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SRB MEASURES FOR C∞ SURFACE DIFFEOMORPHISMS

DAVID BURGUET

Abstract. A C∞ surface diffeomorphism admits a SRB measure if and only if

the set {x, lim supn
1
n

log ‖dxfn‖ > 0} has positive Lebesgue measure. More-

over the basins of the ergodic SRB measures are covering this set Lebesgue
almost everywhere.

1. Introduction

One fundamental problem in dynamics consists in understanding the sta-
tistical behaviour of the system. Given a topological system (X, f) we are
more precisely interesting in the asymptotic distribution of the empirical

measures
(

1
n

∑n−1
k=0 δfkx

)
n

for typical points x with respect to a reference

measure. In the setting of differentiable dynamical systems the natural ref-
erence measure to consider is the Lebesgue measure on the manifold.

The basin of a f -invariant measure µ is the set B(µ) of points whose em-
pirical measures are converging to µ in the weak-∗ topology. By Birkhoff’s
ergodic theorem the basin of an ergodic measure µ has full µ-measure. An
invariant measure is said physical when its basin has positive Lebesgue mea-
sure. We may wonder when such measures exist and then study their basins.

In the works of Y. Sinai, D. Ruelle and R. Bowen [38, 11, 34] these ques-
tions have been successfully solved for uniformly hyperbolic systems. A SRB
measure of a C1+ system is an invariant probability measure with at least
one positive Lyapunov exponent almost everywhere, which has absolutely
continuous conditional measures on unstable manifolds [41]. Physical mea-
sures may neither be SRB measures nor sinks (as in the famous figure-eight
attractor), however hyperbolic ergodic SRB measures are physical measures.
For uniformly hyperbolic systems, there is a finite number of such measures
and their basins cover a full Lebesgue subset of the manifold. Beyond the
uniformly hyperbolic case such a picture is also known for large classes of
partially hyperbolic systems [10, 2, 1]. Corresponding results have been es-
tablished for unimodal maps with negative Schwartzian derivative [24]. SRB
measures have been also deeply investigated for parameter families such as
the quadratic family and Henon maps [23, 5, 6, 7]. In his celebrated ICM’s
talk, M. Viana conjectured that a surface diffeomorphism admits a SRB
measure, whenever the set of points with positive Lyapunov exponent has
positive Lebesgue measure. In recent works some weaker versions of the
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conjecture (with some additional assumptions of recurrence and Lyapunov
regularity) have been proved [19, 8]. Finally we mention that in the present
context of C∞ surface diffeomorphims J. Buzzi, S. Crovisier, O. Sarig have
recently shown the existence of a SRB measure once there are ergodic mea-
sures with lower bounded entropy and with unstable dimension arbitrarily
close to one [17].

In this paper we define a general entropic approach to build SRB mea-
sures by using hyperbolic times, which we apply to prove Viana’s conjecture
for C∞ surface diffeomorphisms. We strongly believe the same approach
may be used to recover the existence of SRB measures for weakly mostly
expanding partially hyperbolic systems [1] and to give another proof of Ben
Ovadia’s criterion for C1+ diffeomorphisms in any dimension [8].

We state now the main result of our paper. Let (M, ‖ · ‖) be a compact
Riemannian surface and let Leb be a volume form on M , called Lebesgue
measure. We consider a C∞ surface diffeomorphism f : M 	. The maximal
Lyapunov exponent at x ∈ M is given by χ(x) = lim supn

1
n log ‖dxfn‖.

When µ is a f -invariant probability measure, we let χ(µ) =
∫
χ(x) dµ(x).

For two Borel subsets A and B of M we write A
o
⊂ B (resp. A

o
= B) when

we have Leb(A \B) = 0 (resp. Leb(A∆B) = 0).

Main Theorem. Let f : M 	 be a C∞ surface diffeomorphism. There
are countably many ergodic SRB measures (µi)i∈I , such that we have with
Λ = {χ(µi), i ∈ I} ⊂ R>0:

• {χ > 0} o
= {χ ∈ Λ},

• {χ = λ}
o
⊂
⋃
i,χ(µi)=λ

B(µi) for all λ ∈ Λ.

Corollary 1. Let f : M 	 be a C∞ surface diffeomorphism. Then

{χ > 0}
o
⊂

⋃
µ SRB ergodic

B(µ).

Corollary 2. Let f : M 	 be a C∞ surface diffeomorphism.
If Leb(χ > 0) > 0, then there exists a SRB measure.

When f is a C1+ topologically transitive surface diffeomorphism, there
is at most one SRB measure, i.e. ]I ≤ 1 [22]. If moreover the system is
topologically mixing, then the SRB measure when it exists is Bernoulli [16].
By the spectral decomposition of C∞ surface diffeomorphisms [16] there are
at most finitely many ergodic SRB measures with entropy and thus maxi-
mal exponent larger than a given positive constant. Therefore, in the Main
Theorem, the set Λ = {χ(µi), i ∈ I} is either finite or a sequence decreasing
to zero.

Finally we emphasize the necessity of C∞ smoothness. We prove in a
forthcoming paper [12] that the Main Theorem is false in finite smoothness
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by building for any finite r > 1 a Cr surface diffeomorphism (f,M) with a
periodic saddle hyperbolic point p such that χ(x) > 0 for all x ∈ U for some
set U ⊂ B(µp) with Leb(U) > 0, where µp denotes the periodic measure
associated to p (see [14] for such an example of interval maps). However, as
in the examples of Cr surface diffeomorphisms without measure of maximal
entropy [15], the construction is local. In particular, in our example, the

exponent satisfies χ(x) ≤ R(f)
r for all x ∈ U . Hopefully we could have with

R(f) := limn
1
n log supx∈M ‖dxfn‖:

Conjecture 1. Let f : M 	 be a Cr surface diffeomorphism with r > 1.

If Leb
(
χ > R(f)

r

)
> 0, then there exists a SRB measure.

In higher dimensions we let Σkχ(x) := lim supn
1
n‖Λ

kdxf
n‖ where Λkdf

denotes the action induced by f on the kth exterior power of TM for k =
1, · · · , d with d being the dimension of M . By convention we also let Σ0χ =
0. For any C1 diffeomorphism (M,f) we have Leb(Σdχ > 0) = 0 (see [3]).
The product of a figure-eight attractor with a surface Anosov diffeomorphism
does not admit any SRB measure whereas χ is positive on a set of positive
Lebesgue measure. However we conjecture :

Conjecture 2. Let f : M 	 be a C∞ diffeomorphism on a compact manifold
(of any dimension).

If Leb
(
Σkχ > Σk−1χ ≥ 0

)
> 0, then there exists an ergodic measure with

at least k positive Lyapunov exponents, such that its entropy is larger than
or equal to the sum of its k smallest positive Lyapunov exponents.

In the present two-dimensional case the semi-algebraic tools used to bound
the distorsion and the local volume growth of C∞ curves are elementary.
This is a challenging problem to adapt this technology in higher dimensions.

When the empirical measures from x ∈ M are not converging, the point
x is said to have historic behaviour [35]. A set U is contracting when the
diameter of fnU goes to zero when n ∈ N goes to infinity. In a contracting
set the empirical measures of all points have the same limit set, however
they may not converge. P. Berger and S. Biebler have shown that C∞

densely inside the Newhouse domains [9] there are contracting domains with
historic behaviour. As a consequence of the Main Theorem, Lebesgue almost
every point x with historic behaviour satisfies χ(x) ≤ 0 for C∞ surface
diffeomorphisms. We also show the following statement.

Theorem 1. Let f be a C∞ diffeomorphism on a compact manifold (of
any dimension). Then Lebesgue a.e. point x in a contracting set satisfies
χ(x) ≤ 0.

Question. Let f be a C∞ surface diffeomorphism. Assume the set H of
points with historic behaviour has positive Lebesgue measure. Does every
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Lebesgue density point of H belongs to a almost contracting∗ set with pos-
itive Lebesgue measure?

We explain now in few lines the main ideas to build a SRB measure
under the assumptions of the Main Theorem. The geometric approach
for uniformly hyperbolic systems consists in considering a weak limit of(

1
n

∑n−1
k=0 f

k
∗ LebDu

)
n
, where Du is a local unstable disc and LebDu denotes

the normalized Lebesgue measure on Du induced by its inherited Riemann-
ian structure as a submanifold of M . Here we take a smooth C∞ embedded
curve D such that

χ(x, vx) := lim sup
n

1

n
log ‖dxfn(vx)‖ > a > 0

for (x, vx) in the tangent space TD of D with x in a subset A of D with
positive LebD-measure. Let F : PTM 	 be the map induced by f on
the projective tangent bundle PTM and let φ(x, v) = log ‖dxf(v)‖ for any
(x, v) ∈ PTM . By Pliss Lemma, for any point x ∈ A, the set E(x) of
b-hyperbolic times of the sequence

(∑n
k=0 φ

(
F k(x, vx)

))
n
, with b < a has

positive asymptotic density. We build in this context a SRB measure by

considering a weak limit µ of a sequence of the form
(

1
]Fn

∑
k∈Fn F

k
∗ µn

)
n

such that :

• (Fn)n is a Fölner sequence, so that the weak limit µ will be invariant
by F ,
• for all n, the measure µn is the probability measure induced by LebD

on An, the LebD-measure of An being not exponentially small,
• the sets (Fn)n are in some sense filled with the set of hyperbolic times
E(x) for x ∈ An. Then the measure µ on PTM will be supported on
the unstable Oseledec’s bundle.

Finally we check that the limit empirical measure µ projects to a SRB
measure on M by computing the entropy of µ as in [13]. For this last step
we use the fact that for n ∈ E(x) the following properties hold with r = r(b):

• the geometry of fnD around fnx is bounded meaning that for some
uniform ε = ε(b) > 0, the connected component Dε

n(x) of fnD with
the ball at fnx of radius ε > 0 is a curve with bounded s-derivative
for s ≤ r,
• the distorsion of df−n on the tangent space of Dε

n(x) is controlled.

Together with Yomdin’s estimate on local volume growth, we conclude the
projection of µ on M satisfies the entropy formula, and therefore is a SRB
measure.

