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Being able to replicate real experiments with computational simulations is a unique

opportunity to refine and validate models with experimental data and redesign the

experiments based on simulations. However, since it is technically demanding to

model all components of an experiment, traditional approaches to modeling reduce

the experimental setups as much as possible. In this study, our goal is to replicate all

the relevant features of an experiment on motor control and motor rehabilitation after

stroke. To this aim, we propose an approach that allows continuous integration of new

experimental data into a computational modeling framework. First, results show that we

could reproduce experimental object displacement with high accuracy via the simulated

embodiment in the virtual world by feeding a spinal cord model with experimental

registration of the cortical activity. Second, by using computational models of multiple

granularities, our preliminary results show the possibility of simulating several features

of the brain after stroke, from the local alteration in neuronal activity to long-range
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connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We

further suggest that additional models could be integrated into the framework thanks

to the versatility of the proposed approach, thus allowing many researchers to achieve

continuously improved experimental design.

Keywords: motor control, stroke, rehabilitation, neural mass, spiking neuronal networks, brain network models,

Kuramoto oscillators, closed-loop simulation

1. INTRODUCTION

In nature, the activity of the brain of an individual interacting
with the environment is conditioned by the response of the
environment itself, in that the output of the brain is relevant only
if it has the ability to impact the future and hence the input the
brain receives. This “closed-loop” can be simulated in a virtual
world, where simulated experiments reproduce actions (output
from the brain) that have consequences (future input to the
brain) (Zrenner et al., 2016). To the aim of reproducing in silico
the complexity of real experiments, different levels of modeling
shall be integrated. However, since modeling all components
of an experiment is very difficult, traditional approaches of
computational neuroscience reduce the experimental setups as
much as possible. An “Embodied brain” (or “task dynamics,”
see Zrenner et al., 2016) approach could overcome these limits
by associating the modeled brain activity with the generation
of behavior within a virtual or real environment, i.e., an
entailment between an output of the brain and a feedback
signal into the brain (Reger et al., 2000; DeMarse et al.,
2001; Tessadori et al., 2012). The experimenter can interfere
with the flow of information between the neural system and
environment on the one hand and the state and transition
dynamics of the environment on the other. Closing the loop
can be performed effectively by (i) validating the models on
experimental data, and (ii) designing new experiments based on
the hypotheses formulated by the simulations. On the example
shown in Figure 1, data on brain activity (be it, for instance,
from electrophysiological recordings or imaging) and on the
environment (e.g., by means of kinematic or dynamic measures)
from the real experiment are used to feed the models of the
in silico representation of the experiment. From a comparison
of the real and model-based data, the features that are most
important to replicate the real experiment are identified, and
thus novel insights are generated (Figure 1). To realize such a
complex virtual system, many choices can be made, for instance
on the brain model or spinal cord model that best represent the
salient features of experimental measures to be replicated. The
ideal framework shall comprise a library of tools to choose from,
to reproduce a variety of experimental paradigms in the virtual
environment. By briefly introducing the state of the art in brain
and spinal cord modeling, we will discuss few classes of models
to pick from an ideal library.

1.1. State of the Art
1.1.1. Local Cortical Network Modeling
Biologically detailed models of a single neuron such as the
Hodgkin and Huxley model (Hodgkin and Huxley, 1952)

take into account the activity of the ion channels in the cell
membrane that lead to changes in the membrane potential,
eventually causing the neuron to spike. However, simpler but
still biologically realistic models of the single cell are preferable
when interested in modeling the dynamics of a larger number
of cells. A good candidate is the adaptive exponential integrate
and fire (adex) neuron model (Brette and Gerstner, 2005),
which has been shown to reproduce the intrinsic neuronal
properties of a number of cell types, including those with spike
frequency adaptation (Destexhe, 2009). Interestingly, adex
neurons network models with different adaptation levels can
reproduce the dynamical properties of distinctive brain states
such as wakefulness, sleep, or anesthesia (Zerlaut et al., 2017;
Nghiem et al., 2020). This property makes adex neuron networks
suitable to model the dynamics of the emerging activity in a
local network of neurons after injury, given that, after a stroke,
the dynamics of the local network switches to a slow oscillatory
rhythm which resembles that of sleep or anesthesia (Butz et al.,
2004). Moreover, alterations in low-frequency cortical activity in
the peri-infact cortex after stroke are known to correlate with
motor recovery (e.g., Yilmaz et al., 2015; Ramanathan et al.,
2018).

1.1.2. Brain Network Modeling
Efforts have been made to reconstruct single brain regions
with as many details as possible (Markram et al., 2015), or
to build detailed networks of multi-compartment oscillators
(Izhikevich and Edelman, 2008). Contrary to the detailed models,
top-down modeling seeks to elucidate whole-brain network
mechanisms, which may underpin a variety of apparently diverse
neurophysiological phenomena. Neural masses formalisms have
been used over many years to develop macroscopic models
that capture the collective dynamics of large neural assemblies
(Deco et al., 2008; Sanz-Leon et al., 2015). In this case the
activity of a macroscopic brain region is often directly derived
from populations of spiking neurons as a mean-field using
concepts from statistical physics (e.g., Wong and Wang, 2006;
Stefanescu and Jirsa, 2008; Zerlaut et al., 2017). In other
cases the statistics of the macroscopic brain activity is derived
more phenomenologically while still conserving some basic
physiological principles such as division on excitatory and
inhibitory neurons, e.g., the seminal Wilson Cowan model
(Wilson and Cowan, 1972). The third subclass of neural masses
contains purely phenomenologically derived computational
models that aim to reproduce certain dynamical properties
of the macroscopic neuronal activity, such as e.g., seizure
dynamics (Jirsa et al., 2014; Saggio et al., 2017), whilst different
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FIGURE 1 | Scheme of the proposed Embodied brain framework. The picture suggests a closed-loop workflow linking real and simulated experiment. The different

types of data obtained from the experiments, from brain activity to dynamic and kinematics of goal-directed movement, are used to feed the whole brain and spinal

cord model, in addition to the virtual mouse and environment. The loop is closed by validation of in silico results on real data. Eventually, the simulated experiment

raises novel hypotheses, to be validated on new real experiments.

realizations of damped or self-sustained oscillators are often
used to model the coherent fluctuations of resting-state activity
(Cabral et al., 2011; Deco et al., 2016). Depending on the
working point of the system, the macroscopic dynamics can
be described not only by physiologically derived mean-fields,
but also by phenomenological models in their canonical form
(Izhikevich, 1998; Deco et al., 2009, 2011). Hence, phase
oscillators (Kuramoto, 1984) are often chosen to model and
study the coactivation patterns in the brain, as some kind of a
minimal model explanation (Batterman and Rice, 2014) for the
synchronized behavior over a network (Pikovsky et al., 2001;
Breakspear et al., 2010).

Connecting the neural masses in large-scale brain network
models (BNM) became possible with the progress of non-
invasive structural brain imaging (Johansen-Berg and
Rushworth, 2009). This allowed extraction of biologically
realistic brain connectivity, the so-called connectome, which
shapes the local neuronal activity to the emergent network
dynamics (Honey et al., 2007; Ghosh et al., 2008; Deco et al.,
2009; Sanz-Leon et al., 2015; Petkoski et al., 2018; Petkoski and
Jirsa, 2019).

The large-scale BNM have been used to interpret healthy
(Cabral et al., 2011; Deco et al., 2016) or pathological (Nakagawa
et al., 2013; Zimmermann et al., 2016; Saenger et al., 2018) brain
activity. This is often reflected in the coherence between brain
rhythms (Lachaux et al., 1999) that also describes the functional

connectivity (FC) of the brain as an important marker of its
spatio-temporal organization (Ghosh et al., 2008; Deco et al.,
2009, 2011; Deco and Jirsa, 2012; Petkoski et al., 2018).

The Virtual Brain (TVB) (Sanz Leon et al., 2013; Sanz-Leon
et al., 2015) is a commonly used neuroinformatics platform
for full brain simulations. It supports a systematic exploration
of the underlying components of a large-scale BNM: the
structural connectivity (SC) and the local dynamics that depend
on the neurophysiological mechanisms or phenomena being
studied. In this way, the BNM allows to describe structural
changes (through connectivity variation including stroke, motor
learning and recovery) and subsequent functional consequences
accessible to modeling and empirical data collection on the
meso, macro and behavioral level. The modeling with TVB thus
represents a useful paradigm for multi-scale integration. TVB
has been already utilized in modeling functional mechanism
of recovery after stroke in humans (Falcon et al., 2015, 2016),
identifying that the post-stroke brain favors excitation-over-
inhibition and local-over-global dynamics. For studying the
changes in synchronization, as we intend to do, TVB offers a
range of oscillatory models for the neural activity. One of these
is the Kuramoto model (KM), which captures the emergent
behavior of a large class of oscillators that are near an Andronov-
Hopf bifurcation (Kuramoto, 1984), including some population
rate models (Ton et al., 2014). This makes the KM well-suited
for assessing how the connectome governs the ynchronization
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between distant brain regions (Breakspear et al., 2010; Cabral
et al., 2011, 2012; Ponce-Alvarez et al., 2015; Petkoski et al.,
2018).

