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Résumé :

Nous considérons l'adhésion sans frottement d'une plaque mince sur une sphère rigide, réalisée par

exemple par un �uide mouillant. Di�érents motifs de contact sont observés expérimentalement, allant

d'une adhésion complète à des formes branchées. Dans un premier temps, nous décrivons la taille

caractéristique de la zone de contact ainsi que la forme générale des motifs à l'aide de deux nombres

sans dimensions qui comparent respectivement les énergies de courbure et d'extension à l'adhésion.

Nous mettons en évidence et caractérisons une instabilité de �ambage rendant oscillants les bords

d'une région de contact initialement rectilignes parallèles.

Abstract :

We study the frictionless adhesion of an elastic plate on a rigid sphere, achieved for instance by a

wetting �uid. A variety of contact patterns are observed experimentally, ranging from simple disks

to branched patterns. We describe �rst the characteristics of these patterns - typical contact size and

global morphologies - as a function of two non-dimensional numbers comparing respectively bending and

stretching energies to adhesion. We then focus on a buckling instability a�ecting a rectangular region

of contact with initially straight and parallel edges, causing oscillations of those edges.

Mots clefs : Plaque mince ; Adhésion ; Flambement unilatéral

1 Introduction

Le contact entre une surface �exible (plaque ou coque) et un substrat rigide courbé se retrouve dans
diverses situations, allant de la pose d'une lentille de contact sur un ÷il [3] à l'adhésion de vésicules
lipidiques sur une paroi biologique [1], de l'encapsulation [2] aux applications médicales [8]. Si le substrat
et la surface �exible ne peuvent pas être reliés par une isométrie - ce qui d'après le Theorema Egregium se
produit lorsque les courbures de Gauss sont di�érentes [11] - le contact induit des e�orts membranaires
dans la surface �exible, limitant l'extension de la zone de contact [10]. Nous considérons dans cette
étude le problème modèle de l'adhésion sans frottement d'une plaque mince sur une sphère a�n d'en
dégager les principales caractéristiques. Dans un premier temps, nous décrivons de manière qualitative
les motifs observés expérimentalement à l'aide de lois d'échelle faisant intervenir deux nombres sans
dimensions. Dans un second temps, nous nous intéressons plus spéci�quement au �ambement unilatéral
des bords de la zone de contact résultant des contraintes compressives induites par le contact.

2 Observations expérimentales et description qualitative

Un �lm mince - d'épaisseur h, de module d'Young E et de taille caractéristique L - est déposé sur
une calotte sphérique rigide - de rayon ρ - préalablement recouverte d'éthanol (Fig. 1a). La tension de
surface de l'éthanol tend à mettre en contact le �lm et la sphère de manière à réduire les interfaces
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air/liquide. Nous observons di�érents motifs de contact, allant d'une adhésion complète [6] à des
motifs branchés (Fig. 1b et [4]). Dans cette partie, on décrit qualitativement les motifs obtenus. Nous
modélisons l'e�et de l'éthanol en associant une énergie Ea ∼ γL2 au système, avec γ la tension de
surface du liquide et L le rayon de la plaque. L'énergie élastique nécessaire à la plaque pour être en
contact avec la sphère se décompose en deux parties : énergie de courbure Eb ∼ (Eh3/ρ2)L2 et énergie
d'extension Es [12]. Cette dernière provient du fait qu'une portion de sphère n'est pas isométrique à
un plan, comme l'indique le théorème de Gauss qui stipule que le produit des courbures principales
est invariant par isométrie. Ainsi, le plan moyen de la plaque subit une extension ou compression
tangente. L'ordre de grandeur de l'énergie d'extension s'obtient en considérant par exemple que le
contact conserve les distances radiales. Cela induit une déformation orthoradiale d'ordre L2/ρ2, d'où
une énergie d'extension Es ∼ EhL6/ρ4. La comparaison de ces trois énergies donne deux nombres sans
dimension δ et ξ/L, qui décrivent l'état du système :

δ =
ρ

Lec

ξ

L
ξ =

(
γ

Eh

)1/4

ρ Lec =

√
Eh3

12(1− ν2)γ
(1)