The paper is organized as follows. In Section 2 we recall for general
sequences of integers the notion of asymptotical density and we build for any

∗See Section 7 for the definition of almost contracting set.
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sequence E with positive upper density a Fölner set F filled with E. Then
we use a Borel-Cantelli argument to define our sets (An)n and the Fölner
sequence (Fn)n. In Section 3, we study the maximal Lyapunov exponent and
the entropy of the generalized empirical measure µ. We conclude the entropy
computation in Section 4, by assuming the distorsion property at hyperbolic
times which is proved in Section 5. Then we prove the covering property of
the basins in Section 6 by using the standard argument of absolute continuity
of the stable foliation. Section 7 is devoted to the proof of Theorem 1.

2. Some asymptotic properties of integers

2.1. Asymptotic density. We first introduce some notations. In the fol-
lowing we let PN and Pn be respectively the power sets of N and {1, 2, · · · , n},
n ∈ N. The boundary ∂E of E ∈ PN is the subset of N consisting in the
integers n ∈ E with n − 1 /∈ E or n + 1 /∈ E. We also let E− := {n ∈
E, n+ 1 ∈ E}. For a, b ∈ N we write Ja, bK (resp. Ja, bJ, Ka, bK) the interval
of integers k with a ≤ k ≤ b (resp a ≤ k < b, a < k ≤ b). The connected
components of E are the maximal intervals of integers contained in E. An
interval of integers Ja, bJ is said E-irreducible when we have a, b ∈ E and
Ja, bJ∩E = {a}. For E ∈ PN we let E(n) := E ∩ J1, nK ∈ Pn for all n ∈ N.
For M ∈ N, we denote by EM the union of the intervals Ja, bK with a, b ∈ E
and |a− b| ≤M .

We let N be the set of increasing sequences of natural integers, which
may be identified with the subset of P(N) given by infinite subsets of N. For
n ∈ N we define the generalized power set of n as Qn :=

∏
n∈n Pn.

We recall now the classical notion of upper and lower asymptotic densities.
For n ∈ N∗ and Fn ∈ Pn we let dn(Fn) be the frequency of Fn in J1, nK:

dn(Fn) =
]Fn
n
.

The upper and lower asymptotic densities d(E) and d(E) of E ∈ P(N)
are respectively defined by

d(E) := lim sup
n∈N

dn(E(n)) and

d(E) := lim inf
n∈N

dn(E(n)).

We just write d(E) for the limit, when the frequencies dn(E(n)) are con-

verging. For any n ∈ N we let similarly d
n
(E) := lim supn∈n dn(E(n)) and

dn(E) := lim infn∈n dn(E(n)). The concept of upper and lower asymptotic
densities of E ∈ P(N) may be extended to generalized power sets as follows.
For n ∈ N and F = (Fn)n∈n ∈ Qn we let

d
n
(F) := lim sup

n∈n
dn(Fn) and

dn(F) := lim inf
n∈n

dn(Fn).
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Again we just write dn(E) and dn(F) when the corresponding frequencies
are converging.

2.2. Fölner sequence and density along subsequences. We say that
E ∈ PN is Fölner along n ∈ N when its boundary ∂E has zero upper
asymptotic density with respect to n, i.e; d

n
(∂E) = 0. More generally

F = (Fn)n∈n ∈ Qn with n ∈ N is Fölner when we have d
n
(∂F) = 0 with

∂F = (∂Fn)n∈n. In general this property seems to be weaker than the usual

Fölner property lim supn∈n
]∂Fn
]Fn

= 0. But in the following we will work with

sequences F with dn(F) > 0. In this case our definition coincides with the
standard one.

Let E,F ∈ PN and n ∈ N. We say that F is n-filled with E or E is
dense in F along n when we have

d
n
(F \ EM )

M→+∞−−−−−→ 0.

Observe that
(
d(EM )

)
M

is converging nondecreasingly to some a ≥ d(E)
when M goes to infinity. The limit a is in general strictly less than 1. For
example if E :=

⋃
nJ2

2n, 22n+1K one easily computes d(EM ) = d(E) = 2/3
for all M . In this case, the set E is moreover a Fölner set.

Also F = (Fn)n∈n ∈ Qn is said filled with E when we have with F\EM :=
(Fn \ EM )n∈n :

d
n
(F \ EM )

M→+∞−−−−−→ 0.

2.3. Fölner set F filled with a given E with d(E) > 0. Given a set E
with positive upper asymptotic density we build a Fölner set F filled with
E by using a diagonal argument. More precisely we will build F by filling
the holes in E of larger and larger size when going to infinity.

Lemma 1. For any E with d(E) > 0 there is n ∈ N and F ∈ PN with
∂F ⊂ E such that

• dn(F ) ≥ dn(E ∩ F ) = d(E);
• F is Fölner along n;
• E is dense in F along n.

Proof. We first consider an increasing sequence of integers n0 = (n0
k)k satis-

fying dn
0
(E) = d(E). We can ensure that n0

k belong to E for all k. Observe

that d(E \ EM ) ≤ 1/M for all M ∈ N∗. Therefore for M > 2/d(E), we

have d
n0

(EM ) ≥ dn
0

(EM ∩E) > d(E)/2 > 0. We fix such an integer M and

we extract again a subsequence nM = (nMk )k of n0 such that dn
M

(EM ) is a

limit equal to ∆M := d
n0

(EM ). Then we put ∆M+1 = d
nM

(EM+1) and we

consider a subsequence nM+1 of nM such that dn
M+1

(EM+1) is a limit equal
to ∆M+1 ≥ ∆M and dl(EM+1) ≤ ∆M+1 + 1/2M+1 for all l ∈ nM+1. We
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define by induction in this way nested sequences nk for k > M such that

dn
k
(Ek) is a limit equal to ∆k = d

nk−1

(Ek) and dl(Ek) ≤ ∆k + 1/2k for all
l ∈ nk. We let ∆∞ > d(E)/2 > 0 be the limit of the nondecreasing sequence
(∆k)k. We consider the diagonal sequence n = (nk)k≥M = (nkk)k≥M and we
let

F =
⋃
k>M

Jnk−1, nkK ∩ Ek.

Clearly we have ∂F ⊂ n0 ∪ E ⊂ E.
On the one hand, F ∩ J1, nkK is contained in Ek ∩ J1, nkK so that

dnk(F ) ≤ dnkk(Ek),

≤ ∆k + 1/2k,

d
n
(F ) ≤ lim

k
∆k = ∆∞,

On the other hand, F ∩ J1, nkK contains El ∩ Jnl−1, nkK for all M < l < k.
Therefore

dnkk
(El)−

nl−1

nkk
≤ dnk(F ),

∆l ≤ dn(F ),

∆∞ ≤ dn(F ).

We conclude dn(F ) = ∆∞.
Similarly we have for all l > M :

dn(E ∩ F ) ≥ dn(E ∩ El),
≥ dn(E)− 1/l,

≥ d(E)− 1/l,

therefore dn(E∩F ) ≥ d(E). Also d
n
(E∩F ) ≤ dn(E) = d(E). Consequently

we get dn(E ∩ F ) = d(E).
We check now that E is dense in F . For l fixed and for all k ≥ l we have

dnk(F \ El) = dnkk
(Ek \ El),

≤ dnkk(Ek)− dnkk(El),

≤ ∆k + 1/2k − dnkk(El).

By taking the limit in k, we get d
n
(F \ El) ≤ ∆∞ −∆l

l−→ 0.
Let us prove finally the Fölner property of the set F . For nk < K ∈ ∂F

either [K − k,K[ or ]K,K + k] lies in the complement of E. Therefore

d
n
(∂F ) ≤ 2/k. As it holds for all k, the set F is Fölner along n. �
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2.4. Borel-Cantelli argument. Let (X,A, λ) be a measure space with λ
being a finite measure. A map E : X → PN is said measurable, when
for all n ∈ N the set {x, n ∈ E(x)} belongs to A (equivalently writing
E as an increasing sequence (ni)i∈N the integers valued functions ni are
measurable). For such measurable maps E and n, the upper asymptotic

density d
n
(E) defines a measurable function.

Lemma 2. Assume E is a measurable sequence of integers such that d(E(x)) >
β > 0 for x in a measurable set A of a positive λ-measure. Then there ex-
ist n ∈ N, measurable subsets (An)n∈n of X and F = (Fn)n∈n ∈ Qn with
∂Fn ⊂ E(x) for all x ∈ An, n ∈ n such that :

• dn(F) ≥ β;

• λ(An) ≥ e−nδn
n2 for all n ∈ n with δn

n3n→+∞−−−−−−→ 0;
• F is a Fölner sequence;
• E is dense in F uniformly on An, i.e.

lim sup
n∈n

sup
x∈An

dn (Fn \ EM (x))
M−→ 0.

•

lim inf
n∈n

inf
x∈An

dn (E(x) ∩ Fn) ≥ β.

Proof. The sequences n and F built in the previous lemma define measurable
sequences on A. By taking a smaller subset A we may assume

• nk(x) is bounded on A for all k,

• dnk(x)(∂F (x))
k−→ 0 uniformly in x ∈ A,

• lim supk supx∈A dnk(x)(F (x) \ EM (x))
M−→ 0,

• dnk(x)(E(x) ∩ F (x))
k−→ dn(x)(E(x) ∩ F (x)) ≥ β uniformly in x ∈ A.

By Borel-Cantelli Lemma, the subset An := {x ∈ A, n ∈ n(x)} has λ-
measure larger than 1/n2 for infinitely many n ∈ N. We let n be this infinite
subset of integers. By the (uniform in x) Fölner property of F (x), the
cardinality of the boundary of (F (x))(n) = F (x) ∩ J1, nK for x ∈ An and

n ∈ n is less than nαn for some sequence (αn)n∈n (independent of x) going

to 0. Therefore there are at most 2
∑[nαn]

k=1

(
n
k

)
choices for (F (x))(n) and thus

it may be fixed by dividing the measure of An by 2
∑[nαn]

k=1

(
n
k

)
= enδn for

some δn
n−→ 0. �

3. Empirical measures associated to Fölner sequences

Let (X,T ) be a topological system, i.e. X is a compact metrizable space
and T : X 	 is continuous. We denote byM(X) the set of Borel probability
measures on X endowed with the weak-∗ topology and by M(X,T ) the
compact subset of invariant measures. We will write δx for the Dirac measure
at x ∈ X. We let T∗ be the induced (continuous) action on M(X). For
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µ ∈ M(X) and a finite subset F of N, we let µF be the empirical measure
µF := 1

]F

∑
k∈F T

k
∗ µ.

