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This paper investigates phase field models or diffuse interface formulations for region based active contour image segmenta-

tion. It was motivated by two earlier works: the use of a phase field model for higher-order active contours and a reformulation of
the Mumford-Shah functional in terms of a diffuse interface model. Our main goal is to show how a diffuse interface formulation
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1 Introduction

This paper investigates phase field models or diffuse interface formulations for
region based active contour image segmentation. It was motivated by [21] in
which a phase field model for higher-order active contours is proposed and by
[6] in which Mumford-Shah functional is reformulated in terms of a diffuse in-
terface model. Our first goal is to show how a diffuse interface formulation can
advantageously be used for region competition segmentation. In order to com-
pare this formulation with existing ones let us first recall the classical procedure
with which such a segmentation problem is dealt with.

Let D ∈ R2 be the domain of a given image whose intensity is represented
by a function I : D → [0,M ]. In order to lighten notations through out the
paper we consider that I is a scalar function, that is to say a gray-scale image.
We will however also use color images in our numerical experiments.

The aim of image segmentation by region competition is to partition D in
two sub-domains: Ω+ the region of interest and Ω−, its complement in D,
the background region. They share the same boundary Γ. One usually looks
for a region Ω+ minimizing a functional combining region functionals and a
regularization boundary functional:

E(Ω+) =

∫

Ω+

f(x,Ω+)dx+

∫

Ω−

f(x,Ω−)dx +

∫

Γ

αds (1)

where f is a region-dependent descriptor. The minimization is performed using
active contours. An initial curve Γ0 is evolved with the equation

∂tΓ(s, t) = v(s, t)n(s, t)

where s is the arc length, t the time evolution parameter, v is the velocity and
n is a vector normal to Γ(s, t) (directed from Ω− to Ω+). A difficulty is to
compute the velocity from the energy E and a nice way to do this is to use
shape derivation methods as detailed in [3, 14].

Once the velocity v is computed it remains to implement an active contour
numerical procedure. A first approach is to parameterize explicitly the contour
using polygons or splines for example. This is the snake method (eg. [15, 20]).
The main drawback of this representation is that topological changes are difficult
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to handle. The level set method [19, 24] is a second approach in which the
contour is represented implicitly as the zero level set of a function. With a level
set function contours may break or merge automatically during the evolution.
However another difficulty rises. Numerically it is necessary to keep the evolving
level set function close to a signed distance function to Γ. The traditional way
to deal with this is to periodically re-initialize the level set function to a signed
distance function. From a practical point of view this is expensive and not easily
implemented. From a theoretical point of view it is not completely satisfactory
[10, 17].

In [21] the authors were concerned the problem of the extraction of line
networks from remote sensing images and advertise that phase field models
offer a good alternative to classical active contour methods. Phase field models
originate from the study of moving boundary problems in physics. A simple
model is given by the Allen-Cahn reaction-diffusion equation [1].

∂tφ = ∆φ− 1

ε2
V ′(φ)

where V ′ is the derivative of a smooth double equal well potential V with minima
at ±1. The main feature of the solution to this equation is that it separates the
domain in two subdomains (or phases in which φ = ±1) and the motion of its
zero level set at the diffuse interface approximates motion by mean curvature
when ε is small (eg. [22, 7]).

Phase field models provide an interesting way to model regions or phases
and their moving boundaries. The possibility to use them in image science has
been very little explored. We found the recent papers [25, 6] and [21] in which
[23, 2, 11] were cited. In this study we propose two phase field models and
numerical methods for region based active contour segmentation. We focus on
two specific descriptors: the mean descriptor and the entropy descriptor. The
mean descriptor is well known (eg. [4, 5]) and reads:

f(x,Ω±) = (I(x) − µ(Ω±))2 (2)

where µ(Ω±) represents the mean of the intensity over region Ω± computed as

µ(Ω±) =
1

|Ω±|

∫

Ω±

I(x)dx (3)

