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Abstract: Accounting for climate transition risks is one of the most important challenges in
the transition to a low-carbon economy. Banks are encouraged to align their investment portfolios to
CO2 trajectories fixed by international agreements, showing the necessity of a quantitative method-
ology to implement it. We propose a mathematical formulation for this problem and a multistage
optimization criterion for a transition between the current bank portfolio and a target one. The
optimization Problem combines the Monge-Kantorovich formulation of optimal transport, for which
the cost is defined according to the financial context, and a credit risk measure. We show that the
problem is well-posed, and can be embedded into a saddle-point problem for which Primal-Dual
algorithms can be used. We design a numerical scheme that is able to solve the problem in available
time, with nice scalability properties according to the number of decision times; its numerical con-
vergence is analysed. Last we test the model using real financial data, illustrating that the optimal
portfolio alignment may differ from the naive interpolation between the initial portfolio and the
target.
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1 Introduction

Climate change context. Since the advent of the industrial age, anthropogenic greenhouse gas
(GHG) emissions have continued to increase, causing ongoing climate change. As the greenhouse
effect intensifies, climate change is increasingly materializing in the form of physical hazards that
threaten the stability and sustainability of today’s societies as well as human lives. Faced with
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the increasing frequency and severity of physical damages, the pressure on legislators is increasing,
encouraging them to take measures to respect the environment and, in particular, to significantly re-
duce greenhouse gas emissions from human activities. These new climate risks, particularly physical
and transition risks, have been described in the banking domain by [9] in a resounding speech. To
make echo his call, the banking regulators have tackled the issue, in particular by gathering under
the egide of the Network for the Greening of the Financial System (NGFS) [28]. The Basel Com-
mittee on Banking Supervision published in April 2021 a report [4] exploring how climate-related
risk drivers, including physical risks and transition risks, can arise and affect both banks and the
banking system via micro- and macroeconomic transmission channels.
In parallel with these descriptive works on climate risks and their transmission channels, various
decisions to green the economy and finance have been taken. Five international banks commit
themselves in the COP24 agreement (Katovice 2018) to align their portfolio with the CO2 trajec-
tories of the Paris agreements [11, p.22]. The European Banking Authority (EBA) published in
December 2019 its Action Plan for Sustainable Finance laying the groundwork for, on the one hand,
better controlling the risks related to the climate change; on the other hand, shifting progressively
capital towards responsible investments so as to achieve the objectives of sustainable growth [12].
In June 2021, the World Bank Group announced its new Climate Change Action Plan that aims to
deliver record levels of climate finance to developing countries, reduce emissions, strengthen adap-
tation, and align financial flows with the goals of the Paris Agreement [43].
Our work is in this vein and aims to provide methodological and quantitative tools to progressively
align an investment portfolio with a green and sustainable objective over a certain long-term hori-
zon. The purpose is to find, given a current portfolio (typically that of a corporate and investment
bank), an investment path that achieves a green score target at the time horizon of 2050 say, while
controlling credit risk.

Our contributions. Although the goal of greening investment portfolios is becoming a concern
shared by most (if not all) financial institutions, to the best of our knowledge, there is no quantita-
tive methodology to implement it. Our main contributions are, in a few words, to provide a suitable
framework for risk modeling, to determine the optimal investment path as the solution of an opti-
mization problem in the space of probability distributions and to provide a numerical algorithm for
computing effectively its solution. Numerical experiments confirm the convergence of the algorithm
and illustrate the outputs of such optimisation program on realistic data.

To better grasp our original contributions and make some connections with related works, let us
quickly summarize how we model the problem, the details being given in Section 2. Changing an
investment portfolio of a bank cannot be done abruptly, neither without cost nor without risk. Given
an invested capital, an investment portfolio is represented by its distribution of obligors, represented
by their creditworthiness (propensity to reimburse their debts) and an ecological rating (linked to
their Environmental Social and Governance (ESG for short) scores, their carbon emissions, etc).
The objective is to transport the initial investment distribution of the bank to a target (greener)
distribution: the costs are related to the modification of the portfolio over time (we will take discrete
dates) and to the credit risk (capital cost given by a risk metric, like the Value at Risk). There is
a non trivial tradeoff between the objective and the costs: for instance, some "green" obligors may
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correspond to innovative business, and as such, they may be riskier than well-established "brown"
obligors; therefore, going fully green may be far from financially optimal regarding the credit risk
incurred by the bank.
In Section 2, we model this problem as a new multidate optimal transport problem of Monge-
Kantorovich type (see [42] for an overview of optimal transport), the solution of which being a path
of investment distributions. We show that finding the solution is equivalent to that of a point-
saddle problem (Theorem 2.5) for which we use a Primal-Dual algorithm (see Algorithms 2 and
5). The output of this work is two fold: it allows risk managers of banks to get projections of the
alignment cost; while getting investment path for greening their portfolio, it supports them in a
better forward-looking financial steering to achieve a carbon-neutral economy.

Background results.
On the financial modelling side. In the last years the terms as: green portfolio, sustainable finance
and price of climate change have gained some relevance in the financial debate and science fields.
In [6, 13], the authors analyse equity portfolios within the prism of an asset manager (using mean-
variance optimization criterion) under climate change schemes. Instead, we focus on the credit
portfolio of a bank and account for credit risk.

Regarding the impact of climate change on banks, we refer to the work [5] on climate stress-test,
providing a description of transmission channels of the climate risks to a bank, using a network
approach to financial dependencies. The authors discuss the impact of climate policy timing on the
stability and resilience of the financial system. The topic is different from the current work.

Defining alignment with climate impact target (like those of the Paris agreement) is a topic
with several possible answers (depending on whether the criteria taken into account give more or
less importance to carbon emissions, environmental impact, temperature rise, ...). See the detailed
discussion in [33] and references therein. Our work will not go into these aspects and we consider
directly that each obligor has a certain ecological score (whether it is linked to its CO2 emissions,
its impact on the environment, its contribution to temperature rise ....) which is an input of our
decision modelling. The alignment target is considered as given, as one of the few existing solutions
mentioned in [33], and in practice it should account also for the corporate strategy of the bank;
rather than defining this target, our approach is rather to determine how to reach it dynamically
accounting for credit risk.

On the mathematical side. The multidate model proposed in the present work can be compared with
the two stage and multi-stage risk problems that already have large applications and theoretical
aspects present in the literature (see [19, 38, 31]). Usually, some liquidity constraints are introduced
to be realistic with the portfolio management application, which translated into linear inequalities
on the state space. Some transaction costs can be included too. A significant difference with our
framework is that these costs and constraints are acting on the state space and not at the level
of portfolio distributions as we do. In our case, the decision variable at each decision time is a
distribution of obligors and the cost of changing the decision (for progressively targeting the green
objective) shall be written as a transport cost between two probability measures µ, ν: naturally,
we choose the Monge-Kantorovich optimal transport cost MK(µ, ν) (see [42]). Besides, since the
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cost c defining MK(., .) has no reason to be related to a distance, MK(., .) may be different from
a Wasserstein distance from which many numerical tools are available, see for instance [32]. To
the best of our knowledge, multidate Monge-Kantorovich optimal transport problems (involving a
sequence of pairs of measures) like those we introduce in Section 2 have not been considered so far in
the literature. As discussed in Subsection 2.4, this is different from a traditional geodesic problem.
Last, for the sake of completeness, we refer to [14, Chapter 9] for various applications of optimal
transport methods in economics.

Plan of the paper. This paper contributes to existing literature in both methodological and
applied aspects. Section 2 is devoted to modeling the problem of optimal credit portfolio alignment
accounting for ecological scores and credit risk, while achieving a given green investment portfolio.
Section 3 gathers numerical algorithms to compute the solution, and numerical tests to assess the
convergence algorithm. Experiments on realistic financial data are performed in Section 4. Some
technical results are postponed to Appendix A.

2 Modeling the portfolio alignment and credit risk

2.1 Path of obligors portfolio

We are to consider the time evolution of a credit portfolio of a bank which grants loans to institutions,
companies, individuals, commonly called obligors. The date t = 0 refers to today and the final date
T ∈ N∗ corresponds for instance to 2050 (a given horizon to achieve a prescribed portfolio alignment).
For a bank, modifying the credit portfolio is in practice a continuous-time process but in our study,
we take the simplified assumption that reinvestment can be adjusted only at t ∈ {0, 1, ..., T} and the
distance between two dates is constant (e.g. H = 5 years for instance). Furthermore, we consider the
problem of portfolio alignment under the angle of investment reallocation, i.e. ignoring the initiation
of new investments that could occur owing to new available capital: in other words, for the current
analysis, the total invested capital is K0 and constant from t = 0, . . . , T . In doing so, we ignore
the possible expansion of the bank and the interest rates (with rates close to 0, the assumption is
realistic at present).

At time t, the adjusted portfolio is described by a probability distribution Pt(do) of obligor
attributes o. The obligor attributes are made of two components o = (e, g) representing green
scores on the one hand, and economic activities on the other hand. The types of e and g can be
arbitrary (number, vectors, categories,. . . ), they are just split into two components to facilitate the
interpretation.

1. The state space of the green score e is denoted by E : e could be a CO2 emission rate (typically
kg of CO2 by e invested and the amount of CO2 is evaluated over a period of H years). It
could be described by ESG scores like in the experiments of Section 4.2. In any case, it reflects
the greenyness of the obligors.

2. The state space of the group g is denoted by G. Different groups represent the variety of
obligors in the portfolio according to their sector of activity (Consumer Services, Energy Min-
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erals, Productor Manufacturing, Utilities, etc) and their geographical area (France, Europe,
Asia, North America, etc.): for the nomenclature of these groups, see for instance SP500 sec-
tors on https://www.spglobal.com/spdji/en/landing/investment-themes/sectors/, the
"North American Industry Classification System" (NAICS) or the "Nomenclature statistique
des Activités économiques dans la Communauté Européenne" (NACE) according to geographic
zones.

There are many other ways to classify obligors according to their groups. What is important is
that this classification is meaningful for determining the credit risk of obligors. By highlighting
the sectors of activity and location, it makes it possible to set up credit risk models with sectorial
factors, as is often done among practioners. For such a multi-factor copula model in credit risk, see
[36, p.222].

This modeling point of view is placed at a mesoscopic scale, which is a compromise between
the fineness of the portfolio description, the tractability of the mathematical/numerical analysis
of the optimal transport problem, the interpretability of the results. If we adopted a microscopic
description of the portfolio, it would require collecting the carbon scores of each obligor, its credit
risk dependencies with other obligors and economic factors: this raises data collection difficulties,
and then numerical complexity problems (related to the number of points in the optimal transport
problem). Our further experiments show that the current approach remains tractable in practice.