3.1. Invariant measures. The following lemma is standard, but we give a
proof for the sake of completeness. We fix n ∈ N and F = (Fn)n∈N ∈ Qn.

Lemma 3. Assume F is a Fölner sequence and dn(F) > 0. Let (µn)n∈n be a
family in M(X) indexed by n. Then any limit of

(
µFnn

)
n∈n is a T -invariant

Borel probability measure.

Proof. Let n′ be a subsequence of n such that
(
µFnn

)
n∈n′ is converging to

some µ′. It is enough to check that
∣∣∫ φdµFnn − ∫ φ ◦ T dµFnn ∣∣ goes to zero

for when n′ 3 n→ +∞ for any φ : X → R continuous.
This follows from

∫
φdµFnn −

∫
φ ◦ T dµFnn =

1

]Fn

∫  ∑
k+1∈Fn
k/∈Fn

φ ◦ T k −
∑

k+1/∈Fn
k∈Fn

φ ◦ T k

 dµn,

∣∣∣∣∫ φdµFnn −
∫
φ ◦ T dµFnn

∣∣∣∣ ≤ sup
x∈X
|φ(x)|]∂Fn

]Fn
,

lim inf
n∈n

∣∣∣∣∫ φdµFnn −
∫
φ ◦ T dµFnn

∣∣∣∣ ≤ lim inf
n∈n

]∂Fn
]Fn

,

≤ dn(∂F)

dn(F)
= 0.

�

3.2. Subadditive cocycles. We fix a general continuous subadditive pro-
cess Φ = (φn)n∈N with respect to (X,T ), i.e. φ0 = 0, φn : X → R is a
continuous function for all n and φn+m ≤ φn + φm ◦ Tn for all m,n. In
the proof of the main theorem we will only consider additive cocycles, but
we think it could be interesting to consider general subadditive cocycles in
other contexts.

Observe that Φ+ = (φ+
n )n, with φ+

n = max(φn, 0) for all n, is also
subadditive. For any µ ∈ M(X,T ), we let φ+(µ) = limn

1
n

∫
φ+
n dµ =

infn
1
n

∫
φ+
n dµ (the existence of the limit follows from the subadditivity

property). Recall also that by the subadditive ergodic theorem [25], the

limit φ∗(x) = limn
φn(x)
n exists for x in a set of full measure with respect

to any invariant measure µ. When φ∗(x) ≥ 0 for µ-almost every point x
with µ ∈ M(X,T ), then we have φ+(µ) =

∫
φ∗(x) dµ(x). If µ is moreover

ergodic, then φ∗(x) = φ+(µ) for µ almost every x.
Let E : Y → PN be a measurable sequence of integers defined on a Borel

subset Y of X. For a set Fn ∈ Pn with ∂Fn ⊂ E(x) for some x ∈ X,
we may write F−n uniquely as the finite union of E(x)-irreducible intervals
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F−n =
⋃

k∈KJak, bkJ. Let nk = bk − ak for any k ∈ K. Then we define

∀x ∈ X, φFnE (x) :=
∑
k∈K

φnk
(T akx)

When Φ is additive, i.e. Φn =
∑

0≤k<n φ ◦ T k for some continuous function

φ : X → R, we always have φFnE (x) = φFn(x) :=
∑

k∈F−n φ(T kx).
The set valued map E is said a-large with respect to Φ for some a ≥ 0

when we have φl−k(T
kx) ≥ (l − k)a for all consecutive integers l > k in

E(x).

Lemma 4. Let Φ, Fn and E as above. Assume E is 0-large. Then for all
x and n ≥ N ≥M we have

φFnE (x)

]Fn
≥
∫
φ+
N

N
dδFnx −

dn (Fn \ EM (x)) +Ndn(∂Fn) + 4M/N

dn(Fn)
sup
y
|φ1(y)|

Proof. Let k ∈ {0, · · · , N − 1} and l ∈ N. The interval of integers Jk,l =
Jk + lN, k + (l + 1)NJ may be written as

Jk,l = I1

∐
I2

∐
I3

∐
I4

where I1 is the union of disjoint E-irreducible intervals of length less than
M contained in Jk,l, I2 ⊂ N \ F−n , I3 ⊂ F−n \ EM (x) and I4 is the union
of at most two subintervals of E-irreducible intervals of length less than M
containing an extremal point of Jk,l.

Therefore for a fixed k, by summing over all l with k + lN ∈ Fn we get
as E is 0-large and Φ is subadditive:

∑
l, k+lN∈Fn

φ+
N (T kx)

≤
∑

k∈K, Jak,bkJ∩(k+NN)=∅

φnk
(T akx) + sup

y
|φ1(y)| (N]∂Fn + ] (Fn \ EM (x)) + 2M([n/N ] + 1))

≤ φFnE (x) + sup
y
|φ1(y)| (N]∂Fn + ] (Fn \ EM (x)) + 2M([n/N ] + 1)) .

Then by summing over all k ∈ {0, · · · , N−1} and dividing byN , we conclude
that

]Fn

∫
φ+
N

N
dδFnx ≤ φ

Fn
E (x)+sup

y
|φ1(y)| (N]∂Fn + ]Fn \ EM (x) + 2M([n/N ] + 1)) .

�

3.3. Positive exponent of empirical measures for additive cocycles.
We consider here an additive cocycle Φ associated to a continuous function
φ : X → R. With the notations of Lemma 2 and Lemma 3, we have :
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Lemma 5. Let (µn)n∈n with µn(An) = 1 for all n ∈ n. Assume E is a-large
with a > 0. Then for any weak-∗ limit µ of µFnn we have

φ∗(x) ≥ a for µ a.e. x.

Proof. We claim that for any 0 < α < 1 and any ε > 0, there is arbitrarily
large N0 such that

lim sup
n

µFnn (φN0/N0 ≥ αa) ≥ 1− ε.(3.1)

By weak-∗ convergence of µn to µ, it will imply, the set {φN0/N0 ≥ αa}
being closed :

µ(φN0/N0 ≥ αa) ≥ 1− ε.
Then we may consider a sequence (Nk)k going to infinity such that

µ(φNk/Nk ≥ αa) ≥ 1− ε/2k.

Therefore µ (
⋂
k{φNk/Nk ≥ αa}) ≥ 1−2ε. We conclude lim supn

φn(x)
n ≥ αa

for µ a.e. x by letting ε go to zero.
Let us show now our first claim (3.1). It is enough to show the inequality

for µn = δx uniformly in x ∈ An. We use the same notations as in the proof
of Lemma 4. Fix x ∈ An. For k, l with k+ lN ∈ Fn, the interval Jk,l is said

admissible, when φN (fk+lNx)/N ≥ αa. If Jk,l is not admissible we have

φN (fk+lNx) ≥
∑
i∈I1

φ(f ix)− sup
y
|φ(y)|](I2 ∪ I3 ∪ I4),

αaN ≥ a]I1 − sup
y
|φ(y)|](I2 ∪ I3 ∪ I4),

≥ aN − (a+ sup
y
|φ(y)|)](I2 ∪ I3 ∪ I4),

](I2 ∪ I3 ∪ I4) ≥ (1− α)aN

a+ supy |φ(y)|
.

If we sum over all l with k+ lN ∈ Fn and then over k ∈ {0, · · · , N − 1}, we
get by arguing as in the proof of Lemma 4 :

N
(
N]∂Fn + ] (Fn \ EM (x)) + 2M([n/N ] + 1)

)
≥

]{Jk,l not admissible, k + lN ∈ Fn} ×
(1− α)aN

a+ supy |φ(y)|
.

Therefore by Lemma 2 (third and fourth items) we have for n 3 n� N �M
uniformly in x ∈ An,

]{Jk,l not admissible, k + lN ∈ Fn} ≤ ε]Fn.

By definition of admissible intervals we conclude that

lim sup
n

δFnx (φN/N ≥ αa) ≥ 1− ε.

�
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3.4. Entropy of empirical measures. Following Misiurewicz’s proof of
the variational principle, we estimate the entropy of empirical measures
from below. For a finite partition P of X and a finite subset F of N, we
let PF be the iterated partition PF =

∨
k∈F f

−kP . When F = J0, n − 1K,
n ∈ N, we just let PF = Pn. We denote by P (x) the element of P containing
x ∈ X.

For a Borel probability measure µ on X, the static entropy Hµ(P ) of µ
with respect to a (finite measurable) partition P is defined as follows:

Hµ(P ) = −
∑
A∈P

µ(A) logµ(A),

= −
∫

logµ (P (x)) dµ(x).

When µ is T -invariant, we recall that the measure theoretical entropy of µ
with respect to P is then

hµ(P ) = lim
n

1

n
Hµ(Pn)

and the entropy h(µ) of µ is

h(µ) = sup
P
hµ(P ).

We will use the two following standard properties of the static entropy[20]:

• for a fixed partition P , the map µ 7→ Hµ(P ) is concave on M(X),
• for two partitions P and Q, the joined partition P ∨Q satisfies

Hµ(P ∨Q) ≤ Hµ(P ) +Hµ(Q).(3.2)

Lemma 6. Let F = (Fn)n∈n be a Fölner sequence with dn(F) > 0. For any
measurable finite partition P and m ∈ N∗, there exist a sequence (εn)n∈n
converging to 0 such that

∀n ∈ n,
1

m
H
µFnn

(Pm) ≥ 1

]Fn
Hµn(PFn) + εn.

Proof. When Fn is an interval of integers, we have [29] :

(3.3)
1

m
H
µFnn

(Pm) ≥ 1

]Fn
Hµn(PFn)− 3m log ]P

]Fn
.