The entropy descriptor is less classic but proved to be efficient for image seg-
mentation [16, 12, 13]. Let us define

f(x,Ω±) = k(Ω±) =

∫

R

−p(i,Ω±) ln(p(i,Ω±))di (4)

where the probability density distributions, p(i,Ω±), of the random variables
whose samples are the values of the intensity I in Ω± are estimated using the
Parzen window method

p(i,Ω±) =
1

|Ω±|

∫

Ω±

K(I(x) − i)dx (5)

and K is a 0-mean Gaussian kernel.
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The remaining part of the paper is organized as follows. A diffuse interface
formulation for segmentation using these two descriptors is given in Section 2.
In Section 3 we conduct an asymptotic analysis of the model and obtain an
approximation of the velocity of the interface. This clarifies the link between
classical active contours and phase field formulations since the derived approx-
imation is similar to the expression of the velocity obtained in the region based
framework of Eq. (1): shape differentiation leads to the following expression for
the normal velocity of the active contour in the mean descriptor case

v(s, t) = (I(s) − µ(Ω+)(t))2 − (I(s) − µ(Ω−)(t))2 + ακ(s, t) (6)

where κ is the curvature of Γ, and in the entropy descriptor case

v(s, t) =

∫

R

(ln(p(i,Ω−))(t) − ln(p(i,Ω+))(t))K(I(s) − i)di + ακ(s, t) (7)

Section 4 deals with the numerical implementation of the model. Two schemes
based on operator splitting methods are proposed and compared. Several seg-
mentation experiments are conducted in the end and illustrate the method.

2 Phase field formulation

In this section we formulate the energy which will be minimized in order to
segment an image I. The energy is expressed in terms of a phase field that is to
say a function φ : D → R. The phase field framework for image segmentation
is a level set framework since we seek φ such that

{

φ(x) > 0 and φ(x) ≈ 1 if x ∈ Ω+

φ(x) < 0 and φ(x) ≈ −1 if x ∈ Ω− (8)

and the contour Γ is described implicitly by Γ = {x ∈ D,φ(x) = 0}.

2.1 Energy

The phase field is sought as the optimal function minimizing an energy E(φ)
which is the sum of a diffuse interface energy, Ep(φ) and a segmentation energy
Es(φ).

Diffuse interface energy The diffuse interface energy is defined as

Ep(φ) =

∫

D

d

2
||∇φ(x)||2 +

1

ε2
V (φ(x))dx (9)

where V (s) =
1

4
(1 − s2)2 is the classical quartic double well potential, with

minima at ±1. The parameter ε is small and strictly positive and a bounded
energy will therefore force φ = 1 or φ = −1 almost everywhere. The gradient
term prevents any discontinuity to occur at the interface between the two phases
and the diffusion parameter d > 0 controls the smoothness of the transition.
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Segmentation energy We now come to the segmentation part of the energy
functional. Using φ we rewrite Eq. (1) dropping the regularization term which
arises from the diffuse interface energy term as it is shown in Section 3.

Since φ ≈ ±1 the indicator functions for regions Ω± are given in first ap-
proximation by

l1Ω+(x) =

(

1 + φ(x)

2

)2

(10)

l1Ω−(x) =

(

1 − φ(x)

2

)2

(11)

The only reason for the square is computational stability. It guarantees that
the indicator functions stay positive even if extreme values of φ are not exactly
±1.

The segmentation can be written in a general form as

Es(φ) =

∫

D

(

1 + φ(x)

2

)2

kΩ+(x, φ)dx +

∫

D

(

1 − φ(x)

2

)2

kΩ−(x, φ)dx (12)

Let us explicit the different terms in both the mean descriptor case and the
entropy descriptor case which we focus on.

Mean descriptor Rewriting Eqs. (3) and (2) in terms of φ yields:

µΩ±(φ) =
1

∫

D

(

1 ± φ(x)

2

)2

dx

∫

D

(

1 ± φ(x)

2

)2

I(x)dx (13)

and

Es(φ) =

∫

D

(

1 + φ(x)

2

)2

(I(x) − µΩ+(φ))2dx

+

∫

D

(

1 − φ(x)

2

)2

(I(x) − µΩ−(φ))2dx

(14)

for the segmentation energy.

Entropy descriptor Similarly rewriting Eqs. (5) and (4) in terms of φ gives

pΩ±(i, φ) =
1

∫

D

(
1 ± φ(x)

2
)2dx

∫

D

(
1 ± φ(x)

2
)2K(I(x) − i)dx (15)

for the probability density distribution and the segmentation energy is finally
given by

Es(φ) =

∫

D

(
1 + φ(x)

2
)2dx

∫

R

−pΩ+(i, φ) ln(pΩ+(i, φ))di

+

∫

D

(
1 − φ(x)

2
)2dx

∫

R

−pΩ−(i, φ) ln(pΩ−(i, φ))di

(16)
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2.2 Minimization

Let us now derive the non-linear, non-local parabolic equations which are solved
both in the mean descriptor case and in the entropy descriptor case to minimize
the energy E whose final expression is

E(φ) = Ep(φ) +
w

ε
Es(φ) (17)

where w is weighting parameter. The reason for introducing a 1/ε factor comes
from the asymptotic analysis of Section 3.