1.1.3. Spinal Cord Modeling
The brain controls its body through neural signals originating
from the brain and processed by the spinal cord to control
muscle activation in order to perform a large variety of behaviors.
Several biologically realistic functional models of the spinal cord
have been developed and tested in closed loop simulations with
musculoskeletal embodiments. Stienen et al. (2007) developed a
fairly completemodel that includes Ia, Ib, and II sensory afferents,
both monosynaptic and polysynaptic reflexes as well as Renshaw
cells, improving a previous work by Bashor (1998). The model
was tested with a musculoskeletal model consisting of a generic
antagonistic couple of muscles, thus lacking a realistic validation
scenario. Cisi and Kohn developed a web-based framework for
the simulation of generic spinal cord circuits with associated
muscles, that aims at replicating realistic experimental conditions
(i.e., electrical stimulation) (Cisi and Kohn, 2008). Sreenivasa
et al. (2016) developed a specific neuro-musculoskeletal system,
upper limb with biceps and triceps, and validated it against
human recordings. In Moraud et al. (2016), a simple spinal cord
model of the rat, lacking any descending stimuli, was developed
in order to study how such circuitry can correct the gait after
a spinal cord injury and embedded in a closed loop simulation
with biomechanical hindlimbs. All of the mentioned works were
tested primary for the generation of reflex motions, and not as
intermediate levels of more complex controllers such as ones
capable of generating voluntary movements.

1.2. Aim of the Work
We propose a framework (“Embodied brain closed loop”)
endowed with a library of modeling tools that will eventually
allow to realize entirely virtual experiments. We focused on an
experiment on motor control and motor recovery after stroke
described in Spalletti et al. (2017) and Allegra Mascaro et al.
(2019), whose simulation requires two main tiles. The first is
the realization of voluntary movements in a virtual milieu. This
piece requires monitoring and modeling of many components of
movement control, from brain activity to body kinematics and
displacement of virtual objects. The second is the simulation of
brain injury. This includes modeling of acute consequences but
also of neuronal plasticity after brain damage, either spontaneous
or supported by treatment. Both local and long-rangemodulation
of neuronal activity should be accounted to simulate the brain
after stroke, since local alteration of neuronal activity in the peri-
infarct area is known to be associated to remodeling of long-range
functional and structural connectivity (several comprehensive
reviews have summarized this research, e.g., Carmichael et al.,
2017). To build those tiles, we developed two pipelines that target,
on one side, the physiological execution of movements and, on
the other, pathological alterations and plasticity (Figure 2). The
first (“Movement-driven models” pipeline) aims at reproducing
in a virtual environment how a goal-directed movement is
performed and represented in the healthy brain. Data recorded
on healthy mice are used as an input to the spinal cord model,

attached to the muscles of the simulated embodiment (see
Figure 2, red box). The goal of the second pipeline (“Stroke
models”) is to reproduce both local and long-range consequences
of stroke. We developed a spiking neurons model that could
simulate the local brain dynamics, and in particular the abnormal
oscillatory activity taking place in the peri-infarct cortex (see
Figure 2, lower line in the green box). Also, we show how
the simulation of brain activity by neural mass models allows
replicating the evolution of functional connectivity in mouse
brain after a stroke and under rehabilitation (see Figure 2, upper
line in the green box).

2. METHODS

Cortical recordings and behavioral data from the experiments
described in this section are used to build and validate the brain
models and the output in the virtual environment.

2.1. In vivo Experiments
On the experimental side, we performed electrophysiological
recordings (Figure 3A) and wide-field calcium imaging
(Figure 3B) in awake mice performing active forelimb retraction
on a robotic device (M-Platform). These experiments allowed
gathering simultaneous information on the neuronal activity,
force applied during active forelimb retraction and position of
the forelimb, as displayed in the lower panels of Figure 3. The
electrophysiological data and the recordings of limb position
were used to feed the spinal cord model, as described in section
4.1. The features of the wide-field calcium data recordings were
used to build the spiking neurons brain model and to validate
the BNM, section 3.3. All the procedures were in accordance
with the Italian Ministry of Health for care and maintenance
of laboratory animals (law 116/92) and in compliance with the
European Communities Council Directive n. 2010/63/EU, under
authorizations n. 183/2016-PR (imaging experiments) and n.
753/2015-PR (electrophysiology experiments).

2.1.1. Robotic Training on the M-Platform
The M-Platform is a robotic device designed to train mice to
perform active forelimb retraction (Pasquini et al., 2018). Briefly,
the main component of the device is a linear actuator that moves
a linear slide where a custom handle is screwed. Moreover, the
platform is provided with a system to control the friction on the
slide and a pump for the reward. During the experiments, while
the mouse has its left paw connected to the slide, first the linear
actuator extends the forelimb then the animal has to perform an
active pulling movement to come back to the starting point and
to receive a reward. Force signal and position of the forelimb are
recorded respectively by a load cell and a webcam.

In sections 2.1.3 and 2.1.4, we describe two different
experiments with the robotic device. In the first one, the M-
Platform is embedded with Omniplex D System (Plexon, USA)
to obtain in vivo electrophysiological recording during the
task. In the second one, the kinetic and kinematic parameters
are synchronized with wide-field calcium imaging recordings
(Figure 3).
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FIGURE 2 | Scheme of data and simulations. The scheme depicts the approach to build the Embodied brain framework from data to models and back. The workflow

from data to models and simulation in the Embodied brain closed loops is shown. The upper, green box shows the Stroke models closed loop, the lower, red box

shows the Movement-driven models closed loop. Colored images represent experiment data, brain and spinal cord models, and simulation of the environment (from

left to right). Connections between the modeling components are presented as arrows: solid lines represent the output provided to other blocks; dashed lines indicate

the output data of the models that are used for comparison with real data for validation.

2.1.2. Photothrombotic Stroke
To induce focal stroke in the right hemisphere, mice were
injected with Rose Bengal (0.2 ml, 10 mg/ml solution in
Phosphate Buffer Saline). Five minutes after intraperitoneal
injection, a white light from an LED lamp was focused with a
20X objective and used to illuminate the primary motor cortex
(0.5 mm anterior and 1.75 mm lateral from Bregma) for 15 min.

2.1.3. Electrophysiological Recordings on the

M-Platform
Two healthy mice were used for the experiments. Animals
were housed on a 12/12 h light/dark cycle. Mice were water
deprived overnight before training on the platform; daily liquid
supplement was given after the test. Food was available ad
libitum. To have access to the motor cortex, a craniotomy was
performed 3 days before the training to expose the Caudal
Forelimb Area (CFA) of the right hemisphere. The craniotomy
was filled with agarose and silicon (Kwik cast sealant, WPI) and
could be opened and closed several times for acute recordings.

Mice were gradually acclimated to the platform. Then they
performed the task for 2 days, fifteen trials each day. During the
pulling experiment, mice were head fixed to the platform with
their left wrist constrained to the slide. The friction on the slide
was set at 0.3 N. The force signal was acquired by a load cell
(Futek LSB200, CA, USA) along the direction of the movement
at 100 Hz, at the same time a webcam recorded the position of
the slide at 25 Hz and the multi-unit activity was recorded by
Omniplex D System (Plexon, USA) with a frequency of 40 kHz
thanks to a 16 channels linear probe (1 M�, ATLAS, Belgium)
inserted into the CFA at 850 µm of depth (Figure 3A).

2.1.4. Wide-Field Calcium Imaging of Cortical Activity

During Training on the M-Platform
The mouse was housed in clear plastic cage under a 12
h light/dark cycle and was given ad libitum access to
water and food. We used the following mouse line from
Jackson Laboratories (Bar Harbor, Maine USA): C57BL/6J-
Tg(Thy1GCaMP6f)GP5.17Dkim/J (referred to as GCaMP6f
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FIGURE 3 | The real robotic platform. (A) On the top a schematic representation of the experiment during electrophysiological recording in CFA. At the bottom the

synchronized data: force peak (blue), movement of the slide (red), high frequency electrophysiological signal of a single channel (magenta) and the timestamp of a

selected single unit. (B) On the top a scheme of the experiment with the setup to record calcium activity. At the bottom the recorded data after synchronization: force

peak (blue), movement of the slide (red) and calcium response (green).

mice). In this mouse model, the fluorescence indicator GCaMP6f
is mainly expressed in excitatory neurons (Dana, 2014).
GCaMP6f protein is ultra-sensitive to calcium ions concentration
(Chen and Kim, 2013; Dana, 2014) whose increase is associated
with neuronal firing activity (Yasuda and Svoboda, 2004;
Grienberger and Konnerth, 2012).

