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We consider the nonlocal Gross-Pitaevskii equation that models a Bose gas with general nonlocal interactions between particles in one spatial dimension, with constant density far away. We address the problem of the existence of traveling waves with nonvanishing conditions at infinity, i.e. dark solitons. Under general conditions on the interactions, we prove existence of dark solitons for almost every subsonic speed. Moreover, we show existence in the whole subsonic regime for a family of potentials. The proofs rely on a Mountain Pass argument combined with the so-called "monotonicity trick", as well as on a priori estimates for the Palais-Smale sequences. Finally, we establish properties of the solitons such as exponential decay at infinity and analyticity.

Introduction

The problem

In order to describe the dynamics of a weakly interacting Bose gas, Gross [START_REF] Gross | Hydrodynamics of a superfluid condensate[END_REF] and Pitaevskii [START_REF] Pitaevskii | Vortex lines in an imperfect Bose gas[END_REF] found that the wavefunction Ψ governing the condensate satisfies a Schrödinger equation, that in dimension one and in its dimensionless form, is given by

i∂ t Ψ = -∂ xx Ψ + Ψ R |Ψ(y, t)| 2 V (x -y) dy, in R × R. (1.1) 
Here, Ψ : R × R → C and V describes the interaction between bosons. In their works, they are interested in a function Ψ satisfying the nonzero condition at infinity:

lim |x|→∞ |Ψ(x, •)| = 1, (1.2) 
representing the fact that the density is constant far away. Equation (1.1) also appears as the model for the evolution of a one-dimensional optical beam of intensity |Ψ| 2 in a self-defocusing nonlocal Kerr-like medium, where V characterizes the nonlocal response of the medium [START_REF] Królikowski | Solitons in nonlocal nonlinear media: Exact solutions[END_REF][START_REF] Nikolov | Attraction of nonlocal dark optical solitons[END_REF]. In this case, the condition (1.2) is natural when studying dark optical solitons. In all of these physical situations, V is assumed to be realvalued and symmetric. Moreover, in the most typical first approximation, V is considered as a Dirac delta function, which leads to the standard Gross-Pitaevskii equation with nonvanishing condition at infinity, that has been intensively investigated (see e.g. [START_REF] Coste | Nonlinear Schrödinger equation and superfluid hydrodynamics[END_REF][START_REF] Jones | Motions in a Bose condensate V. Stability of solitary wave solutions of non-linear Schrödinger equations in two and three dimensions[END_REF][START_REF] Jones | Motions in a Bose condensate IV. Axisymmetric solitary waves[END_REF][START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]).

To provide a clear mathematical context to the problem, it is useful to perform the change of variables Ψ → e -it Ψ, which leads to the equation

i∂ t Ψ = ∂ xx Ψ + Ψ(W * (1 -|Ψ| 2 )) in R × R, (1.3) 
where we assumed that V * 1 = 1 and denoted by W the potential to make our following assumptions more clear. Here * denotes the convolution in R. We assume from now on that W is a real-valued even tempered distribution. In this manner, (1.3) is Hamiltonian and its energy

E(Ψ(t)) = 1 2 R |∂ x Ψ(t)| 2 dx + 1 4 R (W * (1 -|Ψ(t)| 2 ))(1 -|Ψ(t)| 2 ) dx,
is formally conserved. The (renormalized) momentum

p(Ψ(t)) = R i∂ x Ψ(t), Ψ(t) C 1 - 1 |Ψ(t)| 2 dx,
is formally conserved too whenever inf x∈R |Ψ(x, t)| > 0, where z 1 , z 2 C = Re(z 1 z2 ), for z 1 , z 2 ∈ C (see [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at infinity[END_REF]).

We will be interested in special solutions to (1.3) with boundary condition (1.2), the so-called dark solitons. Roughly speaking, these are localized density notches that propagate without spreading [START_REF] Kartashov | Gray spatial solitons in nonlocal nonlinear media[END_REF]. They have been observed for example in Bose-Einstein condensates [START_REF] Becker | Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates[END_REF][START_REF] Denschlag | Generating solitons by phase engineering of a Bose-Einstein condensate[END_REF]. More precisely, dark solitons in our context will be nontrivial finite energy solutions to (1.3) of the form Ψ c (x, t) = u(x -ct), which represents a traveling wave with profile u : R → C propagating at speed c ∈ R. Hence, the soliton u satisfies icu + u + u(W * (1 -|u| 2 )) = 0 in R.

(S(W, c))

Notice that taking the complex conjugate of u in equation (S(W, c)), we are reduced to the case c ≥ 0. By finite energy solution to (S(W, c)) we mean a solution belonging to the energy space

E(R) = {v ∈ H 1 loc (R) : 1 -|v| 2 ∈ L 2 (R), v ∈ L 2 (R)}.
This is justified by assuming that the Fourier transform of W is bounded, i.e. that W ∈ L ∞ (R). Indeed, by Plancherel's identity,