The Euler-Lagrange equation for the unknown function φ is computed from
the directional derivative, E′(φ;ψ) of E at point φ ∈ L2(D) in direction ψ ∈
L2(D).

For Ep we obtain in a straight forward manner

E′
p(φ;ψ) =

∫

D

d∇φ(x).∇ψ(x) +
1

ε2
V ′(φ(x))ψ(x)dx

=

∫

D

−d∆φ(x)ψ(x)dx +

∫

∂D

d∇φ.nψds +
1

ε2
V ′(φ(x))ψ(x)dx

(18)
We now deal with the segmentation terms.

Mean descriptor After some calculations we obtain

E′

s(φ;ψ) =

∫

D

[(
1 + φ(x)

2
)(I(x)−µΩ+(φ))2−(

1 − φ(x)

2
)(I(x)−µΩ− (φ))2]ψ(x)dx

(19)
The Euler-Lagrange equation for the complete energy then reads

E′(φ;ψ) = 0 ∀ψ (20)

which can be written as a boundary value problem


























−d∆φ(x) +
1

ε2
V ′(φ(x))

+
w

ε
[(

1 + φ(x)

2
)(I(x) − µΩ+(φ))2 − (

1 − φ(x)

2
)(I(x) − µΩ−(φ))2] = 0 in D,

∇φ.n = 0 in ∂D
(21)

A common approach we follow to solve such a minimization problem is to per-
form a gradient descent which consists in solving the following gradient flow
initial boundary value problem to steady state



























































∂tφ(x, t) = d∆φ(x, t) − 1

ε2
V ′(φ(x, t))

−w
ε

[(
1 + φ(x, t)

2
)(I(x) − µΩ+(φ))2

−(
1 − φ(x, t)

2
)(I(x) − µΩ−(φ))2] in D × (0, T ),

∇φ.n = 0 in ∂D × (0, T )

φ(x, 0) = φ0(x) in D

(22)
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Entropy descriptor After some calculations we derive

E′
s(φ, ψ) =

∫

D

(
1 + φ(x)

2
)[

∫

R

− ln(pΩ+(i, φ))K(I(x) − i)di]

−(
1 − φ(x)

2
)[

∫

R

− ln(pΩ−(i, φ))K(I(x) − i)di]ψ(x)dx

(23)

and the associated gradient flow initial boundary value problem reads:























































∂tφ(x, t) = d∆φ(x, t) − 1

ε2
V ′(φ(x, t))

−w
ε
{(1 + φ(x, t)

2
)[

∫

R

− ln(pΩ+(i, φ))K(I(x) − i)di]

−(
1 − φ(x, t)

2
)[

∫

R

− ln(pΩ−(i, φ))K(I(x) − i)di]} in D × (0, T ),

∇φ.n = 0 in ∂D × (0, T )

φ(x, 0) = φ0(x) in D

(24)

3 Asymptotic analysis

In this section we adapt a formal asymptotic analysis method developed for
phase field models [8, 9] and provide an approximation of the normal velocity of
the moving interface Γ(t) = {x ∈ D,φ(x, t) = 0}. The derived approximation
is similar to the expression obtained in the region based framework using shape
differentiation.

Let us consider the nonlocal ε-dependent equation

ε2∂tφ
ε(x, t) = ε2d∆φε(x, t) − V ′(φε(x, t)) − εS(φε(x, t), φε) (25)

The superscript ε indicates that we consider a family of solutions as ε→ 0.
The segmentation energy term, S, which has a local and a non local depen-

dence on φε can be written in both the mean descriptor and the entropy case
as

S(φε(x, t), φε) = S1(φ
ε) + φε(x, t)S2(φ

ε) (26)

where S1 and S2 are non-local functions of φε. The analysis consists in consid-
ering an outer expansion in powers of ε, valid in regions away from the interface
Γε(t) and also an inner expansion valid near Γε(t).

Outer solution In the outer region let us consider the expansion

φε(x, t) = φ0(x, t) + εφ1(x, t) + ε2φ2(x, t) . . . (27)

Inserting it into Eq. (25) leads to

V ′(φ0(x, t)) + O(ε) = 0 (28)

and therefore
φ0(x, t) = ±1 (29)
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Assume that Γε(t) separates D into two regions Ωε
± and let us select the outer

solution so that

φ0(x, t) =

{

+1 if x ∈ Ω0
+(t),

−1 if x ∈ Ω0
−(t).