For wide-field fluorescence imaging of GCaMP6f

fluorescence, we used a custom made microscope described
in Conti et al. (2019). Briefly, the system is composed by a

505 nm LED (M505L3 Thorlabs, New Jersey, United States)
light deflected by a dichroic filter (DC FF 495-DI02 Semrock,

Rochester, New York USA) on the objective (2.5x EC Plan
Neofluar, NA 0.085, Carl Zeiss Microscopy, Oberkochen,
Germany). The fluorescence signal is selected by a band pass
filter (525/50 Semrock, Rochester, New York USA) and collected
on the sensor of a high-speed complementary metal-oxide
semiconductor (CMOS) camera (Orca Flash 4.0 Hamamatsu
Photonics, NJ, USA).

The experiment starts with a mouse being trained and

recorded for 1 week (5 days) on the M-platform (“healthy”
condition, see Figure 3). The focal stroke is then induced at
the beginning of the second week by phototrombosis on the
right primary motor cortex (rM1). Starting 26 days after stroke,
the mouse performance and spontaneous motor remapping was

evaluated on the M-Platform for 5 days a week along 4 more
weeks. The results from the first week 1 month after the injury is
the so-called “stroke” condition, while the results during the last
week, when the animal recovers the motor function is referred to
as “rehab.”

Each day, the beginning of the wide-field imaging session
was triggered by the start of the training session on the M-
Platform. To detect the movement of the wrist of the animal
in the low-light condition of the experiment, an infrared (IR)
emitter was placed on the linear slide, and rigidly connected to
the load cell and thus to the animal’s wrist. Slide displacement
was recorded by an IR camera (EXIS WEBCAM #17003, Trust)
that was placed perpendicular to the antero-posterior axis of
the movement. Position and speed signals were subsequently
extracted from the video recordings and synchronized with the
force signals recorded by the load cell (sampling frequency =
100 Hz) and with the fluorescence signal recorded by the CMOS
sensor (Figure 3B).

2.2. Data Analysis
2.2.1. Spikes and Force Analysis
Data were analyzed offline using custom routines in Matlab
(MathWorks). First, the position signal was extracted by the
video using a white squared marker on the slide as reference. The
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recording frequency of the video was 25 Hz. After applying an
antialiasing FIR lowpass filter, a uniform linear resample of the
movement of the slide was performed, in order to synchronize
the position signal with the force data, recorded at 100 Hz. To
identify the timing of the voluntary activity of the animal, a
threshold method was used to detect force peaks during the
pulling phase of the task. For the following analysis, we picked
out peaks that produced a displacement of the slide, in addition
to crossing the threshold; and we calculate the onset of these
peaks as the minimum of the force derivative just before the
respective peak (Spalletti et al., 2014). The electrophysiological
signal, recorded at 40 kHz as sampling rate, was analyzed by
Offline Sorter (Plexon, Dallas, TX). First, for each channel of the
probe, we sorted waveform that crossed a detection threshold
of the mean ± 3 standard deviations. Then, detected spikes
were clustered using an automatic process based on principal
component analysis. Starting from these clusters, a manual
sorting was executed to isolate all single units which could be
identified in the recorded multi-units signal. The time stamp
of each unit was synchronized with the data of the robot. To
evaluate the temporal behavior-related spike activity, the peri-
stimulus time histograms (PSTHs, NeuroExplorer, Plexon) was
generated with bins of 20 ms in an interval of 1 s around the
onset of force peaks. In addition, the resting activity of each unit
was evaluated selecting intervals of at least 0.6 s with no force
peaks and calculating the average of the number of spikes in bins
of 20 ms. Finally, the PSTHs was used to evaluated when a single
neuron was active, that is when the number of spikes for bin cross
the threshold, calculated as the mean ± 2 standard deviations of
the number of spikes for bin during the respective resting activity.

2.2.2. Phase Coherence and Functional Connectivity
Functional connectivity (FC) among cortical regions was inferred
from phase coherence of activity measurements, and used to
determine changes in brain activity in “stroke” and “rehab”
condition, as compared to the healthy mice. These inferred
activity changes were used to parameterize simulations of the
BNM built over the Allen Brain Atlas mouse connectivity
data (http://connectivity.brain-map.org/; Oh et al., 2014, below
referred to as the Allen Mouse Brain Atlas - AMBA),
incorporated in the extended virtual mouse brain (Melozzi et al.,
2017). In each animal, the camera field-of-view used for activity
measurements was placed in a standard position using the
sagittal suture and its intersection with the coronal suture of the
skull (bregma) as anatomical landmarks. To spatially correlate
our activity measures with the structural connectivity data (Oh
et al., 2014), the camera field-of-view (Figure 3B) was spatially
translated to the Allen Common Coordinate Framework (CCF,
v3, 2015; Wang et al., 2020). Since the CCF lacks stereotactic
skull landmarks, these were introduced by spatially co-registering
all diagrams from a standard stereotaxic mouse brain atlas
(Franklin et al., 2008) to the CCF coordinate space with affine
transformations defined using the QuickNii tool (Puchades et al.,
2019). Using bregma and the sagittal suture as a reference, the
four corners of the downsampled 128x128 pixels field-of-view of
the recorded images were positioned in CCF, taking the 5 degree
lateral tilt of the camera view into account. Delineations of layer

IV cortical regions were then projected onto the camera field-of-
view, and used as a custom atlas reference for all activity maps.

The spectral content of the signals is analyzed to identify the
frequency band which captures the spontaneous brain activity
that occurs simultaneously with the motor-evoked events. The
time-frequency analysis of the calcium recordings is limited by
their sampling rate and the length. The former makes most of
the activity at faster frequency bands inaccessible, but still allows
analysis of the slow oscillations up to 5 Hz, which have been
often associated with the spontaneous brain activity (Vanni et al.,
2017; Wright et al., 2017). Even though the slowest dynamics
<0.5 Hz, which has the highest power, is often a marker of
the resting state (Wright et al., 2017), in this experiment it
also contains the propagation of waves generated during the
limb movements on the platform. The mechanisms behind
stimulation propagation (Spiegler et al., 2016) are different from
the spontaneous oscillations at rest (Deco and Jirsa, 2012) that
we try to study and model here, and hence the lowest frequencies
are excluded from the analysis. In addition, the mice heart rate is
between 6 and 8 Hz, whilst the activity above 10 Hz is too close to
the Nyquist frequency of 12.5 Hz, defined as half of the sampling
rate of the recordings. As a consequence these bands are generally
avoided in the analysis of calcium signals, which is consequently
often centered at the δ band between around 1 and 5 Hz (Vanni
et al., 2017; Wright et al., 2017).

The FC is characterized with the phase coherence of the
analytical phases of the band-passed time-series obtained using
the Hilbert transform (Pikovsky et al., 2001). For this we employ
phase locking values (PLV) (Lachaux et al., 1999) that are a
statistical measure for similarity between the phases of two
signals, hence defined as

PLVij = |
1

M

M
∑

m=1

ei(θi(m)−θj(m))|, (1)

where the phase difference θi(m) − θj(m) between the regions i
and j is calculated at times m = 1 . . .M. The same procedure
is also applied to surrogate time-series to find the level of
statistically significant phase coherence (Lancaster et al., 2018).

3. MODELS

3.1. Spinal Cord Model
To develop the final model, an incremental approach was
followed, starting from a circuit for a single muscle, adding
inhibitory connections between antagonistic pairs and finally
interneurons to modulate descending stimuli (Figure 4).

For a single muscle, a network with muscle spindles providing
Ia and II afferent fibers activity, a pool of α-motoneurons and
excitatory II-interneurons was considered (Stienen et al., 2007;
Moraud et al., 2016). Ia afferents directly provide excitatory
inputs to the α-motoneurons (monosynaptic stretch reflex
mechanism), while the II afferents output is mediated by a set
of interneurons before reaching the α-motoneurons, creating
a disynaptic reflex. The muscle spindles are implemented
using the model from Vannucci et al. (2017). All other
neurons are modeled as leaky integrate and fire neurons. The
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FIGURE 4 | The spinal cord model for a pair of antagonistic muscles.

number of neurons in the spinal cord populations, as well as
parameters for the synaptic connections are taken from Moraud
et al. (2016), with the exception of the synaptic weights of
the monosynaptic connections, which have been significantly
lowered (see Supplementary Material). The parameters from
the muscle spindle models are taken from Mileusnic et al.
(2006), which are tuned on neurophisiological recordings
of lower mammals. Distribution of parameters for the α-
motoneurons that influence the recruitment order and fiber
strength (membrane capacitance, membrane time constant,
maximum twitch force, time to peak force) are taken from
Sreenivasa et al. (2016):

Di = [dmax − dmin · log(N − i)] · DSF (2)

Ci = πD2
i · cspf (3)

τi = τmax − (Di − τadj) · τslp

Fi = [pmax − pmin · log(N − i)] · FSF

Ti =

[

smin −
ssl

N
i
]

· TSF + smin

where i is the index of the α-motoneuron in the pool,N is the size
of the pool and the others are free parameters that can be adjusted
for every muscle. In this work, the value of these parameters has
not been changed from Sreenivasa et al. (2016).