E(u) ≤ 1 2 u 2 L 2 (R) + 1 4 W L ∞ (R) 1 -|u| 2 2 L 2 (R) .
We point out that any function in the energy space satisfies (1.2) (see Theorem 1.8 in [START_REF] Gérard | The Gross-Pitaevskii equation in the energy space[END_REF]). The simplest case for (S(W, c)) that one may consider corresponds to the contact interaction W = δ 0 . In this way, (S(δ 0 , c)) becomes the classical Gross-Pitaevskii equation, which is a local equation. In our one-dimensional case, (S(δ 0 , c)) can be solved explicitly. More precisely, as explained in [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF], if c ≥ √ 2 the only solutions in E(R) are the trivial ones (i.e. the constant functions of modulus one). On the contrary, if 0 ≤ c < √ 2, the nontrivial solutions in E(R) are given, up to invariances (translations and multiplication by constants of modulus one), by

u c (x) = 2 -c 2 2 tanh √ 2 -c 2 2 x -i c √ 2 . (1.4)
Thus there is a family of dark solitons belonging to the nonvanishing energy space

N E(R) = {v ∈ E(R) : inf R |v| > 0},
for c ∈ (0, √ 2). We refer to them as the vortexless solutions, as usual in nonlinear optics. There is also one stationary soliton that vanishes at exactly one point, associated with the speed c = 0, that is called the black soliton. Notice also that the values of u c (∞) and u c (-∞) are different if c = 0, and thus we cannot relax the condition (1.2) to lim |x|→∞ Ψ = 1 (as in the higher dimensional case, see e.g. [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF]).

In the case of spatial dimension equal to two or three, the study of traveling waves for the contact interaction W = δ 0 started with numerical simulations in the Jones-Roberts program [START_REF] Jones | Motions in a Bose condensate V. Stability of solitary wave solutions of non-linear Schrödinger equations in two and three dimensions[END_REF][START_REF] Jones | Motions in a Bose condensate IV. Axisymmetric solitary waves[END_REF]. There, it was observed numerically that finite energy traveling waves should exist for every c ∈ [0, √ 2), and should not otherwise. Rigorous proofs of these conjectures have been established by Béthuel and Saut [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation I[END_REF], Béthuel, Gravejat and Saut [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], Mariş [START_REF] Mariş | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF], Ruiz and Bellazzini [START_REF] Bellazzini | Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime[END_REF], among others.

Despite the physical interest of the most realistic case where W is a more general distribution, there are very few mathematical results concerning nonlocal interactions with nonzero conditions at infinity. To our knowledge, most of the mathematical results concerning the existence of traveling waves deal with functions vanishing at infinity (see e.g. [START_REF] Antonelli | Existence of solitary waves in dipolar quantum gases[END_REF][START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF][START_REF] Carles | On the Gross-Pitaevskii equation for trapped dipolar quantum gases[END_REF][START_REF] Lahaye | The physics of dipolar bosonic quantum gases[END_REF][START_REF] Luo | Ground states for a nonlocal mixed order cubic-quartic Gross-Pitaevskii equation[END_REF]) and the techniques used in these works cannot be adapted to include solutions satisfying (1.2). Recently, de Laire and Mennuni [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF] proved the existence of a branch of solutions to (S(W, c)), by using a minimization approach. For q ≥ 0, they consider the (nondecreasing) minimization curve

E min (q) := inf{E(v) : v ∈ E(R), p(v) = q}, (1.5) 
and set q * = sup{q > 0 | ∀v ∈ E(R), E(v) ≤ E min (q) ⇒ inf R |v| > 0}.

(1.6)

Under certain technical conditions on W, they show that q * > 0.027 and that for any q ∈ (0, q * ), the minimum associated with E min (q) is attained and the corresponding Euler-Lagrange equation satisfied by the minimizers is exactly (S(W, c)), where c ∈ (0, √ 2) appears as a Lagrange multiplier. In addition, their solutions are orbitally stable. Therefore, their result establishes the existence of a family of solutions to (S(W, c)) parametrized by the momentum. This theorem applies for instance to the potential W α,β = β β-2α (δ 0 -αe -β|x| ), for β > 2α > 0, which describes a strong repulsion force when two particles are in the same place, but an attractive force otherwise. However, the results in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF] do not apply to an interaction of the form W(x) = exp(-αx 2 ), α > 0, since its Fourier transform grows exponentially in the complex plane. The first goal of this paper is to provide simple conditions on W that guarantee the existence of nontrivial finite energy solutions to (S(W, c)), covering a large variety of relevant nonlocal interactions, such as the Gaussian potential. The second one is to determine an optimal range for c (depending on W) for which there exist finite energy traveling waves. Finally, a third goal is to establish the regularity and the decay of these solutions, and their nonexistence at critical speed.

Main results

From now on we assume that W satisfies the following minimal regularity assumption: (H0) W is an even tempered distribution such that W ∈ L ∞ (R).

Let us remark that the condition W ∈ L ∞ (R) is equivalent to the continuity of the application η ∈ L 2 (R) → W * η ∈ L 2 (R) (see e.g. [START_REF] Grafakos | Classical Fourier analysis[END_REF]). The parity assumption is necessary to have a variational formulation (see Lemma 3.1).

As explained in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF], the Bogoliubov dispersion relation [START_REF] Bogoliubov | On the theory of superfluidity[END_REF] is given by w(ξ) = ξ 4 + 2 W(ξ)ξ 2 .

(1.7)

We formally get w(ξ) ≈ (2 W(0))

1/2
|ξ|, for ξ ≈ 0. The critical speed c * (W) = (2 W(0)) 1/2 corresponds to the so-called speed of sound. It is conjectured that there is no nontrivial solution to (S(W, c)) with finite energy when c(W) ≥ c * (W). Observe also that if W is continuous at the origin, then we can assume without loss of generality that W fulfills the normalization condition (see [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF]) W(0) = 1, so that the speed of sound is well-defined and equal to c * (W) = √ 2.