In addition, we denote by Pnow the initial credit portfolio of the bank, before changing to P0,
and by Ptarget the target portfolio (desired distribution) to be reached with PT (as close as possible).
Changing the portfolio distribution represents a cost, encoded by a function ct : (o, o′) ∈ O ×O 7→
ct(o, o

′) ∈ [0,+∞) describing both the cost of terminating the credit contract (decontracting) with
the obligor o and the cost of recontracting with a new obligor o′. To account for normalization,
we assume c is set for a nominal of 1e . In addition, the cost function may depend on t: brown
obligors could be harder and harder to decontract (effect of stranded assets), International Climate
Policy and Intended Nationally Determined Contributions (INDCs) could increase the incentives to
financially support greener obligors. Besides, the dependence in time of c could be inspired by a
chosen Shared Socio-economic Pathway (SSP), typically the scenario of an orderly transition to a
low-carbon economy.

Changing the portfolio distribution from Pt−1 to Pt will be done according to Monge-Kantorovich
(MK in short) paradigm (see Section A.2 for standard properties), i.e. by minimizing the average
cost MKt(Pt−1,Pt) where

MKt(µ, ν) := inf
π∈Π(µ,ν)

∫
O×O

ct(o, o
′)π(do,do′) (2.1)

for arbitrary probability measures µ and ν. The financial cost for a total capital K0 is

K0 MKt(Pt−1,Pt) e .

2.2 Modelling the credit risk

There are many possible modelling approaches to credit risk, see [24, 36] for some references. For
the current work, it could be any of them, but for the sake of presentation and further experiments,
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we shall focus on one of them, namely the Gaussian copula model: this model is supported by its
simplicity of use, as reported recently in [29] by the Bank of International Settlements about Risk-
Weighted Assets. More precisely, we model the default probability over a period of H years using a
firm model: the credit quality of the obligor depends on the distance between the obligor asset value
and a default threshold, the time-evolution depends on d Gaussian factors F = (F (1), . . . , F (d)). The
ratings between obligors may differ because their respective thresholds and asset values differ; the
ratings change because of the evolution of activity/geographic factors F to which the asset value is
correlated. All in all, the individual default probability of an obligor [17, Section 2][36, p.222] writes
typically as

P (X ≥ γ | F ) , X =
d∑
j=1

βjF
(j) + β0ε, |β1:d| :=

√√√√ d∑
j=1

β2
j < 1, β0 :=

√
1− |β1:d|2,

with parameters θ = (β0, . . . , βd, γ) that depend on the obligor.
The components are independent, ε is an idiosyncratic risk factor independent from F ; the

components and ε are distributed as standard normal random variable. We have

P (X ≥ γ | F ) = Φ

 d∑
j=1

βjF
(j) − γ

 /β0

 , (2.2)

where Φ is the c.d.f. of the standard normal random variable. We will simply write the above ϕ(F, θ)

for a certain function ϕ(.) depending on the type of credit modelling (here Gaussian copula) and
on some parameters θ entering in the model (here (βj)j , γ). All obligors with the attribute o have
a default probability of the form

ϕ(Z, θ)

for some parameter θ depending stochastically on the attribute o. Conditionally to o, the distribution
of θ at time t is denoted by

qt,o(dθ).

See the discussion in Subsection 4.3.3 about how to calibrate such distribution. Once again, the
dependence in time reflects the possible change of the risk structure of the economy in the future,
inspired by SSP.

Finally, the credit risk loss per e at point o (at time t) is given by∫
Θ
ϕ(Ft, θ)qt,o(dθ)

For a given portfolio allocation P, the aggregated credit risk loss (at time t) per e invested is then

Lt(P) =

∫
Θ×O

ϕ(Ft, θ)qt,o(dθ)P(do). (2.3)

As usually done [16], we assume that the time-evolution of F follows a mean-reverting process
representing the fluctuating cycles in the economy, typically a AR(1) process: this specification
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of model for F is in no way a restriction, but simply a possible choice for the experiments that
follow. In the current framework of portfolio alignment (typically in a given transition scenario to
a low-carbon economy), it would make sense to use the distribution of F in that scenario: however,
to the best of our knowledge, there is no consensus on how to calibrate such risk factors F in a
given future scenario, we leave this modelling question for further research. Alternatively, one could
calibrate the random evolution of F according to its usual (historically observed) distribution, and
apply expert-judgement shocks to account for the transition scenario.

Given a potential aggregated credit risk loss Lt(P), we assume that the cost of capital is computed
through a risk metrics %(.), which should satisfy in general the axioms of coherent risk measures [3].
For our work, we specifically require some convexity, continuity and positive homogeneity properties
for % (detailed later in Properties 2.1).

All in all, the cost of capital due to credit risk (renormalized by the invested capital) is

% (K0 Lt(P))e .

2.3 Optimization problem and properties of solutions

If Pnow is the current portfolio distribution and Ptarget is the desired distribution at horizon T , we
seek the distribution Pt at the intermediate dates t ∈ {0, 1, ..., T} that minimizes the cost of the
changing trajectory in the portfolio and the cost of credit risk. The optimization criterion

min
P0,...,PT

[
K0

T+1∑
t=0

λtMKt(Pt−1,Pt) +
T∑
t=0

% (K0Lt+1(Pt))

]
(2.4)

with the convention
P−1 = Pnow, PT+1 = Ptarget.

The positive coefficients (λt)t are weighting more or less the transport cost along the timeline and
according the credit risk. Since the risk metric is taken as positive homogenous (Properties 2.1),
% (K0Lt+1(Pt)) = K0 % (Lt+1(Pt)), therefore the solution is independent on K0; in the following, we
set

K0 = 1.

Generally speaking, we refer to (2.4) as Multidate Monge Kantorovich (MMK) problem. Chang-
ing the portfolio will help to achieve an ideally aligned portfolio Ptarget in terms of green sector
and economic group to support, but it will change the risk pattern of investment because of the
risk metrics %. There is no reason for which changing abruptly be optimal, and we seek for optimal
portfolio distribution path, accounting for reallocation cost and credit risk.

2.4 Similarities and differences with the geodesic problem in Wasserstein spaces

We observe that the MMK problem (2.4), when excluding the risk part, have some similarities with
the problem of finding a geodesic in metric spaces. To alleviate the next statements and discussions,
we assume in this section that the underlying state space (previously denoted O) is denoted X, it
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is an Euclidean space equipped with a distance d. Particularly, when the MK cost c := cp = dp is
the p-th power of the distance d for p ≥ 1, and if we set Wp(µ, ν) = (MK(cp)(µ, ν))1/p, the latter
defines a distance on the set of probability measures with finite p-moment denoted by

Pp(X) := {µ ∈ P(X) :

∫
X
dp(x, x0)µ(dx) < +∞}

(see [42, Definition 6.1]1). Wp (resp. Pp(X) is the so-called p-Wasserstein distance (resp. space),
see [42, Definition 6.4]. We now recall the definition of a geodesic in the metric space (Pp(X),Wp).

Definition 2.1. A geodesic is a curve γ : I = [0, 1]→ Pp(X) that minimizes the length L(γ), where:

L(γ) = sup
N∈N

sup
0=s0≤s1...≤sN=1

N−1∑
i=0

Wp(γ(si), γ(si+1)).

Not all metric spaces admit geodesics. But in our setting, the p-Wasserstein space (Pp(X),Wp)

does, the minimal length curve exists.

Theorem 2.1. The p-Wassertein space
(
Pp(X),Wp

)
is a geodesic space, in the sense that

Wp(µ, ν) = min
γ∈C([0,1],Pp(X))

{L(γ) : γ(0) = µ, γ(1) = ν},

where C([0, 1],Pp(X)) stands for the set of continuous functions γ from [0, 1] to Pp(X).

Proof. See [37, Theorem 5.27].

We are now in a position to connect a simplified MMK problem to a geodesic problem in Pp(X).

Theorem 2.2. The optimal solutions (P0, ...,PT ) of the problem

min
P0,...,PT

[
T+1∑
t=0

λtWp(Pt−1,Pt)

]
such that P−1 = Pnow, PT+1 = Ptarget are given, (2.5)

lie in a geodesic curve γ : [0, 1]→ Pp(X) such that γ(0) = Pnow and γ(1) = Ptarget.

Proof. B First, the triangular inequality for the distance function Wp implies that for any P0, . . . ,PT ,
we have

Wp(Pnow,Ptarget) ≤
T+1∑
t=0

Wp(Pt−1,Pt). (2.6)

Let s ∈ {0, 1, ..., T}. Note that, if inequality (2.6) is an equality, Ps lies in a geodesic curve between
Pnow and Ptarget. To see that, consider γ1 a geodesic between Pnow and Ps and γ2 a geodesic
between Ps and Ptarget, the concatenation γ = γ1 · γ2 is also a continuous curve and L(γ) =

L(γ1) + L(γ2) (see Proposition 2.3.4 in [8]). If (2.6) is an equality it implies in particular that:
1in this definition the reference point x0 does not play any role
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Wp(Pnow,Ps) + Wp(Ps,Ptarget) = Wp(Pnow,Ptarget). In this case, L(γ) = Wp(Pnow,Ptarget),

that is, γ is a geodesic joining Pnow and Ptarget, and Ps lies in the image of γ.
B Let (P0, ...,PT ) be a solution to (2.5). Consider the set of weights {λt : t ∈ {0, ..., T}},

λ̃ = mint{λt}, and the index t̃ such that λt̃ = λ̃. Consider a geodesic γ? between Pnow and Ptarget,

and choose a partition of the interval [0, 1] such that s0 = s1 = ... = st̃ = 0 and st̃+1 = ... = sT+1 = 1.

Then:

T+1∑
i=0

λiWp(γ?(si), γ
?(si+1)) = λ̃Wp(Pnow,Ptarget) (2.7)

≤
T+1∑
t=0

λ̃Wp(Pt−1,Pt) ≤
T+1∑
t=0

λtWp(Pt−1,Pt).

Since (P0, ...,PT ) is a solution, all inequalities in (2.7) need to be equalities, which implies in
particular that (2.6) is an equality. This means that Pt lies in a geodesic between Pnow and Ptarget,
as it is announced in the Theorem statement.

Moreover, note that the last inequality in (2.7) is strict when λt > λ̃ and Wp(Pt−1,Pt) 6= 0. In
other words, for any t /∈ T := {s : λs = λ̃}, an optimal solution must be such that Pt−1 = Pt, which
reduces the problem (2.5) to seek the solutions over #T dates only and with a constant λ.

When p = 2 and T = 0, problem (2.4) (without the credit risk term) can also be compared with
the barycenter problem between measures Pnow and Ptarget with weights λ0, and λ1, that is:

min
P0

[λ0W2(Pnow,P0) + λ1W2(P0,Ptarget)] . (2.8)

When we have just one decision P0, and the cost c = c2 is the squared distance, the MMK problem
(2.4) reads as the Wasserstein barycenter between measures Pnow and Ptarget (2.8). The barycenter
between two measures is a well-known problem with explicit solution that relies in the geodesic
curve of the Wasserstein space γ : [0, 1] → P2(X) connecting Pnow and Ptarget (See [1, Example
6.2]). The geodesic may not be unique and depends itself on the optimal transport plan π̄, solution
of the Kantorovich problem (2.1) transporting the measure Pnow to Ptarget. The geodesic is unique
when there is a unique optimal transport plan π̄, which is always the case when considering Pnow

and Ptarget continuous distributions; in such an uniqueness case, parameters λ0 and λ1 completely
determine the unique barycenter.