In order to compute the actual muscle activation from the
motoneurons activity, a special spike integration unit that sums

the fibers twitches was implemented. The spikes were integrated
using the discrete time equations of Cisi and Kohn (2008) with
a non-linear scaling factor from Fuglevand et al. (1993) that
prevents the activation to grow indefinitely:

ai(t) = 2e
−δt
Ti ·ai(t−1)−e

−2δt
Ti ·ai(t−2)+Fi·g(t)·

δt2

Ti
e
1−δt
Ti ·u(t) (4)

where δt is the integration time, and u(t) and g(t) are the spike
function and the non-linear scaling, defined as:

u(t) =

{

1 if a spike is received at t
0 if no spikes are received at t

(5)

g(t) =

{

1 if Ti/ISIi < 0.4

1−e−2(Ti/ISII )
3

Ti/ISII
otherwise

(6)

where ISIi is the observed inter-spike interval of α-motoneuron
i. Moreover, the activation can be scaled between 0 and 1 by
dividing by the maximum theoretical value:

ai,max = lim
t→+∞
ISIi→0

ai(t) = Fi

δt3

T2
i

(

1− e
−2
(

Ti
δt

)3
)

· e

(

1− δt
Ti

)

1− 2e
− δt

Ti + e
−2 δt

Ti

(7)
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Therefore, the output of the twitch integration module is an
activation value in [0; 1] that is suitable for the muscle model
present on the mouse virtual embodiment. The effect of this
integration is that at low frequencies the individual twitches can
still be seen, while at higher stimulation the twitches fuse into a
tetanic contraction. Moreover, thanks to the non-linear scaling,
the activation reaches a maximum value and higher stimulation
frequencies do not produce any effect, in accordance with the
contractile properties of real muscle fibers.

In order to implement the polysynaptic inhibition
reflex between antagonistic muscles, two populations of Ia-
interneurons were added to the network. Those receive inputs
from all Ia afferents of a synergistic muscle and provide inhibition
to the α-motoneurons of the corresponding antagonistic muscle.
Moreover, as the activation of a muscle should provoke an
inhibition of its antagonist (Pierrot-Deseilligny and Burke,
2005), the Ia-interneurons also receive low-gain positive inputs
from the corresponding descending pathways. Again, the
number of neurons in these population and their parameters
have been taken from Moraud et al. (2016). Finally, as there
is lack of evidence for a direct connection between cortical
neurons and motoneurons in the spinal cord of rodents (Yang
and Lemon, 2003), an intermediate population of neurons
mediating descending signals was added to the circuitry. This
population aims at modeling propriospinal neurons, which
provide an inhibitory action on the signals coming from the
corticospinal tract (Alstermark, 1992). In general, the inhibition
is generated from different peripheral afferents, but we included
only afferents from muscle spindles as these are the only present
in the model. As there is no definitive experimental evidence
on the size of the population of propriospinal neurons and its
parameters, we set the values of these to those of the populations
of Ia-interneurons. Conversely, the synaptic weights and the
number of connections between the descending inputs and the
propriospinal interneurons were empirically tuned starting from
experimental data.

3.2. Simulation Tools and Physical Models
This section describes simulation tools that were used to
synchronize neural and physical simulations and the physical
simulations models that have been developed and used. These
tools andmodel were used in the context of theMovement-driven
models pipeline.

3.2.1. Embodied Mouse in the Neurorobotics Platform
The full musculoskeletal model of the virtual rodent controlled
by the spinal cord model was simulated in the Neurorobotics
Platform (NRP) developed in the Human Brain Project (Falotico
et al., 2017). The main components of the NRP are a world
simulator, a brain simulator and the mechanism that enables
the data flow between the two in a closed-loop. The connection
between the body and the brain is specified through a domain
specific language (Hinkel et al., 2015, 2017), via Python scripts
called Transfer Functions. In these scripts the output of devices
that read neuronal output data can be processed and passed as
input for the virtual body actuators, and vice versa, the sensory
information from the virtual body sensors, in this case muscle

length data, can be passed to devices that map sensory data to
neural input. The brain simulation, which currently is simulating
point-neurons, follows closely the paradigm of NEST (Gewaltig
and Diesmann, 2007), interfaced through PyNN (Davison et al.,
2009). On the other side of the closed loop the world simulator
of choice is Gazebo (Koenig and Howard, 2004), extended to
support muscle simulation through OpenSim (Millard et al.,
2013), which provides its’ own muscle simulation engine.

3.2.2. Musculoskeletal Embodiment
As described earlier the musculoskeletal system comprises of
two elements, the skeletal and the muscle system respectively.
Here both systems are elaborated a bit more in the context of
the experiment. Developing animal skeletal systems is no trivial
task. It involves many complex degrees of freedom and physical
properties such as mass, center of mass and inertias. To ease
this process, NRP has developed a toolkit for Blender (Open
source modeling and animation tool) called RobotDesigner
(HBPNeurorobotics, 2019). RobotDesigner allows to automate
several steps needed to develop skeletal/robot models to be
simulated in the NRP. Using the same, currently NRP hosts
state-of-the-art a full skeletal model of the mouse consisting
of 110 degrees of freedom. More details about the full model
will be soon published following the current article. For the
current experiment, the mouse skeletal model is reduced in
complexity by constraining all the degrees of freedom except the
left forelimb. The forelimb consists of four segments and it is
further constrained to only have flexion-extension movements,
enough to reproduce the passive extension-active retraction
experiment on the M-Platform. The different segments and the
joints of the forelimb are shown in Figure 5.

The physical properties of the skeletal system such as mass,
center of mass and inertia are automatically estimated based on
bounding objects generated for each link (segment) using the
RobotDesigner. Once the skeletal system is established, muscles-
tendon system can be attached to the bones. As mentioned
before, NRP now supports OpenSim for integrating muscle
models into physical animal bodies or even robots. In the
current experiment a pair of antagonist hill-type muscles were
added to each of the joints in the mouse forelimb. The muscle
model in OpenSim is taken from Millard et al. (2013) (see
Supplementary Material). Again RobotDesigner offers a unique
solution to visualize attachments and easily add muscles to the
body in blender. Using the same technique all the muscles for
the mouse forelimb were added. Muscle parameters used in the
current experiment are hand tuned to produce flexion-extension
movements necessary for the experiment. Figure 5 (right panel)
shows the muscle attachments used in the current model.

3.2.3. Robotic Rehabilitation Platform Model
In the real experiment, the mouse forelimb is attached to the
sliding mechanism, which is a prismatic joint, driven by a
DC motor whose rotational motion is converted into a linear
one. The motor that is controlled with a PID controller, whose
reference can be set to a position of the joint between the
minimum and maximum positions. The controller is enabled
when the operator decides to replace the sled in its starting
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FIGURE 5 | Mouse forearm musculoskeletal system (left) Forelimb skeletal system with three joints (1) shoulder (Ball and socket) (2) elbow (hinge) (3) wrist (hinge).

(right) Forelimb muscle system with six muscles (1) humerus-extension (2) humerus-flexion (1) elbow-extension (2) elbow-flexion (1) hand-extension (2) hand-flexion.

position and is disabled afterwards, so that the mouse can
actually pull the sled. In simulation, the same configuration has
been implemented. The musculoskeletal mouse forelimb was
attached to a simulated M-platform, which has been modeled as
a prismatic joint, controlled with a PID controller whose output
is directly applied as a simulated force on the joint, assuming
ideal actuator transfer behavior. Again, the reference to the PID
controller is the position of the prismatic joint in its range, this
time normalized between 0 (minimum) and 1 (maximum). To
simulate the intervention of the operator that puts the slide back
we employed a state machine that automatically controls the
slide, by making use of the PID controller setting 1 as a reference.
Inputs to this state machine are a list of times at which the
slide should be put back. Conversely, to simulate the minimum
amount of force that is required to move the slide in the real
setup, we deactivated the PID controller in simulation only after
a certain activation of the simulated muscles was reached (0.95).

3.3. Stroke Models
3.3.1. Brain Network Model With Kuramoto

Oscillators
To simulate the functional network reorganization during stroke
and recovery given by the phase coherence of the macroscopic
brain activity reflected in calcium signals, we built our BNM
based on Kuramoto oscillators for the local oscillatory dynamics
and the AMBA connectome that dictates the strength of the
couplings between brain regions (Melozzi et al., 2017; Choi and
Mihalas, 2019), Figure 6, and has been validated with empirical
functional data that justifies its use (Melozzi et al., 2019). The
AMBA contains 86 cortical regions (43 per hemisphere), of which
18 were included in the field-of-view (Figure 6, bottom left). The
average calcium signal of the pixels entirely located within a brain
region was used to represent their mean neuronal activity.