Here and in what follows we use the convention that the Fourier transform of an integrable function is

f (ξ) = R e -ixξ f (x)dx. (1.8)
In particular, the Fourier transform of the Dirac delta is δ 0 = 1, so that c * (δ 0 ) = √ 2, and the nonexistence conjecture holds when W = δ 0 , as explained before.

Our first result establishes the existence of dark solitons under the following assumption:

(H1) There exist σ ∈ (0, 1] and κ ∈ [0, 1/2) such that W(ξ) ≥ σ -κξ 2 a.e. on R.

Theorem 1.1. Assume that W satisfies (H0) and (H1). Then there exists a nontrivial solution to (S(W, c)) in E(R), for almost every c ∈ (0, √ 2σ).

As an easy consequence of Theorem 1.1, we prove the following existence result for nonnegative potentials satisfying (H1) in the critical case κ = 1/2. This critical lower bound was already considered in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF]. Corollary 1.2. Assume that W satisfies (H0), with W ≥ 0 a.e. on R, and that there is σ ∈ (0, 1] such that W(ξ) ≥ σ -ξ 2 /2, for a.e. |ξ| ≤ √ 2σ. Then there exists a nontrivial solution to (S(W, c)) in E(R), for almost every c ∈ (0, √ 2σ).

Notice that there is no assumption on the continuity of W. For instance, Theorem 1.1 applies to the potential

W = 3δ 0 - J 1 (2| • | 1/2 ) 2| • | 1/2 , so that W(ξ) = 2 + cos(1/ξ), for all ξ ∈ R \ {0},
where J 1 is the Bessel function of first kind, with σ = 1 and κ = 0. This gives us the existence of nontrivial finite energy solutions to (S(W, c)) for a.e. c ∈ (0, √ 2). We can also apply Theorem 1.1 to the potential W a,b,λ (ξ) = (1 + aξ 2 + bξ 4 )e -λξ 2 , (1.9) that has been proposed in [START_REF] Berloff | Motions in a Bose condensate VI. Vortices in a nonlocal model[END_REF][START_REF] Reneuve | Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids[END_REF] to describe a quantum fluid exhibiting a roton-maxon spectrum such as Helium 4. Indeed, as predicted by the Landau theory, in such a fluid, the dispersion curve (1.7) cannot be monotone, and it should have a local maximum and a local minimum, the so-called maxon and roton, respectively. In [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF], some numerical simulations were done for a = -36, b = 2687, λ = 30, and a branch of solitons was found with speeds in (0, √ 2). These values are relevant because they provide the existence of a maxon and a roton. However, the existence theorem in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF] does not apply to this potential. On the other hand, it can be checked that, for these values of a, b and λ, condition (H1) is fulfilled with σ = 0.175 and any κ ∈ (0, 1/2). Consequently, Theorem 1.1 provides the existence of nontrivial finite energy solutions to (S(W a,b,λ , c)) for a.e. c ∈ (0, √ 0.35).

The first step to prove Theorem 1.1 is to show that, if c > 0, then any solution u ∈ E(R) must belong to N E(R), which allows us to lift the function as u = ρe iθ , for some real-valued functions ρ and θ. Then, we prove in Section 2 the crucial fact that (S(W, c)) is actually equivalent to the nonlocal singular equation

-ρ + c 2 4 1 -ρ 4 ρ 3 = ρ W * (1 -ρ 2 ) in R. (1.10)
Therefore, we only need to look for a real solution ρ ∈ N E(R). Moreover, we know now that ρ(x) = |u(x)| → 1 as |x| → ∞, so that we can suppose that ρ recast as ρ = 1 + v, for some v ∈ H 1 (R). The drawback is that we have introduced a singularity in the equation, we need thus to take care of the possible vanishing of functions on the variational approximation. Indeed, in Section 3 we will show that the solutions to (1.10) correspond to critical points of the functional

J c : H 1 (R) → R ∪ {-∞} given by J c (1 -ρ) = A(1 -ρ) -c 2 B(1 -ρ), for ρ ∈ 1 + H 1 (R),
where

A(1 -ρ) = 1 2 R (ρ ) 2 + 1 4 R (W * (1 -ρ 2 ))(1 -ρ 2 ) and B(1 -ρ) = 1 8 R (1 -ρ 2 ) 2 ρ 2 .
More precisely, it will be obtained as a mountain pass point. However, we cannot directly apply the classical version of the mountain pass theorem for several reasons. First, to handle the singularity of J c , we do not work in H 1 , but in the nonvanishing open set

N V(R) = {v ∈ H 1 (R) : 1 -v > 0 in R},
i.e. we consider ρ = 1 -v with v ∈ N V(R). Hence we need to verify that we can adapt the deformation lemma in this setting. Second, our formulation does not give the boundedness of Palais-Smale sequences. Nevertheless, we can apply the monotonicity trick introduced by Struwe [START_REF] Struwe | The existence of surfaces of constant mean curvature with free boundaries[END_REF] and generalized by Jeanjean [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R N[END_REF], that, roughly speaking, will provide bounded Palais-Smale sequences for almost every c ∈ (0, √ 2σ). In order to prove existence in the whole subsonic regime, we have to restrict the potentials we work with; in particular, they will satisfy (H1) with σ = 1, so the subsonic interval becomes (0, √ 2). One of the new assumptions on the potentials implies some a priori estimates on the solutions. To see how this hypothesis is used, observe that, for any c ∈ (0, √ 2), one can apply Theorem 1.1 to get the existence of a sequence of speeds {c n } and a sequence of associated solutions {u n } ⊂ E(R) to (S(W, c n )), such that c n → c. At this point, some a priori estimates allow us to conclude that u n → u ∈ C k loc (R), so that u is a solution to (S(W, c)). However, from our estimates, it is not clear that u has finite energy. Indeed, there are solutions with infinite energy to (S(W, c)) that we need to avoid, for instance

u ± r (x) = r exp ix -c ± c 2 + 4(1 -r 2 ) 2 , for all r ∈ (0, 1].
By imposing more restrictive conditions on the potential W, we by-pass this difficulty in Section 4 by performing a more refined study of the Palais-Smale sequence and using the profile decomposition theorem for bounded functions in H 1 (R).