The previous discussion about the similarities of MMK problem (2.4) with the geodesic problem
gives a possible intuition about the optimal MMK trajectory (P0, ...,PT ): it can be viewed as an
equilibrium between a geodesic curve (in which lie solutions of problem (2.5)), and the risk along
the path (

∑T
t=0 ρ(Lt+1(Pt))). Nevertheless, although tasting similarly, there are some differences

between the MMK problem and the geodesic problem. Indeed, it is also important to highlight the
ambient assumptions of Theorem 2.2, in particular the cost cp = dp. Our problem MK considers
more general possibilities of cost, that are well-adapted to the financial context. Besides, the credit
risk may alter significantly the optimisation problem.
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2.4.1 The discrete case

To elaborate on the solution to (2.4) and its properties, we assume that the universe of attributes
O is finite:

O = {o1, . . . , oN}, p
(i)
t := Pt(oi)

and write pt := (p
(i)
t : i ∈ {1, . . . , N}) which takes value in the probability simplex:

ΣN :=

{
p ∈ RN : p(i) ≥ 0,

N∑
i=1

p(i) = 1

}
.

We denote: 
ci,jt := ct(oi, oj),

pnow := (Pnow(O = oi) : i ∈ {1, . . . , N}),
ptarg := (Ptarget(O = oi) : i ∈ {1, . . . , N}).

We are still looking for solutions to (2.4) but with discrete-time notations:

Lt+1(Pt) =
(2.3)

N∑
i=1

p
(i)
t

∫
Θ
ϕ(Ft+1, θ)qt+1,oi(dθ) =: Lt+1(pt). (2.9)

The risk measure term % (Lt+1(Pt)) is now a function of the vector pt. The function pt ∈ ΣN 7→
%(Lt+1(pt)) ∈ R should fulfill some properties to ensure the existence of solution of (2.4) in the
discrete case:

Properties 2.1 (Risk Measure Properties).

a) Positive Homogeneity: For any δ ≥ 0 and any vector pt ∈ ΣN , then

%(Lt+1(δ pt)) = δ %(Lt+1(pt)).

b) Continuity: pt ∈ ΣN 7→ %(Lt+1(pt)) ∈ R is continuous.

c) Convexity with respect to pt : For any δ ∈ (0, 1) and any vectors p1
t ,p

2
t in ΣN , then

%(Lt+1(δp1
t + (1− δ)p2

t )) ≤ δ %(Lt+1(p1
t )) + (1− δ) %(Lt+1(p2

t )).

These properties are automatically satisfied by the α-Expected Shortfall (ES) defined by [35]

ESα(L) = inf
`∈R

(
E ((L− `)+)

1− α
+ `

)
for some α ∈ (0, 1). They also hold when ρ is the α-VaR in a 1-factor Gaussian copula model with
non-negative correlations, since in that case, the credit risk term is linear w.r.t. pt (see Lemma A.1).

10



The MKt problem is then a linear optimization problem with primal and dual forms:

MKt(pt−1,pt) =


min
π≥0

∑
i,j

ci,jt πi,j

s.t
∑

j πi,j = p
(i)
t−1,

∑
i πi,j = p

(j)
t ,

(2.10)

=


max
f,g

∑
i

fip
(i)
t−1 +

∑
j

gjp
(j)
t

s.t fi + gj ≤ ci,jt ,
(2.11)

using the primal and dual formulations of MK problems in the discrete case (Section A.2). The
problem (2.4) (with K0 = 1) writes now

min
p0∈ΣN ,...,pT∈ΣN

[
T+1∑
t=0

λtMKt(pt−1,pt) +
T∑
t=0

% (Lt+1(pt))

]
, (2.12)

and is still refereed to as Multidate Monge Kantorovich (MMK) problem.

Theorem 2.3 (Existence of Solution). If the risk measure ρ satisfies the risk measure properties
2.1, the set of solutions for the Multidate Monge Kantorovich problem (MMK) (2.12) is a non-empty
convex and closed.

Proof. Note that MKt(pt−1,pt) is finite valued for all t since the primal formulation is clearly
bounded from below (non-negative cost ct). Regarding the dual formulation of the MK problem
(2.11), we observe MKt(pt−1,pt) as a maximum of linear functions with coefficients valued in a non-
empty convex polyhedral set. Applying [30, Theorem 8.7.2], this polyhedral set can be decomposed
as the sum of a convex hull (of a finite number of extremal points) and a conical hull: observe
that these extreme points can achieve all possible optimal values of the dual problem. Therefore,
MKt(pt−1,pt) can be viewed as a maximum of linear functions over this finite set of extreme points:
consequently, on the one hand (pt−1,pt) ∈ Σ2

N 7→MKt(pt−1,pt) is a piecewise linear function, hence
(Lipschitz) continuous, and on the other hand, it is convex. In addition, pt ∈ ΣN 7→ % (Lt+1(pt)) is
convex and continuous, thanks to Properties (2.1-(c)-(b)). The global cost function MMK in (2.12)
is thus convex and continuous in p0, . . . ,pT ∈ ΣT+1

N and the state space ΣT+1
N is convex and compact

which ensures the existence of a solution. Additionally, according to [21, Lemma VII-1.0.1.], the set
of solutions is closed and convex.

Replacing all the MKt(pt−1,pt) by their dual definitions (2.11), (2.12) rewrites as:

min
pt ∈ ΣN ,

t ∈ {0, ..., T}

max
ft, gt,

ft−1,i + gt,j ≤ ci,jt

T+1∑
t=0

λt (〈ft−1,pt−1〉+ 〈gt,pt〉) +
T∑
t=0

%(Lt+1(pt)), (2.13)

or equivalently, after rearranging the summation, as:

min
pt ∈ ΣN ,

t ∈ {0, ..., T}

max
ft, gt,

ft,i + gt+1,j ≤ ci,jt+1

[
T∑
t=0

(
〈pt, λt+1ft + λtgt〉+ %(Lt+1(pt)

)
(2.14)
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+ λ0〈f−1,pnow〉+ λT+1〈gT+1,ptarg〉

]
.

Owing to Theorem 2.3, the minimum problem has a solution (pt)
T
t=0. On the other hand, since

the primal of MKt (2.10) is clearly bounded from below, the dual problem also has a solution
(ft, gt+1)Tt=−1. Actually the (pt, ft, gt)t-solution set of problem (2.13) or (2.14) is unbounded. Indeed,
for each given (pt)

T
t=0 with a respective maximal solution (ft, gt+1)Tt=−1, we claim that (ft−vt, gt+1+

vt)
T
t=−1 is also solution for any component-wise constant vector vt = (νt, . . . , νt). To see this, observe

that taking (ft−1−vt−1, gt + vt−1) does not modify the t-term of the first sum in (2.13) (using that
pt and pt−1 are probability measures) and that it still fulfills the constraints ft−1,i + gt,j ≤ ci,jt .

Therefore, a small transformation on the feasible set provides us a simpler solution set (and
will allow us to achieve more accurate results, in particular in Theorem 2.6): for each t, one can
choose νt−1 such that the sum of components of gt + vt−1 equals 0, and then replace (ft−1, gt) by
(ft−1 − vt−1, gt + vt−1). As seen before, it does not modify the MMK problem optimal value (2.14)
nor the optimal solutions (pt)

T
t=0. Thus we have proved the following result.

Theorem 2.4. The MMK problem (2.12) has the same optimal value than

min
pt ∈ ΣN ,

t ∈ {0, ..., T}

max
ft, gt,

ft,i + gt+1,j ≤ ci,jt+1,∑
gt+1,j = 0

[
T∑
t=0

(
〈pt, λt+1ft + λtgt〉+ %(Lt+1(pt))

)
(2.15)

+ λ0〈f−1,pnow〉+ λT+1〈gT+1,ptarg〉

]
.

Moreover, the solutions set {(pt)Tt=0 : (pt)
T
t=0 solution of problem (2.4)} is the equal to the solutions

set {(pt)Tt=0 : (pt)
T
t=0 solution of problem (2.15)}.

2.5 Saddle-Point problem

It is important to notice that the above problem can be thought of as a bilinear saddle-point problem,
which will provide special properties and numerical methods. We recall that a bilinear saddle-point
problem is an optimization problem written under the generic form

min
x∈X

max
y∈Y

(
〈x,A>y〉+ ϕ(x)− ψ(y)

)
(2.16)

where X ⊂ Rn and Y ⊂ Rm are convex sets, A : Rn → Rm is a linear operator and ϕ,ψ are convex
functions.

Theorem 2.5 (Bilinear Saddle-Point Representation). The MMK problem (2.15) is a Bilinear
Saddle-Point Problem of the form (2.16), where x := (p0, . . . ,pT )> ∈ Rn with n := (T + 1)N ,
y := (f−1, f0, g0, . . . , fT , gT , gT+1)> ∈ Rm with m := 2(T + 2)N , with a linear function ψ.

12



In (2.16), the choice of denoting the matrix A> and not just A is made in several references
in the context of bilinear saddle-point problems. This choice is usually inspired by a primal-dual
problem, a minmax problem where the objective function is the Lagrangian of a convex optimization
problem of the form minx∈X , Ax=b ϕ(x), where y represents the dual variable. In general, saddle-
point problems as (2.16) (also called minmax problems) have a large presence in the literature with
several variations on convexity or smoothness of functions ϕ, ψ (see [40, 7]). These problems also
pop-up in various applications, like image processing [7], resource allocation [18].

Proof of Theorem 2.5. With the notation for x, y given in the Theorem statement, the sum in (2.15)
writes as

T∑
t=0

〈pt, A>t

(
ft
gt

)
〉+ ϕ(x)− ψ(y) (2.17)

where ϕ(x) :=
∑T

t=0 %(Lt+1(pt)), ψ(y) := −λ0〈f−1,pnow〉−λT+1〈gT+1,ptarg〉, A>t

(
ft
gt

)
:= λt+1ft+

λtgt; in other words, A>t = (λt+1IdRN , λtIdRN ) ∈ RN ⊗ R2N . Therefore, the sum (2.17) takes the
required saddle-point form 〈x,A>y〉+ ϕ(x)− ψ(y) where the matrix A> is a block matrix

A> :=



0 A>0 · · · · · · · · · · · · 0
...

. . . A>1
. . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . A>T−1

. . .
...

0 · · · · · · · · · · · · A>T 0


. (2.18)

The convexity of ϕ stems from Properties (2.1)-(c). The state spaces of x and y are readily convex.
We are done.

We refer the reader to [21] and references therein for properties of saddle-point problems. In our
case, we gather in the next result the following caracterisations of the solutions set. It extends the
compactness and convexity properties of Theorem 2.3 to the dual variables of (2.15).

Theorem 2.6 (Solution Set of the Multidate MMK Problem). In any case, the solutions set S of
the saddle-point problem (2.16) is non empty and is a product product S = X̄ × Ȳ ⊂ X × Y. If, in
addition, ptarg and pnow do not vanish (ptarg(o) > 0,pnow(o) > 0 for any o ∈ O), then the sets X̄
and Ȳ are compact and convex.