Consider a general set Fn ∈ Pn. We decompose Fn into connected compo-
nents Fn =

∐
k=1,··· ,K F

k
n . Observe K ≤ ]∂Fn. Then we get :

1

m
H
µFnn

(Pm) ≥
K∑
k=1

]F kn
m]Fn

H
µ
Fkn
n

(Pm),by concavity of µ 7→ Hµ(Pm)

≥ 1

]Fn

K∑
k=1

Hµn(PF
k
n )− 3mK log ]P

]Fn
, by applying (3.3) to each F kn ,

≥ 1

]Fn
Hµn(PFn)− 3m log ]P

]∂Fn
]Fn

, according to (3.2).
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This concludes the proof with εn = 3m ]∂Fn
]Fn

log ]P , because F is a Fölner

sequence with dn(F) > 0. �

With the notations of Lemma 2 we let µn be the probability measure

induced by λ on An, i.e. µn = λ(An∩·)
λ(An) . We assume with the notations of

Lemma 4:

For any δ > 0, there exists ε > 0 such that

we have for any partition P with diameter less than ε :(H)

∃N ∀x ∈ An with N < n ∈ n,
1

λ (PFn(x) ∩An)
≥ e−δneφ

Fn
E (x).

Proposition 2. Under the above hypothesis (H), any weak-∗ limit µ of
(µFnn )n∈n satisfies

h(µ) ≥ φ+(µ).

Proof. Without loss of generality we may assume (µFnn )n∈n is converging to
µ. Fix δ > 0 and take a partition P with µ(∂P ) = 0 and with diameter less
than ε. In particular we have for all fixed m ∈ N:

1

m
Hµ(Pm) = lim

n

1

m
H
µFnn

(Pm).

Then we get for n� N �M � m

1

m
Hµ(Pm) ≥ lim sup

n∈n

1

]Fn
Hµn(PFn), by Lemma 6,

≥ lim sup
n∈n

1

]Fn

∫ (
− log λ

(
PFn(x) ∩An

)
+ log λ(An)

)
dµn(x),

≥ lim sup
n∈n

∫
φFnE − δn
]Fn

dµn(x), by Hypothesis (H),

≥ lim sup
n∈n

(∫
φ+
N

N
dµFnn

−
supy |φ(y)|

(
supx∈An dn(Fn \ EM (x)) +Ndn(∂Fn) + 4M/N

)
+ δ

dn(Fn)

)
, by Lemma 4,

≥
∫
φ+
N

N
dµ− 1

dn(F)

(
sup
y
|φ(y)|

(
lim sup
n∈n

sup
x∈An

dn(Fn \ EM (x)) + 4M/N

)
+ δ

)
,

≥φ+(µ)− 1

dn(F)

(
sup
y
|φ(y)|

(
lim sup
n∈n

sup
x∈An

dn(Fn \ EM (x)) + 4M/N

)
+ δ

)
.

Letting N , then M , then m go to infinity, we conclude that

h(µ) ≥ hµ(P ) ≥ φ+(µ)− δ

dn(F)
.

We conclude by taking δ arbitrarily small. �
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4. Existence of SRB measures for C∞ surface diffeomorphisms

4.1. Entropy formula. By Ruelle’s inequality [36], for any C1 system, the
entropy of an invariant measure is less than or equal to the integral of the
sum of its positive Lyapunov exponents. For C1+ systems, the following
entropy characterization of SRB measures was obtained by Ledrappier and
Young :

Theorem 3. [28] An invariant measure of a C1+ diffeomorphism on a com-
pact manifold is a SRB measure if and only it has a positive Lyapunov ex-
ponent almost everywhere and the entropy is equal to the integral of the sum
of its positive Lyapunov exponents.

As the entropy is harmonic (i.e. preserves the ergodic decomposition),
the ergodic components of a SRB measures are also SRB measures.

4.2. Settings. We consider from now a C1 diffeomorphism f : M 	. Let
‖‖ be a Riemaninan structure on M and let d be the induced metric on M .
The (forward upper) Lyapunov exponent of (x, v) for x ∈ M and v ∈ TxM
is defined as follows (see [31] for an introduction to Lyapunov exponents):

χ(x, v) := lim sup
n→+∞

1

n
log ‖dxfn(v)‖.

The function χ(x, ·) admits only finitely many values χ1(x) > ... > χp(x)(x)
on TxM \ {0} and generates a flag 0 ( Vp(x)(x) ( · · · ( V1 = TxM with
Vi(x) = {v ∈ TxM, χ(x, v) ≤ χi(x)}. In particular, χ(x, v) = χi(x) for
v ∈ Vi(x) \ Vi+1(x). The function p as well the functions χi and the vector
spaces Vi(x), i = 1, ..., p(x) are invariant and depend Borel measurably on
x. One can show the maximal Lyapunov exponent χ introduced in the
introduction coincides with χ1 (see Appendix A).

A point x is said regular when there exists a decomposition

TxM =

p(x)⊕
i=1

Hi(x)

such that

∀v ∈ Hi(x) \ {0}, lim
n→± ∞

1

|n|
log ‖dxfn(v)‖ = χi(x)

with uniform convergence in {v ∈ Hi(x), ‖v‖ = 1} and

lim
n→± ∞

1

|n|
log Jac (dxf

n) =
∑
i

dim(Hi(x))χi(x).

In particular we have Vi(x) =
⊕i

j=1Hj(x) for all i. The set R of regu-
lar points is an invariant measurable set of full measure for any invariant
measure [27]. The invariant subbundles Hi are called the Oseledec’s bun-
dles. We also let R∗ := {x ∈ R, ∀i χi(x) 6= 0}. For x ∈ R∗ we put
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Eu(x) =
⊕

i, χi(x)>0Hi(x) and Es(x) =
⊕

i, χi(x)<0Hi(x).

In the following we only consider surface diffeomorphisms. Therefore we
always have p(x) ≤ 2 and when p(x) is equal to 1, we let χ2(x) = χ1(x).
Let R1 (resp. R2) be the invariant subset of regular points x of (M,f)
with χ1(x) > 0 > χ2(x) (resp. with χ1(x) ≥ χ2(x) ≥ 0). When ν is f -
invariant we let χi(ν) =

∫
χi dν. By Ruelle’s inequality, when an ergodic

measure ν has positive entropy, then χ1(ν) = χf (ν) ≥ hf (ν) > 0 and
−χ2(ν) = χf−1(ν) ≥ hf−1(ν) = hf (ν) > 0 and therefore ν(R1) = 1.

For a C1 curve σ : I → M , I being a compact interval of R, we let
σ∗ = σ(I). The length of σ∗ for the induced Riemanian metric is denoted by
|σ∗|. We also let vx ∈ PT 1M be the projective vector tangent to σ∗ at x . We
write x̂ = (x, vx) and σ̂∗ = {x̂, x ∈ σ∗}. Assume lim supn

1
n log ‖dxfn‖ > 0

on a set of positive Lebesgue measure as in the Main Theorem or Corollary
2. Then by using Fubini’s theorem as in [14] there is a C∞ smooth embedded
curve σ : I → M and a subset A of σ∗ with Lebσ∗(A) > 0, such that we
have lim supn

1
n log ‖dxfn(vx)‖ > a > 0 for all x ∈ A. Here Lebσ∗ denotes

the Lebesgue measure on σ∗ induced by its inherited Riemannian structure
as a submanifold of M . This a finite measure with Lebσ∗(M) = |σ∗|. Fix
0 < b < a.

We will apply the results of the previous section to the projective action
F : PT 1M 	 induced by f , where we consider:

• the additive derivative cocycle Φ = (φk)k for F on PT 1M given by
φ(x, v) = φ1(x, v) = log ‖dxf(v)‖,
• the measure λ on PT 1M given by s∗ Lebσ∗ with s : x ∈ σ∗ 7→ (x, vx),
• the b-large set E(x), x ∈ A, of b-hyperbolic times for φ at x, i.e.

the set of integers n > 0 with φk(F
n−k(x, vx)) ≥ kb for all 0 ≤ k ≤ n.

By Pliss lemma [32], we have for some constant β > 0 depending only on
a, b and ‖df‖:

(4.1) ∀x ∈ A, d(E(x)) > β.

Let π : PTM → M be the natural projection. The topological extension
π : (PTM,F ) → (M,f) is principal† by a straightforward application of
Ledappier-Walters variational principle [28] and Lemma 3.3 in [37]. In fact
this holds in any dimension and more generally for any finite dimensional
vector bundle morphism instead of df : TM 	.

4.3. Reduction to property (H). We prove now Corollary 2 assuming
the following Proposition 4, whose proof is given in the next section. This
is also a first step in the proof of the Main Theorem.

Proposition 4. The b-large measurable sequence E : PTM → PN satisfies
the property (H).

†i.e. hf (π∗µ) = hF (µ) for all F -invariant measure µ.



16 DAVID BURGUET

Proof of Corollary 2. Let F = (Fn)n∈n and (An)n∈n be the sequences asso-
ciated to E given by Lemma 2. Any weak-∗ limit µ of µFnn is invariant under
F and thus supported by Oseledec’s bundles. By Lemma 5, µ is supported
by the unstable bundle Eu and φ∗(x̂) ≥ b for µ a.e. x̂ ∈ PTM . By the
subadditive ergodic theorem, recall that :

φ+(µ) =

∫
φ∗ dµ ≥ b.

Write µ = αµ1 + (1−α)µ2 with µi(π
−1Ri) = 1 for i = 1, 2. Observe that

the measures µi are F -invariant. Moreover h(µ2) = h(πµ2) = 0. Therefore
by Proposition 2 we obtain:

h(µ) ≥
∫
φ∗ dµ,

≥ α
∫
φ∗ dµ1 + (1− α)

∫
φ∗ dµ2,(4.2)

≥ α
∫
φ∗ dµ1 = αχ1(πµ1).

