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Abstract

Accurate quantification and detection of intron retention levels require specialized
software. Building on our previous software, we create a suite of tools called
IRFinder-S, to analyze and explore intron retention events in multiple samples.
Specifically, IRFinder-S allows a better identification of true intron retention events
using a convolutional neural network, allows the sharing of intron retention results
between labs, integrates a dynamic database to explore and contrast available
samples, and provides a tested method to detect differential levels of intron
retention.

Keywords: Intron retention, Splicing efficiency, RNA sequencing

Background
Intron retention (IR) occurs when an intron is transcribed into pre-mRNA and re-

mains in the final mRNA. It is a type of alternative splicing that is gaining increased

interest in human health and disease research. Originally described in plants and vi-

ruses, IR has now been shown to be a common form of alternative splicing in mamma-

lian systems with a major impact on normal biology and disease [1–7]. However,

detecting IR events poses several specific difficulties. Introns are highly heterogeneous

genomic regions, both in length and sequence features. In mammals, IR levels are gen-

erally low and thereby subject to incomplete coverage and higher count overdispersion.

As a result, software that is not specifically tuned for IR detection generally performs

poorly and databases that provide transcript isoform sequences fail to list many IR

events [4, 8].

We previously published a method called IRFinder, an algorithm for detecting and

quantifying IR events, that is frequently used as a benchmark for IR detection and

quantification [8–12]. This software and its associated database have been critical in

the detection and interpretation of IR events in numerous studies [13–19]. However,

building on 4 years of user feedback, it is apparent that IRFinder is lacking features

that would enable bench scientists to more reliably identify actionable IR events, share

IR data, and dynamically analyze changes in IR levels between multiple samples. We

have implemented a suite of features in a new version of our software called IRFinder-
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S. Specifically, we have (1) created a dynamic database that allows users to perform a

meta-analysis, contrast IR from multiple samples, and view IR in an internal browser;

(2) created an infrastructure allowing users to share IR detection results from their own

samples; (3) implemented a convolutional neural network that analyzes genomic coor-

dinates, as a genome browser would display, and pinpoints IR events that are most

likely candidates for further wet-lab analysis; (4) implemented IR detection from third-

generation long sequencing technologies; and (5) implemented and tested differential

analysis of IR levels between samples.

Results and discussion
IRBase enables the visualization and contrast of IR events as well as data sharing

It is essential to visualize and contrast specific intron retention events detected by com-

putational approaches before spending resources on their experimental validation. This

allows users to understand the transcriptional context of a predicted IR event but also

to assess whether the event is common to other cell types or specific to their experi-

ment of interest. We therefore created a web application that allows users to upload

their own data, decide whether to keep them private, or share them with other users

and visualize the results in a javascript version of the IGV genome browser. We

propose two types of tracks to visualize the IR events: a bar mode, showing the ratio

values like a BedGraph and an IRFinder track to visualize the abundances of the flank-

ing regions, the number of reads spliced and intron read depth (Fig. 1A and Add-

itional file 1: Fig. S1). These views can integrate results from publicly available datasets

and shared data from other users (Fig. 1B). Currently, IRbase accepts results from hg38

and ENSEMBL annotation and contains 935 cell lines (downloaded from https://por-

tals.broadinstitute.org/ccle). This database is fully integrated within the IRFinder detec-

tion tool; users who have predicted IR events using our software are prompted to

upload and share their results. By facilitating the upload process and allowing easy inte-

gration using flexible labelling of experiments using user-defined tags, we ensure that

the database can grow steadily. The database is accessible for meta-analyses across tis-

sue types and conditions and allows users to contrast multiple experiments in one

interface.

IRFinder-S integrates long read detection of IR

Third-generation sequencing technologies, especially direct RNA sequencing, represent

a unique opportunity for the detection, characterization, and validation of IR. Because

these technologies are capable of sequencing individual RNA molecules from start to

end, they can elucidate the full structure of transcripts with retained introns. As a con-

sequence, long reads can be considered as a means of validating IR predictions obtained

from SR data. The increased availability of long reads facilitates the study of splicing

structure, including a more reliable identification of IR events. IRFinder-S proposes a

dedicated version of the algorithm for long-read sequencing (Fig. 2 and Materials and

Methods). In this long-read mode, we make multiple adjustments to the algorithm to

account for the specificities of long-read data but also to account for the fact that these

reads will often serve as the validation of IR and thus the default parameters are more

stringent. Firstly, the mapping algorithm STAR is replaced by Minimap2 [20], a
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specialized aligner for long reads providing competitive alignment accuracy and

low computational requirements. Secondly, because long-reads have a higher

error rate that often leads to slight imprecision in the definition of exonic bound-

aries (Fig. 2B), we allow by default up to three nucleotide jitter in exonic bound-

aries when calculating correctly spliced introns (parameter -j). Thirdly, we only

consider the minimum read depth rather than the median when considering

retained intron abundance. These modifications allow us to use more long reads

when measuring IR levels and also filter out reads for which IR calls would be

uncertain (Fig. 2C).

A

B

MCF10a-Snail-ER T1 R1

MCF10a-Snail-ER T1 R2

MCF10a-Snail-ER T1 R3

MCF10a-Snail-ER T7 R1

MCF10a-Snail-ER T7 R2

MCF10a-Snail-ER T7 R3

User's samples Publicly available
BC cell lines

Fig. 1 IRbase 2.0 is a web application that allows users to visualize and share IRFinder results. A IGV view of
three replicates of MCF10a-Snail-ER cells without tamoxifen treatment (T0, in red), after 1 day of treatment
(T1, in green) and after 7 days (T7, in blue) using the new IRFinder track type. The BED graph track style of
the same locus is represented in Additional file 1: Fig. S1. B Boxplot showing the IRratio in the nine user
provided samples and in 55 breast cancer cell lines, 29 primary tumors, and 26 metastasis, currently publicly
available in IRbase
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Convolutional neural networks enable users to pinpoint actionable IR events

Feedback from the users of our first version of IRFinder confirmed that visual inspec-

tion of IR events was a crucial step in selecting candidates. Specific patterns that an

Mode: BAM -l

Input BAM

Auto-detect adaptors

Trim adaptors

Map reads with STAR

Mode: FastQ

Map reads with Minimap2

Mode: Long

Input BAM

Input raw reads

sno

IRratio =
Ai

+AeAi

sno

IRratio =
Ai

Ae+Ai

A

B

C
SMYD2

FBXL15

Fig. 2 IRratio estimation for long reads. A Main changes in the pipeline between short reads (left) and long
reads (right). Ai = intron abundance and Ae = exon abundance. In short reads, Ai is estimated as the median
value of the intron depth; in long reads, we use the minimum intron depth. The exon abundance in short
reads is estimated as the maximum value between the number of reads spliced at the 5′ or 3′ of the intron;
in long reads, it is the number of reads that are spliced in 5′ and 3′. Red crosses indicate regions that will
be excluded from further analysis either due to other overlapping transcripts (left cross) or low mappability
regions (right cross). Green lines indicate intronic abundance (Ai). B Example of poor alignment to exonic
borders due to sequencing errors that creates a jitter effect on the mapping of long reads around the
splice junctions. Without jitter (option -j 0), the software identifies only 110 SpliceLeft reads, 0 SpliceRight,
and 0 ExactSplice. With the jitter option (-j 3), it identifies 183 SpliceLeft reads, 210 SpliceRight reads, and 69
ExactSplice. Having an intron abundance (Ai) of 4 and using the ExactSplice as Ae, the IRratio in the first
case is 1 and it raise the LowCover warning; in the second case, the IRratio is 0.055, raising the
MinorIsoform warning due to the imbalance between the ExactSplice and the max(SpliceLeft, SpliceRight)”.
C Example of alternative 3′ end that is considered as intron retention by the standard method (IRratio=0.40,
due to the reads in the red box that do not extend fully between the two exons) and not by the long read
mode (IRratio=0, due to the absence of reads covering the green and red boxes)
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expert could detect in a genome browser increased the likelihood of selecting good can-

didates. Features such as the regularity of intronic coverage, the presence of well-

defined exons, and other features contributed to the review of IRFinder candidates.

However, this process is time-consuming and variable from user to user. Thus, we tried

to reproduce this expert viewing by using a deep-learning approach that would detect

these patterns from a dataset of high-quality IR events. To this end, we trained a con-

volutional neural network (CNN) using high confidence retained introns confirmed by

long reads as ground truth. This CNN filter is directly integrated into IRFinder, and it

works by transforming coverage data into visual arrays that are submitted to the CNN

(Fig. 3A). To test this approach, we used an inducible cell reprogramming system based

on human MCF10A cells that recapitulates the epithelial-mesenchymal transition

(EMT, Materials and Methods) for which we had access to both short- and long-read

RNA-seq data (Fig. 3B). In this system, MCF10a cells stably express the EMT-inducing

transcription factor Snail fused to the estrogen receptor. Upon treatment with tamoxi-

fen, the first changes in alternative splicing can be observed as soon as 24h, while a

complete cell reprogramming is reached upon 7 days of treatment. We thus used as a

training set three biological replicates of untreated epithelial cells and three replicates

treated for 1 day with tamoxifen, which corresponds to the first day of the EMT transi-

tion. As a first external validation set, we used three biological replicates of cells treated

for 7 days with tamoxifen, corresponding to the fully induced mesenchymal-like state.

This division aims to validate the model on new IR events that are likely to emerge in

the mesenchymal-like state and therefore never seen by the model in the training data-

set. As a second external validation set, we used long-read data of GM12878 B-

Lymphocite cell lines, provided by the nanopore consortium [21]. Because there was no

short read (SR) dataset provided with this experiment, we used the GM12878 Illumina

data from an earlier ENCODE study, processing the data as described in our previous

study [22]. We considered IR events detected in both short reads and long-reads as

bonafide IR events to measure true positives (Material and Methods). We trained the

model to recognize the true positive introns from the false positive ones in a 10-fold

cross-validation procedure. We then evaluated our model on a biologically distinct

dataset where the cells had fully transitioned to their mesenchymal-like state. On this

independent test set, it achieved a sensitivity of 0.90 and a specificity of 0.88, with a bal-

anced accuracy of 0.89 (Fig. 3B, right). We then evaluated our model on a different cell

line, GM12878, where the model achieved a sensitivity of 0.81, specificity of 0.83, and a

balanced accuracy of 0.82.

We then benchmarked IRFinder-S against iREAD [12], a recent software dedicated to

the analysis of intron retention, MAJIQ [23], a software designed for the analysis of al-

ternative splicing events that adjust the PSI value of retained intron, and Whippet [24],

another software that uses fastq files to compute PSI values. These software were se-

lected based on their popularity but also on whether they could output a measure of

retained versus spliced out introns. The results are shown in Table 1 and Add-

itional file 1: Fig. S2. It is worth noting that Whippet excludes a high number of introns

prior to their quantification steps since it builds its reference based only on known

retained introns and would thus be unable to detect rare or unannotated IR events.

iREAD excludes all the introns overlapping with other features. For IRFinder, we ex-

cluded the introns reporting any warnings. IRFinder-S achieves the best overall
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performance, excludes the least introns before analysis, and thanks to the CNN it does

not require the user to set a threshold on IR ratio. To benchmark execution time, we

ran a single sample (the third replicate of the EM test sample) on a single core.

IRFinder-S processed a single BAM in 20 min, MAJIQ 31 min, and iREAD 50. Whippet

took 194 min to process a sample; however, Whippet starts from FASTQ files instead

of already aligned BAM files, for which the alignment takes 120 min using STAR on a

single core. Interestingly, when we add the CNN on top of the other benchmarked al-

gorithms, it reduces the number of false positive introns, at the expense of a small

number of true positives (Additional file 1: Fig. S3) making the CNN a valuable ap-

proach for our algorithm but also for other approaches. An example of an intron cor-

rectly filtered out by the CNN is presented in Additional file 1: Fig. S4.

Inspection of examples where the CNN was mistaken reveal that the same mistakes

would probably have been made by visual examination by an expert; the false positives

generally present a homogenous coverage across the intron (Additional file 1: Fig. S5A

top right) and false negatives seem to present unevenly covered intronic regions

A
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Long Reads

Vis. Arrays

IR candidates

High confidence
IR/noIR

All introns

All introns
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IRFinder BAM -l
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254x1x64

BatchNorm+
Activation

label VisArray
TP
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FP

FP
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... ...

[[23,0],[24,0],...
[[13,0],[18,0],...
[[9,0],[14,0],...
[[213,0],[240,0],..
[[8,1],[7,1],...
[[35,3],[34,3],...

126x1x64
MaxPooling2D

Conv2D+
BatchNorm+

Activation
126x1x32

62x1x32
MaxPooling2D

Conv2D+
BatchNorm+

Activation
62x1x16

30x1x16
MaxPooling2D

30x1x16
Dropout

480
Flatten

8
Dense

2
Dense

False
Positive

IR

True
Positive

IR

Input generation

CNN training

B

Model

Short Reads
Day 7

Long Reads

Input generation

External validation

Model evaluation

Short Reads
NoTreat

Long Reads

Input generation

CNN training

Training data
Short Reads

Day 1
Long Reads

Input generation

Short Reads
GM12878

Long Reads

Input generation

IR noIR
Ground truth

IR

noIR

693

1184

33%

75
3% 56%

160
8%

Sensitivity: 0.90
Specificity: 0.88
Balanced Accuracy: 0.89 

Day 7

IR noIR
Ground truth

IR

noIR

1109

2157

28%

252
6% 54%

431
11%

Sensitivity: 0.81
Specificity: 0.83
Balanced Accuracy: 0.82 

GM12878

Fig. 3 Convolutional neural network (CNN) filter to reduce false-positive IR candidates. A Top: Workflow for
the generation of the training input: the short reads are used to generate the training array and to
determine if, based uniquely on the IRFinder output, each intron would be considered as retained or not.
The long reads are used to determine the IR ground truth. Bottom: the architecture of the CNN model. B
Training and evaluation of the model using the external datasets; the ground truth is determined using the
presence or absence of coverage in the long reads
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(Additional file 1: Fig. S5A bottom left). Finally, the performance of our CNN may be

underestimated because the misclassified IR events are generally borderline with IRra-

tios close to the threshold of 0.1, and mislabeled introns, due to incongruences between

long- and short-read resolution (Additional file 1: Fig. S5B).

Implementation and validation of differential IR analysis

In our first version of IRFinder, we suggested methods to analyze differential IR (DIR)

using either standalone scripts written in a different coding language or a procedure re-

quiring the user to have extensive knowledge of data transformation and statistical lan-

guages such as R. In IRFinder-S, we include IRFinder Diff, an integrated method that

allows end to end analysis using either the density-based approach, DESeq2 [25], or the

PSI-based approach, SUPPA2 [26] adapted for IR ratios (Material and methods). The

output can be used in SUPPA2 downstream analysis for clustering analysis for example.

Our choice of algorithms was based on the popularity of these two approaches for the

analysis of transcriptomic data. We now wanted to test if they were suitable for the de-

tection of differential IR.

In order to corroborate and compare DESeq2 and SUPPA2 as methods to identify

differentially retained introns, we used the aforementioned EMT system (Materials and

methods). We compared three replicates of EMT-induced MCF10a cells (mesenchy-

mal-like state) and three untreated control replicates (epithelial state) to detect differ-

entially retained introns between the mesenchymal and epithelial states (Fig. 4A). Using

standard settings for both algorithms (BH adjusted p value < 0.05 for both, absolute FC

> 1.5 for DESeq2 and delta ratio ≥ 0.1 for SUPPA2), we found that DESeq2 identified

148 differentially retained introns and SUPPA2 found 46 (Additional file 2: Table S1

and Additional file 3: Table S2). 31 differential IR events were common between the

two. In both cases, introns were considered if at least one sample had IRratio > 0.05.

Table 1 Table representing the results of the benchmark on the EMT test dataset (A) and on the
GM12878 test dataset (B) using a threshold for the PSI values and IR ratios of 0.10

Method Excl. TP TN FP FN TPR TNR PPV Acc. FDR

A. EMT test results

IRFinder 25989 695 95198 428 138 0.83 0.99 0.62 0.98 0.38

IRFinder-S 25989 673 35515 111 160 0.81 1.00 0.86 0.99 0.14

iREAD 28221 18 33994 86 129 0.12 1.00 0.17 0.99 0.83

Whippet 59822 443 1978 87 118 0.79 0.96 0.84 0.92 0.16

MAJIQ 30179 388 29572 1951 358 0.52 0.94 0.17 0.93 0.83

B. GM12878 test results

IRFinder 30943 1228 50720 729 185 0.87 0.99 0.63 0.98 0.37

IRFinder-S 30943 1077 51123 326 336 0.76 0.99 0.77 0.99 0.23

iREAD 37905 71 45501 179 149 0.32 1.00 0.28 0.99 0.72

Whippet 80125 772 2459 347 102 0.88 0.88 0.69 0.88 0.31

MAJIQ 50932 826 30626 917 504 0.62 0.97 0.47 0.96 0.53

Excl intron excluded, TP true positive, TN true negative, FP false positive, FN false negative, TPR true positive rate
(sensitivity), TNR true negative rate (specificity), PPV positive predicted value (precision), Acc. accuracy, FDR false
discovery rate
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We selected 12 introns called as differentially retained and that were suitable for

clean primer design in that they did not overlap with other exons or have any known

alternative donor or acceptor sites. The selected introns were the following: four in-

trons, in the genes C1ORF74, GTPBP2, PNRC1, and NR4A1 called by both methods;

six introns, in the genes EFNA1, CD44, CTNND1, CLL20, and NCOA7, called only by

DEseq2; and 3 introns, in the genes PKMYT1, GBA2, and PLCG1, called only by

SUPPA2. Figure 4B shows the delta IRratios between epithelial and mesenchymal repli-

cates as computed by IRFinder and the ones obtained by qPCR validations. Of the 12

tested introns, 7 were confirmed using RT-qPCR. The comparison between IRFinder-S

and RT-qPCR results showed that both approaches display comparable changes
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Fig. 4 Differential Intron retention validation between stages of EMT differentiation. A EMT is induced in
MCF10a Snail-ER system. RNA-seq data is analyzed with IRFinder, and the replicates are compared using
DESeq2 and SUPPA2 wrappers. B qPCR validation of 12 introns called as differentially retained by DESeq2
and/or SUPPA2. The complete list of primers and characteristics of each intron is described in
supplementary file 1. C Scatter plot showing the IRratios of the introns called as differentially retained by
DESeq2, in green, SUPPA2, in orange, and by both in yellow
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between epithelial and mesenchymal IR ratios. However, we observed that DESeq2

identifies more DIR events in samples with an average lower IRratio (Fig. 4C). This

may be explained by the fact that events with low intronic coverage produce highly

variable IR ratio values. As a consequence the ratio values may be highly variable within

replicates and methods such as SUPPA2 which make use of replicate variability to de-

termine uncertainty may not produce statistically significant scores. As such, DESeq2 is

chosen as the default with SUPPA2 available if required.

Conclusion
Until recently, IR detection ran parallel with the analysis of other splicing events with-

out taking into account inherent difficulties in measuring intronic expression. As a re-

sult, IR has been systematically underestimated. Despite the recent development of

specialized software for detecting IR, the measurement of IR levels has been problem-

atic. Here, we introduce IRFinder-S to overcome major obstacles in IR detection and

exploration. These include a database to explore IR in numerous tissue types and share

IRFinder results, the addition of a CNN filter to drastically reduce the false-positive rate

of IR detection, the inclusion of an experimentally validated approach to detect differ-

ential IR, and the ability to analyze long-read sequencing data. In addition, IRFinder-S

overcomes many issues unveiled in the last 4 years thanks to community feedback, such

as the possibility to give pre-computed low mappability areas, whose creation step takes

most of the time during the reference creation, the possibility to link pre-existing STAR

reference folders, and a detailed help divided by run modes. Finally, Docker and Singu-

larity images including all the dependencies required to run IRFinder on any Linux dis-

tribution are available in dockerhub (cloxd/irfinder:2.0) and in GitHub (https://

github.com/RitchieLabIGH/IRFinder).

Methods
IRbase 2.0

The new version of IRbase consists in a frontend, implemented with Angular 10, a

mySQL database containing the basic information about each sample submitted and

the introns having IRratio higher than 0.05, warning different than “LowCover” and a

tag-based aggregation system that allows fast queries to obtain statistics on large num-

ber of samples.

The backend is implemented in node express version 4.17.1. We generated two novel

tracks to show IRFinder results (IRFinder-IR-[non]dir.txt files) directly on igv.js, one

displaying the IRratio as bedgraph and one that combines the additional information

included in the file allowing the representation in detail of the flanking exons, the

spliced reads, and the intron depths, as shown in Fig. 1.

The user authentication is managed by Google’s service firebase and is necessary in

order to upload new samples. Currently, IRbase requires results from hg38 with

ENSEMBL reference.

Measuring intron retention in long reads

In order to adapt the IRratio computation in long read, we adapted the estimation of

intron and exon abundance keeping unchanged the formula:
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IRratio ¼ Intronic abundance
Intronic abundance þ exonic abundanceð Þ

A visual representation of the main changes is shown in Fig. 2. The intron abundance

in long reads is evaluated as the minimum coverage in the intron instead of the median,

offering a more stringent but reliable IRratio. The exon abundance in long reads is esti-

mated as the exact number of reads spliced between the acceptor and the donor site,

rather than the highest number of reads spliced between donor and acceptor sites. Fi-

nally, in order to take into account the long reads’ higher error rate, the count of the

splits is considered not only for the exact split nucleotide annotated but also the three

flanking positions.

This alternative version is used by default in IRFinder long mode and is triggerable

by the “-l” flag argument using IRFinder BAM.

Convolutional neural networks

The network was trained on the epithelial datasets labeled T0 and T1 (days 0 and 1 of

treatment) and validated on the mesenchymal dataset T7, described in our previous

work [22] and having biological samples sequenced with both unstranded short and

stranded long-read technologies. We use IRFinder to analyze the raw data, and for each

pair of data belonging to a sample, we selected the introns with IRratio above 0.05 and

no warnings in short reads, as putative IR candidates. We then used the long reads as

ground truth of the corresponding intron: we labeled as true positive IR, the introns

with no warning, depth (intron abundance + exon abundance) of 25, and IRratio above

0.1 and as false positive IR, the introns with 50 depth and IRratio of 0. Our rationale is

that it is easier to assert the existence of IR events than to assert their absence; thus, we

pushed the required depth for negative events to 50 to increase their likelihood of being

true negatives.

To allow the model to use directional and non-directional libraries and to reduce

mislabeled events, we considered only the introns having a congruent label between the

directional and non-directional long reads IRFinder results. Due to the scarcity of FP,

we included in the training set also true negative introns having IRratio higher than

0.01 in the SR to ensure a balanced dataset.

Benchmark

To compare IRFinder’s results with the output of iREAD [12], Whippet [24] (v1.6.1)

and MAJIQ [23] (Build v2.1-c3da3ce), we used the reference genome hg38 and

ENSEMBL v100 annotation, generating the required reference files for each software.

We paired the results of each method with the introns of the ground truth determined

from the long reads in the test datasets as described in the previous chapter.

We used two arbitrary thresholds, 0.05 and 0.10, for the PSI values of Whippet and

IRFinder’s IRratio to classify the introns in IR and non-IR. For what concerns MAJIQ,

we considered as no IR the introns without a PSI value adjusted for intron retention

and the introns having an adjusted PSI value lower than the two arbitrary thresholds.

Lorenzi et al. Genome Biology          (2021) 22:307 Page 10 of 13



Differential intron retention

The DESeq2 constructor is used to fit a GLM based on the intronic abundance

(intron depth column) and the exonic abundance (the maximum between LeftS-

plice and RightSplice) to test the fold change of IR between two conditions.

The SUPPA2 wrapper uses IRratio values instead of percent splice in (PSI) values,

both spanning from 0 to 1, and the exon abundance instead of transcript per million

(TPM) values, considering so far the expression of the exons surrounding each intron

rather than the average transcript expression.

In both cases, the user can decide to remove introns with warnings (by de-

fault, introns with LowCover in at least one sample are removed) and to set a

threshold on the minimum IRratio that at least one sample has to meet (by

default 0.05).

The command line interface offers a simple tool to use DESeq2 or SUPPA2 on two

or more sets of samples, requiring only the location of the IRFinder result files

IRFinder-IR-[non]dir.txt. In case of more than two sets, all the pairwise comparisons

are reported in the output folder.

Cell line culture

Non-transformed human female breast epithelial cells (MCF10a cells) were cultured at

37°C and 5% CO2 in DMEM/F12 (Sigma) supplemented with 5% horse serum (Ther-

moFisher), 10 ng/ml EGF (Sigma), 10 μg/ml insulin (Sigma), 0.1 μg/ml cholera toxin

(Sigma), 0.5 μg/ml hydrocortisone (Sigma), 1% L-glutamine (Sigma), and 1% penicillin/

streptomycin (Sigma; culture medium). Cells were kept in high confluency (approx.

70%) in order to maintain their epithelial character and passed every 2–3 days by tryp-

sinization (0.25% Trypsin (Sigma) for 15–20 min).

Epithelial-mesenchymal transition (EMT)

MCF10a-Snail-ER cells were used as cellular model for EMT. In this model, EMT is in-

duced by addition of exogenous 4-hydroxy-tamoxifen to the cells, which changes Snail-

ER conformation and can thus be translocated to the nucleus for silencing of key epi-

thelial markers and expression of mesenchymal genes within 24 h. Prior to induction,

850,000 cells were seeded in 15-cm culture plates and grown in 17-ml culture medium

for approximately 24 h. Twelve hours before tamoxifen treatment, the cells were syn-

chronized by exchanging the medium to serum free medium (culture medium without

horse serum). Cells were incubated for 6 days in culture medium with 100 nM 4-

hydroxy-tamoxifen (Sigma). Controls were performed by adding equivalent volumes of

methanol.