Proof. We are in a position to apply Sion’s theorem (Theorem A.1), in particular owing to the
compacity of X (as a tensor product of probability simplices). Therefore infx supy · · · = supy infx . . . ,
and as a consequence of Theorem A.2-(iii), S is nonempty and has a product form X̄ × Ȳ for some
sets X̄, Ȳ .

Under the extra set of conditions, we claim that it is enough to prove that there exists x0 ∈ X
such that:

l(x0, y) := 〈x0, A
>y〉 − ψ(y) −−−−−−−−→

y∈Y,‖y‖→∞
−∞. (2.19)
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Indeed, with (2.19) at hand, the compactness and convexity of S follow by [21, Theorem VII-4.3.1]
(since Y is unbounded). But since S is a product space, P1(S) = X̄ where P1 is the projection onto
the first n coordinates: P1 being linear, X̄ is also convex and compact. The same argument applies
for Ȳ and we are done with the compactness and convexity of X̄ and Ȳ .

We now prove (2.19). In view of (2.13) and the notations of Theorem 2.5, we have l(x, y) =∑T+1
t=0 St where

St := λt (〈ft−1,pt−1〉+ 〈gt,pt〉) .

First, note that (2.19) is equivalent to show that for every sequence (yk = (fk−1, f
k
0 , g

k
0 , . . . , f

k
T , g

k
T , g

k
T+1))k

such that ‖yk‖ → +∞ there is a subsequence (yk
′
) ⊂ (yk) such that l(x0, y

k′)→ −∞, provided that
x0 has been well chosen once for all.

B Let us justify that St is uniformly upper bounded. Indeed,

St ≤ λt

∑
i

(c
i,j∗t
t − gt,j∗t )pt−1,i +

∑
j

gt,j∗t pt,j

 = λt
∑
i

c
i,j∗t
t pt−1,i ≤ sup

t
λt sup

i,j,t
ci,jt =: S̄,

where j∗t is such that gt,j∗t = maxj gt,j .

B We now prove that at least one St goes to −∞, for some x0; then, combined with the above, we
will be done with (2.19).
We choose pt := ( 1

N ,
1
N , ...,

1
N ) ∈ ΣN , for t ∈ {0, ..., T} for defining x0. Since we consider ‖yk‖ →

+∞, as k →∞, either ‖gk‖ → +∞ (passing through a subsequence if necessary) or ‖gk‖ is bounded
and ‖fk‖ → +∞ (again along a possible subsequence). We split the proof according to these two
cases.

Case 1: ‖gk‖ = ‖(gkt )T+1
t=0 ‖ → +∞ as k → +∞.

Because
∑

j g
k
t,j = 0 for all t ∈ {0, ..., T + 1}, there is a component j∗ and a time t∗ such that

gkt∗,j∗ → +∞. Particularly, we can choose j∗ such that gkj∗,t∗ = maxj g
k
j,t∗ → +∞ (initially the

component depends on the index k but we can, passing by a subsequence if necessary, choose
a fixed component j∗ and t∗). Then

St∗ = λt∗

∑
i

ft∗−1,ipt∗−1,i +
∑
j

gt∗,jpt∗,j


≤ λt∗

∑
i

(ci,j
∗

t − gt∗,j∗)pt∗−1,i +
∑
j

gt∗,jpt∗,j


≤ S̄ + λt∗

∑
j

(gt∗,j − gt∗,j∗)pt∗,j

simply using that the sums of pt∗−1,i over i and pt∗,j over j are both equal to 1. Each term
in the j-sum is non-positive; because the sum of

∑
j g

k
t,j = 0 and gkj∗,t∗ → +∞, at least one

component gkt,j must be negative, which implies that

St∗ ≤ S̄ − λt∗gt∗,j∗ inf
j

pt∗,j .
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The above upper bound goes to −∞ since in any case of t∗ ∈ {0, . . . , T + 1}, pt∗,j > 0 (pt∗
is either the uniform distribution if t∗ ∈ {0, . . . , T} or equal to ptarg of t∗ = T + 1). We have
proved St∗ → −∞.

Case 2: supk ‖gk‖ < +∞ and ‖fk‖ = ‖(fkt )Tt=−1‖ → +∞ as k → +∞.
Since fkt−1,i ≤ c

i,j
t − gkt,j for any i, j, fkt−1,i must be bounded from above by a constant uniform

in k. In addition, there must be i∗, t∗ such that

fkt∗−1,i∗ → −∞ as k → +∞

(up to subsequence extraction). Then, clearly

St∗ = λt∗

∑
i

ft∗−1,ipt∗−1,i +
∑
j

gt∗,jpt∗,j


≤ λt∗ft∗−1,i∗ inf

i
pt∗−1,i + sup

t,i,k
(λtf

k
t−1,i) + sup

t,j,k
(λtg

k
t,j).

It follows that St∗ → −∞, because pt∗−1,i > 0 (recall that pt∗−1 is either the uniform distri-
bution if t∗ ∈ {1, . . . , T + 1} or equal to pnow of t∗ = 0). We are done.

Solutions of saddle-point problems (2.16) need not to be a singleton. Particularly, when Y = Rm

and ψ(y) = 〈b, y〉, the problem (2.16) is equivalent to the optimization problem minAx=b ϕ(x) that
can have infinitely many solutions if ϕ is not strictly convex. By strengthening conditions on ϕ, the
solution in pt is unique.

Proposition 2.1. If ϕ is strictly convex, then there is an unique solution (pt)
T
t=0 for the problem

(2.15). For the MMK problem, saying that ϕ is strictly convex is equivalent assaying that % is strictly
convex with respect to pt.

Proof. Consider the function
Φ(x) := max

y∈Y
〈x,AT y〉 − ψ(y);

Φ is convex as it is the maximum of linear functions (with respect to x). Adding the strictly convex
function ϕ gives a strictly convex function x 7→ Φ(x) + ϕ(x). Then problem (2.16) (or equivalently
(2.15)) boils down to a strictly convex optimization problem in a compact set, therefore with a
unique minimum.

3 Numerical experiments

Due to the important role of saddle-point Problems in recent applications, notably in image process-
ing, statistics and convex otimization ([10],[23],[41], a large range of methods are available to solve
this type of problem. Several convex optimization methods as of Frank-Wolfe Method and Mirror
methods [15, 25] were adapted to these maxmin problems, specially in the case of strictly convex
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functions ϕ and ψ. Nevertheless, one of the most useful and comprehensive methods in applications
are still the Primal-Dual method, first presented by Arrow and al. [2] and then its further variations
[44, 10].

3.1 Primal-Dual algorithm for the bilinear saddle-point problem

The Primal-Dual method (PD) treats general coupling functions with a segregated scheme (isolating
variables x and y) which is particularly interesting to our case of study. A way of understanding the
intuition behind the Primal-Dual algorithm is to rewrite problem (2.16) in the form of its first order
optimality conditions. Then, we want to find saddle points (x̄, ȳ) ∈ X × Y ⊂ Rn × Rm such that:

0 ∈ ∂(ϕ+ 0eX )(x̄) +AT ȳ, 0 ∈ ∂(ψ + 0eY)(ȳ)−Ax̄ (3.1)

where

0eC =

{
0, if x ∈ C,
+∞, if x /∈ C

is a proper convex function (for non-empty convex set C). For any proper convex function g : Rn →
(−∞,+∞], we have that the subgradient (see [21, Definition 1.1.4, Chapter VI], or [34] for the
extension of the definition for proper functions):

∂g(x) : Rn ⇒ Rn

is a well defined set-valued mapping. In particular, since g is convex, for every x ∈ Rn and every
r > 0, the optimization problem

gr(x) := min
z

(
g(z) +

1

2r
‖z − x‖2

)
(3.2)

defines the Moreau-Yosida regularization of g [20, Chapter XV, Section 4], and it has a unique
minimizer z ∈ Rn. In addition, the argmins of gr and g coincide, see [20, Chapter XV, Theorem
4.1.7]. By the first order necessary and sufficient optimality condition, the optimal z in (3.2) is such
that:

0 ∈ ∂g(z) +
1

r
(z − x)⇔ x ∈ (Id + r∂g)(z)⇔ z = (Id + r∂g)−1(x)

and in particular, the so-called Resolvent Operator :

(Id + r∂g)−1 : Rn → Rn

is well defined; the argmin of g is a fixed point of this operator. This result is a particular case of an
extensive theory of Maximal Monotone Operators first developed by Minty (see [26, 27]). Applying
this result to the operators in (3.1) we have that the Resolvent Operators(

Id + τ∂(ϕ+ 0eX + 〈A>ȳ, ·〉)
)−1

: Rn → Rn and
(

Id + σ∂(ψ+ 0eY − 〈Ax̄, ·〉)
)−1

: Rm → Rm (3.3)
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are well defined for any τ, σ > 0. Then, finding zeros in maximal monotone operators (3.1) is
equivalent to finding fixed points of the Resolvent operators (3.3). This is the intuition behind the
Arrow-Hurwicz algorithm [2] which alternates operators on x and y in the form{

xk+1 = (Id + τ∂(ϕ+ 0eX + 〈A>yk, ·〉))−1(xk),

yk+1 = (Id + σ∂(ψ + 0eY − 〈Axk+1, ·〉))−1(yk),

or in its classical form, for the same first order optimality conditions:{
xk+1 = (Id + τ∂(ϕ+ 0eX ))−1(xk − τA>yk),
yk+1 = (Id + σ∂(ψ + 0eY))−1(yk + σAxk+1).

On this basis, the Primal-Dual algorithm extrapolates xk+1 and xk defining an extra variable x̄k+1 =

xk+1 + θ(xk+1 − xk). The most useful case in applications is θ = 1, as we see in Algorithm 1 (taken
from [10, Algorithm 1]). The pseudo-code of PD is presented as follows, where τ and σ are going to
be specified in section 3.2.

Algorithm 1 Basic PD Algorithm
Result: (x̄, ȳ) minimizer of (2.16)
Step 0: Choose (x0, y0) ∈ X × Y
Step 1: x̂k+1 = xk − τA>yk

Step 2 xk+1 = arg min
x∈X

(
ϕ(x) +

1

2τ
‖x− x̂k+1‖2

)
Step 3: x̄k+1 = xk+1 + (xk+1 − xk)
Step 4: ŷk+1 = yk + σAx̄k+1

Step 5: yk+1 = arg min
y∈Y

(
ψ(y) +

1

2σ
‖y − ŷk+1‖2

)
.

Go back to Step 1.

3.2 Primal-Dual algortithm for the MMK problem

The proper functioning of the Basic PD algorithm depends on the realization of Steps 2 and 5.
The structure of the Multidate Monge Kantorovich problem, when written as (2.13), allows a simple
decomposition in time t ∈ {0, ..., T} of these steps. Steps 2 and 5 become T minimization convex
problems of the same type. The specific classification of the problem depends on the functions ϕ
and ψ.
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Algorithm 2 Basic PD Algorithm for the MMK problem
Result: (pt)

T
t=0 and (ft, gt+1)Tt=−1 minimizer of (2.16)

Step 0: Define p−1 = pnow, pT+1 = ptarg and p0
t = ( 1

N , ....,
1
N ) for t ∈ {0, ..., T}. Define:

(f0
t , g

0
t+1) = arg min

ft,i+gt+1,j≤ci,jt+1

∑
gt+1,j=0

∑
ft,ip0

t,i +
∑

gt+1,jp0
t+1,j ,

for t ∈ {−1, ..., T}. Define τ and σ (see Algorithm 5).