Besides their simplicity, phase models exhibit rich dynamics
and a direct link to more complex biophysical models, while
admitting analytic approaches (Roy et al., 2011; Sheppard
et al., 2013; Ton et al., 2014; Stankovski et al., 2016). KM

(Kuramoto, 1984), as a phenomenological model for emergent
group dynamics of weakly coupled oscillators (Pikovsky et al.,
2001) is well-suited for assessing how the connectome governs
the brain oscillatory dynamics that can be reflected in different
neuroimaging modalities (Schmidt et al., 2014; Váša et al., 2015;
Cabral et al., 2017; Petkoski et al., 2018). The constructed BNM is
thus used to identify the structural alterations due to the stroke
and the subsequent recovery, using their causal effects on the
functional changes captured by the calcium recordings of the
cortical brain activity.

Even though delayed interactions due to axonal transmission
can be of crucial importance for the observed dynamics of the
oscillatory systems (Ghosh et al., 2008; Petkoski et al., 2016,
2018), the impact of these delays is much less pronounced for
low frequencies compared with them, as it is the case here.
Moreover, the tracing used for obtaining the AMBAConnectome
(Oh et al., 2014) does not allow tracking the length of the
white fibers. Hence, we assume instantaneous couplings and the
utilizedmodel gives the following evolution of the phases for each
of the N brain regions

θ̇i = 2π f +
1

N

N
∑

j=1

Kij sin(θj − θi)+ ηi(t), i = 1 . . .N. (8)

Here the dynamics of each region i is driven by the natural
frequencies f that are assumed to be identical across the brain. A
stochastic variability is introduced with additive Gaussian noise
defined as 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t

′)〉 = 2Dδ(t − t′)δi,j, where D
is the noise strength and 〈·〉 denotes time-averaging. The activity
of the BNM is then constrained by the structural connectivity,
which for every region is represented by the inputs that they
receive from the other regions j through the coupling strength
Kij = Kwij. This contains the structural weight of the connectome
between these areas, wij, scaled with the same global coupling K
for every link.
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FIGURE 6 | Scheme of the mouse BNM. Brain Network Model consisting of neural masses superimposed over the AMBA connectome simulates the recorded

calcium activity. The average oscillatory neuronal activity of the brain regions is described by Kuramoto oscillators, which are coupled due to the fiber tracts, giving rise

to the simulated recordings. The brain network (right) is reconstructed from the AMBA, with the centers of subcortical regions being small black dots, while larger the

circles are for the cortical regions, with the region of the stroke highlighted. (Left) The field of view during the recordings is overlayed on the reconstructed brain, and

different colors represent the cortical regions according to the AMBA.

3.3.2. Spiking Network Model for Simulation of Slow

Wave Activity in Peri-Infarct Cortex
Besides the phenomenological neural mass model for the
oscillatory activity that we have used in the BNM, we also show
an alternative spiking neural model to reproduce local brain
activity in the acute phase after stroke. In future, this model
should be integrated in the BNM and therefore in the Embodied
brain closed-loop simulation, either by deriving its mean-field
representation, e.g., see Zerlaut et al. (2017), or by co-simulation.
This model aims to reproduce the two-photon calcium signals of
a population of spiking neurons located at the peri-infarct area,
since it is known that slow frequency patterns of synchronized
activity emerge from the damaged areas after an ischemic stroke
(Carmichael and Chesselet, 2002; Butz et al., 2004; Rijsdijk et al.,
2008; Rabiller et al., 2015).

Network of adaptive exponential integrate and fire (adex)

neurons
The network consists of an excitatory (regular spiking, RS) and
inhibitory (fast spiking, FS) population of neurons (Figure 7A).
All cells are modeled as adex neurons, which can be described by
the following equations:











Cm
dV(t)
dt

= Gl(El − V(t))+ Gl1Ve

(

V(t)−Vthre
1V

)

+ Isyn(t,V(t))

−w(t)+ σξ (t)
dw(t)
dt

= −
Gl
Cm

w(t)+ b
∑

k δ(t − tk)+ a(V(t)− El)

(9)
where the synaptic input Isyn is defined as

Isyn(t,V(t)) =
∑

i

g
syn
i (t)(V(t)− E

syn
i ) (10)

with

dg
syn
i (t)

dt
= −g

syn
i (t)/τsyn (11)

Here,Gl = 10 nS is the leak conductance and Cm = 150 pF is the
membrane capacitance. The resting potential, El, is −60 mV or
−65 mV, for excitatory or inhibitory cells, respectively. Similarly,
the steepness of the exponential approach to threshold, 1V is
2.0 mV or 0.5 mV, for excitatory or inhibitory cells, respectively.
When the membrane potential V reaches the threshold, Vthre =

−50 mV, a spike is emitted and V is instantaneously reset and
clamped to Vreset = −65 mV during a refractory period of
Trefrac = 5 ms. The membrane potential of excitatory neurons
is also affected by the adaptation variable, w, with time constant
τw = 500 ms, and the dynamics of adaptation is given by
parameter a = 4 nS. At each spike, w is incremented by a
value b, which regulates the strength of adaptation. b = 60pA
was used to model deep anesthesia, and b = 20 pA for light
anesthesia simulations.

From spikes to fluorescence of two photon signal
In order to model the two-photon calcium signal the spikes and
the values of the membrane potential Vm (Figure 7C, gray trace)
of each neuron were recorded during the simulation, for each
level of adaptation. Increases in theVm lead to an inward calcium
current through voltage-dependent channels. We characterized
the L-type high voltage activated calcium current ICa (Figure 7C,
red trace) as in Rahmati et al. (2016):

ICa = gCas(Vm − ECa) (12)

Frontiers in Systems Neuroscience | www.frontiersin.org 11 July 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Allegra Mascaro et al. Toward Closed-Loop Experiments and Simulations

FIGURE 7 | Two-photon calcium signal model from a spiking network model. (A) Schematic connectivity between the excitatory population of regular spiking (RS)

neurons and the inhibitory population of fast spiking (FS) neurons of the modeled cortical network. (B) Activation curve of a high-voltage activated calcium channel

that is used to compute the inward calcium current (ICa) from the changes in the Vm. (C) From top to bottom, simulated membrane potential of a neuron emitting three

spikes which are represented by dashed lines, membrane potential with reconstructed spikes, inward calcium current associated with changes in the membrane

potential, cytosolic calcium concentration, and fluorescence emitted by the calcium indicator due to the intracellular concentration of calcium.

where ECa = 120 mV and gCa = 5 mS/cm2 are the
reversal potential and the maximal conductance of this current,
respectively. The steady-state voltage dependent activation of the
channel (Figure 7B), is defined by the Boltzmann function:

s =
1

1+ exp
−

(Vm−V1/2)

ρ

(13)

with a half-activation voltage V1/2 = −25 mV and a slope
factor ρ = 5mV (Ermentrout, 1998; Helton et al., 2005).
The intracellular concentration of calcium (cytosolic [Ca2+],
Figure 7C, dark red trace) increases proportionally to the ICa
current, and then it slowly decays back to a basal value [Ca2+]i
(Traub, 1982):

d[Ca2+]

dt
= −kCaICa −

[Ca2+]− [Ca2+]i

τCa
(14)

with KCa = 0.002 (nM/ms)(µA/cm2)−1, τCa = 760 ms and
[Ca2+]i = 0 nM.

Finally, the fluorescence F(t) associated with the intracellular
calcium concentration (Figure 7C, green trace) is then computed
following the equation:

F(t) = dF+ KF
[Ca2+]nH

[Ca2+]nH + Kd
(15)

where dF = 0 and KF = 10 are the offset and the scaling of
F(t), kd = 375 nM is the dissociation time constant for GCaMP6f
(Chen and Kim, 2013), a measure of the affinity of the fluorescent
indicator to the calcium ion, and nH = 2.3 is the Hill coefficient
(Chen and Kim, 2013).

4. RESULTS

Here we show first the results we obtained on the simulation of
goal-directed movements (“Movement-driven models” pipeline)
and then on the modeling of brain alterations after stroke
(“Stroke models” pipeline).

4.1. Simulation of the Experiment on
Goal-Directed Movements
As the first component of the proposed framework (“Movement-
driven models”), we simulated the experiment on goal-directed
forelimb pulling in the virtual environment and validated the
simulation on experimental data.