For the sake of simplicity, we only state in this introduction the existence result in the whole interval (0, √ 2) for potentials of the form

W µ = A µ (δ 0 + µ),
where µ is an even Borel measure with µ -< 1,

A µ = (1 + µ(0)) -1 . (1.11)
Here and it what follows, µ -and µ + denote the negative and positive variations of µ, i.e. µ = µ + -µ -for some (unique) positive Borel measures such that µ + ⊥ µ -(see [START_REF] Folland | Real analysis[END_REF]). Also, • stands for the total variation of a Borel measure. It can be justified that µ(0) = µ + -µ -, so that 1 + µ(0) > 0 and the normalization constant A µ is well-defined.

Theorem 1.3. Let W µ be as in (1.11). Assume that µ is nondecreasing a.e. on R + and that µ ∈ W 1,∞ (R). Then there exists a nontrivial solution to (S(W, c)) in N E(R) for all c ∈ (0, √ 2).

We will show below (see Theorem 1.8, case (i)) that the hypothesis of monotonicity in Theorem 1.3 can be relaxed.

In Section 5 we study further properties of the solutions by considering the variable η = 1 -|u| 2 , that satisfies the equation

-η + 2W * η -c 2 η = 2|u | 2 + 2η(W * η) := F.
(1.12)

From (1.12) we can deduce that every finite energy solution is smooth and that, if c > 0, then |u| does not vanish, i.e. η < 1 on R (see Proposition 2.2). On the other hand, equation (1.12) can be written as

M c (ξ) η(ξ) = F (ξ), with M c (ξ) = ξ 2 + 2 W(ξ) -c 2 . (1.13) If c ∈ [0, √ 2 
) and W satisfies (H1), then M c is strictly positive, so (1.12) is an elliptic equation. In this case, (1.12) can be written as the convolution equation:

η = L c * F, where L c = M -1 c .
In this way, L c appears as a Fourier multiplier.

Let us remark that this kind of convolution formulation has been used in several contexts to get further properties of the solutions, see e.g. [START_REF] De Laire | Non-existence for travelling waves with small energy for the Gross-Pitaevskii equation in dimension N ≥ 3[END_REF][START_REF] De Laire | Minimal energy for the traveling waves of the Landau-Lifshitz equation[END_REF][START_REF] Gravejat | Decay for travelling waves in the Gross-Pitaevskii equation[END_REF]. In our case, we can adapt and extend the classical theory of Bona-Li [START_REF] Bona | Analyticity of solitary-wave solutions of model equations for long waves[END_REF][START_REF] Bona | Decay and analyticity of solitary waves[END_REF] to handle the nonlocal function F , and to deduce the algebraic or exponential decay, and analyticity of the solutions depending on the properties of W. For instance, our main result concerning the exponential decay reads as follows.

Theorem 1.4. Assume that W satisfies (H0). Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). Suppose that

e m|•| L c ∈ L p (R) for some m > 0, p ∈ (1, ∞]. (1.14)
Then, for all ∈ [0, m), the function η = 1 -|u| 2 has the exponential decay:

lim |x|→∞ e |x| D k η(x) = 0, for all k ∈ N.
We refer to Section 5 for the precise statements for algebraic decay and the real analyticity of u, in the sense that Re(u) and Im(u) are real analytic functions. We now discuss the nonexistence conjecture of nontrivial finite energy solution to (S(W, c)) for c ≥ √ 2. In the case W = δ 0 , the proof in [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF] uses the Cauchy-Lipschitz theorem for ODEs. Thus, this argument seems difficult to apply to the nonlocal equations (S(W, c)) or (1.10). In the limit case c = √ 2, we can use (1.13) again to get the following nonexistence result.

Theorem 1.5. Assume that W satisfies (H0) and that W is of class C 2 in a neighborhood of the origin, with W ≥ 0 a.e. on R and W(0) = 1. Suppose that either ( W) (0) = -1, or ( W) = -1 on a neighborhood of the origin. Then (S(W, √ 2)) admits no nontrivial solution in E(R).

As a consequence of the real analyticity of the solutions to (S(W, c)), we can deduce that the solutions obtained by minimization by de Laire and Mennuni in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF] are symmetric. By combining the analyticity with a reflection argument, we get the following result.

Corollary 1.6. Let W be a potential satisfying the hypotheses in Theorem 1 in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF]. Let q ∈ (0, q * ) and let u = ρe iθ ∈ N E(R) be the nontrivial solution to (S(W, c)), for some c ∈ (0, √ 2), satisfying p(u) = q, given by Theorem 1 in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF]. Then, up to translations, ρ is an even function and, up to multiplying u by a constant of modulus one, θ is an odd function.