(30)

From now on we assume that the nonlocal part of the segmentation term satisfies

S(φε(x, t), φε) = S(φε(x, t), φ0) + O(ε) (31)

Inner solution In the inner region a local orthogonal coordinate system (r, s)
defined in a neighborhood of Γε(t) is used where r is the signed distance from
x to Γε(t) and s is the distance along the interface. The coordinate system is
oriented so that r > 0 corresponds to φ > 0. Let us define the scaled normal
coordinate ρ = r/ε , Φε(ρ, s, t) = φε(x, t) and the formal expansion

Φε(ρ, s, t) = Φ0(ρ, s, t) + εΦ1(ρ, s, t) + ε2Φ2(ρ, s, t) . . . (32)

Quantities which depend on the zero level set Γε, such as the normal velocity, vε,
and the curvature κε, also require the same expansion. In the new coordinate
system Eq. (25) takes the form

d∂2
ρΦε − V ′(Φε) + ε(d∆r∂ρΦε − ∂tr∂ρΦε − S(Φε, φε)) + O(ε2) = 0 (33)

With the convention that a convex region of φ > 0 has positive curvature and
that the normal velocity of the interface is postive when it moves positively in
the r coordinate. From ∆r = −κ0 + O(ε), ∂tr = −v0 + O(ε) and Eq. (31) we
obtain

d∂2
ρΦ0−V ′(Φ0)+ε(d∂

2
ρΦ1−V ′′(Φ0)Φ1−dκ0∂ρΦ0+v0∂ρΦ0−S(Φ0, φ0))+O(ε2) = 0

(34)

• O(1) term: Φ0 satisfies

d∂2
ρΦ0 − V ′(Φ0) = 0 (35)

Moreover, the inner and outer expansions must describe the same solution
in an intermediate zone where ε ≪ |r| ≪ 1 or 1 ≪ |ρ| ≪ 1/ε. This gives
the matching conditions

lim
ρ→±∞

Φ0(ρ, s, t) = ±1 (36)

Eq. (35) with boundary conditions (36) integrates to

Φ0(ρ, s, t) = Φ0(ρ) = tanh(
ρ√
d
) (37)

which is the profile of the transition layer.

• O(ε) term: We obtain the equation

[d∂2
ρ .− V ′′(Φ0)]Φ1 = −(v0 − dκ0)Φ

′

0 + S(Φ0, φ0) (38)

This linear equation only has solutions when the right hand side is orthog-
onal to functions in the kernel of the operator which appears on the left
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hand side. Differentiating Eq. (35) shows that Φ′
0 is in the kernel. The

solvability condition is then obtained by multiplying Eq. (38) by Φ′
0 and

integrating over ρ from −∞ to ∞

0 = S1(φ0)(t)

∫ ∞

−∞

Φ′

0(ρ)dρ + S2(φ0)(t)

∫ ∞

−∞

Φ0(ρ)Φ
′

0(ρ)dρ

−(v0(s, t) − dκ0(s, t))

∫ ∞

−∞

(Φ′

0(ρ))
2dρ

(39)

This equation gives the following expression for the velocity of the interface

v0(s, t) = dκ0(s, t) +
3
√
d

2
S1(φ0)(t) (40)

In the mean descriptor case, Eq. (40) becomes

v0(s, t) = dκ0(s, t) +
3w

√
d

4
(I(s) − µΩ+(φ0)(t))

2 − (I(s) − µΩ−(φ0)(t))
2 (41)

and the entropy descriptor case

v0(s, t) = dκ0(s, t)+
3w

√
d

4
(

∫

R

(ln(pΩ−(i, φ))(t)− ln(pΩ+(i, φ))(t))K(I(s)− i)di)
(42)

Two points are worth noticing to conclude this section:

• As expected Eq. (41) is similar to Eq. (6) obtained with the shape gradient
method. The same remark holds in the case of the entropy descriptor for
Eqs. (42) and (7).

• The diffusion coefficient d appears as a weighting parameter for the cur-
vature term which is not surprising since it was introduced to modulate
the smoothing effect of diffusion. More surprisingly it also appears before
the segmentation term.

4 Numerical implementation and experiments

4.1 First scheme

Let us give a first approximation procedure of the model. A finite difference
discretization combined with an operator splitting method is used to solve the
initial boundary value problem (43).