In the in-vivo experiment, two healthy mice were trained on
the M-Platform to perform active pulling of the forelimb. As
we expected, the contralateral motor cortex showed a highly
coherent activation with the kinetic data. The coherence between
the force applied by the animal and the signal recorded in the
CFAwas evident both in the low and in the high frequencies band
(Figure 8). For the data that were later used in simulations we
focused on the high band (300 to 40k Hz); in particular we found
an high activation of the motor cortex around the force peaks
for both multi-unit activity and single units analysis. This result
proves that for each recording the SUs were successfully extracted
by the multi-units. The PSTHs was used to evaluate the temporal
behavior-related spike activity of every single unit. The behavior
around the force peaks was different according to the single units
selected, but all of them showed that the activity began to increase
before onset of force peaks and came back to the resting value
after 0.4 s from the onset. In order to simulate the descending
signal from the motor cortex generating the movement of the
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FIGURE 8 | Results from the simulated pulling experiment. Comparison between the simulated slide position and the one recorded in the in-vivo experiment (A) and

comparison between simulated muscle activation levels and force applied to the physical slide (B). To increase the readability of the bottom figure, an upper peak

envelope was applied to the signals.

forelimb, we employed these neurophysiological recordings. In
particular, the events resulting from the single unit spike sorting
were given as spike times for static spike generator in the
neural simulation. As the number of recorded neurons was low,
the spike generators were copied 100 times, while also adding
gaussian noise (with mean = 0ms and standard deviation = 5ms)
to the spike times of the copies to avoid synchronicity. As the
neural recording originates mainly from neurons that control the
pulling, we decided to connect the descending stimuli only to
interneural populations associated with muscles that are active
during the pulling, i.e the flexors of the two actuated joints.
Therefore, the antagonistic muscles would only actuate thanks
to spinal reflexes. To tune the parameters of these connections,
and to produce a muscular activation that was similar in
amplitude to the force recorded in the in-vivo experiments,
we performed a preliminary set of experiments, without the
simulated embodiment, in which we empirically tuned the
synaptic weights and number of connections. Due to the absence
of the embodiment, at this stage there is no muscle spindle
activity and thus no sensory feedback enabling reflexes. Then, the
spinal cord model described in section 3.1 was connected to the
mouse forelimb. In principle, the musculoskeletal embodiment
has three pairs of muscles, but the one controlling the paw
is not significantly involved in the pulling of the limb. We
did not consider those when building the neural network to
decrease simulation times. Thus, we replicated the same spinal
cord circuitry two times and connected it to the four muscles
controlling the elbow and shoulder joints, named humerus and
radius in the simulation. In the closed loop simulated by the
Neurorobotics Platform, the output of the spinal cord model
(muscles activation between 0 and 1) could be directly given
to the simulated mouse actuators, while the muscle lengths and

contraction speed had to be normalized before sending them to
the muscle spindles models.

In Figure 8, we show the results for a simulation trial and
a comparison with data recorded from a physical experiment.
We employed kinematic data recorded alongside neural activity
in the same in-vivo experiment: position of the slide and force
applied to the slide through the trial. As expected, by comparing
the activation levels with the normalized force applied by the
mouse to the slide we can observe that the flexor muscles are
active when there is also a force recorded, and conversely, there is
low activation when the slide is still. It is also worth mentioning
that, although the two muscles receive the same inputs from
the descending stimuli, their activation levels are different due
to the feedback circuitry of the spinal cord and the activity of
muscle spindles, which are different for the two muscles. Thus,
the output of the spinal cord circuitry is not a mere filtering
of the input signals, but it also takes into account the feedback
from the embodiment, which can change during the experiment.
This effect underlies the importance of embedding neural circuits
in a proper, realistic embodiment. The comparison between
the simulated slide position and the recorded one shows that,
thanks to the recorded neural activity, the muscles are able to
overcome the force threshold and release the slide, and that
an actual pulling is performed. Every pulling episode in the
trial is reproduced, even if with different degrees of accuracy.
Overall, the mean absolute error between simulated and recorded
slide positions is 13%. The main discrepancies between the
simulated and the recorded data come from the fact the in
the simulated mode, the muscular activity is mostly directly
proportional to the neural activity, while in the recorded data
this is not always the case. While there is clearly a correlation
between presence of neural activity and motion, the intensity
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of such activity sometimes does not match the intensity of
the motion.

4.2. Local and Global Brain Simulations
After Stroke and Rehabilitation
4.2.1. BNM for Brain Connectivity Changes After

Stroke and Rehabilitation
Within the second pipeline of the framework (“Stroke models”),
in this subsection we simulated different extents of the brain
injury and rehabilitation-induced plasticity after stroke. The
results from the simulations are compared with the experimental
data (Figure 2), allowing us to find the best fit with the
empirical functional reorganization in the parameters space of
the structural changes in the white matter connectivity.

The averaged calcium activity has a local peak in the power
spectrum at around 3.5 Hz (Figure 9A), which is within the
band relevant for the resting state activity. We hence focused
the analysis of the experimental data on the upper delta band,
2.5 − 5Hz, where we consequently band-pass filter the signals.
From these we calculated the pair-wise PLV in each condition,
thus constructing the FC matrices for the cortical regions of
interest. Finally, to remove one condition, we calculate the
changes of the FC during stroke and recovery compared with
the healthy state, and this is the data feature that is then
compared with the simulated data. For this we use the model
described in section 3.3.1, to identified which scenarios of
structural alterations cause the best agreement with the data in
the modeled FC alterations (Figure 9). To minimize the effect of
tissue displacement after stroke (Brown et al., 2007), the analysis
includes only 12 ipsilesional regions located outside the stroke
core (Figures 9B,D).

The stroke affects not only the inherent activity of the rM1,
but all the connected regions. However, the precise breadth and
magnitude of the structural damage, namely which links and to
what extent are they disabled over time, is unknown. Similarly, it
is not knownwhich new links are created or reinforced during the
spontaneous recovery or what is modulated by the rehabilitation.
On the other hand, the stroke was shown to consistently change
the alignment of dendrites and axons toward the core in vivo
(Brown et al., 2007), possibly meaning altered SC, confirming
previous works on structural rewiring after stroke (Dancause,
2005; Nudo, 2013). Hence a numerical exploration of the
different possibilities of the stroke and rewiring in the large-scale
BNM is used to unveil the most probable structural alterations
associated with stroke and recovery. The calcium activity in the
upper delta band that was chosen for the analysis shows highly
coherent co-activation of different parts of the cortex, compared
with the surrogate time-series (Figure 9A). We compared the
functional reorganization associated with spontaneous recovery
after stroke (“stroke” group) to rehabilitation-supported recovery
(“rehab” group). The changes in the functional connectivity in
“stroke” compared to “healthy” mice (Figure 9B, left matrix)
indicate an increased co-activation of all but one somatosensory
areas in the chronic phase after stroke, while visual areas have
increased connectivity with all the regions, and reduced with the
retrosplenial cortex. In the rehabilitated mice (Figure 9B, right
matrix), the increase in connectivity of the somatosensory is

even higher across all the areas, and there is also an increased
FC of the visual areas between each other and with the
somatosensory regions.

A phenomenological neural mass is used to simulate how
ipsilesional FC is changed by stroke and rehabilitation based on
the modifications of the SC. For this, we systematically modified
the SC to account for various impacts of stroke and subsequent
recovery, in order to find the best match with the patterns
observed in the data. The damage due to the stroke is assumed
to be homogeneous across the links connecting rM1, but their
magnitude is varied from 10 to 100%. Similarly, after the recovery
it is assumed that 0 to 500% of the lost connectivity due to stroke
is restored homogeneously across the regions with preexisting
links toward rM1, proportionally to the initial strength of their
link to rM1. We thus explore the possibility of up to 5 times
of weights of the damaged links to be redistributed along the
rest of the links of the nodes directly connected with the infarct
area, in order to also allow for over-compensation of the lost
direct connectivity. The absence of time-delays and the focus on
the phase locking, makes the model insensitive on the chosen
frequencies (Petkoski et al., 2016), which are therefore fixed in the
simulations. The natural time-variability of parameters (Petkoski
and Stefanovska, 2012) is assumed to be stochastic (Petkoski
et al., 2018). We hence fix the level of the noise and we explore
the impact of the global coupling K and the described strategies
of the stroke and recovery. For each combination of parameters
we obtain the same metric of FC as for the empirical data. The
parameters space for the agreement between the modeled and
the experimental data about the changes in the FC for the two
parameters of the stroke-induced structural changes are shown
in Figure 9C.

Figure 9D illustrates the simulated FC for spontaneously
recovered “stroke” and “rehab” mice compared with pre-stroke
conditions (“healthy” group), for fixed global coupling and for
points in the parameters space of the stroke damage and rebound
connectivity that show the best fitting with the empirical data.
Comparing the simulated (Figure 9B), with the empirical FC
(Figure 9D), we see that the best agreement is achieved for the
FC of the somatosensory areas, while that of the visual cortex
areas could be improved by testing different damage and rewiring
strategies for those regions. From the model fitting for different
parameters, it is also visible that generally better fit is achieved if
the extent of damaged links is decreased due to rehabilitation-
induced remapping. There is also a similar tendency for the
rebound connectivity to be decreased due to recovery training,
although there are other possible recovery paths that keep
roughly the same level of rebound connectivity. In conclusion,
the systematic exploration of the model parameters to best fit
the empirical data, allows us to obtain the sufficient structural
changes that can reproduce the modulation in FC after stroke
and rehabilitation.