The uniqueness of solutions to (S(W, c)) is a difficult problem due to the nonlocal potential. Actually, the uniqueness for nonlocal equations such as (S(W, c)) can be hard to establish (see e.g. [START_REF] Albert | Positivity properties and uniqueness of solitary wave solutions of the intermediate long-wave equation[END_REF][START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF]). We do not know if the solutions to (S(W, c)) are unique (up to invariances) except in the case W = δ 0 , where the solutions are explicitly given in (1.4). However, we think that the uniqueness holds, at least for the potentials in the examples in the next subsection.

Another interesting open question is whether the solutions obtained via Theorem 1.1 are orbitally stable. Unlike in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF], our solutions are not minimizers but mountain pass critical points. This makes the analysis of the stability in our context a nontrivial task. Actually, since uniqueness is not guaranteed, our solutions might in principle be different from those in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF] and, in consequence, there might exist potentials W that provide unstable solutions. On the other hand, we performed in [START_REF] De Laire | Numerical computation of some solitons of a nonlocal nonlinear Schrödinger equation[END_REF] numerical computations for the potentials in the Subsection 1.3, that suggest the orbital stability of the traveling waves in Theorem 1.8.

Examples

For β > 2α > 0, we consider the potential

W α,β = β β -2α (δ 0 -αe -β|•| ), so that W α,β (ξ) = β β -2α 1 - 2αβ ξ 2 + β 2 , ξ ∈ R. (1.15)
This kind of potential has been used in [START_REF] Nikolov | Attraction of nonlocal dark optical solitons[END_REF] for the study of dark solitons in a self-defocusing nonlocal Kerr-like medium. The kernel W α,β represents a strong repulsive interaction between particles that coincide in space, while the interaction becomes attractive otherwise, being this attraction significant at short distances.

From a mathematical point of view, this potential satisfies all the conditions to apply Theorems 1.3, 1.4, 1.5 and 5.12. The result reads as follows.

Theorem 1.7. Let W α,β be given by (1.15) with β > 2α > 0. Then for every c ∈ (0, √ 2), there exists a nontrivial solution u c ∈ N E(R) to (S(W α,β , c)). In addition, u c is real-analytic, the limits u c (±∞) exist, and there exists > 0, depending only on c, α and β, such that

η c = 1 -|u c | 2 satisfies lim |x|→∞ e |x| D k η c (x) = 0, for all k ∈ N. (1.16)
Furthermore, there is no nontrivial solution to (S(W α,β , √ 2)) in E(R).

The following three examples will provide similar mathematical results, so we will gather them in a single theorem after some comments. The first one was proposed in [START_REF] Veksler | Simple model for interactions and corrections to the Gross-Pitaevskii equation[END_REF] as simple model for interactions in a Bose-Einstein condensate. For λ > 0, it is given by a contact interaction δ 0 and two Dirac delta functions centered at ±λ, as

W λ = 2δ 0 - 1 2 (δ -λ + δ λ ), so that W λ (ξ) = 2 -cos(λξ), ξ ∈ R. (1.17)
Notice that, as well as (1.15), (1.17) models a competition between repulsive and attractive interactions.

Another interesting example proposed in [START_REF] Lopez-Aguayo | Stable rotating dipole solitons in nonlocal optical media[END_REF] is the Gaussian function,

W λ (x) = 1 2λ √ π e -x 2 4λ 2 , so that W λ (ξ) = e -λξ 2 , ξ ∈ R. (1.18)
where λ > 0. In fact, for λ > 0 small, this potential represents a smooth approximation of the Dirac delta. Finally, we introduce the so-called soft core potential, which was used in [START_REF] Aftalion | Nonclassical rotational inertia of a supersolid[END_REF][START_REF] Josserand | Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid[END_REF] to study supersolids. It can be seen as a nonsmooth approximation of the Dirac delta when λ > 0 is small,

W λ (x) =    1 2λ , if |x| < λ, 0, otherwise, so that W λ (ξ) = sin(λξ) λξ , ξ ∈ R. (1.19)
Unlike Theorem 1.7, for this three potentials we prove existence of nontrivial finite energy traveling waves for almost every c ∈ (0, √ 2). We summarize our main results for (1.17), (1.18) and (1.19) as follows.

Theorem 1.8. Assume that one of the following cases holds.

(i) W λ is given by (1.17) with 0 < λ.

(ii) W λ is given by (1.18) with 0 < λ < 1/2. (iii) W λ is given by (1.19) with 0 < λ < √ 3.
Then, for almost every c ∈ (0, √ 2), there exists a nontrivial solution u c ∈ N E(R) to (S(W λ , c)). In addition, u c is real-analytic, the limits u c (±∞) exist, and there exists > 0, depending only on c and λ, such that the function

η c = 1 -|u c | 2 satisfies lim |x|→∞ e |x| D k η c (x) = 0, for all k ∈ N. (1.20)
Moreover, in the case (i), there exists λ 0 ≥ 2/3 such that if λ ∈ (0, λ 0 ), then the existence and properties of u c hold for all c ∈ (0, √ 2). Finally, in the cases (i) and (ii), there is no nontrivial solution to (S(W λ , √ 2)) in E(R).

Some comments on this theorem are in order.

• If the Fourier transform of the potential is nonnegative, we can also apply Corollary 1.2 to study other ranges of λ. For instance, if W λ is given by (1.18), a simple computation shows that for λ ≥ 1/2, we have the estimate

W λ (ξ) ≥ σ λ -ξ 2 /2, for all ξ ∈ R, where σ λ = 1+ln(2λ) 2λ
. Therefore, we can deduce the existence of nontrivial solitons for a.e. c ∈ (0, √ 2σ λ ).

