = 1/a + (a -1)/a), we obtain

E ∆ n (µ 1 , µ 2 ) = E d F ϑn:ϑ 1 X µ 1 0 , F ϑn:ϑ 1 X µ 2 0 p(X µ 1 n ) + p(X µ 2 n ) a-1 ≤ E[d(X µ 1 0 , X µ 2 0 )] E L(ϑ n : ϑ 1 ) p(X µ 1 n ) + p(X µ 2 n ) a-1 ≤ E[d(X µ 1 0 , X µ 2 0 )] E L(ϑ n : ϑ 1 ) a 1 a E p(X µ 1 n ) + p(X µ 2 n ) a a-1 a ≤ E[d(X µ 1 0 , X µ 2 0 )] E L(ϑ 1 ) a n a ξ
a-1 a (∥µ 1 ∥ a + ∥µ 2 ∥ a ) a-1 .

This proves (52). Property (53) follows from (52) and the denition of m a (f ). □

Now recall that we consider the case N = 1 in (35). Let us prove the inequality (36a) in this case (that is (37)). Property (53), applied to µ 1 := δ x and µ 2 := π gives

P n f (x) -π(f ) ≤ E |f (X x n ) -f (X π n )| ≤ ξ a-1 a m a (f ) κ n 1,a E[d(x, X π 0 )] ∥δ x ∥ a + ∥π∥ a a-1 .
Next observe that ∥δ x ∥ a = p(x) and E[d(x, X π 0 )] ≤ E d(x, x 0 ) + d(x 0 , X π 0 ) ≤ p(x) + π(d(x 0 , •)) ≤ p(x) ∥π∥ 1 .

Hence E[d(x, X π 0 )] (∥δ x ∥ a + ∥π∥ a ) a-1 ≤ p(x) a ∥π∥ 1 (1 + ∥π∥ a ) a-1 . This proves the expected inequality.

Finally, to prove (36b), it remains to study m a (P n f ) for f ∈ L a . Inequality (53) applied to µ 1 := δ x and µ 2 := δ y for any (x, y) ∈ X 2 gives: ∀f ∈ L a , |P n f (x) -P n f (y)| ≤ ξ a-1 a m a (f ) κ n 1,a d(x, y) p(x) + p(y) a-1 .

Thus m a (P n f ) ≤ ξ a-1 a m a (f ) κ n 1,a . Since m a (1 X ) = 0, this gives

m a P n f -π(f )1 X ≤ ξ a-1 a m a (f ) κ n 1,a .
Combining the last inequality with (37) gives (36b).

D Proof of Proposition 5.1

For every θ := (ξ, γ) ∈ Θ := (0, +∞) × (γ 0 , +∞) we have

E ∥F ξ 0, ϑ (γ) 1 ∥ a = R d ∥Φ ξ F (0, v) ∥ a ν γ (v) dv ≤ κ a κ a a R q
∥F (0, v)∥ a ν(v) dv < ∞ so that Assumption (H 2 ) holds with x 0 = 0 and M a := M a κ a / κ a . Moreover note that L Φ ξ ≤ 1, so that ∀v ∈ V, L F ξ (v) ≤ L F (v).

Hence we have for every θ = (ξ, γ) ∈ Θ

E L F ξ ϑ (γ) 1 a = R d L F ξ (v) a ν γ (v) dv ≤ c γ R d L F (v) a ν(v) dv ≤ c γ κ a a ≤ κ a a .
Thus Assumption (H 3 ) holds. It remains to check Assumption (H 4 ) and to specify the error term ∆ θ . Let P (respectively P θ ) denote the transition kernel of the unperturbed IFS {X n } n∈N (respectively of the perturbed IFS {X (θ) n } n∈N ). Let ε > 0, and let f ∈ B 0 be such that |f | 0 ≤ 1. First note that we have for every x ∈ R d satisfying ∥x∥ > A ε

(P θ f )(x) -(P f )(x) V a (x) ≤ 2 V a (x) ≤ ε (54) 
by denition of A ε in Proposition 5.1. Next, for every θ := (ξ, γ) ∈ Θ and for every x ∈ R d dene the following subset E θ,x and G θ,x of R q : E θ,x := v ∈ R q : v ∈ B(0, γ), ∥F (x, v)∥ ≤ ξ , G θ,x := v ∈ R q : v ∈ B(0, γ), ∥F (x, v)∥ > ξ .