Step 1: p̂k+1
t = pkt − τ(λt+1f

k
t + λtg

k
t ), for all t ∈ {0, ..., T}

Step 2: pk+1
t = arg min

p∈ΣN

(
%(Lt+1(p)) +

1

2τ
‖p− p̂k+1

t ‖2
)
, for all t ∈ {0, ..., T}

Step 3: p̄k+1
t = pk+1

t + (pk+1
t − pkt ), for all t ∈ {0, ..., T}

Step 4: (f̂k+1
t , ĝk+1

t ) = (fkt , g
k
t ) + σ(λt+1p̄

k+1
t , λtp̄

k+1
t ), for all t ∈ {0, ..., T}

f̂k+1
−1 = fk−1, ĝ

k+1
T+1 = gkT+1

Step 5:

(fk+1
t , gk+1

t+1 )Tt=−1 = arg min

(ft, gt+1)Tt=−1,

ft,i + gt+1,j ≤ ci,jt+1

ψ(f−1, gT+1) +
1

2σ
‖(ft, gt+1)Tt=−1 − (f̂k+1

t , ĝk+1
t+1 )Tt=−1‖2

where by a light abuse of notation, we insist on the dependence of ψ with respect to the active
variables f−1, gT+1

Go back to Step 1.

Step 5 in Algorithm 2 consists in a naive application of the same step in Algorithm 1. It is
possible to break step 5 in T + 2 smaller problems of the same type. Indeed, we have:

arg min

(ft, gt+1)Tt=−1,

ft,i + gt+1,j ≤ ci,jt+1

ψ(f−1, gT+1) +
1

2σ
‖(ft, gt+1)Tt=−1 − (f̂k+1

t , ĝk+1
t+1 )Tt=−1‖2 =

arg min

(ft, gt+1)Tt=−1,

ft,i + gt+1,j ≤ ci,jt+1

ψ(f−1, gT+1) +
1

2σ

T−1∑
t=0

‖(ft, gt+1)− (f̂k+1
t , ĝk+1

t+1 )‖2 +
1

2σ
‖(f−1, g0)− (f̂k+1

−1 , ĝk+1
0 )‖2

+
1

2σ
‖(fT , gT+1)− (f̂k+1

T , ĝk+1
T+1)‖2.

Then, remembering that: ψ(f−1, gT+1) = −λ0 pnow, f−1 − λT+1 ptarg, gT+1 , Step 5 is equivalent
to the following
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Algorithm 3 Step 5 in time steps
Step 5:

(fk+1
t , gk+1

t+1 ) = arg min
ft,i+gt+1,j≤ci,jt+1

‖(ft, gt+1)− (f̂k+1
t , ĝk+1

t+1 )‖2, t ∈ {0, ..., T − 1}

(fk+1
−1 , gk+1

0 ) = arg min
f−1,i+g0,j≤ci,j0

−λ0 pnow, f−1 +
1

2σ
‖(f−1, g0)− (f̂k+1

−1 , ĝk+1
0 )‖2

(fk+1
T , gk+1

T+1) = arg min
fT,i+gT+1,j≤ci,jT+1

−λT+1 ptarg, gT+1 +
1

2σ
‖(fT , gT+1)− (f̂k+1

T , ĝk+1
T+1)‖2

Another possible simplification is to replace in Step 4: f̂k+1
−1 = fk−1 + σλ0pnow, and ĝk+1

T+1 =

gkT+1 + σλT+1ptarg, providing a short version of Steps 4 and 5:

Algorithm 4 Short version of steps 4 and 5
Step 4:

(f̂k+1
t , ĝk+1

t+1 ) = (fkt , g
k
t+1) + σ(λt+1p̄

k+1
t , λt+1p̄

k+1
t+1 ), t ∈ {−1, ..., T}

Step 5:
(fk+1
t , gk+1

t+1 ) = arg min
ft,i+gt+1,j≤ci,jt+1

‖(ft, gt+1)− (f̂k+1
t , ĝk+1

t+1 )‖2, t ∈ {−1, ..., T}

When %(Lt+1(pt)) is linear in pt, Steps 2 and 5 are T + 1 and T + 2 quadratic problems of size
N and 2N respectively. This means that the complexity of the algorithm grows linearly in T . In the
next paragraph we discuss an important part of Step 0 in Algorithm 2: the definition of parameters
τ and σ.

Parameters of adaptive Primal-Dual algorithm. One of the primary difficulties in the imple-
mentation of PD algorithm is the careful choice of step-size parameters. The speed of the method
depends on how these parameters are adapted to characteristics of the problem.

The main convergence theorem for Primal-Dual algorithm (Algorithm 1) states that the condition
τσ|||A|||2 < 1 on the parameters (τ, σ) is sufficient to ensure convergence (see [10, Theorem 1] or
Proposition 3.1). Here A is defined in (2.18) and |||·||| is the matrix norm subordinated to the
Euclidean norm ‖ · ‖, i.e. |||A||| = max{‖Ax‖ : x ∈ R2N , ‖x‖ = 1}. It is well-known that the norm
of A equals the maximal eigenvalue of the matrix A>A, i.e. |||A||| =

√
λmax(A>A). Because of the

definition of A> as a block-matrix, the matrix A>A can be written as a block of matrices of the
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form

A>A =



A>0 A0 · · · · · · · · ·
...

... A>1 A1
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . A>T−1AT−1

...
... · · · · · · · · · A>TAT


.

Since At =

(
λt+1IdRN

λtIdRN

)
, we have that ATt At = (λ2

t + λ2
t+1)IdRN , and therefore

|||A||| =
√

max
t∈{0,...,T}

(λ2
t + λ2

t+1).

This simple analysis allows us to obtain a sufficient upper bound to the product τσ :

τσ <
1

maxt∈{0,...,T}(λ
2
t + λ2

t+1)
. (3.4)

Inequality (3.4) partially solves the problem of choosing (τ, σ). To properly define the parameters,
we study the proportion between τ and σ in our particular case. We note that pt in Algorithm 2 is
such that ‖pt‖1 = 1 (where ‖ · ‖1 is the `1 norm), and ‖(ft, gt)‖1 may vary depending on the cost.
Since the Primal-Dual algorithm sums the terms pt and τ(λt+1ft + λtgt) (Step 1 in Algorithm 2),
and the terms (ft, gt) and σ(λt+1pt, λtpt) (Step 4 in Algorithm 2), it is important to re-adjust the
order of magnitude of each term by the definition of parameters τ and σ. On this basis, we estimate
that the ideal parameters τ, σ should have the proportions (for some C > 0)

τ ≈ C 1

‖λt+1ft + λtgt‖1
and σ ≈ C ‖(ft, gt)‖1

‖(λt+1pt, λtpt)‖1
=
‖(ft, gt)‖1
λt + λt+1

, for t ∈ {0, ..., T},

then:

σ

τ
≈ ‖λt+1ft + λtgt‖1‖(ft, gt)‖1

λt + λt+1
, for t ∈ {0, ..., T}. (3.5)

Since τ, σ do not depend on t, the estimation (3.5) depends on the fact that the order of
magnitude of the right hand side do not depend on t. To overcome this problem, we can define the
proportion between σ and τ as the mean in t of the right-hand side in (3.5). Combining this rule
with the inequality (3.4), we are able to define precisely the Step 0 of Algorithm 2, this is given in
Algorithm 5.
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Algorithm 5 Definition of τ and σ (Step 0 for Algorithm 2)
Step 0: Define p−1 = pnow, pT+1 = ptarg and p0

t = ( 1
N , ....,

1
N ) for t ∈ {0, ..., T}. Define:

(f0
t , g

0
t+1) = arg min

ft,i+gt+1,j≤ci,jt+1,
∑
gt+1,j=0

∑
ft,ip0

t,i +
∑

gt+1,jp0
t+1,j ,

for t ∈ {−1, ..., T}. Define τ and σ such that:

στ =
1

2 maxt∈{0,...,T}(λ
2
t + λ2

t+1)
and

σ

τ
=

1

T + 1

T∑
t=0

‖λt+1f
0
t + λt+1g

0
t ‖1‖(f0

t , g
0
t )‖1

λt + λt+1
.

We observe in the numerical tests that we are actually close to the ideal parameters τ, σ (see
Section 3.4).

3.3 Convergence analysis

In this subsection we present the convergence definition of the bilinear saddle-point problem (2.16)
consistently with definitions and results from A. Chambolle and T. Pock [10]. Since the above article
defines the saddle-point problem in a vector space, we shall rewrite problem (2.16) as:

min
x∈Rn

max
y∈Rm

(
〈x,A>y〉 − ψe(y) + ϕe(x)

)
, (3.6)

where m = 2(T + 2)N and n = (T + 1)N , and where ψe : Rm → [−∞,+∞), ϕe : Rn → (−∞,+∞] :

ψe(y) = ψ(y)− 0eY , ϕe(x) = ϕ(x) + 0eX .

Then, ψe, ϕe are proper convex and lower semi-continuous functions. With this definition, saddle
points for problems (2.16) and (3.6) are the same.

The most important definition of convergence for the Primal-Dual algorithm measures conver-
gence from the gap between the min and the max parts of the bilinear problem.

Definition 3.1 (Convergence criteria of Primal-Dual gap). Consider (x̄, ȳ) ∈ Rn × Rm, and two
subsets B1 ×B2 ⊂ Rn × Rm, then the partial Primal-Dual gap GeB1,B2

is defined as:

GeB1,B2
(x̄, ȳ) := max

y∈B2

{〈x̄, A>y〉 − ψe(y)+ϕe(x̄)} − min
x∈B1

{〈x,A>ȳ〉−ψe(ȳ) + ϕe(x)}.

The Primal-Dual algorithm (1) is said to converge by the Primal-Dual gap criteria if there are
sets B1 ⊂ Rn and B2 ⊂ Rm, such that there is a saddle-point (x̂, ŷ) for problem (3.6) that lies in the
interior of the set B1 ×B2 and the partial gap along the algorithm sequence converges to 0:

GeB1,B2
(xk, yk)→ 0.

We observe that, with this definition, if a saddle point (x̂, ŷ) lies in B1×B2, then GeB1,B2
(x̄, ȳ) ≥ 0

for all (x̄, ȳ) ∈ Rn × Rm.
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Remark 3.1. We note that if (x̄, ȳ) /∈ X × Y, then GeB1,B2
(x̄, ȳ) = +∞. For (x̄, ȳ) ∈ X × Y the

definition 3.1 can also be written as:

GB1,B2(x̄, ȳ) := max
y∈B2∩Y

{〈x̄, A>y〉 − ψ(y)+ϕ(x̄)} − min
x∈B1∩X

{〈x,A>ȳ〉−ψ(ȳ) + ϕ(x)}. (3.7)

From now on, when (x̄, ȳ) ∈ X ×Y, we use equation (3.7) and the notation GB1,B2 to define the
Primal-Dual gap.