But recall h(µ) = h(πµ) = αh(πµ1) ≥ b, so that we have α > 0 and then

h(πµ1) ≥ χ1(πµ1) ≥ b.
The converse inequality h(πµ1) ≤ χ1(πµ1) follows from Ruelle’s inequality.
Therefore h(πµ1) = χ1(πµ1) > 0 and by Ledrappier-Young characterization
(Theorem 3), ν = πµ1 is a SRB measure of (M,f). In fact from (4.2),
h(µ2) = 0 and φ∗ ≥ b µ a.e. we get α = 1 and thus πµ = πµ1 is a SRB
measure. �

5. Proof of Proposition 4

In this section we use tools introduced firstly in [14] to bound the dis-
torsion of unstable manifolds. As these manifolds are one-dimensional, the
reparametrizations in Yomdin’s theory are just affine. In fact we can in this
case completely avoid the use of the classical Yomdin’s Reparametrization
Lemma by applying the Landau-Kolmogorov inequality as in [14].

5.1. Some terminology. Following [14] a Cr, r ∈ N\{0, 1}, smooth curve
σ : [−ε, ε]→ R2 with ε > 0 is said (ε, r)-bounded when

(5.1) max
s=2,··· ,r

‖dsσ‖∞ ≤ ‖dσ‖∞.

If moreover ‖dσ‖∞ ≤ 1 we say that σ is strongly (ε, r)-bounded. In
particular such a map satisfies ‖σ‖r := max1≤s≤r ‖dsσ‖ ≤ 1, which is the
standard Cr upper bound required for the reparametrizations in the usual
Yomdin’s theory. Our stronger condition (5.1) will allow to control the
distorsion along the curve. The angle between two lines e and f will be
denoted by ∠e, f .

Lemma 7. Let σ be a (ε, r)-bounded curve. Then we have for ε small enough
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• ∀t, s ∈ [−ε, ε], ‖σ
′(t)‖

‖σ′(s)‖ ≤ 1 + 5ε,

• ∀x, y ∈ σ∗, ∠vx, vy < 10ε.

Proof. We have

∀t, s ∈ [−ε, ε], ‖σ′(t)− σ′(s)‖ ≤ 2ε‖d2σ‖ ≤ 2ε‖dσ‖,(5.2)

therefore
‖σ′(t)‖
‖σ′(s)‖

≤ 1 + 2ε

1− 2ε
∼ 1 + 4ε.

Then let s0 with ‖σ′(s0)‖ = ‖σ′‖∞ and put x0 = σ(s0). Together with the
above inequality (5.2) we get :

∀t ∈ [−ε, ε],
∥∥∥∥ σ′(t)

‖σ′(s0)‖
− vx0

∥∥∥∥ ≤ 2ε,

and then with x = σ(t) :

‖vx − vx0‖ ≤
∥∥∥∥ σ′(t)

‖σ′(s0)‖
− vx0

∥∥∥∥+
∣∣1− ‖σ′(t)‖/‖σ′(s0)‖

∣∣ ≤ 9ε/2.

�

To study the local properties of fnσ∗ for a smooth curve σ in M we work
in R2 by looking through charts of the manifold, but the dynamics is then
nonautonomous.

We consider a family F = (fn)n∈N of Cr maps fn : B(R) → R2 (with
f0 being the inclusion map), where B(R) denotes the Euclidean ball in R2

of radius R centered at 0 . For all n ∈ N we let fn be the composition
fn ◦ · · · ◦ f0 defined on Bn(R) :=

⋂
0≤k<n(fk)−1B(R). Then a curve σ in R2

is said strongly (ε, n, r)-bounded with respect to F = (fn)n∈N when σ∗
is contained in Bn(R) and the curves fk ◦σ : [−ε, ε]→ R2 are strongly (ε, r)-

bounded for k = 0, · · · , n − 1. Let F̂ = (Fn)n be the projective derivative
maps of F and we put again Fn = Fn ◦ · · · ◦ F0.

Let d be the distance on PTB(R) ∼ B(0, R) × PR2 given by the sum of
the Euclidean distance of the base points and the angles of the two lines.
We define then the F̂-dynamical ball at x̂ ∈ PTB(R) by :

BF̂d (x̂, n, ε) :=

n−1⋂
k=0

F−kBd(x̂, ε)

and the additive cocycle (for the nonautonomous system F) by :

∀x̂ = (x, v) ∈ PTBn(R), φn(x̂) = log ‖dxfn(v)‖.
From Lemma 7 we get by an immediate induction :

Lemma 8. Let σ be a strongly (ε, n, r)-bounded curve with respect to F .
Then for any 1 ≤ k ≤ n and for all ŷ, ẑ ∈ σ̂∗ we have :

• σ̂∗ ⊂ BF
d (x̂, n, 12ε) with x = σ(0) and x̂ = (x, vx),

• eφk(ŷ)

eφk(ẑ)
≤ (1 + 5ε)2 ≤ 1 + 100ε.
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5.2. Large r-bounded curves at hyperbolic times. When n is a b-
hyperbolic time for the additive cocycle (φn)n at x we will show that the
geometry of the curve fnσ∗ around fnx is nice.

5.2.1. Bounding Cr norms. Let f : B(R)→ R2 be a Cr smooth map. There
is ε > 0 depending only on ‖f‖r so small that for any x ∈ M the map
fε = f(ε·) satisfies ‖fε‖r = ‖dfε‖. For any 1 ≥ b > 0 we let ψb : [−ε, ε] 	,
be the linear map x 7→ bx and for any ε > 0 and any σ : [−ε, ε] → R2

we let σε = ε−1σ. Finally we write m(dxf) for the conorm of dxf, i.e.
m(dxf) := minv∈R2, ‖v‖=1 ‖dxf(v)‖, and we let m(df) := minx∈B(R) m(dxf).

Lemma 9. Let σ be a (ε, r)-bounded curve with σ(0) = x. There exists
a constant C(r) > 1 depending only on r such that the map f ◦ σ ◦ ψa :
[−ε, ε]→M is (ε, r)-bounded with

a = a(r, f) = C(r)−1 (‖df‖/m(df))−1/r−1 .

Proof. We compute for some constant C ′(r) with b = (C ′(r)‖df‖/m(df))−1/r−1

dr(f ◦ σ ◦ ψb) = dr(f ◦ σ)br,

‖dr(f ◦ σ ◦ ψb)‖ ≤ C ′(r)‖fε‖r‖σε‖rbr, by Faà di Bruno’s formula,

≤ C ′(r)‖fε‖rε−1‖σ‖rbr,
≤ C ′(r)‖dfε‖ε−1‖σ‖rbr, by the choice of ε,

≤ C ′(r)‖dfε‖ε−1‖dσ‖br, since σ is (ε, r)-bounded,

≤ C ′(r)‖df‖‖dσ‖br,
≤ (C ′(r)br−1‖df‖)‖dσ‖b,
≤ m(df)‖dσ‖b, by definition of b,

≤ ‖d(f ◦ σ ◦ ψb)‖.

Then by the Landau-Kolmogorov inequality (see [14]), we have for some
other constant C ′′(r) ≥ 1 :

‖f ◦ σ ◦ ψb‖r ≤ C ′′(r)‖d(f ◦ σ ◦ ψb)‖.

By taking a = b/C ′′(r) we get the desired result. �

5.2.2. Non autonomous system associated to (M,f). We let exp and R =
Rinj be respectively the exponential map and the radius of injectivity of the
Riemanian manifold (M, ‖ · ‖). For x ∈ M we let Fx = Fx(f) = (fxn)n be
the non autonomous systems defined for all n by

fxn = exp−1
fnx ◦f ◦ expfn−1x : B(0, R) ⊂ TxM ∼ R2 → TfxM ∼ R2.

For a Cr map g : U → R2 with U an open subset of R2 we write again
‖g‖r = max1≤s≤r ‖dsg‖. Observe that supn,x ‖fxn‖r < +∞. A curve σ :

[−ε, ε]→M with x = σ(0) is said strongly (ε, n, r)-bounded when exp−1
x ◦σ

is strongly (ε, n, r)-bounded with respect to Fx.
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Let σ : I → M be a Cr embedded smooth curve. For x ∈ σ∗ and n ∈ N
we let Ixn = Ixn(ε, σ, r) be the largest subinterval of I such that σ ◦ ψxn is
strongly (ε, n, r)-bounded, where ψxn denotes the affine reparametrization
ψxn = ψxn,r : [−ε, ε] → Ixn with σ ◦ ψxn(0) = x. For y ∈ σ∗ we let Dk(y)(=

Dr,ε
k,σ(y)) := (fk ◦ σ ◦ ψyk)∗ and Ek(y) := (σ ◦ ψyk)∗. Finally we let a(r, f) =

inff∈
⋃
x∈M Fx(f) a(r, f) > 0.

5.2.3. The length of Dk(y) at hyperbolic times k. In standard Yomdin’s the-
ory one reparametrizes the intersection of a disc σ with a dynamical ball by
maps ψ satisfying ‖fn ◦ σ ◦ ψ‖r ≤ 1. However the method does not allow
to control neither the distorsion on σ∗ nor the length of (fn ◦ σ ◦ ψ)∗. For
curves, by the simple modified approach developed in the previous subsec-
tions, we can always control the distorsion. Moreover the length of Dn(y)
is bounded away from zero at hyperbolic times n.

A (ε, r)-bounded curve σ with σ(0) = x is said ample when ‖d
(
exp−1

x ◦σ
)
‖ >

1/2. By the distorsion property of Lemma 7, the length of σ∗ is then larger
ε
2 . Without loss of generality the starting curve σ in Subsection 4.2 may be
chosen to be an ample (ε, r)-bounded curve.

Lemma 10. Let b > 0. There is ε > 0, 1 ≥ α > 0 and r ∈ N depending
on b such that for any ample (ε, r)-bounded curve σ the length of Dr,ε

n,σ(x) is
larger than αε for any b-hyperbolic time n at x.

Proof. Assume n is a b-hyperbolic time for x. We may choose r then p with
− log a(r,fp)

p < b/2. Finally take ε with ‖fpε‖r = ‖dfpε‖ for any fp ∈
⋃
xFx(fp).