4.2.2. Simulation of the Calcium Activity of the

Peri-Infarct Network After Stroke
Stroke profoundly alters the functionality at the local level in
addition to long-range connections. The local network next
to the stroke core switches to slow wave activity (Butz et al.,
2004), a type of brain oscillation that is observed during deep
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FIGURE 9 | Simulated and empirical Functional connectivity and fitting the model. (A) Average power spectrum across the regions and the PLV values for each pair of

regions (thin lines) during healthy state, as well as the significance levels from the surrogates (thick dotted lines). Vertical black lines show the boundaries of the upper δ

band. (B) Relative changes of the FC at stroke and at rehabilitation compared to the healthy control for frequency band f = 2.5− 5Hz. (C) Cross correlation of the

model upper triangles of FC between the model and the data for fixed global coupling K = 4.3 and different levels of stroke (0 for complete damage and 0.9 for

damage of 10% of the links) and rebound connectivity (0 for no rewiring and 5 for overall rewiring with strength of 5 times of the damaged links). Parameters:

frequency f = 2Hz, noise strength D = 1. (D) Simulated relative changes of the FC at stroke and rehabilitation relative to the healthy control for the working points

marked with red squares in the parameters space in the panel (C). The abbreviations for the areas in (B,D) are: VIS, visual; RSP, retrosplenial; SS, somatosensory; al,

anterolateral; rl, rostrolateral; p, primary; pm, posteromedial; am, anteromedial; a, anterior; d, dorsal; agl, lateral agranular part; ptr, primary trunk; pll, primary lower

limb; pun, primary unassigned; pul, primary upper limb.

sleep, but also during anesthesia and other pathological brain
states (Sanchez-Vives et al., 2017). Understanding the changes
in the activity patterns at the level of the peri-stroke region
is necessary to get insight on the possible mechanisms that
underlie functional recovery. In order to explore the mechanisms
that drive the neuronal networks of the peri-stroke areas to
oscillate, we developed a model that reproduces the spiking
activity of a local network during slow oscillations and extended
the model to provide the two-photon calcium signal that one
would record from that network. We compared the simulated
calcium data with that of the two-photon experiments conducted
in anesthetized mice (see the “Stroke models” box in Figure 2).

We propose that a deficit in neuromodulation produced by

the decreased cerebral blood flow in the periphery of the region
affected by the stroke could be responsible for the emergence of

slow oscillations and the general flattening of the EEG through

an increase on the level of adaptation of the neurons (Nghiem
et al., 2020). To test this hypothesis, we developed a spiking
network model capable of reproducing the spontaneous activity
of a cortical network during different depths of anesthesia
(Figure 7). The strength of adaptation in the model can be
regulated to produce different types of oscillations. In particular,

we aimed at reproducing the changes in frequency of the slow
oscillation observed both in the two-photon and in the wide
field calcium imaging in vivo experiments when the anesthesia
is reduced (Figure 10A). When adaptation is strong, the model
of deep anesthesia produces slow oscillations at 2.1 Hz, while
decreasing the strength of adaptation (model of light anesthesia)
leads to slightly faster slow oscillations, at a frequency of
2.31 Hz (Figure 10B). Thus, we show that varying the strength of
adaptation allows to reproduce the increase in frequency of the
slow oscillations observed in the calcium imaging experiments
when decreasing the level of anesthesia.

5. DISCUSSION

In this paper, we explored the steps and methods that are
needed to develop a simulation model of a complete experiment.
We designed, validated and combined many components, even
though they are obviously not exhaustive to encounter for the
complexity of the real world.

We first simulated execution of goal-directedmovements with
displacement of objects in the virtual reality setting. Results show
that we could replicate with high accuracy the displacement of an
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FIGURE 10 | Simulation of peri-stroke local network oscillations: experiments and models. (A) Fluorescence traces obtained from three example cells (two-photon

signals) and from the entire field-of-view (wide field signals) recorded in mice under deep and light anesthesia. (B) Raster plot of the spikes (top) and averaged

two-photon calcium signals (bottom) computed for the inhibitory (FS, in red) and excitatory (RS, in green) populations in a model of deep or light anesthesia.

object by a virtual (healthy) mouse in the simulated environment
(Figure 2). While this simulation is only an approximation of
brain-body interactions, it showcases the capability to simulate
large scale neural networks as well as body dynamics in a
virtual environment.

The second pipeline of the framework involved modeling
brain injury. We validated the potential of a brain network
model to predict the long-range stroke-induced connectivity
changes measured in a real experiment. We also tested an
oscillatory spiking network model to simulate local peri-infarct
activity after stroke. In addition, this model could simulate
the fluctuation in calcium concentration due to spiking activity
of homogeneous neuronal network, thus allowing modeling of
calcium imaging data.

Toward the mechanistic understanding of behavior, few
studies already provide tools for closed loop neuroscience (Mulas
et al., 2010; Tessadori et al., 2012; Weidel et al., 2016, for a review
see Potter et al., 2014). In addition, recent studies took advantage
of virtual reality (VR) experiments conducted under controlled
environment, where behavioral strategies could be isolated and
tested (Dombeck and Reiser, 2012). In a VR experiment, a
simulated environment is updated based on the animal’s actions

(Ritter et al., 2001; Chronis et al., 2007; Reiser and Dickinson,
2008; Dombeck et al., 2010). Themain drawback of this approach
is that the activity of animals dictates not only the response of

the VR but also the properties of the neurons being measured.
As a consequence, the closed-loop VR system shall then be
optimized on-line based on the animal’s behavior, which is very
challenging. The approach we propose here instead is based on
an off-line simulation, that allows exploring multiple dimensions
in the parameter space of the dynamical model of mouse brain
and the environment. Anyway, both strategies are synergistic
with the research of effective functional brain machine interfaces
(Santhanam et al., 2006).

5.1. Movement-Driven Models
Closed-Loop
The results showed in section 4.1 demonstrate that is possible
to achieve realistic simulations by integrating some of the
components described previously. Accuracy of the closed-loop
simulation could be increased by removing some simplifications
that are currently in place. Some of them are related to
the physical models of the slide and of the musculoskeletal
embodiment. Regarding the former, a more accurate slide
simulation will allow to introduce friction effects that are
occurring in the real setup, thus we could avoid putting a muscle
activation level threshold for the release of the slide. Moreover,
more detailed spinal cord and musculoskeletal models will be
essential to simulate finer movements.

Results shown in Figure 8 demonstrate the system is able
to simulate the pulling task, albeit with some inaccuracies on
some pulling trials. A presumable cause of this inaccuracy can
be identified in the low number of neurons (less than 20) that
is possible to record during an experiment on the platform with
the 16 channels linear probe. For this reason, it is possible that
the selected units do not encompass the entire population of
neurons involved in the movement. This issue could be mitigated
by employing a multi-unit analysis, however, this will add to the
inputs a significant background activity which may not be useful
to generate the pulling movement.

Many parameters of the spinal cord circuitry can be adjusted,
depending on the inputs, to accurately reproduce the movements
recorded in the in-vivo experiments. While in this work the
tuning was done manually, a more effective and generalized way
would be to use different recordings, both neurophysiological
and kinematic, and employ an optimization similar to what has
been done in Sreenivasa et al. (2016).

The level of detail of the spinal cord circuitry can clearly
be improved. In this work we modeled a minimal set of
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FIGURE 11 | Future perspective of data and simulations. The scheme depicts the approach to build the framework from data to models and back. The workflow from

data to models and simulation in the Embodied brain closed loops is shown. The upper, green box shows the Stroke models closed loop, the lower, red box shows

the Movement-driven models closed loop. Colored images represent experiment data, brain and spinal cord models, and simulation of the environment (from left to

right). Connections between the components are presented as arrows: solid lines represent the output provided to other blocks; dashed lines indicate the output data

of the models that are used for comparison with real data for validation. In gray, models and connections that are still under development. The overlapping green and

red region pictures the future integration of the two pipelines, and in particular of the brain models within the NRP.

components that were capable of replicating experimental data

with a certain degree of realism. To achieve this, it was decided
not to arbitrarily increase the complexity of the models by adding

subcircuits whose impact cannot be clearly measured from a
comparison with experimental data. Among these, it is worth
mentioning the inclusion of proprioceptive feedback from Golgi
tendon organs, which could be potentially implemented with
computational models such as Mileusnic and Loeb (2006) or the
one already included in a spinal cord model in Mugge et al.
(2010). Perhaps more interesting is the modulation of muscle
spindle sensitivity from γ -motoneurons, as this is crucial in the
control of both voluntary and involuntary movements. While
including a population of γ -motoneurons could be done by
replicating populations of α-motoneurons, measuring the impact

of adding this component is not trivial, especially considered
that there is no experimental data measured, in the rehabilitation
setup, that can be used to validate the addition. As such, we
decided not include γ -motoneurons in the spinal cord circuitry.

5.2. Stroke Models Closed-Loop
AMBA was previously tested and demonstrated to have a
predictive value for the resting state dynamics in healthy
conditions, compared with the gold standard individualized
diffusion tensor imaging connectome (Melozzi et al., 2019). One
of the main aims of the stroke modeling pipeline in this study
is to validate the use of AMBA in the cases when there are
significant changes in SC as compared to the healthy state for
which it was obtained (Oh et al., 2014). This requires finding

Frontiers in Systems Neuroscience | www.frontiersin.org 17 July 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Allegra Mascaro et al. Toward Closed-Loop Experiments and Simulations

the most probable structural alterations corresponding to the
stroke and recovery. From the perspective of the integrative
neuroscience, this is especially important as it will allow further
application of these altered connectomes validated from the
resting state FC, to generate the particular brain dynamics
associated with active forelimb pulling on the M-platform by
stroke and rehabilitated mice.

To this aim, the present study suggests that rehabilitative
training could reinforce the connectivity between motor and
visual areas. The iterative loop between experiments and
modeling goes toward the confirmation of this hypothesis
via stimulation experiments. New experiments shall verify
the necessity of this feature in promoting the recovery by
stimulating the connections between motor and visual cortex,
and modulation of FC could be achieved via optogenetic
stimulation, which recently showed to be a promising approach
in stroke recovery (e.g., Cheng et al., 2014; Pendharkar et al.,
2016; Conti et al., 2020).

The results from the model identify routes from the stroke
to the recovery in the parameter space that can be related to
neurophysiological quantities, such as the whitematter tracts.We
could thus determine links that need to be restored, or prevented
from being established, for a successful recovery. One such a
recovery path proposed by the model is the rebound in SC after
rehabilitative training, and this is especially true for the links
involving the visual-associated areas. The proposed rebound is
due to newly established links from the regions afferent to the
site of the stroke. This can lead to overall overcompensation
for the SC, and some of these scenarios could be possible
paths for recovery. However, it remains to be seen whether the
structural changes of such magnitude can be achieved. Several
studies previously showed that axonal growth is stimulated by
neurorehabilitative activities after stroke, and that sprouting can
extend to widespread brain systems (Carmichael et al., 2017).
New experiments aimed at verifying the SC modifications shall
verify the hypothesis on the importance of modified connectivity
in the visual areas for recovery. In addition, stimulation
experiments can also strengthen certain links, and with our
modeling framework we can virtually compare the effects of each
such modification to the observed dynamics.

For the best fitting of the data one would also need to allow
different levels of the global coupling, which governs the global
level of synchronization and that is already shown to be increased
during stroke (Falcon et al., 2016; Corbetta et al., 2018), thus
decreasing integration and information capacity (Adhikari et al.,
2017) and modularity (Falcon et al., 2015). Thus, one could
more precisely identify the path from stroke to recovery for a
wider parameters range. This also includes numerically testing
different scenarios for heterogeneous connectivity reinforcing
(Nudo, 2013) such as reinforcing of contralateral links in general,
or those to contralateral stroke region only, or toward the
nodes (ipsi-, contra-lateral, or both) that were connected to the
damaged region prior stroke.

Possible problems could arise from the alignment of the
experimental data, especially after the stroke, due to the
shrinkage and the movement of the tissue (Brown et al., 2007;
Allegra Mascaro et al., 2019). We have tried to avoid this by

excluding from the analysis the regions adjacent to the stroke,
but this reduces the predictive value of the model due to smaller
number of analyzed regions.

Finally, these experiments provide a picture of the ipsilesional
functionality after stroke and rehabilitation, but many other
regions are involved, including the contralesional hemisphere
(see, for instance, Dodd et al., 2017). In the next experiments, the
focus shall be on recording with a higher sampling rate to capture
wider spectrum of brain dynamics, and on enlarging the field-
of-view of the wide-field imaging setup to provide longitudinal
pictures of cortical functionality over both hemispheres. The
latter should also refine the fitting across parameters, which
now contains large areas or similar level of predictability, thus
offering more precise recovery path. Individualized connectome
data by Diffusion Tensor Imaging during the recovery process
is another aspect of the future experiments that should test the
predicted changes in the structure that we propose to be the cause
of the observed functional alterations of different conditions.
In addition, higher resolution SC performed with light-sheet
microscopy on individual mice (Allegra Mascaro et al., 2015)
could test the model prediction at the final time point of the
experiment. As a final step, an individualized therapy could be
proposed targeting specific parts of the brain (Spalletti et al., 2017;
Allegra Mascaro et al., 2019; Conti et al., 2020), depending on the
location and the size of the stroke.

5.3. Integration
We propose viable strategies to integrate the brain models
described here and to embed them within the Embodied brain
framework on the NRP (Falotico et al., 2017) (pictured by
the overlapping green and red boxes in Figure 11). Before
applying it to the simulation of the whole-brain dynamics,
the spiking neurons model shall be extended to include
the heterogeneous long-range connections either via mean-
field approximation or by means of co-simulation with other
neural masses (see the spiking neurons model that receives
calcium imaging data in Figure 11). In addition, a model
for embedding spiking model modules into the whole brain
model is currently under development (displayed as a gray
arrow from the spiking neurons to BNM in Figure 11). This
work includes validating neuronal mass models against high-
dimensional neuronal networks. Once available, this tool will
allow bridging the scales of brain models with different levels of
description, and they will be then implemented in the NRP and
integrated into the Embodied brain framework (gray arrows in
upper box of Figure 11).

To integrate the large-scale BNM with the proposed spinal
cord model, we propose to modulate the activity of the
spiking neurons in the spinal cord by the output of the
cortical regions, mainly those related to the motor activity
(displayed by gray arrows in the Stroke models closed loop,
green upper box in Figure 11). In particular, the firing rate of
the neurons in the spinal cord that triggers the movements
on the NRP can be driven by the mean activity of the
cortical motor regions, or by some specific patterns of their co-
activation, such as a high-level activity propagation, similar as
the one observed during the movements. In this way, the mean
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neuronal activity of the brain regions at different conditions
would trigger movements at the NRP using the activity of
the spinal cord. For the feedback link of the sensory activity,
we envision the information about muscle activity and limb
displacement, which is encoded into the firing patterns of the
spinal cord spiking neurons, to directly modulate the mean
activity of the sensory motor regions (displayed as a dashed
gray arrow in the Stroke models closed loop, upper box in
Figure 11). This on the other hand would impact the overall
brain network dynamics, including the activation patterns of the
motor regions.

To allow the flow of information from the brain to the
virtual environment, we anticipate that the next step will
be the integration of a spiking network model of motor
areas upstream to the spinal cord model. This data-driven
model of the motor cortex will include populations of
pyramidal neurons and interneurons that can be functionally
attached to different lower circuits (displayed by gray arrows
in the Movement-driven closed loop, red lower box in
Figure 11). This integration in the proposed framework can
be an effective strategy to effectively close the Embodied
brain loop.

6. CONCLUSIONS

To summarize, in this study we proposed a methodological
framework (named Embodied brain) to investigate a “brain in the
loop” by a constructive refinement of experiments and simulation
of an embodied mouse.

Our findings suggest that simulation of real experiments
within the proposed framework will help better understand the
complex mechanism that underlies the generation of behavior.
Nevertheless, the actual advantages of the “Embodiment”
approach, still under construction, are largely unexplored. Even
though some aspects of complex animal behavior may be
represented with good accuracy by modeling single neural
components, without embedding the neural simulations in
a physical embodiment it is impossible to show the effect
of such neural systems on the body and the surrounding
environment. In our study, it would be impossible to assess
whether or not the neural models are capable of performing
the pulling task with any degree of accuracy, computed on
the kinematic data. Furthermore, we believe that new features
[e.g., activation of different brain regions for performing the
same task due to degeneracy (Price and Friston, 2002) and
its impact for stroke and recovery] will be disclosed by
the simulation of the entire experiment. In conclusion, the
framework shown in this study will advance the field by
formulating new hypothesis on the mechanism underlying goal-
directed voluntary movements, to be validated on ad hoc
designed experiments. In general, the framework could simulate
new types of experiments that cannot be run in the real word.
Last but not least, the virtual environment will be an essential
tool to reduce the number of animals used in the experiments,
thus making the “Reduction” rule on animal experimentation a
feasible goal.
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