• If W λ is given by (1.19), then W λ changes sign. For this reason we cannot guarantee nonexistence of finite energy traveling waves for the critical speed c = √ 2 in Theorem 1.8.

• Filling the existence in the complete interval (0, √ 2) in Theorem 1.8 for cases (ii) and (iii), and even (i) for λ large, would require to prove several estimates, a task far from being trivial without our assumptions (H3) and (H5) (see Section 4 for details).

• The arguments in the proof of Theorem 1.8 also apply to the potential (1.9), with the values a = -36, b = 2687, λ = 30. Therefore, for a.e. c ∈ (0, √ 0.35), the solution u c is real-analytic and decays exponentially at infinity. Also, there is no nontrivial solution with critical speed c = √ 2 in E(R).

The last example that we consider is given, for κ ∈ (0, 1/2], by

W κ (x) = 2κ πx 2 sin(x/ √ κ) x - 1 √ κ cos(x/ √ κ) , so that W κ (ξ) = (1 -κξ 2 ) + , ξ ∈ R. (1.21)
It is simple to check that W κ is bounded continuous, with W κ ∈ L 1 (R). From a mathematical point of view, this is an interesting example since it represents the limiting case among the normalized potentials (i.e. W(0) = 1) satisfying (H1) with nonnegative Fourier transform. This kernel also appears in the Bochner-Riesz means, and it is important in the Fourier multipliers theory.

Due to the lack of regularity of W κ , we do not expect an exponential decay of the solution. Nevertheless, we will show that, in this case, L c decays as 1/x 2 , which will lead us to the following result. Theorem 1.9. Let W κ be given by (1.21), with κ ∈ (0, 1/2]. Then for almost every c ∈ (0, √ 2), there exists a nontrivial solution u c ∈ N E(R) to (S(W κ , c)). In addition, u c is real-analytic, the limits u c (±∞) exist, and the function η c = 1 -|u c | 2 satisfies the following algebraic decay

| • | D k η c ∈ L 1 (R), lim |x|→∞ |x| D k η c (x) = 0, for all ∈ [0, 1), for all k ∈ N. (1.22)
Moreover, there is no nontrivial solution to (S(W κ , √ 2)) in E(R).

We will study numerically the solitons given in this subsection in the forthcoming paper [START_REF] De Laire | Numerical computation of some solitons of a nonlocal nonlinear Schrödinger equation[END_REF].

Notation

The usual real-valued Sobolev and Lebesgue spaces will be denoted, respectively, by W k,p (R) and L p (R) for p ∈ [1, ∞] and k ∈ N. Moreover, W k,2 (R) = H k (R). The notation for the Lebesgue spaces of complex-valued functions will be L p (R; C), and analogously for the Sobolev spaces of complex-valued functions, or simply L p (R) if there is no ambiguity. For a real-valued function f , we write f + = max{f, 0} and f -= -min{f, 0}, so that f = f + -f -.

In this paper we always assume that W satisfies (H0). In particular, this implies that

W * f L 2 (R) ≤ W L ∞ (R) f L 2 (R) , for all f ∈ L 2 (R; C), (1.23) 
and that Plancherel's identity reads, with our convention for the Fourier transform,

R (W * f )g = 1 2π R W(ξ) f (ξ) ¯ g(ξ), for all f, g ∈ L 2 (R; C). (1.24)

Some identities

We start recalling that any finite energy solution to (S(W, c)) is smooth and admits a lifting at infinity (without restriction on c). This result corresponds to Corollary 2.4 in [START_REF] De Laire | Non-existence for travelling waves with small energy for the Gross-Pitaevskii equation in dimension N ≥ 3[END_REF], where it was proved in dimension greater or equal than two, but the same proof applies in our one-dimensional setting. Furthermore, there exists a smooth lifting of u. More precisely, there exist R > 0, δ ∈ (0, 1)

and θ ∈ C ∞ ((-R, R) c ) such that u = ρe iθ on (-R, R) c , with ρ ≥ δ on (-R, R) c . In particular, θ , 1 -ρ ∈ W k,p ((-R, R) c ) for all k ∈ N, p ∈ [2, ∞], and 
ρ(±∞) = 1, D j u(±∞) = D j ρ(±∞) = D j θ(±∞) = D j η(±∞) = 0, for all j ≥ 1. (2.1)
Finally, if u ∈ N E(R), then the above conclusions still hold true in R, i.e. for R = 0.

Proof. The proof is contained in [START_REF] De Laire | Non-existence for travelling waves with small energy for the Gross-Pitaevskii equation in dimension N ≥ 3[END_REF] except for the regularity of 1 -ρ. Notice that

1 -ρ = 1 -ρ 2 1 + ρ = η 1 + ρ on R. (2.2)
Therefore, |1 -ρ| ≤ |η|, so 1 -ρ ∈ L p (R) for every p ∈ [2, ∞]. Moreover, using that |u| ≥ δ on (-R, R) c and also Cauchy-Schwarz inequality, we deduce that

|ρ | = | u, u | |u| ≤ |u | on (-R, R) c . Thus 1 -ρ ∈ W 1,p ((-R, R) c ) for all p ∈ [2, ∞].
Similarly, using that

ρ = |u | 2 + u, u |u| - | u, u | 2 |u| 3 on (-R, R) c ,
and that u, u ∈ L ∞ (R), we conclude that ρ ∈ W 2,p ((-R, R) c ) for all p ∈ [2, ∞].
Repeating the previous arguments inductively, we arrive up to 1

-ρ ∈ W k,p ((-R, R) c ) for all k ∈ N and p ∈ [2, ∞]. Finally, if u ∈ N E(R)
, then ρ ≥ δ on R for some δ ∈ (0, 1), so that the previous arguments are valid on R.