We may also ensure that for all z ∈M and y ∈ TzM with ‖y‖ < ε we have

(5.3) m(dy expz) ≥ e ≥ ‖dy expz ‖.

Let m be the largest integer less than or equal to n such that exp−1
fmx ◦f

m◦
σ ◦ ψxm is ample, i.e. ‖d(exp−1

fmx ◦f
m ◦ σ ◦ ψxm)‖ > 1/2. For L ∈ N we let

AL := minl<L a(r, f l). We take K ∈ N with Ap ≥ 2e2−Kpb/2.

• If m > n−Kp then exp−1
x ◦σ◦ψxm(AKp·) is strongly (ε, n, r)-bounded

with respect to Fx by Lemma 9. Indeed observe that for j = m +
1, · · · , n we have ‖d(exp−1

fjx
◦f j ◦ σ ◦ ψxm(AKp·))‖ ≤ 1/2, otherwise

this would contradict the definition of m. Using again Lemma 7, the
length of Dn(x) is larger than αε with

α = AKp min
k<Kp

m(dfk).

• Consider now the remaining case k := n−m ≥ Kp. Write n−m =
qp+ r with 0 ≤ r < p. By Lemma 9 we have then

(5.4)
|ψxn|
|ψxm|

≥ a(r, fp)qAp ≥ 2e2−kb.
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It follows that

‖d(exp−1
fnx ◦f

n ◦ σ ◦ ψxn)‖ ≥ e−1‖d0(fn ◦ σ ◦ ψxn)‖, by the choice of ε in (5.3),

≥ ekb−1‖d0(fm ◦ σ ◦ ψxn)‖, as n is a b-hyperbolic time,

≥ ekb−1‖d0(fm ◦ σ ◦ ψxm)‖ × |ψ
x
n|

|ψxm|
, as ψxm and ψxn are affine,

≥ e‖d(fm ◦ σ ◦ ψxm)‖,by (5.4) and Lemma 7,

≥ ‖d(exp−1
fmx ◦f

m ◦ σ ◦ ψxm)‖, again by (5.3),

≥ 1/2, by definition of m.

Therefore the (ε, n, r)-bounded curve exp−1
fnx ◦f

n ◦ σ ◦ ψxn is ample,

contradicting the definition of m.

Consequently, only the first case occurs and this completes the proof. �

5.3. Proof of (H). Fix the error term δ > 0. We take ε and α as in
Lemma 10. Without loss of generality we may also assume that (recall
φ(x̂) = log ‖dxf(v)‖ for x̂ = (x, v) ∈ PTM)

(5.5) ∀x̂, ŷ ∈ PTM with d(x̂, ŷ) < ε, |φ(x̂)− φ(ŷ)| < δ/3.

By Yomdin’s theorem on local volume growth [40] we may also guaran-
tee by taking r larger and ε smaller that v∗(f, 2ε, σ, n) := supx∈X |fn(σ∗ ∩
B(x, ε, n)| < Deδn/3 for some D > 0, for any curve σ with ‖σ‖r ≤ 1 and any
n ∈ N. We shall prove with the notations of Sections 3 and 4 that for any
partition P of PTM with diameter less than αε/4 < ε there exists N such
that

∀x ∈ An ⊂ σ∗, ∀n ∈ n, n > N,
1

λ (PFn(x̂) ∩ π−1An)
≥ e−δneφFn (x̂).

For G ⊂ N we let AG be the set of points x such that the integers in G
are b-hyperbolic times for φ at x. When G = {k} or {k, l} with k, l ∈ N, we
just let AG = Ak or Ak,l. In the next triplets lemmas we consider a strongly
(ε, r)-bounded curve σ of length larger than αε with ε, α and r as in Lemma
10.

Lemma 11. For any subset E of M , any k ∈ N and any ball Bk of radius
less than αε/4, there exists a finite family (yj)j∈J of σ∗ ∩ Ak ∩ f−kBk ∩ E
such that :

• Bk ∩ fk(σ∗ ∩Ak ∩ E) ⊂
⋃
j∈J Dk(yj),

• Bk ∩Dk(yj), j ∈ J , are pairwise disjoint.
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Proof. Let y ∈ σ∗ ∩ Ak ∩ E with fky ∈ B = Bk. Let 2B be the
ball of same center as B with twice radius. By Lemma 7 and
Lemma 10, the curve Dk(y) lies in a small cone and its length
is larger than αε. Therefore Dk(y) ∩ 2B is a curve crossing 2B,
i.e. its two endpoints lies in the boundary of 2B. Two such
subcurves of fk ◦ σ if not disjoint are necessarily equal. �

f yk
B

2B

D (y)
k

To simplify the notations, when x belongs to σ∗ we just let φ(x) =
log ‖dxf(vx)‖ and we write (φk)k for the associated cocycle. As the dis-
torsion is bounded on Dk(yi) (by 2 for ε small enough by Lemma 8) and the
length of Dk(yi) is larger than αε (because yi belongs to Ak by Lemma 10),
we have ∑

i∈I

1

2
e−φk(yi)|Dk(yi)| ≤

∑
i∈I

∣∣∣f−kDk(yi)
∣∣∣ ≤ |σ∗|,∑

i∈I
αεe−φk(yi) ≤ 2ε,∑
i∈I

e−φk(yi) ≤ 2/α.(5.6)

Lemma 12. For any subset E of M and any f -dynamical ball BJ0,kK of

size αε/4, i.e. BJ0,kK =
⋂k
m=0 f

−mBm where Bm is a ball of radius αε/4 for

m = 0, · · · , k, there exists a finite family (zi)i∈I of σ∗ ∩Ak ∩BJ0,kK ∩E such
that

• fk
(
σ∗ ∩Ak ∩BJ0,kK ∩ E

)
⊂
⋃
i∈I Dk(zi),

• Bk ∩Dk(zi), i ∈ I, are pairwise disjoint,

• ]I ≤ Ceδk/3 for some constant C depending only on b and f .

Proof. We argue as in the previous lemma by considering Dk(z) for z ∈
σ∗ ∩ Ak ∩ BJ0,kK ∩ E. Each of this curve is contained in a f -dynamical
ball of size 2ε, and therefore in the same dynamical ball of size 2ε. Then
v∗(f, 2ε, σ, k) ≤ Deδk/3 implies the upper bound on ]I because the length of
each Dk(z) is at least αε by Lemma 10. �

Remark 5. So far one could work with a Cr diffeomorphisms 1 < r < +∞
and points x with χ(x, vx) > R(f)

r . Then one shows as in Lemma 10 that

the geometry of Dn(x) at b-hyperbolic times n with b > R(f)
r is bounded.

However we use in the proof of Lemma 12 in a crucial way that the local
volume growth for C∞ maps is zero and this is false in finite smoothness
[40].
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Lemma 13. For any f -dynamical ball BJk,lK of size αε/4, i.e. BJk,lK =⋂l
m=k f

−mBm where Bm is a ball of radius αε/4 for m = k, · · · , l, there

exists a finite family (yi)i∈I of σ∗ ∩Ak,l ∩BJk,lK and a partition I =
∐
j∈J Ij

of I with j ∈ Ij for all j ∈ J ⊂ I such that

• f l(σ∗ ∩Ak,l ∩BJk,lK) ⊂
⋃
i∈I Dl(yi),

• BJk,lK ∩Dl(yi), i ∈ I, are pairwise disjoint,
• ∀j ∈ J ∀i, i′ ∈ Ij , Dk(yi) ∩Bk = Dk(yj) ∩Bk,

• ∀j ∈ J, ]Ij ≤ Deδ(l−k)/3 for some constant D depending only on b
and f .

Proof. We first apply Lemma 11 to σ and E = Ak,l ∩ BJk,lK to get the
collection of strongly (ε, r)-bounded (Dk(yj))j∈J whose length is larger than

αε. Then we apply Lemma 12 to each σkj := Dk(yj) for j ∈ J and E =

fk(BJk,lK∩Ak∩σ∗) to get a family (zi)i∈Ij of (σkj )∗∩Al−k∩fk(BJk,lK∩Ak∩σ∗)
satisfying:

• f l−k
(

(σkj )∗ ∩Al−k ∩ fk(BJk,lK ∩Ak ∩ σ∗)
)
⊂
⋃
j∈J Dk(zi),

• Bl ∩Dl−k(zi), i ∈ Ij , are pairwise disjoint,

• ]Ij ≤ Ceδk/3 for some constant C depending only on b and f .

For all j ∈ J we can take j ∈ Ij and zj = fk(yj). We conclude the proof by

letting yi = f−kzi ∈ σ∗ ∩Ak,l ∩BJk,lK for all i ∈ I :=
∐
j∈J Ij .

0<t<k t=k

D (y )k j

t=l

D (y ), i  Il i jC

t=0

Figure 1: For 0 ≤ t < k the image of f t ◦ σ in black may be large and the
disks Dt(yi) are scattered through the surface. For t = k, the sets Dk(yj)
for j ∈ J are covering (f t ◦ σ)∗ ∩ Bk. For t = l, we drew in blue the sets
Dl(yi) ⊂ f l−kDk(yj) for i ∈ Ij.

�

We prove now (H). Recall that λ = λσ is the push-forward on PTM of
the Lebesgue measure on σ∗. As ]∂Fn = o(n) it is enough to show there is
a constant C such that for any strongly (ε, r)-bounded curve σ with length
larger than αε we have

(5.7) λσ

(
PFn(x̂) ∩ π−1A∂Fn

)
≤ C]∂Fne2δn/3e−φ

Fn (x).