Remark 3.2. Note that the sequence (xk, yk) generated by the Primal-Dual Algorithm 1 lies in the
set X × Y.

Proposition 3.1 (Convergence rate of the Primal-Dual gap). Let (x̂, ŷ) ∈ Rn×Rm and let B1 ⊂ Rn

and B2 ⊂ Rm be such that (x̂, ŷ) lies in the interior of B1 ×B2. Then, if the Primal-Dual gap

GeB1,B2
(x̂, ŷ) = 0,

then (x̂, ŷ) is a saddle point of problem (2.16) (or equivalently problem (3.6)).
Besides, if τσ < 1

|||A|||2 , the sequence (xk, yk) generated by Algorithm 1 is convergent, and (xk, yk)→
(x̂, ŷ), for a saddle point (x̂, ŷ). In addition, the convergence order for the sequence of means:

x̃K = 1
K

K∑
k=1

xk, ỹK = 1
K

K∑
k=1

yk is O( 1
K ) as K → +∞, in the sense

GB1,B2(x̃K , ỹK) = O(
1

K
)

for any bounded sets B1 ⊂ Rn and B2 ⊂ Rm.

Proof. See [10, Theorem 1]. We observe that in the notation of [10, Theorem 1] the function F ∗ is
the convex conjugate of a function F, that is convex lower semi-continuous. Since ψe is convex and
lower semi-continuous, we have that ψe,∗∗ = ψe (see [22, Corollary 1.3.6, Appendix E]) which means
that ψe can be viewed as the conjugate function of a convex lower semi-continuous function ψe,∗

(see [22, Theorem 1.1.2, Appendix E]). The statement of [10, Theorem 1] assumes the existence of
a saddle point (x̂, ŷ) for problem (3.6). This assumption is not necessary in our case since we have
proved the existence of a saddle point for problem (2.16) (see Theorem 2.3).

We note that, since any element of the sequence (xk, yk) generated by the Primal-Dual algorithm
1 lies in the set X ×Y, so does the sequence of means (x̃K , ỹK) (remind that X and Y are convex).
This justifies the use of the notation GB1,B2 instead of the notation GeB1,B2

(see remark 3.1).

If we choose B1 ×B2 to be the entire set Rm × Rn, the global Primal-Dual gap is written as:

GX ,Y(x̄, ȳ) = max
y∈Y
{〈x̄, A>y〉 − ψ(y) + ϕ(x̄)} −min

x∈X
{〈x,A>ȳ〉 − ψ(ȳ) + ϕ(x)},

and Proposition 3.1 states that:

GX ,Y(x̄, ȳ) = 0 ⇐⇒ (x̄, ȳ) is a saddle point.

22



For the MMK problem (2.13) we have that X = {(pt)Tt=0 : p
(i)
t ≥ 0,

∑N
i=1 p

(i)
t = 1} and

Y = {(ft, gt+1)Tt=−1 : ft,i + gt+1,j ≤ ci,jt+1,
∑
gt+1,j = 0}, then Y is not a bounded set. Nevertheless,

if we consider a sequence (xk, yk) defined by Algorithm 1 and if we verify that GX×Y(xk, yk) → 0,
then it implies that for any bounded set B1 × B2 ⊂ Rn × Rm such that a there is a saddle point
(x̂, ŷ) ∈ B1 ×B2 that

0 ≤ GB1,B2(xk, yk) ≤ GX ,Y(xk, yk)→ 0.

Then, verifying the convergence of the global Primal-Dual gap on X ×Y implies the convergence of
the partial Primal-Dual gap for any bounded set B1 ×B2 containing a saddle point.

By proposition 3.1, for any fixed τ and σ, such that τσ|||A|||2 < 1, the algorithm converges
with convergence order O(1/K) in the sequence of means. A faster convergence in practice of this
method, if employed with well-chosen stepsize policies, is studied in [10, Section 5] and depends on
the regularity of ϕ and ψ. Particularly, if ϕ or ψ are strictly convex, the Primal-Dual algorithm
can achieve a convergence order O(1/K2). These strict convexity conditions are satisfied in our
framework if and only if the function ϕ is stricly convex (see Theorem 2.5).

3.4 Numerical analysis of convergence

The objective of this simulation study is twofold: to numerically verify convergence of the Primal-
Dual algorithm according to Definition 3.1 for different parameters τ and σ, on a toy example;
second, to assess the computational time as N and T increase.

3.4.1 Toy example

We consider a toy problem fixing all elements of the MMK problem (2.13) as follows:

- T = 3, λ = 1/4.

- The discretized region for the attributes o = (e, g) is O := [0, 15]× [0, 15].

- The quantity of points on the grid G is N = Ne ×Ng ∈ {25, 100}, points are equispaced in each
direction (e or g) and Ne = Ng.

- The cost ct is the squared Euclidean norm for t ∈ {0, 1, ..., 3}.

- pnow and ptarg are discrete probabilities on the grid G. Considering the Voronoi cells of each
oi ∈ G : C(oi) = {o : arg infj ‖o− oj‖ = oi}, for i ∈ {1, ..., N}, then set pnow,i := Pnow(C(oi)), and
ptarg,i := Ptarget(C(oi)) for some continuous distributions Pnow and Ptarget specified below.

- Pnow is defined by a Gaussian mixture model. Namely, consider the two Gaussian distributions
Z1
now ∼ N (µ1, C1) and Z2

now ∼ N (µ2, C2), then:

Pnow | I ∼ ZInow

where P (I = 1) = P (I = 2) = 1/2. The parameters values are µ1 = (3, 11)>, C1 = 1.5 IdR2 ,
µ2 = (10, 3)> and C2 = 1.7 IdR2 , where IdR2 is the two-dimensional identity matrix.
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- For Ptarget we choose another Gaussian distribution:

Ptarget ∼ N (µ,C)

where µ = (3, 7)> and C = 2 IdR2 .

- ρ = VaRα with α = 99%.

- The parameter θ depends exclusively of the g coordinate, that is discretized on the grid G in
values gk ∈ [0, 15], k ∈ {1, .., Ng}. The parameter θ = (β1, γ) in the one-dimensional Gaussian
copula model (2.2) (with d = 1) is distributed as θ ∼ Beta(ak, bk) ⊗ LogNormal(γk, νk), where
ak ∈ [0.18, 0.21], bk = 0.01, γk = [1.18, 2.1], νk = 0.1; for each k, the values of ak and γk are
randomly chosen (uniformly on their respective intervals). These set of parameters is chosen in
order to obtain realistic values of loss Lt+1(Pt) ≈ 0.02.

In the following plots, we verify the Primal-Dual gap convergence and compare different choices
of algorithm parameters (τ, σ). The ideal parameter computed by Algorithm 5 is τ = 3/400, σ = 200

for N = 5 and τ = 3/1000, σ = 500 for N = 10, which results are reported in the center of Figures
1 and 2.

(a) τ = 3
40 , σ = 20 (b) τ = 3

400 , σ = 200 (c) τ = 3
4000 , σ = 2000

Figure 1: Primal-Dual Gap for different values of parameters (τ, σ), N = 25

(a) τ = 3
100 , σ = 50 (b) τ = 3

1000 , σ = 500 (c) τ = 3
10000 , σ = 5000

Figure 2: Primal-Dual Gap for different values of parameters (τ, σ), N = 100

When we move away from the natural proportion (3.5), even when respecting the parameter
inequality in Proposition 3.1, the convergence is clearly slower. Different values of τ and σ, close
to those that have the best performance in convergence, have been also tested, we do not report
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the graphs of performance, they are very close to those presented in Figures 1 and 2. These tests
confirm that the algorithm 5 for choosing (τ, σ) not only ensures convergence, but also yields it at
a competitive speed.

3.4.2 Execution time

On this section, we argue that the computational time for the MMK problem (2.12) in the previous
toy example remains reasonable for large numbers N of points in the discretization grid G ⊂ O
(the number of different obligor attributes in the portfolio) and time T. Observe that thanks to the
characteristics of Primal-Dual Algorithm when applied to MMK problem (2), Step 2 and Step 5 can
be performed in parallel in time t ∈ {0, ..., T}, meaning that in that case the execution time will be
little affected by the number of time steps T (provided that the number of parallel threads is large
enough).

Step 0 in Algo 5 solves 3 linear problems of size N that can be costly with respect to N . However,
this has to be done only once, with the main purpose of computing the parameters (τ, σ). Moreover,
a previous expert knowledge in time magnitude order of (f, g) would be likely sufficient to avoid
these linear problems.

In the Table 1 we report the execution time of one iteration (Step 1 to Step 5) for different values
of N and T when Steps 1 to 5 of Algorithm 2-Algorithm 4 are executed sequentially. The processor
is Intel(R) Core(TM) i7-6600U CPU @2.60GHz, 2.81 GHz and we use Python langage and standard
Python libraries for the implementation.

T\N 25 100 125 200
2 1.3s 3.2s 55s 439s
5 1.6s 5.5s 130s 602s
10 1.8s 9.6s 170s 887s
20 2.3s 17s 416s 1120s

Table 1: Execution time of the Primal-Dual Algorithm 4.

The verification of the Primal-Dual gap requires a linear problem of size 2N for each iteration,
which is costly for N > 100. On the other hand, it is known that Primal-Dual algorithm converges
with order O(1/K) (see proposition 3.1) which can be used to reduce the necessity of computing the
Primal-Dual gap (see Definition 3.1). Because of that, the computational time reported in Table 1
does not include the computation of the Primal-Dual gap.

In our experiments, we have observed that the number of iterations until a convergence with
error tolerance of 10−4 for the Primal-Dual Gap was between 100 and 300 depending on the N and
the difficulty of the problem. All in all, and in view of Table 1, leveraging on parallel computations,
a MMK problem with N = 200, T = 20 can be solved in approximately 300× 1120s/20 ≈ 5 hours.
Besides, in our example the risk metric ρ induces a linear dependence of the credit risk term as
a function of pt (Lemma A.1): presumably, a strictly convex term pt 7→ ρ(Lt+1(pt)) would speed
up the convergence of the algorithm by choosing carefully parameters (τk, σk), depending on the
iteration (see [10, Section 5.1]). This is left to further investigation.
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4 Financial data

4.1 Overall description

The Multidate Monge Kantorovich model presented in Section 2.3 allows a variety of interpretations
and data sets. Clearly, the cost ct is an important parameter of the model and needs to be adjusted
according to the desired context. In the current interpretation, ct is defined based on an economic
sector and an environmental index. For the sake of our experiments, we will consider fictitious
portfolio distribution (pnow) based on realistic obligors o, corresponding to large companies.

The data set D used to statistically calibrate the credit risk model and define the transport cost
is composed by a set of companies. These companies can be interpreted as potential obligors in
the portfolio. Obligors are identified by ordered pairs of attributes o = (e, g), where e represents an
ESG index, and g an economic sector. The cost ct do not depend on the time t and is defined by a
combination of e and g. The sector g provides an economic information about the couple return/risk
of the obligor, see more details in Section 4.3.