We now establish some key identities in terms of η = 1 -|u| 2 . In particular, we derive equation (1.13) and we deduce that, if c > 0, the finite energy solutions to (S(W, c)) do not vanish. Notice that η ≤ 1 on R, but η could be negative. Proposition 2.2. Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). Setting K = |u | 2 and η = 1 -|u| 2 , the following identities are satisfied on R:

c 2 η = -iu , u , (2.3) 
-η + 2W * η -c 2 η = 2K + 2η(W * η), (2.4 
)

K = η (W * η), (2.5) c 2 η 2 + (η ) 2 = 4K(1 -η). (2.6) As a consequence, if c > 0, then η < 1 on R, u ∈ N E(R) and 2K = c 2 η 2 2(1 -η) + (η ) 2 2(1 -η) on R. (2.7) 
Notice that (2.4) corresponds to equation (1.13), that we will use in Section 5 to establish the decay and analyticity of solutions, as well as the nonexistence for the critical speed.

Proof of Proposition 2.2. Let u = u 1 + iu 2 . Taking real and imaginary parts in (S(W, c)), we obtain

u 1 -cu 2 + u 1 W * (1 -u 2 1 -u 2 2 ) = 0, (2.8 
)

u 2 + cu 1 + u 2 W * (1 -u 2 1 -u 2 2 ) = 0. (2.9)
Multiplying (2.8) by u 2 and (2.9) by u 1 , we get

c 2 η = (u 1 u 2 -u 2 u 1 ) .
Integrating over R and taking into account (2.1) yields

c 2 η = u 1 u 2 -u 2 u 1 ,
which is exactly (2.3). On the other hand, multiplying (2.8) by u 1 and (2.9) by u 2 , and using (2.3), we deduce that

u 1 u 1 + u 2 u 2 = c 2 2 η -(1 -η)(W * η).
(2.10)

Hence, by differentiating,

η = -2|u | 2 -2 u, u = -2K -2(u 1 u 1 + u 2 u 2 ), (2.11) 
which allows us to obtain (2.4) by combining (2.10) and (2.11).

Let us now multiply (2.8) by u 1 and (2.9) by u 2 . This gives

u 1 u 1 + u 2 u 2 + (u 1 u 1 + u 2 u 2 )(W * η) = 0.
Therefore, (2.5) follows directly by the definitions of η and K.

In order to show (2.6), let us multiply both sides of (2.4) by 2η . Taking (2.5) into account, it is easy to see that -((η

) 2 ) + 4K -c 2 (η 2 ) = 4(Kη) .
Hence, (2.6) follows by integrating this equality.

Let us now show that if c > 0, then η < 1 on R. Since η ≤ 1 on R, we assume by contradiction that there exists x 0 ∈ R such that η(x 0 ) = 1. Then, x 0 is a maximum of η, so that η (x 0 ) = 0, and substituting into (2.6) we get c 2 = 0, a contradiction.

Finally, equation (2.7) is an immediate consequence of (2.6).

Remark 2.3. Recall that the energy functional is defined by

E(u) = 1 2 R |u | 2 + 1 4 R (W * η)η for all u ∈ E(R),
where η = 1 -|u| 2 . Moreover, the momentum reads

p(u) = - 1 2 iu , u η 1 -η .
Taking (2.3) and (2.7) into account, we see that the energy and the momentum of any solution u ∈ N E(R) to (S(W, c)), with c > 0, can be written only in terms of η and c as

E(u) = c 2 8 R η 2 1 -η + 1 8 R (η ) 2 1 -η + 1 4 R (W * η)η and p(u) = c 4 R η 2 1 -η .
Furthermore, since η = 1 -ρ 2 and η = -2ρρ , we also have expressions for the energy and the momentum of a solution u ∈ N E(R) in terms of ρ,

E(u) = c 2 8 R (1 -ρ 2 ) 2 ρ 2 + 1 2 R (ρ ) 2 + 1 4 R (W * (1 -ρ 2 ))(1 -ρ 2 ) and p(u) = c 4 R (1 -ρ 2 ) 2 ρ 2 .
That is the key observation in order to establish the variational framework in Section 3.

The next result gives an essential reformulation of the complex-valued (S(W, c)) for vortexless solutions. In this case, we can reduce the problem to a single real-valued equation.