To prove (5.7) we argue by induction on the number of connected compo-
nents of Fn. Let Jk, lK, 0 ≤ k ≤ l, be the first connected component of Fn
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and write Gn−l = N∗ ∩ (Fn − l). Then with the notations of Lemma 13 we
get

λσ

(
PFn(x̂) ∩ π−1A∂Fn

)
≤ λσ

(∐
i∈I

F−l
(
π−1A∂Gn−l ∩ PGn−l(F lx̂) ∩Dl(yi)

))
,

≤ λσ

∐
j∈J

F−k

∐
i∈Ij

F−(l−k)
(
π−1A∂Gn−l ∩ PGn−l(F lx̂) ∩Dl(yi)

)
For j ∈ J we let σkj be the (ε, r)-bounded curve σ with length larger than

αε given by Dk(yj). By the bounded distorsion property of Lemma 8 we get

λσ

(
PFn(x̂) ∩ π−1A∂Fn

)
≤ 2

∑
j∈J

e−φk(yj)λσkj

∐
i∈Ij

F−(l−k)
(
π−1A∂Gn−l ∩ PGn−l(F lx̂) ∩Dl(yi)

) .

By using again the bounded distorsion property (now between the times k
and l) we get with σli being the curve associated to Dl(yi) :

λσ

(
PFn(x̂) ∩ π−1A∂Fn

)
≤4
∑
j∈J

e−φk(yj)
∑
i∈Ij

e−φl−k(fkyi)λσli

(
π−1A∂Gn−l ∩ PGn−l(F lx̂)

)
.

We may assume that any (yi, vyi), i ∈ I, lies in PFn(x̂) not only that

yi lies in the f -dynamical ball at x. In particular we have |φl−k(fkyi) −
φl−k(f

kx)| < (l − k)δ/3 by (5.5). Then

λσ

(
PFn(x̂) ∩ π−1A∂Fn

)
≤4

∑
j∈J

e−φk(yj)

 eδ(l−k)/3e−φl−k(fkx) sup
j
]Ij

× sup
i∈I

λσli

(
π−1A∂Gn−l ∩ PGn−l(F lx̂)

)
.

By (5.6) and the last item of Lemma 13 we obtain

λσ
(
PFn(x̂) ∩ π−1∂AFn

)
≤ 8De2δ(l−k)/3

α
e−φl−k(fkx) sup

i∈I
λσli

(
π−1A∂Gn−l ∩ PGn−l(F lx̂)

)
.

By induction hypothesis (5.7) applied to Gn−l for each σli, we have

λσli

(
π−1A∂Gn−l ∩ PGn−l(F lx̂)

)
≤ C]∂Gn−le2δ(n−l)/3e−φ

Gn−l(x)
.

Note that ]∂Fn = ]∂Gn−l + 2. We conclude by taking C =
√

8D
α that

λσ

(
PFn(x̂) ∩ π−1A∂Fn

)
≤ 8De2δn/3

α
C]∂Gn−le−φ

Fn (x),

≤ C]∂Fne2δn/3e−φ
Fn(x)

.

This completes the proof of (H), thus also of Corollary 2.
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6. The covering property of the basins and the values of the
maximal exponent

For x ∈ M the stable/unstable manifold W s/u(x) at x are defined as
follows :

W s(x) := {y ∈M, lim sup
n→+∞

1

n
log d(fnx, fny) < 0},

W u(x) := {y ∈M, lim sup
n→+∞

1

n
log d(f−nx, f−ny) < 0}.

For a subset Λ of M we let W s(Λ) =
⋃
x∈ΛW

s(x). According to Pesin’s
theory, there are a nondecreasing sequence of compact, a priori non-invariant,
sets (Kn)n (called the Pesin blocks) with R∗ =

⋃
nKn and two families of

embedded C∞ discs (W s
loc(x))x∈K and (W u

loc(x))x∈K (called the local stable
and unstable manifolds) such that :

• W s/u
loc (x) are tangent to Es/u at x,

• the splitting Eu(x)⊕Es(x) and the discs W
s/u
loc (x) are continuous on

x ∈ Kn for each n.

For γ > 0 and x ∈ K we let W
s/u
γ (x) be the connected component of

B(x, γ) ∩W s/u
loc (x) containing x.

Proposition 6. The set {χ > 0} is covered by the basins of ergodic SRB
measures µi, i ∈ I, up to a set of zero Lebesgue measure.

In fact we prove a stronger statement by showing that {χ > 0} is con-
tained Lebesgue a.e. inW s(Λ) where Λ is any f -invariant subset of

⋃
i∈I B(µi)i∈I

with µi(Λ) = 1 for all i.

So far we only have used the characterization of SRB measure in terms
of entropy (Theorem 3). In the proof of Proposition 6 we will use the
absolutely continuity property of SRB measures. Let µ be a Borel measure
on M . We recall a measurable partition ξ in the sense of Rokhlin [33] is
said µ-subordinate to W u when ξ(x) ⊂ W u(x) and ξ(x) contains an open
neighborhood of x in the topology of W u(x) for µ-almost every x. The
measure µ is said to have absolutely continuous conditional measures
on unstable manifolds if for every measurable partition ξ µ-subordinate

to W u, the conditional measures µξx of µ with respect to ξ satisfy µξx �
LebWu(x) for µ-almost every x.

Proof. We argue by contradiction. Take Λ as above. Assume there is a Borel
set B with positive Lebesgue measure contained in the complement ofW s(Λ)
such that we have χ(x) > 0 for all x ∈ B. Then we may consider a real
number a > 0 and a smooth disc σ with χ(x, vx) > a > 0 for x ∈ B′ ⊂ B
with Lebσ∗(B

′) > 0. Let B′′ be the subset of B′ given by density points
of B′ with respect to Lebσ∗ . In particular, we have with the notations of
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Subsection 5.2.2

∀x ∈ B′′, Lebσ∗ (Ek(x) ∩B)

Lebσ∗(Ek(x))

k→+∞−−−−→ 1.

We choose a subset A of B′′ with Lebσ∗(A) > 0 such that the above con-
vergence is uniform. Then from this set A we may build Fn and µFnn as
in the previous sections. Any limit measure µ of µFnn is supported on the
unstable bundle and projects to a SRB measure ν with χ(x) ≥ a for ν a.e. x
according to Lemma 5. In particular ν is a barycenter of the (finitely many)
ergodic SRB measures with such an exponent. Let β > 0 be the frequency
of b-hyperbolic times for 0 < b < a as in (4.1). Take P = KN a Pesin block
with ν(P ) ∼ 1 > 1 − β. We let θ and l be respectively the minimal angle
between Eu and Es and the minimal length of the local stable and unstable
manifolds on P . We take r ∈ N, 1 ≥ α > 0 and ε > 0 as in Lemma 10. Then
αε is the minimal size of Dk(y) = Dr,ε

k,σ(y) when k is a b-hyperbolic time for

φ at y. Without loss of generality we may assume ε < min(θ, l)/100. Then
we let γ < αε such that for all y, z ∈ P with d(y, z) < γ the local stable
manifold W s

γ (z) lies in a cone around Es(y) of width less than θ
100 .

Let ξ be a measurable partition subordinate to W u with diameter less

then γ. We have ν(Λ ∩ P ) =
∫
νξx(Λ ∩ P ) dν(x) ∼ 1 and νξx � LebWu

γ (x) for

ν a.e. x. Therefore we get for some c > 0

ν
(
x, LebWu

γ (x)(Λ ∩ P ) > c
)
∼ 1.

We let F = {x ∈ Λ ∩ P, LebWu
γ (x)(Λ ∩ P ) > c}. Observe that we have

again ν(F ) ∼ 1. For x ∈ σ∗ and y ∈ P we use the following notations :

x̂σ = (x, vx) ∈ PTM ŷu = (u, vuy ) ∈ PTM,

where vuy is the element of PTM representing the line Eu(y). Let F̂ γu be the

open γ/8-neighborhood of F̂u := {ŷu, y ∈ F} in PTM . Recall E(x) denotes
the set of b-hyperbolic times for φ at x. We let for n ∈ n:

ζn :=

∫
1

]Fn

∑
k∈E(x)∩Fn

δFkx̂σ dµn(x̂σ).

Observe that ζn(PTM) ≥ infx∈An dn(E(x)∩Fn). By the last item in Lemma
2, we have lim infn∈n infx∈An dn(E(x) ∩ Fn) ≥ β. Therefore there is a weak

limit ζ = limk ζpk with ζ ≤ µ and ζ(PTM) ≥ β. From µ(F̂ γu ) ∼ 1 > 1 − β
we get 0 < ζ(F̂ γu ) ≤ limk ζpk(F̂ γu ). Note also Âσ := {ŷσ, y ∈ A} has full µn-
measure for all n. In particular, for infinitely many n ∈ N there is (xn, vxn) =

x̂nσ ∈ Âσ with Fnx̂nσ ∈ F̂
γ
u and n ∈ E(xn) ∩ Fn. Let ŷnu = (yn, vuyn) ∈ F̂u

which is γ/8-close to Fnx̂nσ. Then it follows from the choices of γ and ε
that the curve Dn(xn) is transverse to W s(P ∩ Λ ∩W u

γ (yn)). Moreover as
such a curve Dn(xn) is tangent to a cone of width 10ε ≤ θ/10, it may be
written as the graph of a C∞ smooth function ψ : E ⊂ Eu(yn) → Es(y

n)
with ‖dψ‖ < L for a universal constant L.
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y

x

P   W (y)u

f A   D (y)n
n

Ws

Figure 2: Holonomy of the local stable foliation between the
transversals Dn(x) and Wu

γ (y).

By Theorem 8.6.1 in [31] the associated holonomy map h : W u
γ (y) →

Dn(xn) is absolutely continuous and its Jacobian is bounded from below
by a positive constant depending only on the Pesin block P = KN (not on
xn and yn). In particular LebDn(xn) (W s(Λ ∩ P )) ≥ c′ for some constant c′

independent of n. The distorsion of dfn on En(xn) being bounded by 2, we
get (recall fnEn(xn) = Dn(xn) and xn ∈ A):

(αε)−1 Leb (Dn(xn) \ fnB) ≤ Leb (Dn(xn) \ fnB)

Leb (Dn(xn))
≤ 4

Leb (En(xn) \B)

Leb (En(xn))

n−→ 0.

Therefore for n large enough, there exists x ∈ fnB ∩ W s(Λ ∩ P ), in
particular B ∩ f−nW s(Λ) = B ∩W s(Λ) 6= ∅. This contradicts the definition
of B.