From the denition of the thresholding function Φ ξ , we have for every x ∈ R d

(P θ f )(x) = R q f F ξ (x, v) ν γ (v) dv = c γ E θ,x f F (x, v) ν(v) dv + c γ G θ,x f (η x,v ) ν(v) dv
with η x,v := ξ∥F (x, v)∥ -1 F (x, v) . Hence

(P θ f )(x) -(P f )(x) ≤ |c γ -1| E θ,x ν(v) dv + (1 + c γ ) R q \E θ,x ν(v) dv
≤ |c γ -1| + 1 + κ a κ a a P ∥ϑ 1 ∥ > γ + P ∥F (x, ϑ 1 )∥ > ξ from the denition of R q \ E θ,x and the condition c γ ≤ (κ a / κ a ) a . Now let x ∈ R d be such that ∥x∥ ≤ A ε . Then ∀v ∈ R q , ∥F (x, v)∥ ≤ L F (v) A ε + ∥F (0, v)∥ from F (x, v) = (F (x, v) -F (0, v)) + F (0, v) and from the triangular inequality. Therefore L F (v) A ε ≤ ξ 2 and ∥F (0, v)∥ ≤ ξ 2 =⇒ ∥F (x, v)∥ ≤ ξ, from which we deduce that P ∥F (x, ϑ 1 )∥ > ξ ≤ P L F (ϑ 1 ) > ξ 2A ε + P ∥F (0, ϑ 1 )∥ > ξ 2

≤ (2A ε ) a ξ a E L F (ϑ 1 ) a + 2 a ξ a E ∥F (0, ϑ 1 )∥ a ≤ (2A ε κ a ) a + (2 M a ) a ξ a
from Markov inequality. Consequently we obtain that for every x ∈ R d such that ∥x∥ ≤ A ε

(P θ f )(x) -(P f )(x) V a (x) ≤ (P θ f )(x) -(P f )(x) ≤ |c γ -1| + 1 + κ a κ a a E ∥ϑ 1 ∥ a γ a + (2A ε κ a ) a + (2 M a ) a ξ a . ( 55 
)
The conclusion of Proposition 5.1 follows from (54)-(55).

  chain is called a functional-coecient AR model. The Markov model (40) encompasses a very large class of non-linear time series models (e.g. see [MT93, Chap. 2], [Tsa10, Chap. 4]), [CP02, Cli07a, Cli07b, Cli07a, MS10, and references therein].

  and the same conclusion holds. That L(v) ≥ max(|α -√ λv|; |α + √ λv|) follows from the inequality L(v) ≥ |F ′ v (x)| for any x ∈ R, which is easily deduced from the denition of L(v) in (51). Hence we obtain that L(v) ≥ lim x±∞ |F ′ v (x)|. The proof of (51) is complete. □ Next, we prove the two following lemmas used in the proof of Proposition 2.1.

The following lemma is an easy extension of the classical continuity property of the map f → f (• + a) from R to L 1 (R).

Lemma B.3 For any

Proof. Let C K (R) be the set of continuous functions on R with compact support. First, if g ∈ C K (R), then the desired convergence follows from Lebesgue's theorem. Second, if f ∈ L 1 (R), then we have for every g ∈ C K (R) and for every

Then we conclude by using the density of

C Proof of (36a)(36b) under the assumptions (34a) and (35) with N = 1

Thoughout this section, the conditions (34a) and (35) with N = 1 are assumed to hold. Note that (35) with N = 1 is κ 1,a = E[L(ϑ 1 ) a ] 1/a < 1. We prove the properties (36a) and (36b) of Proposition 4.1 with explicit constants. Under the general assumption κ a < 1 of Condition ( C a ), the proof of (36a)-(36b) is similar (replace P with P N with N such that E[L(ϑ N : ϑ 1 ) a ] < 1).

That the constant ξ in Proposition 4.1 is nite can be easily deduced from the drift inequality (47) which holds here with P θ 0 = P , Θ = {θ 0 }, and with κ 1,a in place of κ a . Now let us introduce some notations. If µ is a probability measure on X and X 0 ∼ µ, we make a slight abuse of notation in writing {X µ n } n∈N for the associated IFS given in Denition 1.1. We simply write {X x n } n∈N when µ := δ x is the Dirac mass at some x ∈ X. We denote by M a the set of all the probability measures µ on X such that ∥µ∥ a := ( X V a (y) dµ(y)) 1/a < ∞. Finally, for n ∈ N and for any probability measures µ 1 and µ 2 on X, dene: