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Résumé :

Nous considérons l'adhésion sans frottement d’une plaque mince sur une sphére rigide, réalisée par
exemple par un fluide mouillant. Différents motifs de contact sont observés erpérimentalement, allant
d’une adhésion compléte & des formes branchées. Dans un premier temps, nous décrivons la taille
caractéristique de la zone de contact ainsi que la forme générale des motifs & l'aide de deuxr nombres
sans dimensions qui comparent respectivement les énergies de courbure et d’extension a [’adhésion.
Nous mettons en évidence et caractérisons une instabilité de flambage rendant oscillants les bords
d’une région de contact initialement rectilignes paralléles.

Abstract :

We study the frictionless adhesion of an elastic plate on a rigid sphere, achieved for instance by a
wetting fluid. A wvariety of contact patterns are observed experimentally, ranging from simple disks
to branched patterns. We describe first the characteristics of these patterns - typical contact size and
global morphologies - as a function of two non-dimensional numbers comparing respectively bending and
stretching energies to adhesion. We then focus on a buckling instability affecting a rectangular region
of contact with initially straight and parallel edges, causing oscillations of those edges.

Mots clefs : Plaque mince; Adhésion ; Flambement unilatéral

1 Introduction

Le contact entre une surface flexible (plaque ou coque) et un substrat rigide courbé se retrouve dans
diverses situations, allant de la pose d’une lentille de contact sur un ceil [3] & 'adhésion de vésicules
lipidiques sur une paroi biologique [1], de 'encapsulation [2] aux applications médicales [8]. Si le substrat
et la surface flexible ne peuvent pas étre reliés par une isométrie - ce qui d’aprés le Theorema Egregium se
produit lorsque les courbures de Gauss sont différentes [11] - le contact induit des efforts membranaires
dans la surface flexible, limitant l'extension de la zone de contact [10]. Nous considérons dans cette
étude le probléme modéle de ’adhésion sans frottement d’une plaque mince sur une sphére afin d’en
dégager les principales caractéristiques. Dans un premier temps, nous décrivons de maniére qualitative
les motifs observés expérimentalement & ’aide de lois d’échelle faisant intervenir deux nombres sans
dimensions. Dans un second temps, nous nous intéressons plus spécifiquement au flambement unilatéral
des bords de la zone de contact résultant des contraintes compressives induites par le contact.

2 Observations expérimentales et description qualitative

Un film mince - d’épaisseur h, de module d’Young E et de taille caractéristique L - est déposé sur
une calotte sphérique rigide - de rayon p - préalablement recouverte d’éthanol (Fig. 1a). La tension de
surface de I’éthanol tend & mettre en contact le film et la sphére de maniére & réduire les interfaces
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air/liquide. Nous observons différents motifs de contact, allant d’une adhésion compléte [6] a des
motifs branchés (Fig. 1b et [4]). Dans cette partie, on décrit qualitativement les motifs obtenus. Nous
modélisons 'effet de I’éthanol en associant une énergie E, ~ yL? au systéme, avec v la tension de
surface du liquide et L le rayon de la plaque. L’énergie élastique nécessaire & la plaque pour étre en
contact avec la sphére se décompose en deux parties : énergie de courbure Ej ~ (Eh3/p?)L? et énergie
d’extension Ej [12]. Cette derniére provient du fait qu'une portion de sphére n’est pas isométrique a
un plan, comme l'indique le théoréme de Gauss qui stipule que le produit des courbures principales
est invariant par isométrie. Ainsi, le plan moyen de la plaque subit une extension ou compression
tangente. L’ordre de grandeur de I’énergie d’extension s’obtient en considérant par exemple que le
contact conserve les distances radiales. Cela induit une déformation orthoradiale d’ordre L?/p?, d’ou
une énergie d’extension Ey ~ EhL®/p*. La comparaison de ces trois énergies donne deux nombres sans
dimension ¢ et £/L, qui décrivent I’état du systéme :

o I3 (v 1/4 B Eh3
0= L. L &= (Eh) p Lee = 12(1— 12)y (1)