Primer design

We selected IR events by visual inspection, selecting introns without neither

antisense transcript nor known exon in each sample and without excessive noise

in the intron body. Two sets of primers were designed for each intron, one pair

overlapping the exon-exon junction and one covering the intron-exon junction.
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RT-qPCR

RT-qPCRs were performed in biological triplicates. RNA was extracted from cells using

QIAshredder (Qiagen, 79656) and GeneJET RNA purification kit (Thermo Scientific,

#K0732) following the manufacturers’ instructions. 500 ng of the total RNA was DNase

treated (Promega, M6101) and reverse-transcribed using oligo(dT) primers (Transcrip-

tor First Strand cDNA Synthesis kit, Roche 04897030001).

For each biological replicate, qPCRs were performed in technical duplicates using

Bio-Rad CFX-96 Real-Time PCR System and iTaq Universal SYBR green Super-mix

(Bio-Rad #1725121). For each intron of interest, two primer pairs were designed that

includes the exon-exon (of the flanking exons) and an intron-exon junction,

respectively.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02515-8.

Additional file 1. Supplemental Figures.

Additional file 2. Supplemental Table S1.

Additional file 3. Supplemental Table S2.

Additional file 4. Review history.

Peer review information
Anahita Bishop was the primary editor of this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team.

Review history
The review history is available as Additional file 4.

Authors’ contributions
C.L., W.R., and S.B. designed the algorithm; C.L. and S.B. coded the software; C.L., S.B. W.R. designed the experiments;
K.A, A.O., and R.L. designed and performed the qPCR validation experiments. W.R., S.B., and C.L. wrote the article. The
authors read and approved the final manuscript.

Funding
We wish to acknowledge the Agence Nationale de la Recherche (ANRJCJC - WIRED), the Labex EpiGenMed, and the
MUSE initiative for their financial support.

Availability of data and materials
Cell line data used to help populate the database was taken from: https://portal.gdc.cancer.gov.
Direct RNA Nanopore and Illumina RNA-seq MCF10A samples have been deposited on GEO under accession number
GSE126638 [27].
GM12878 cell line, the long read data, was available from the Nanopore consortium at https://github.com/nanopore-
wgs-consortium/NA12878. We made use of the Run1 (MinION ONT direct-RNA, kit SQK-RNA001, pore R9.4) generated
by the UCSC laboratory. These long reads were corrected using short read data from the same cell line sequenced by
a separate consortium. These data were available from the GEO website (https://www.ncbi.nlm.nih.gov/sra/SRX159827).
After the quality control using FastQC, we kept and pooled together runs SRR521447, SRR521448, SRR521453,
SRR521454, and SRR521455.
An OceanCode capsule is available at https://codeocean.com/capsule/0822057/tree [28] that reproduces the main
functionalities of IRFinder-S.
IRFinder-S is available at https://github.com/RitchieLabIGH/IRFinder [29] under the MIT license.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Lorenzi et al. Genome Biology          (2021) 22:307 Page 12 of 13

https://doi.org/10.1186/s13059-021-02515-8
https://portal.gdc.cancer.gov
https://github.com/nanopore-wgs-consortium/NA12878
https://github.com/nanopore-wgs-consortium/NA12878
https://www.ncbi.nlm.nih.gov/sra/SRX159827
https://codeocean.com/capsule/0822057/tree
https://github.com/RitchieLabIGH/IRFinder


Received: 3 June 2021 Accepted: 12 October 2021

References
1. Braunschweig U, et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 2014;

24:1774–86.
2. Wong JJ-L, et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell. 2013;154:583–95.
3. Middleton R, et al. IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol.

2017;18:51.
4. Broseus L, Ritchie W. Challenges in detecting and quantifying intron retention from next generation sequencing data.