ESG is an environmental, social, and governance criteria that measures a set of standards of a
company’s operations. Environmental criteria consider how a company performs as a steward of
nature. Social criteria examine how it manages relationships with employees, suppliers, customers,
and the communities where it operates. Governance deals with a company’s leadership, executive
pay, audits, internal controls, and shareholder rights. Larger values of ESG (see Section 4.2) mean
better scores in social, environmental and governance criteria. For our experiments, the employed
ESG index is proposed by Arasbesque Group 2. With the benefit of being an open data index with
last updated in may 2021, this ESG index is a quantitative data tool that analyses the sustainability
performance of over 7.000 of the world’s largest listed corporations using quantitative models and
data scores.

We are aware that for the purpose of portfolio alignment to Paris agreement as mentioned in
introduction, using ESG index (measuring environmental impacts, but also other responsibility fac-
tors) for the obligor attribute e is questionable: having an index reporting more accurately on direct
and indirect CO2-emissions (Scopes 1 to 3) would be more in the spirit of the Paris agreement;
nevertheless, to the best of our knowledge, such a data base of CO2-emission type index is under
construction, and not yet available; alternatively, we have preferred the well-document ESG index
which constitutes a reasonable proxy. Hopefully, in the near future (because of the many quantitative
initiatives to address climate risk), a more precise dataset will be available, so to improve the de-
scription of attribute e and the accuracy of the cost ct, and consequently improves the interpretation
of the MMK model outputs.

Our data set is also composed by the Credit Rating of each one of the companies. The database
is mainly provided by the open data website Kaggle 3 and concerns the period between 2005 and
2015. The Credit Rating is a classification of the credit risk of a company made by Financial
Risk Agencies. The Credit Risk Agencies present in our data set are: DBRS, Egan-Jones Ratings
Company, Fitch Ratings, Moody’s Investors and Standard & Poor’s Ratings Services. The data is

2https://www.arabesque.com/s-ray/our-scores/
3https://www.kaggle.com/agewerc/corporate-credit-rating
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also freely available. The classification comprises indices in the set

{AAA,AA,A,BBB,BB,B,CCC,CC,C},

ranging from the most secure obligors to the least.
Clearly, credit risk is closely related to the Credit Spread, that is, the difference between the

return of a risky debtor and the default-risk return (sovereign debts say). We benefit from Credit
Rating to estimate the Credit Spread of companies and use it as one of the factors to define the cost
c, see details in Section 4.3.

Each company in the data set is identified with an activity sector g. The possible sectors are:
Consumer Services (Restaurants, Travel Agencies, Lodging), Consumer Non-Durables (Food Com-
panies, Alcohol), Energy Minerals (Oil & gas, energy generation), Non-Energy Minerals (Chemicals),
Productor Manufacturing (Industrials), Utilities (Basic Amenities, such as water and electricity,),
Retail Trade (Retail, Distribution, e-commerce), Health Technology (Medicine devices, Biotech-
nology), Health Services (Health Plans), Technology Services (Communication, Social Networks,
Softwares), Electronic Technology (Mobile devices, Semiconductors), Transportation (Airplanes and
Autos), Process Industries (Tobacco, Textiles) and Finance (Banks, Hedge Funds).

The calibration of the 1-factor Gaussian model (Section 2), is made using the correlation between
fluctuations of the stock market prices and the Gross domestic product (GDP in short) in a given
period. For more details, see Section 4.3.3.

4.2 ESG and Credit Rating Distributions

To maximise available data, we select our portfolio from American companies. The geographical
concentration makes the comparison between sectors and the 1-factor risk model (see Section 4.3.3)
more accurate and, in addition, American companies are a good approximation for the world com-
panies in terms of ESG (according to Arabesque S-Ray), as we can see from the histograms in Figure
3. The selected database relies on 2660 American companies in 16 sectors. Companies are grouped

(a) ESG Europe (b) ESG United States (c) ESG World

Figure 3: ESG distributions for Europe, United States and the World

by activity sector, see Figure 4 for the box-and-whisker plots of ESG and Credit Rating according
to activity sector. The cost c between two obligors (enabling us to compute the distance between
two portfolios) is based on the ESG index of the obligors and the Credit Spread of obligors. The
Credit Spread is computed using the available Credit Rating Data, for more details see Section 4.3.
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(a) Distribution of ESG (b) Distribution of Credit Rating

Figure 4: Distribution of ESG and Credit Rating according to activity sector

4.3 Relations between the Database and the MMK Model

4.3.1 Portfolio

The final data set D is composed of 470 American companies for which both ESG and Credit Rating
are available.

Figure 5: Example of Portfolio

We recall that elements in D are identified by two attributes o = (e, g), where e is an envi-
ronmental indicator - here the ESG score of the company, and g is the group - here an economic
sector. Consistently with our framework, we consider the set of obligors as a discretized region,
i.e. O = {o1, ..., oN} ⊂ R+ × {Activity sectors}: on the horizontal axis, we find the ESG score,
and on the vertical axis the sector. The set of obligors O is a grid of uniformly-distributed points
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covering the interval of possible ESG scores and Sectors. A portfolio at time t is a probability vector
(p

(1)
t , . . . , p

(N)
t ), where p(i)

t = Pt(O = oi) which reads as the percentage of the obligors in the sector
gi with ESG score ei.

The data set D fixes the region of possible obligors. Different portfolios (vectors pt) can be
considered in the whole discretized region O. A portfolio at time t can be represented as circles in
the grid for which the size is proportional to the probability p(i)

t of each grid point. For instance,
in Figure 5, point 1 represents the companies in the Retail Trade sector that have an ESG index
between 45.95 and 49.15. An example of a company that could be in this portfolio is the Walmart.Inc,
a Retail and Trade company with an ESG of 46.59. Point 2 represents the companies of the Electronic
Technology sector that have an ESG index between 60.25 and 63.05. An example of company that
could be in this portfolio is the Lockheed Martin Corporation with an ESG of 61.49.

4.3.2 Definition of the Cost

With the purpose of defining a distance between sectors, we consider the mean of the credit spread
in each sector as the incentive for investing (or not) in the sector following a rentability criteria. The
European Commission 4 proposes a equivalence between credit rating and credit spread as in Table
2.

Rating AAA AA A BBB BB B CCC CC C
Credit Spread (%) 0.05% 0.15% 0.25% 1% 7.5% 20% 28% 34% 40%

Table 2: Conversion from Rating to Credit Spread

This equivalence is used in our model to compute the cost. The cost c(o, o′) (independent on the
time t) is then composed of three parts. The first one considers the difference credit spread of the
obligors: o, o′. The second one considers the difference in the ESG score of the obligors. The third
one considers a fixed cost cfixed of replacing contracts. All in all, it gives

c(o, o′) = cfixed + λ(CS(g′)− CS(g)) + |e′ − e|,

where λ is a normalization coefficient, and CS(g) the mean credit spread CS (according to the above
Table) over the companies in the group g. As an example, the Retail Trade sector has a mean credit
spread of 4.5%, while the Electronic Technology sector has a mean credit spread of 8.2%.

4.3.3 Credit Parameter Distribution

For the purpose of calibrating the one-factor Gaussian copula model described in Section 2.2 (d = 1),
we need to define the distribution of the parameter θ = (β, γ)5 conditionally on the obligor attributes
o, i.e. qt,o(dθ). Ideally, this conditional distribution on the parameter θ should be inferred from the
data set. Besides, for the convenience in our experiments of having a linear credit risk loss (Lemma

4https://eur-lex.europa.eu/legal-content
5to simplify notation, we write β for the parameter β1 in (2.2) when d = 1.
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A.1), we restrict to 10 sectors for which companies have positive β (the correlation parameter in
the Gaussian copula model). The selection of these sectors is made according to the estimated β

following the methodology below. The selected sectors are listed in Table 3.
Actually, a direct inference of the conditional distribution qt,o(dθ) from the data set has not

been possible, since unfortunately, although existing, these data are not publicly available (in risk
departments of financial institutions, they are usually inferred from the observed historical default
rates). Alternatively for our numerical study, we assume that the parameter θ depends mostly on
the activity sector gk, k ∈ {1, ..., 10} (and not on the ESG score), reducing the problem to identifying
the distributions of (βk, γk) for each k ∈ {1, ..., 10}. Since βk ∈ (0, 1) and γk > 0 it is natural to
suppose that βk ∼ Beta(ak, bk) for6 some (ak, bk) ∈ (0,+∞)2 and γk ∼ Lognormal(µk, σk), for some
(µk, σk) ∈ R× (0,+∞). All in all, we set

qt,o(dθ) = Beta(ak, bk)⊗ Lognormal(µk, σk).

Let us now discuss how we fit the parameters ak, bk, µk, σk to realistic values.

Parameters for the distribution of βk. The credit-risk parameter βk represents the correlation
between the global economy and the economic sector gk. Identifying the parameters ak, bk then can
be made by matching the two first statistical moments of this correlation among different companies
from the sector gk, with the two first moments of the Beta(ak, bk)-distribution.

To get samples of βk, one should compute (for many companies) the correlation between the
GDP growth and the stock fluctuations of companies in the database for the sector gk. Since we
do not dispose of the historical data of the stock price for each company in the database D (for
which ESG and Credit Rating are available), we have replaced the companies in D by the 500 most
important American companies in each sector according to Standard & Poor’s agency: the S&P500

companies. Doing so, we assume that for each economic sector gk, the correlation between the
growth rate of the stock prices of companies in database D (in sector gk) and of the GDP of United
States in the same period (2013-2017) has statistically the same distribution as when computed with
S&P500 companies; this transfer assumption is coherent with the one-factor Gaussian copula model.

Figure 6 plots the GDP in United States and the stock prices for two companies in S&P500,
which serves to get samples of β according to their respective sectors.

6the Beta distribution is taken with a support equal to (0, 1)
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(a) American Airlines, in sector "Transportation" (b) Pfizer, in sector "Health Technology"

Figure 6: Growth rates of two important American companies in their sectors

Proceeding like this for companies in S&P500, and computing correlation on a quarterly basis,
we obtain the two first statistical moments of βk according to the sector gk: we denote by M̂ean(βk)

and ̂Variance(βk) these empirical mean and variance, their values are reported in Table 3. The
results are coherent with the intuition behind these correlations: sectors like Energy Minerals, Non-
Energy Minerals and Producer Manufacturing have globally more important correlations with the
GDP than Communications or Electronic Technology.

Sector Mean Variance
Transportation 0.0803 0.0322

Electronic Technology 0.0898 0.0570
Health Technology 0.1413 0.0446

Utilities 0.1092 0.0443
Non-Energy Minerals 0.3013 0.0101

Producer Manufacturing 0.1306 0.0535
Health Services 0.2038 0.0366
Energy Minerals 0.2682 0.0968

Consumer Durables 0.1154 0.0886
Communications 0.0876 0.0126

Table 3: First statistics of the correlation between GDP and stock prices for each sector

Now, the parameters ak, bk for the distribution of βk ∼ Beta(ak, bk) are calibrated so that to
match the two first moments of the model with those of the data, i.e. ak

ak+bk
= E (Beta(ak, bk)) =

M̂ean(βk) and akbk
(ak+bk)2(ak+bk+1)

= Var (Beta(ak, bk)) = V̂ar(βk). After simple computations we
obtain

ak = M̂ean(βk)
((1− M̂ean(βk))M̂ean(βk)

V̂ar(βk)
− 1
)

and bk = ak

( 1

M̂ean(βk)
− 1
)
.
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Parameters for the distribution of γk ∼Lognormal(µk, σ2
k). As we have done for the calibra-

tion of the βk-distribution, we are to collect samples of γk and then fit the lognormal distribution
parameters by matching the two first moments between the lognormal model and the data. To get
samples of γk from each company in the sector gk, we leverage the default probability formula (2.2):

P (Xk ≥ γk | F ) = Φ

(
(βkF − γk)/

√
1− β2

k

)
,

and match it with the default probability computed from the credit spread CS for the considered
company:

Default Probability = 1− exp(−CS×H),

where H is the amount of years in the time period. We recall that our data set includes the company
rating and the quantity CS is computed using the conversion Table 2. Because βk are not publicly
available for these companies, we replace it by its mean M̂ean(βk) and we take F = 0 as if the
economic risk factor were at its medium value. With these samples at hand, it is now easy to match
its mean and variance with those of Lognormal(µk, σ2

k), sector by sector. The results are reported
in Table 4.

Sector µk σ2
k

Transportation 2.5675 0.1885
Electronic Technology 2.4982 0.0721
Health Technology 2.3539 0.0820

Utilities 2.3997 0.0979
Non-Energy Minerals 2.4488 0.1268

Producer Manufacturing 2.4773 0.1131
Health Services 2.6053 0.2017
Energy Minerals 2.3172 0.0647

Consumer Durables 2.6479 0.1882
Communications 2.2346 0.0021

Table 4: Parameters µk and σ2
k of the distribution of γk

4.4 Analysis of the Portfolio Transition

In this final numerical test we compose a fictitious portfolio invested in the 10 selected sectors. We
generate pnow and ptarg using Gaussians distributions and imagining that ptarg is a portfolio with a
better ESG index mean, to be coherent with the Paris agreement. The portfolios can be visualized
in Figure 10b. As a risk metric we use ρ := VaRα with α = 99%: since the calibrated β’s are positive
in the selected sectors, it is possible to use Lemma A.1 and then compute ρ(Lt+1(pt)) as a linear
function of pt.

Two criteria are explicitly used to define problem (2.4): Risk of Loss and ESG index. We will
analyze the optimal transition according to (2.4) with respect to these two criteria. We compare
the results obtained by the MMK solution with a “naive" transition path p̃t, interpolating linearly
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between pnow and ptarg:

p̃t =
(

1− t+ 1

T + 1

)
pnow +

( t+ 1

T + 1

)
ptarg, for t ∈ {−1, ..., T + 1}.

In our case of study T = 2, meaning that we have three intermediate periods {0, 1, 2}. The number
of points in the grid G is N = Ne × Ng = 10 × 10, points are equispaced in each direction. We
set λt = 1

4 , for t ∈ {0, ..., 3}. The computation time was 15.36 minutes for a processor Intel(R)
Core(TM) i7-6600U CPU @ 2.60GHz,2.81 GHz. The number of iterations until convergence is 230

for a tolerance of 10−4 with respect to the global primal-dual gap (see Definition 3.1).
Figure 7 shows the time-evolution of the credit risk exposure. We observe that in the "optimal"

transition pt given by the MMK solution path, the risk keeps always under the risk of the linear
path p̃t. .

Figure 7: Evolution of the credit risk term ρ(Lt+1(pt))

In terms of objective value, the comparison between the evolution of the linear path and the
optimal MMK path shows different trajectories. Figure 8 illustrates the fact that, even if the linear
path p̃t has a greater objective value for the MMK problem (2.4), it is not possible to ensure that for
each time t in the trajectory the solution pt is the best for the pointwise criterion MKt, reinforcing
the importance of considering the whole trajectory and accounting for credit risk.
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Figure 8: Evolution of the objective value MKt, for t ∈ {0, 1, 2, 3}.

We can verify an important improvment in the global objective value of the whole trajectory:
for the linear path, the global objective value is 0.02609, while it is equal to 0.024983 for the MMK
path. The difference between values represents approximately 15% of the objective value of the
MMK problem. We remember that in the composition of the cost c, ESG score e is normalized in
percentage scale.

In the point of view of ESG score changes, the expected behavior shows to be very similar to
the linear one, see Figure 9. Here the mean ESG is given by 1

N

∑
o=(e,g)∈O e.

Figure 9: Evolution of ESG score for time t ∈ {−1, 0, 1, 2, 3}

The evolution of the ESG distribution on the grid and the distribution path can be graphically
visualized in Figures 10a and 10b respectively, confirming the ecological transition of the credit
portfolio to a greener situation as expected.
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(a) ESG histograms (b) Graphic evolution of the portfolio transition

Figure 10: On the left, the evolution of ESG histograms for time periods t ∈ {−1, 0, 1, 2, 3}. On the
right, portfolios pt for t ∈ {−1, 0, 1, 2, 3}

5 Conclusion

The purpose of this work is to define a quantitative methodology of ecological portfolio transition
regarding climate change agreements. The proposed model, Multidate Monge Kantorovich problem
(MMK), considers some important parameters for this portfolio transition: ESG of companies in
the portfolio (or ecological score), return of investments, and credit risk. Since MMK problem is
based on Optimal Transport tools, it aims to quantify not only the adjustment of each portfolio
distribution of the trajectory with the selected criteria but also the difficulty in transitioning from
one portfolio distribution in time t to the next one in time t+ 1, keeping an eye on credit risk.

In this work we have demonstrated that the MMK problem is well defined and we have derived
some properties of its solutions set. We have proposed a numerical method that converges in available
time and that offers important advantages regarding the structure of our problem. In this context,
we develop the adaptation of the method to our case of study.

To test our model, we have worked with a variety of financial real data: ESG, credit rating,
stock prices and GDP. This data set has allowed us to analyze MMK solutions on realistic data and
compare it with a naive form of transition (linear interpolation). Results are encouraging and show
important progress with respect to the naive choice: all in all, since the methodology is effective, it
can help to get valuable insights on the optimal transition of an institutional actor in finance.
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A Background results

A.1 Minimax theorem

The following theorem is a generalization to general ambient spaces of John von Neumann’s minimax
theorem stated in Euclidean spaces.

Theorem A.1 (Sion’s minimax theorem, [39, Corollary 3.3]). Let X and Y be convex spaces one of
which is compact. Consider f : X × Y 7→ R such that

• f(x, ·) is upper semicontinuous and quasi-concave on Y for any x ∈ X ,

• f(·, y) is lower semicontinuous and quasi-convex on X for any y ∈ Y,

then
inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).

In general, the assumptions of being u.s.c. and l.s.c. cannot be removed nor appreciably weak-
ened, even in finite dimensions. Last, there are some variants for concave-convex like functions, see
[39, Theorems 4.1, 4.1’, 4.2, 4.2’].

Theorem A.2 (Existence and properties of saddle-points [21, Chapter VII, Proposition 4.1.3, Theo-
rem 4.2.5]). Let X and Y be arbitrary spaces and let f : X×Y 7→ R. Let S be the set of saddle-points:

S = {(x̄, ȳ) : f(x̄, y) ≤ f(x̄, ȳ) ≤ f(x, ȳ) ∀(x, y) ∈ X × Y} .

i) On the set S, the function f is constant;

ii) If (x̄1, ȳ1) and (x̄2, ȳ2) are in S, then (x̄1, ȳ2) and (x̄2, ȳ1) are also in S;

iii) S is non-empty if and only if

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).

In this case, S has a product form:

S = Φ×Ψ

where Φ := {x̄ ∈ X : sup
y∈Y

f(x̄, y) = inf
x∈X

sup
y∈Y

f(x, y)},

Ψ := {ȳ ∈ Y : inf
x∈X

f(x, ȳ) = sup
y∈Y

inf
x∈X

f(x, y)}.

In particular, under the assumptions of Theorem A.1, the set of saddle-points is not empty.
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A.2 Monge-Kantorovich problem

For the sake of self-containedness, we state standard results on Monge-Kantorovich problem, see [42]
for a more detailed presentation.

Theorem A.3 (Existence of an optimal coupling for non-negative cost [42, Theorem 4.1]). Let (X , µ)

and (Y, ν) be two Polish probability spaces. Let c : X ×Y 7→ [0,+∞] be a lower semicontinuous cost
function. Then there is a coupling of (µ, ν) which minimizes the total cost E (c(X,Y )) among all
possible couplings (X,Y ), i.e. achieving the bound

MK(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx,dy)

where Π(µ, ν) is the set of probability measures π on X × Y such that X#π = µ and Y#π = ν.

Theorem A.4 (Kantorovich duality for non-negative cost [42, Theorem 5.10]). Let (X , µ) and (Y, ν)

be two Polish probability spaces. Let c : X × Y 7→ [0,+∞] be a lower semicontinuous cost function.
Then there is a duality:

MK(µ, ν) = sup
(f,g)∈L1(µ)×L1(ν):f+g≤c

∫
X
f(x)µ(dx) +

∫
Y
g(y)ν(dy).

The finite discrete case is notationally simpler, that is in the case where the spaces X and Y are
identical and made of N elements (O := (o1, · · · , oN )) and where the cost function is finite on O×O.
The measures µ and functions f on X are represented through the scalar values µj = µ(oj) and
fj = f(oj), and the integral

∫
X f(x)µ(dx) becomes a scalar product in RN , of the form 〈f, µ〉, where

f = (f1, . . . , fN )> and µ = (µ1, . . . , µN )>. The Kantorovich duality simply rewrites as follows.

Corollary A.1. In the discrete case X = Y = O := (o1, · · · , oN ), the primal and dual Kantorovich
problems have solutions and the dual problem writes

MK(µ, ν) := max
(
〈f, µ〉+ 〈g, ν〉

)
,

where the set of admissible dual variables (f, g) is s.t. fi + gj ≤ ci,j = c(oi, oj) for any i, j.

A.3 Admissibility of VaRα as risk criterion

Lemma A.1. In the one-factor (d = 1) Gaussian copula model (2.2) with positive correlations
(β1 > 0), the risk metric ρ = VaRα satisfies all the Properties 2.1, for any α ∈ (0, 1).

Proof. Let Pt be a discrete probability measure given by the vector pt with components pit = Pt(O =

oi). We claim that the function pt 7→ ρ(Lt+1(pt)) given in (2.9) is a linear function of pt, hence all
Properties 2.1 are fulfilled. To justify the linearity, combine (2.9) and (2.2) to write

f(Ft+1) = Lt+1(pt) =

N∑
i=1

p
(i)
t

∫
Θ

Φ
((
β1F

(1)
t+1 − γ

)
/β0

)
qt+1,oi(d(β0, β1, γ)).

Under the assumption that the probability measure qt+1,oi(·) puts mass only to points such that
β1 > 0, β0 > 0, the above function f is increasing, and thus VaRα(f(Ft+1)) = f(VaRα(Ft+1)). The
function f being linear in pt, the result is proved.
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