L. étant la longueur élasto-capillaire [9]. § et £/L comparent respectivement ’énergie d’adhésion aux
énergies de courbure et d’extension. Sachant que pour de faibles déflections, I’énergie prépondérante
dans la plaque est I’énergie de courbure, le premier paramétre indique le seuil en deca duquel le contact
entre la plaque et la sphére n’est pas possible : en effet, § < 1 correspond au cas otl, quelque soit la
taille de la zone de contact, le colit en énergie de courbure est supérieur au gain en adhésion. La
longueur élasto-capillaire Le. correspond donc au rayon de courbure typique en deca duquel 'adhésion
de la plaque sur la sphére n’est pas possible. En revanche, pour d > 1, quelque soit la taille de la zone
de contact, la plaque préfére se courber pour étre en contact avec la sphére. Dans ce cas, ’énergie
d’extension limite la taille de la zone de contact. Nous mesurons (Fig. 1c) la taille de la zone de contact
notée a - que 'on définit comme étant le rayon du plus grand cercle inscriptible dans les branches en
contact - pour différentes épaisseurs de plaques et rayons de sphére. On obtient a ~ £ : le paramétre £
correspond donc a 'ordre de grandeur de la taille de la zone de contact entre une plaque et une sphére.
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FIGURE 1 — (a) Dispositif expérimental. (b) Observation typique de l'adhésion d’une plaque mince
sur une sphére (E = 2600 MPa, h = 0.015mm, p = 60mm). L’utilisation d’un colorant permet
de différencier le ménisque liquide entourant la zone de contact. (¢) Taille de la zone de contact en
fonction de &, dans le régime 6 > 1 : a ~ 1.9¢.

Il est également possible de catégoriser les différents motifs de contact en fonction des paramétres § et
&/L, § correspondant & 'axe selon lequel s’accroit la complexité du motif. Ce diagramme de configu-
rations est décrit en détail dans [4].
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L’une des caractéristiques des motifs branchés - comme sur la figure 1b- est le fait que les bords des
zones de contact ne sont pas rectilignes. Dans la partie suivante, nous nous intéressons plus en détail a
cette propriété, qui correspond au flambement unilatéral de la zone de contact du fait des contraintes
membranaires induites par le contact.

3 Flambement de la zone de contact

3.1 Expérience et modélisation

Nous utilisons une membrane en latex sous pression (Fig. 2a). Dés que la déflection est grande devant
I'épaisseur de la membrane, celle-ci prend approximativement la forme d'une calotte sphérique. Nous
déposons comme dans la partie précédente une plaque mince sur cette calotte préalablement recouverte
d’éthanol. Ce dispositif permet de faire varier contintiment le rayon du substrat courbé et d’observer
I’évolution de la zone de contact en fonction de p.

N\~

FIGURE 2 — (a) Dispositif expérimental : Membrane en latex sous pression permettant de faire varier
contintiment le rayon du substrat courbé. (b) Modéle théorique considéré : portion de coque cylindrique
adhérant sur une sphére de méme rayon (on note y = pf). Dans la suite, nous nous plagons dans le cas
L — +o0.

On g’intéresse plus particuliérement & la transition entre un contact de type bande & bords rectilignes
(Fig. 3a) et a bords oscillants (Fig. 3b).

FI1GURE 3 — La zone de contact entre la plaque et la sphére correspond a la zone la plus sombre sur
les images. Transition entre un contact de type bande a bords rectilignes (a) et a bords oscillants (b)
lorsque le rayon de courbure de la sphére augmente.

Afin de comprendre cette transition en détail nous considérons le modéle suivant : une coque cylin-
drique, de longueur infinie, adhére sans frottement sur une sphére rigide de méme rayon. L’équilibre
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de la coque est décrit par le modele de Donnell [13]. En notant € et K respectivement, les déforma-
tions membranaires et les courbures, les tenseurs des efforts normaux et des moments s’écrivent en
coordonnées cylindriques :

1 1
€af = 5[ B T UG, + wyawﬁ] + ;w5a795579 (2)
Kaﬁ = —w,ag (3)
Eh
NO{/)’ = m[(l — V)Galg + 1/67-7—(501/37] (4)
EhR3
Maﬁ = m[(l — I/)Kaﬁ + I/K.”—daﬁ] (5)

en notant u, les déplacements membranaires et w le déplacement transverse, avec fg = (1/p)0f/00
and f, = 0f/0x. Les équations d’équilibre de la coque s’écrivent :

Nog,o =0 (6)

N,
Maﬁ,aﬁ — % + w}aBNag =0 (7)