Comput Struct Biotechnol J. 2020;18:501–8.
5. Grabski DF, et al. Intron retention and its impact on gene expression and protein diversity: a review and a practical

guide. Wiley Interdiscip Rev RNA. 2020:e1631. https://doi.org/10.1002/wrna.1631.
6. Jacob AG, Smith CWJ. Intron retention as a component of regulated gene expression programs. Hum Genet. 2017;136:

1043–57.
7. Smart AC, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol. 2018;36:1056–8.
8. Vanichkina DP, Schmitz U, Wong JJ-L, Rasko JEJ. Challenges in defining the role of intron retention in normal biology

and disease. Semin Cell Dev Biol. 2018;75:40–9.
9. Broseus L, et al. TALC: transcription aware long read correction. bioRxiv. 2020:2020.01.10.901728. https://doi.org/10.11

01/2020.01.10.901728.
10. de la Fuente L, et al. tappAS: a comprehensive computational framework for the analysis of the functional impact of

differential splicing. Genome Biol. 2020;21:119.
11. Lee S, et al. Covering all your bases: incorporating intron signal from RNA-seq data. NAR Genomics Bioinforma. 2020;2:

lqaa073.
12. Li H-D, Funk CC, Price ND. iREAD: a tool for intron retention detection from RNA-seq data. BMC Genomics. 2020;21:128.
13. Sachamitr P, et al. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat Commun. 2021;12:979.
14. Tan DJ, Mitra M, Chiu AM, Coller HA. Intron retention is a robust marker of intertumoral heterogeneity in pancreatic

ductal adenocarcinoma. NPJ Genomic Med. 2020;5:55.
15. Zhang D, et al. Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive

prostate cancer. Nat Commun. 2020;11:2089.
16. Ashraf U, et al. Influenza virus infection induces widespread alterations of host cell splicing. NAR Genomics Bioinforma.

2020;2:lqaa095.
17. Green ID, et al. Macrophage development and activation involve coordinated intron retention in key inflammatory

regulators. Nucleic Acids Res. 2020;48:6513–29.
18. Ullrich S, Guigó R. Dynamic changes in intron retention are tightly associated with regulation of splicing factors and

proliferative activity during B-cell development. Nucleic Acids Res. 2020;48:1327–40.
19. Burke EE, et al. Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nat

Commun. 2020;11:462.
20. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
21. Workman RE, et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods. 2019;16:1297–

305.
22. Broseus L, et al. TALC: transcript-level aware long read correction. Bioinformatics. 2020. https://doi.org/10.1093/

bioinformatics/btaa634.
23. Green CJ, Gazzara MR, Barash Y. MAJIQ-SPEL: web-tool to interrogate classical and complex splicing variations from

RNA-Seq data. Bioinformatics. 2018;34:300–2.
24. Sterne-Weiler T, Weatheritt RJ, Best AJ, Ha KCH, Blencowe BJ. Efficient and Accurate Quantitative Profiling of Alternative

Splicing Patterns of Any Complexity on a Laptop. Mol Cell. 2018;72:187–200.e6.
25. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014;15:550.
26. Trincado JL, et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions.

Genome Biol. 2018;19:40.
27. Broseus L, Severac D, Oldfield AJ, Dubois E, Ritchie W. Short and long read sequencing of human mammary epithelial

MCF10a-Snail-ER cells after epithelial-to-mesenchymal transition initiation. Datasets. Gene Expression Omnibus. https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126638.

28. Lorenzi C, Barriere S, et al. OceanCode. IRFinder-S: a comprehensive suite to discover and explore intron retention; 2019.
https://doi.org/10.24433/CO.5556419.v1. https://codeocean.com/capsule/0822057/tree/v1

29. Ritchie W. github. https://github.com/RitchieLabIGH/IRFinder

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lorenzi et al. Genome Biology          (2021) 22:307 Page 13 of 13

https://doi.org/10.1002/wrna.1631
https://doi.org/10.1101/2020.01.10.901728
https://doi.org/10.1101/2020.01.10.901728
https://doi.org/10.1093/bioinformatics/btaa634
https://doi.org/10.1093/bioinformatics/btaa634
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126638
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126638
https://doi.org/10.24433/CO.5556419.v1
https://codeocean.com/capsule/0822057/tree/v1
https://github.com/RitchieLabIGH/IRFinder

	Abstract
	Background
	Results and discussion
	IRBase enables the visualization and contrast of IR events as well as data sharing
	IRFinder-S integrates long read detection of IR
	Convolutional neural networks enable users to pinpoint actionable IR events
	Implementation and validation of differential IR analysis

	Conclusion
	Methods
	IRbase 2.0
	Measuring intron retention in long reads
	Convolutional neural networks
	Benchmark
	Differential intron retention
	Cell line culture
	Epithelial-mesenchymal transition (EMT)
	Primer design
	RT-qPCR

	Supplementary Information
	Peer review information
	Review history
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Competing interests
	References
	Publisher’s Note