∂tφ(x, t) = d∆φ(x, t) − 1

ε2
V ′(φ(x, t)) − 1

ε
S(φ(x, t), φ) in D × (0, T ),

∇φ.n = 0 in ∂D × (0, T )

φ(x, 0) = φ0(x) in D
(43)

The domain D is given as (0, Dx) × (0, Dy). Let h denote the spatial step
in both the x and y direction and ∆t the time step. The discretization points
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are denoted by (xi, yj , tn) with i ∈ [1 : I], j ∈ [1 : J ] and n ∈ [1 : N ]. In what
follows φn denotes an approximation of φ(x, y, tn) and φn

ij and approximation
of φ(xi, yj , tn).

Algorithm 1 The operator splitting method we propose to solve problem (43)
is the following. At each time step, given an approximation φn the computation
of φn+1 from φn is achieved in three steps.

Step 1. The linear diffusion equation in the x variable is integrated on [tn, tn+1].







∂tφ(x, y, t) = d∂2
xφ(x, y, t) in (0, Dx) × (tn, tn+1), ∀y ∈ (0, Dy)

∂xφ(0, y, t) = ∂xφ(Dx, y, t) = 0 in (tn, tn+1), ∀y ∈ (0, Dy)
φ(x, y, tn) = φn in D

(44)
It results in a first approximation φn+1,1. This step is conducted using an
implicit scheme which guarantees stability. Let A be the classical I × I
tridiagonal matrix defined by

A =















1 + α −α
−α 1 + 2α −α

. . .
. . .

. . .

−α 1 + 2α −α
−α 1 + α















(45)

with α =
d∆t

∆x2
, then solve the J linear systems

Aφn+1,1
j = φn

j (46)

with φn
j = (φn

1j , . . . , φ
n
Ij)

T

Step 2. The linear diffusion equation in the y variable is integrated in the same

way in a second step on [tn, tn+1] starting from φn+1,1







∂tφ(x, y, t) = d∂2
yφ(x, y, t) in (0, Dy) × (tn, tn+1), ∀x ∈ (0, Dx)

∂yφ(x, 0, t) = ∂yφ(x,Dy , t) = 0 in (tn, tn+1), ∀x ∈ (0, Dx)
φ(x, y, tn) = φn+1,1 in D

(47)
It results in a second approximation φn+1,2.

Step 3. The nonlinear reaction terms are integrated on [tn, tn+1]

{

∂tφ(x, y, t) = − 1

ε2
V ′(φ(x, y, t)) − w

ε
S(φ(x, y, t), φ)

φ(x, y, tn) = φn+1,2
(48)

It results in the final value φn+1. This step is conducted using a simple
explicit Euler method.

φn+1,1
i,j = φn

i,j − ∆t(
1

ε2
V ′(φn

i,j) +
w

ε
S(φn

i,j , φ
n), ∀i, j (49)

The integrals in S(φn
i,j , φ

n) are evaluated as simple sums.
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4.2 A second scheme

The main drawback of the previous scheme is that since ε cannot be chosen
infinitely small the phase field values are not exactly ±1 in the regions Ω±.
This might cause numerical problems in the computation of the integrals of the
segmentation terms (even though we chose the indicator functions of regions Ω±

to be defined as (1±φ
2 )2 and not simply 1±φ

2 ). Moreover to prevent the algorithm
from diverging and the phase field from going to far away from ±1 a relatively
small time step has to be selected.

In this section we propose a second scheme which proves to be quite efficient.
The ideas for this scheme come from the MBO scheme of [18] introduced to
approximate the motion of an interface by its mean curvature and from [6]
where the authors derive formal threshold dynamics for an initial boundary
value problem similar to the one obtained in our mean descriptor case.

The MBO scheme can be interpreted as a splitting method for the Allen-
Cahn equation,

∂tφ = ∆φ− 1

ε2
V ′(φ)

in which the step solving the ODE

∂tφ = − 1

ε2
V ′(φ) on [tn, tn+1]

is turned into a thresholding step. It is supposed that at every point x the value
of φ(x, t) converges very rapidly to one of the two stables equilibrium values ±1,
depending on whose basin of attraction it initially lies in.

Our second algorithm is an operator splitting scheme with two time steps
and in which contrary to the first algorithm we first group together the diffusion
and the segmentation terms and split the phasefield potential term apart. We
suppose ε2 ≪ ε≪ 1 and threshold the potential term but not the segmentation
one.