Lec étant la longueur élasto-capillaire [9]. δ et ξ/L comparent respectivement l'énergie d'adhésion aux
énergies de courbure et d'extension. Sachant que pour de faibles dé�ections, l'énergie prépondérante
dans la plaque est l'énergie de courbure, le premier paramètre indique le seuil en deçà duquel le contact
entre la plaque et la sphère n'est pas possible : en e�et, δ < 1 correspond au cas où, quelque soit la
taille de la zone de contact, le coût en énergie de courbure est supérieur au gain en adhésion. La
longueur élasto-capillaire Lec correspond donc au rayon de courbure typique en deçà duquel l'adhésion
de la plaque sur la sphère n'est pas possible. En revanche, pour δ > 1, quelque soit la taille de la zone
de contact, la plaque préfère se courber pour être en contact avec la sphère. Dans ce cas, l'énergie
d'extension limite la taille de la zone de contact. Nous mesurons (Fig. 1c) la taille de la zone de contact
notée a - que l'on dé�nit comme étant le rayon du plus grand cercle inscriptible dans les branches en
contact - pour di�érentes épaisseurs de plaques et rayons de sphère. On obtient a ∼ ξ : le paramètre ξ
correspond donc à l'ordre de grandeur de la taille de la zone de contact entre une plaque et une sphère.

Lh

ρ

E,ν
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Zone     
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Figure 1 � (a) Dispositif expérimental. (b) Observation typique de l'adhésion d'une plaque mince
sur une sphère (E = 2600MPa, h = 0.015mm, ρ = 60mm). L'utilisation d'un colorant permet
de di�érencier le ménisque liquide entourant la zone de contact. (c) Taille de la zone de contact en
fonction de ξ, dans le régime δ � 1 : a ≈ 1.9ξ.

Il est également possible de catégoriser les di�érents motifs de contact en fonction des paramètres δ et
ξ/L, δ correspondant à l'axe selon lequel s'accroit la complexité du motif. Ce diagramme de con�gu-
rations est décrit en détail dans [4].
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L'une des caractéristiques des motifs branchés - comme sur la �gure 1b- est le fait que les bords des
zones de contact ne sont pas rectilignes. Dans la partie suivante, nous nous intéressons plus en détail à
cette propriété, qui correspond au �ambement unilatéral de la zone de contact du fait des contraintes
membranaires induites par le contact.

3 Flambement de la zone de contact

3.1 Expérience et modélisation

Nous utilisons une membrane en latex sous pression (Fig. 2a). Dès que la dé�ection est grande devant
l'épaisseur de la membrane, celle-ci prend approximativement la forme d'une calotte sphérique. Nous
déposons comme dans la partie précédente une plaque mince sur cette calotte préalablement recouverte
d'éthanol. Ce dispositif permet de faire varier continûment le rayon du substrat courbé et d'observer
l'évolution de la zone de contact en fonction de ρ.

(a)

L

h

x
y

ρ

E,ν

a2

(b)

Figure 2 � (a) Dispositif expérimental : Membrane en latex sous pression permettant de faire varier
continûment le rayon du substrat courbé. (b) Modèle théorique considéré : portion de coque cylindrique
adhérant sur une sphère de même rayon (on note y = ρθ). Dans la suite, nous nous plaçons dans le cas
L→ +∞.

On s'intéresse plus particulièrement à la transition entre un contact de type bande à bords rectilignes
(Fig. 3a) et à bords oscillants (Fig. 3b).

(a)

λ

(b)

Figure 3 � La zone de contact entre la plaque et la sphère correspond à la zone la plus sombre sur
les images. Transition entre un contact de type bande à bords rectilignes (a) et à bords oscillants (b)
lorsque le rayon de courbure de la sphère augmente.

A�n de comprendre cette transition en détail nous considérons le modèle suivant : une coque cylin-
drique, de longueur in�nie, adhère sans frottement sur une sphère rigide de même rayon. L'équilibre
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de la coque est décrit par le modèle de Donnell [13]. En notant ε et K respectivement, les déforma-
tions membranaires et les courbures, les tenseurs des e�orts normaux et des moments s'écrivent en
coordonnées cylindriques :

εαβ =
1

2
[uα,β + uβ,α + w,αw,β] +

1

ρ
wδα,θδβ,θ (2)

Kαβ = −w,αβ (3)

Nαβ =
Eh

1− ν2
[(1− ν)εαβ + νεττδαβ] (4)

Mαβ =
Eh3

1− ν2
[(1− ν)Kαβ + νKττδαβ] (5)

en notant uα les déplacements membranaires et w le déplacement transverse, avec f,θ = (1/ρ)∂f/∂θ
and f,x = ∂f/∂x. Les équations d'équilibre de la coque s'écrivent :

Nαβ,α = 0 (6)

Mαβ,αβ −
Nθθ

ρ
+ w,αβNαβ = 0 (7)

La première équation correspond à l'équilibre membranaire, la seconde à l'équilibre transverse. En
ce qui concerne les conditions aux limites, on note que le fait de considérer une énergie d'adhésion
proportionnelle à la surface de contact entraîne de considérer une discontinuité de moment normal à
l'interface entre les zones collées et décollées [7] :

Mnn(a+) =Mnn(a−) + 2
√
Dγ (8)

avec D = Eh3/12(1−ν2) le module de �exion de la plaque. Cette discontinuité de moment correspond
en fait à un couple d'e�orts tranchants à la limite de la zone de contact [10]. L'adimensionnement
de ces équations permet de ne conserver que deux paramètres, à savoir ν et δ. (voir [5] pour de plus
amples détails).
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Figure 4 � (a) : Taille de la zone de contact a (adimensionnée par ρη, avec η2 = h/ρ
√
12) en fonction

de δ. (b) : Contrainte Nyy (adimensionnée par Cη2, avec C = Eh/(1− ν2)) pour di�érentes tailles de
zone de contact. Le trait plein correspond à la partie de la coque en contact avec la sphère, le trait en
pointillés à la partie décollée.
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La résolution de ces équations dans un premier temps dans le cas d'un contact à bords rectilignes
(a(y) = a) permet d'obtenir la taille de la zone de contact adimensionnée en fonction de ν et δ, et
également à la contrainte adimensionnée Nyy en fonction de a (Fig. 4a).

Comme dans la partie précédente, on retrouve bien que le paramètre δ correspond à un seuil pour
l'apparition du contact. Nous remarquons que plus la taille de la zone de contact augmente, plus
la contrainte le long du bord de la zone de contact est compressive. Les contraintes compressives
conduisant naturellement au �ambement dans le cas des plaques minces, nous nous intéressons à la
stabilité de ces solutions.

3.2 Etude de stabilité linéaire

Nous considérons une perturbation harmonique de la solution précédente, en linéarisant les équations
d'équilibre autour de celle-ci, a�n de déterminer les positions d'équilibres à bords non rectilignes. Cette
étude [5] permet de montrer que pour ρ ≥ ρc = 3.79Lec (pour ν = 0.4), des solutions à bords oscillants
existent. Pour ρ = ρc, la perturbation solution est antisymétrique (par rapport à l'axe x) et de longueur
d'onde λ = 12.96ρη. Ces résultats sont en très bon accord avec les résultats expérimentaux (voir Fig.
5).
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Figure 5 � (a) : Longueur d'onde en fonction du rayon de la sphère et de l'épaisseur du �lm. Points :
Résultats expérimentaux, trait plein : valeurs théoriques, trait en pointillés : meilleur approximation
des points expérimentaux. (b) : Rayon de sphère critique en fonction de la longueur élasto-capillaire.

Le modèle considère une coque cylindrique de longueur in�nie alors que les expériences utilisent des
plaques minces de dimension �nie. Deux raisons font que la comparaison entre le modèle théorique et
les expériences est valide. Premièrement, la condition de longueur in�nie correspond en fait à L� a,
soit L � ρη, véri�é dans nos expériences. Deuxièmement, même sans adhésion, les plaques sont déjà
courbées de façon cylindrique du fait de la gravité. Ainsi, notre modèle simpli�é est comparable aux
expériences et en très bon accord avec celles-ci. Le fait que les bords des zones de contact d'une plaque
sur une sphère s'explique donc par un �ambement unilatéral provoqué par les contraintes compressives
induites par le contact lui-même.

4 Discussion et conclusion

L'étude du problème modèle de l'adhésion par capillarité d'une plaque mince sur une portion de sphère
permet de décrire les principales caractéristiques du contact sans frottement entre une surface �exible
et un substrat rigide courbé. Si la transformation nécessaire pour mettre en contact la surface sur le
substrat n'est pas isométrique, les déformations membranaires vont limiter l'extension des zones de
contact. Dans la limite où l'énergie de courbure est négligeable devant l'énergie d'adhésion, la taille car-
actéristique du contact est donc donnée par un équilibre local entre extension et adhésion. Cependant,
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la complexité géométrique des motifs de contact dépend de l'énergie de courbure, majoritaire dans
les parties décollées. En�n, les contraintes membranaires compressives induites par le contact peuvent
rendre le système instable et provoquer un �ambement unilatéral des zones de contact, �ambement
qui explique qualitativement et quantitativement les morphologies observées expérimentalement dans
le cas de l'adhésion d'une plaque mince sur une sphère.
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