La premiére équation correspond & ’équilibre membranaire, la seconde & I’équilibre transverse. En
ce qui concerne les conditions aux limites, on note que le fait de considérer une énergie d’adhésion
proportionnelle & la surface de contact entraine de considérer une discontinuité de moment normal a
I'interface entre les zones collées et décollées [7] :

Mnn(a—i-) = Mnn(a—) + 2@ (8)

avec D = Eh3/12(1 —v?) le module de flexion de la plaque. Cette discontinuité de moment correspond
en fait & un couple d’efforts tranchants a la limite de la zone de contact [10]. L’adimensionnement
de ces équations permet de ne conserver que deux parameétres, a savoir v et J. (voir [5] pour de plus
amples détails).
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FIGURE 4 — (a) : Taille de la zone de contact a (adimensionnée par pn, avec n?> = h/py/12) en fonction
de §. (b) : Contrainte N, (adimensionnée par Cn?, avec C = Eh/(1 — v?)) pour différentes tailles de
zone de contact. Le trait plein correspond & la partie de la coque en contact avec la sphére, le trait en
pointillés & la partie décollée.
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La résolution de ces équations dans un premier temps dans le cas d’un contact & bords rectilignes
(a(y) = a) permet d’obtenir la taille de la zone de contact adimensionnée en fonction de v et ¢, et
également a la contrainte adimensionnée Ny, en fonction de a (Fig. 4a).

Comme dans la partie précédente, on retrouve bien que le paramétre § correspond & un seuil pour
I’apparition du contact. Nous remarquons que plus la taille de la zone de contact augmente, plus
la contrainte le long du bord de la zone de contact est compressive. Les contraintes compressives
conduisant naturellement au flambement dans le cas des plaques minces, nous nous intéressons a la
stabilité de ces solutions.

3.2 Etude de stabilité linéaire

Nous considérons une perturbation harmonique de la solution précédente, en linéarisant les équations
d’équilibre autour de celle-ci, afin de déterminer les positions d’équilibres & bords non rectilignes. Cette
étude [5] permet de montrer que pour p > p. = 3.79L¢. (pour v = 0.4), des solutions & bords oscillants
existent. Pour p = p., la perturbation solution est antisymétrique (par rapport a ’axe x) et de longueur

d’onde A = 12.96pn. Ces résultats sont en trés bon accord avec les résultats expérimentaux (voir Fig.
5).
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FIGURE 5 - (a) : Longueur d’onde en fonction du rayon de la sphére et de I’épaisseur du film. Points :
Résultats expérimentaux, trait plein : valeurs théoriques, trait en pointillés : meilleur approximation
des points expérimentaux. (b) : Rayon de sphére critique en fonction de la longueur élasto-capillaire.

Le modele considére une coque cylindrique de longueur infinie alors que les expériences utilisent des
plaques minces de dimension finie. Deux raisons font que la comparaison entre le modéle théorique et
les expériences est valide. Premiérement, la condition de longueur infinie correspond en fait & L >> a,
soit L > pn, vérifié dans nos expériences. Deuxiémement, méme sans adhésion, les plaques sont déja
courbées de fagon cylindrique du fait de la gravité. Ainsi, notre modéle simplifié est comparable aux
expériences et en trés bon accord avec celles-ci. Le fait que les bords des zones de contact d’une plaque
sur une spheére s’explique donc par un flambement unilatéral provoqué par les contraintes compressives
induites par le contact lui-méme.

4 Discussion et conclusion

L’étude du probléme modéle de 'adhésion par capillarité d’'une plaque mince sur une portion de sphére
permet de décrire les principales caractéristiques du contact sans frottement entre une surface flexible
et un substrat rigide courbé. Si la transformation nécessaire pour mettre en contact la surface sur le
substrat n’est pas isométrique, les déformations membranaires vont limiter ’extension des zones de
contact. Dans la limite o1 I’énergie de courbure est négligeable devant ’énergie d’adhésion, la taille car-
actéristique du contact est donc donnée par un équilibre local entre extension et adhésion. Cependant,
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la complexité géométrique des motifs de contact dépend de ’énergie de courbure, majoritaire dans
les parties décollées. Enfin, les contraintes membranaires compressives induites par le contact peuvent
rendre le systéme instable et provoquer un flambement unilatéral des zones de contact, flambement
qui explique qualitativement et quantitativement les morphologies observées expérimentalement dans
le cas de I'adhésion d’une plaque mince sur une sphére.
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