Thanks to this thresholding step φ always stays close to the values ±1 and we
can simply define the indicator functions of regions Ω± as 1±φ

2 . This simplifies
the segmentation terms which become

S(φ) = −w
2

[(I(x) − µΩ+(φ))2 − (I(x) − µΩ−(φ))2]

in the mean descriptor case and

S(φ) = −w
2

∫

R

(ln(pΩ−(i, φ)) − ln(pΩ+(i, φ)))K(I(x) − i)di

in the entropy descriptor case. The asymptotic analysis of Section 3 remains
valid with this formulation taking S2 ≡ 0.

Algorithm 2 The algorithm reads as follows

Step 1. Integrate from tn to tn+1 = tn + ∆t











∂tφ(x, y, t) = d∆φ(x, y, t) +
1

ε
S(φ) in D × (tn, tn+1),

∇φ.n = 0 in (tn, tn+1) × ∂D
φ(x, y, tn) = φn in D

(50)
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using the splitting of the first algorithm and a sub time step ∆t′ =
∆t

k
.

It results in a first approximation φn+1,1.

Step 2. Integrate the phasefield potential term on [tn, tn+1] by thresholding

φn+1 =

{

+1 if φn+1,1
ij ≥ 0

−1 if φn+1,1
ij < 0

(51)

It results in the final approximation φn+1.

4.3 Numerical results

In this section we illustrate Algorithm1 and 2 using either the mean descriptor
or the entropy descriptor. We use two real images: a 512 × 512 grayscale bone
medical image and a 288×352 color image drawn from the video sequence Erik.

In all experiments presented below we chose h = 0.1. In order to resolve
the diffuse transition layer one should choose ε ≫ h. We chose ε = 5h. The
time step is ∆t = 0.1. Concerning the diffusion coefficient d which controls the
smoothness of the interface, small values enable the segmentation algorithm to
capture many details while higher values result in smooth objects. We selected
d = 5. The only parameter remaining to be tuned is the weight w whose value
depends on the experiment. In order to use approximately the same weights w
while using the mean or the entropy descriptor we chose to rescale the image
intensity I to [−1 1] in the mean descriptor case.

As mentioned in [21] a major advantage of phase field formulations is that
the initial phase field can be chosen neutrally. We use φ0 = 0 + η where η is a
small white noise. More traditionally an initial contour Γ0 can also be defined.
We then set φ0 = ±1 in Ω±.

The algorithm stops when the slope of the decreasing segmentation energy,
t 7→ Es(φ)(t) is lower than a small threshold value.

Figures ... make a selection ...

Algo 2 is more stable and faster

5 Conclusion

We have proposed two phase field models or diffuse interface formulations based
on two descriptors for region-based active contour segmentation. They consist
in a family of initial boundary value problems defined on the domain of the
image and depending on a small parameter ε.

We have performed a formal asymptotic analysis of the models as ε→ 0 and
obtained an approximation of the velocity of the diffuse interface. This approx-
imation appeared to be similar to the expression of the velocity obtained in the
region based framework using shape differentiation tools. This clarified the link
between the phase field methodology to evolve contours for image segmentation
with the classical approaches: snakes and level sets.

11



Eventually we proposed two algorithms based on operator splitting to solve
the initial boundary value problems. The second one proved to be very efficient,
much more stable and faster than the first one.

This study reenforces the conclusions of [21]: phase field models offer an
advantageous alternative to classical active contour methods.

Future: non smooth double obstacle potential?
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Figure 1: Segmentation of the femur image using the mean descriptor, an initial
contour and algorithm 1. Last row, left: variations of the energy as a function
of the number of iterations.
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Figure 2: Segmentation of the femur image using the mean descriptor, a random
initialization and algorithm 1. Last row, left: variations of the energy as a
function of the number of iterations.
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Figure 3: Segmentation of the femur image using the entropy descriptor, an
initial contour and algorithm 1. Last row, left: variations of the energy as a
function of the number of iterations.
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Figure 4: Segmentation of the femur image using the entropy descriptor, a
random initialization and algorithm 1. Last row, left: variations of the energy
as a function of the number of iterations.
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Figure 7: Segmentation of the femur image using the mean descriptor, an initial
contour and algorithm 2.
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Figure 9: Segmentation of the femur image using the entropy descriptor, a
random initialization and algorithm 2.
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Figure 11: Segmentation of the Erik image using the entropy descriptor, an
initial contour and algorithm 2.
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