�

Recall R1 denotes the invariant subset of Lyapunov regular points x of
(M,f) with χ1(x) > 0 > χ2(x). Such point admits so called regular neigh-
borhoods (or ε-Pesin charts):

Lemma 14. [30] For a fixed ε > 0 there exists a measurable function q =
qε : R1 → (0, 1] with e−ε < q(fx)/q(x) < eε and a collection of embeddings
Ψx : B(0, q(x)) ⊂ TxM = Eu(x) ⊕ Es(x) ∼ R2 → M with Ψx(0) = x such
that fx = Ψ−1

fx ◦ f ◦Ψx satisfies the following properties :

•
d0fx =

(
a1
ε (x) 0
0 a2

ε (x),

)
with e−εeχi(x) < aiε(x) < eεeχi(x) for i = 1, 2,
• the C1 distance between fx and d0fx is less than ε,
• there exists a constant K and a measurable function A = Aε : R1 →
R such that for all y, z ∈ B(0, q(x))

Kd(Ψx(y),Ψx(z)) ≤ ‖y − z‖ ≤ A(x)d(Ψx(y),Ψx(z)),

with e−εA(fx)/A(x) < eε.

For any i ∈ I we let

Ei := {x, χ(x) = χ(µi)}.
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The set Ei has full µi-measure by the subadditive ergodic theorem. Put
Λi = B(µi) ∩ Ei ∩ R1 and Λ =

⋃
i Λi. Clearly Λ is f -invariant. We finally

check that χ(x) = χ(µi) for x ∈W s(Λi).
For uniformly hyperbolic systems, we have Σχ(x) = limn

1
n log Jac(dxf

n
Eu

) =

limn

∫
log Jac(dyfEu) dδnx . As the geometric potential y 7→ log Jac dyfEu is

continuous in this case, any point in the basin of a SRB measure µ satisfies
Σχ(x) =

∫
Σχ(y) dµ(y).

Lemma 15. If y ∈W s(x) with x ∈ R1, then χ(y) = χ(x).

Proof. Fix x ∈ R1 and δ > 0. We apply Lemma 14 with ε � χ1(x). For
α > 0 we let Cα be the cone Cα = {(u, v) ∈ R2, α‖u‖ ≥ ‖v‖}. We may
choose α > 0 and ε > 0 so small that for all k ∈ N we have dzffkx(Cα) ⊂ Cα
and ‖dzffkx(v)‖ ≥ eχ1(x)−δ for all v ∈ Cα and all z ∈ B(0, qε(f

kx)).
Let y ∈W s(x). There is C > 0 and λ such that d(fnx, fny) < Cλn holds

for all n ∈ N. We can choose ε� λ. In particular there is N > 0 such that
fny belongs to ΨfnxB(0, q(fnx)) for n ≥ N since we have A(fnx) < eεnA(x)

and q(fnx) > eεnq(x). Let z ∈ B(0, q(fNx)) with ΨfNx(z) = y. Then for

all v ∈ Cα and for all n ≥ N we have ‖dz
(

Ψ−1
fn−Nx

◦ fn−N ◦ΨfNx

)
(v)‖ ≥

e(n−N)(χ1(x)−δ). As the conorm of dfn−Nyψfnx is bounded from above by

A(fnx)−1 for all n we get

χ(y) = lim sup
n

1

n
log ‖dyfn−N‖,

= lim sup
n

1

n
log ‖dz

(
fn−N ◦ΨfNx

)
‖,

≥ lim sup
n→+∞

1

n
log
(
A(fnx)−1

∥∥∥dz (Ψ−1
fnx ◦ f

n ◦ΨfNx

)∥∥∥) ,
≥ χ1(x)− δ − ε.

On the other hand we have∥∥∥dz (Ψ−1
fnx ◦ f

n ◦ΨfNx

)∥∥∥ ≤ n−1∏
k=N

sup
t∈B(0,q(fkx))

‖dtffkx‖,

≤
(
eχ1(x)+ε + ε

)n−N
,

≤ e(n−N)(χ1(x)+2ε).

Then it follows from ‖dfn−Nyψfnx‖ ≤ K:

χ(y) ≤ lim sup
n→+∞

1

n
log
(∥∥∥dz (Ψ−1

fnx ◦ f
n ◦ΨfNx

)∥∥∥) ,
≤ χ1(x) + 2ε.

As it holds for arbitrarily small ε and δ we get χ(y) = χ1(x) = χ(x).
�
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We conclude with Λ = {χ(µi), i ∈ I} that for Lebesgue a.e. point x, we

have χ(x) ∈ R− ∪ Λ and that {χ = λ}
o
⊂
⋃
i∈I B(µi) for all λ ∈ Λ. The

proof of the Main Theorem is now complete. It follows also from Lemma
15, that the converse statement of Corollary 2 holds : if (f,M) admits a
SRB measure then Leb(χ > 0) > 0.

In the proof of Lemma 15 we can choose the cone Cα to be contracting, so
that any vector in a small cone at y will converge to the unstable direction
Eu(x). In other terms if we endow the smooth manifold PTM with a smooth
Riemanian structure, then the lift µ to the unstable bundle of an ergodic
SRB measure ν is a physical measure of (PTM,F ). Conversely if µ is a
physical measure of (PTM,F ) supported on the unstable bundle above R1,
we can reproduce the scheme of the proof of the Main Theorem to show
µ projects to a SRB measure ν. Indeed we may consider a C∞ smooth
curve σ such that x̂ = (x, vx) lies in the basin of µ for x̂ in a positive
Lebesgue measure set A of σ̂∗. Then by following the above construction
of SRB measures, we obtain that µ = limn

1
n

∑n−1
k=0 F

k
∗ LebA project to a

SRB measure (or one can directly use the approach of [13]). This converse
statement is very similar to a result of Tsujii (Theorem A in [39]) which
states in dimension two that for C1+ surface diffeomorphism an ergodic
hyperbolic measure ν, such that the set of regular points x ∈ B(ν) with
χ(x) =

∫
χdν has positive Lebesgue measure, is a SRB measure. Indeed

if µ is a physical measure of (PTM,F ) supported on the unstable bundle
above R1, its projection ν satisfies χ(ν) = χ(x) for any x ∈ π(B(ν)). In
the present paper we are working with the stronger C∞ assumption, but,
in return, points in the basin are not supposed to be regular contrarily to
Tsujii’s theorem.

From the above discussion, we may restate the Main Theorem as follows:

Theorem 7. Let f : M 	 be a C∞ surface diffeomorphism and F : PTM
be the induced map on the projective tangent bundle. Then the basins of the
physical measures of (PTM,F ) are covering Lebesgue almost everywhere the
set {(x, v) ∈ PTM, χ(x, v) > 0}.

7. Nonpositive exponent in contracting sets

In this last section we show Theorem 1. For a dynamical system (M,f)
a subset U of M is said almost contracting when for all ε > 0 the set
Eε = {k ∈ N, diam(fkU) > ε} satisfies d(Eε) = 0. In [21] the authors build
subsets with historic behaviour and positive Lebesgue measure which are
almost contracting but not contracting. We will show Theorem 1 for almost
contracting sets.

We borrow the next lemma from [13] (Lemma 4 therein), which may be
stated with the notations of Section 4 as follows :
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Lemma 16. Let f : M 	 be a C∞ diffeomorphism admitting and let U be a
subset of M with Leb ({χ > a} ∩ U) > 0 for some a > 0. Then for all γ > 0
there is a C∞ smooth embedded curve σ∗ and I ⊂ N with ]I =∞ such that

∀n ∈ I, |{x ∈ U ∩ σ∗, ‖dxfn(vx)‖ > ena}| > e−nγ .

We are now in a position to prove Theorem 1 for almost contracting sets.

Proof of Theorem 1. We argue by contradiction by assuming Leb ({χ > a} ∩ U) >
0 for some a > 0 with U being a almost contracting set. By Yomdin’s The-
orem on one-dimensional local volume growth for C∞ dynamical systems
[40] there is ε > 0 so small that

(7.1) v∗(f, ε) = sup
σ

lim sup
n→∞

1

n
sup
x∈M

log |fn(B(x, ε, n) ∩ σ∗| < a/2,

where the supremum holds over all C∞ smooth embedded curves σ : [0, 1]→
M . As U is almost contracting, there are subsets (Cn)n∈N of M with

limn
log ]Cn
n = 0 satisfying for all n

(7.2) U ⊂
⋃
x∈Cn

B(x, ε, n).

Fix an error term γ ∈]0, a2 [. Then by Lemma 16 there is a C∞-smooth
curve σ∗ ⊂ U and an infinite subset I of N such that for all n ∈ I∑

x∈Cn

|fn(B(x, ε, n) ∩ σ∗)| ≥ |fn(U ∩ σ∗)| ,

≥ ena |{x ∈ U ∩ σ∗, ‖dxfn(vx)‖ > ena}| ,
≥ en(a−γ) by (7.1),

]Cn sup
x∈M

log |fn(B(x, ε, n) ∩ σ∗)| ≥ en(a−γ) by (7.2).

Therefore we get the contradiction v∗(f, ε) > a− γ > a/2. �

Appendix A. Maximal exponent

Let A = (An)n∈N be a sequence in Md(Rd). For any n ∈ N we let
An = An−1 · · ·A1A0. We define the Lyapunov exponent χ(A) of A with
respect to v ∈ Rd \ {0} as

χ(A, v) := lim sup
n

1

n
log ‖An(v)‖,

Lemma 17.

sup
v∈Rd\{0}

χ(A, v) = lim sup
n

1

n
log |||An|||.
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Proof. The inequality ≤ is obvious. Let us show the other inequality. Let
vn ∈ Rd with ‖vn‖ = 1 and ‖An(vn)‖ = |||An|||. Then take v = limk vnk with
limk

1
nk

log |||Ank ||| = lim supn
1
n log |||An|||. We get

‖Ank(v)‖ ≥ ‖Ank(vk)‖ − ‖Ank(v − vk)‖,
≥ |||Ank |||(1− ‖v − vk‖),

lim sup
k

1

nk
log ‖Ank(v)‖ ≥ lim sup

n

1

n
log |||An|||.

�
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