Proposition 2.4. Let c ≥ 0. If u = ρe iθ ∈ N E(R) is a solution to (S(W, c)), then θ = c 2 1 ρ 2 -1 on R, (2.12 
)

-ρ + c 2 4 1 -ρ 4 ρ 3 = ρ W * (1 -ρ 2 ) on R. (2.13)
Reciprocally, let ρ ∈ C 2 (R) be such that ρ > 0 on R and assume that it satisfies (2.13). For any a ∈ R, let us define

θ(x) = c 2 x a 1 ρ(y) 2 -1 dy for all x ∈ R.
(2.14)

Then, the function u = ρe iθ belongs to C 2 (R; C) and is a solution to (S(W, c)). If in addition

1 -ρ ∈ H 1 (R), then u ∈ N E(R).
Proof. Let u = ρe iθ , with |u| > 0 on R and θ ∈ C 2 (R). By computing the derivatives of u and taking real and imaginary parts, we check that u satisfies (S(W, c)) if and only if the couple (ρ, θ) satisfies

-cθ ρ + ρ -ρ(θ ) 2 + ρ W * (1 -ρ 2 ) = 0 on R, cρ + 2θ ρ + θ ρ = 0 on R. (2.15) 
Let u = ρe iθ ∈ N E(R) be a solution to (S(W, c)). By Lemma 2.1, we have ρ, θ ∈ C ∞ (R), so that (ρ, θ) satisfies (2.15). By multiplying the second equation in (2.15) by ρ, we obtain

(cρ 2 + 2θ ρ 2 ) = 0. (2.16)
Bearing in mind (2.1), we can integrate (2.16) and obtain (2.12). Plugging (2.12) into the first equation of (2.15), we get (2.13).

We turn now to the second part of the result. Indeed, let ρ ∈ C 2 (R) be such that ρ > 0 on R. Assume that ρ satisfies (2.13) and consider θ defined by (2.14). Then, one may immediately check that the equations (2.15) are satisfied. Hence, u = ρe iθ is a solution to (S(W, c)). It only remains to verify that u ∈ N E(R) if 1 -ρ ∈ H 1 (R). Indeed, by the Sobolev embedding theorem, we get ρ ∈ L ∞ (R), with ρ(±∞) = 1 and ρ ≥ δ on R for some δ ∈ (0, 1). Thus

1 -|u| 2 = 1 -ρ 2 = (1 -ρ)(1 + ρ) ∈ L 2 (R).
Moreover, by definition of θ,

|u | 2 = (ρ ) 2 + ρ 2 (θ ) 2 = (ρ ) 2 + c 2 4ρ 2 (1 -ρ 2 ) 2 , which also belongs to L 2 (R), since (1 -ρ 2 ) 2 = (1 -ρ) 2 (1 + ρ) 2 and ρ ∈ L ∞ (R).
In view of Proposition 2.4, the problem of existence of vortexless finite energy solution to (S(W, c)) is reduced to the existence of positive solution to (2.13) with 1 -ρ ∈ H 1 (R). Abusing of the concept of energy, we will say that a solution to (2.13) has finite if ρ ∈ 1 + H 1 (R).

The variational formulation

In this section we introduce a variational formulation that will lead to the proof of Theorem 1.1. Formally speaking, it is showed in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF] that critical points of the functional E(u) -cp(u) are (complex-valued) solutions to (S(W, c)). Thanks to Proposition 2.4, we may simplify the setting and work in a space of real-valued functions. More precisely, we will find solutions to (2.13) as critical points of the functional

J c : H 1 (R) → R ∪ {-∞} formally defined by J c (1 -ρ) = A(1 -ρ) -c 2 B(1 -ρ), for ρ ∈ 1 + H 1 (R),
where

A(1 -ρ) = 1 2 R (ρ ) 2 + 1 4 R (W * (1 -ρ 2 ))(1 -ρ 2 ) and B(1 -ρ) = 1 8 R (1 -ρ 2 ) 2 ρ 2 .
It is easy to see, thanks to Remark 2.3, that for every solution

u ∈ N E(R) to (S(W, c)), the equality J c (1 -ρ) = E(u) -cp(u) holds, where ρ = |u|. Notice that if ρ ∈ 1 + H 1 (R) with ρ ≥ 0, then 1 -ρ ∈ L 2 (R) iff 1 -ρ 2 ∈ L 2 (R) by (2.
2). To avoid ambiguities in the definition, we will restrict J c to the nonvanishing set

N V(R) = {v ∈ H 1 (R) : 1 -v > 0 in R}, which is an open in H 1 (R) due to the continuous embedding H 1 (R) ⊂ L ∞ (R). Thus J c is defined in the variable v = 1 -ρ ∈ N V(R) by J c (v) = 1 2 R (v ) 2 + 1 4 R (W * (v(2 -v)))v(2 -v) - c 2 8 R v 2 (2 -v) 2 (1 -v) 2 .
It is not difficult to show that the functional satisfies a mountain pass geometry (see Lemmas 3.5 and 3.6). However, it is not clear at all that the Palais-Smale sequences are bounded. In order to overcome this issue, we take advantage of the "monotonicity trick" of Struwe [START_REF] Struwe | The existence of surfaces of constant mean curvature with free boundaries[END_REF]. More precisely, we are deeply inspired by the work of Jeanjean [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R N[END_REF]. We adapt some of his results, since several nontrivial modifications are needed due to the singular behavior of J c . This way, we are able to obtain bounded Palais-Smale sequences for almost every speed c ∈ (0, √ 2). We start by showing that J c is smooth on N V(R) and that the critical points provide solutions to (S(W, c)).

Lemma 3.1. Let c > 0. The functional J c is of class C 2 (N V(R)). Moreover, for any v ∈ N V(R), its Fréchet derivatives are given by J c (v)(φ) = R v φ + R (W * f (v))(1 -v)φ -c 2 R h(v)φ, (3.1) J c (v)(φ, ψ) = R φ ψ -c 2 R h (v)φψ + R W * (f (v)ψ) (1 -v)φ - R W * f (v) φψ, (3.2) for all φ, ψ ∈ H 1 (R), where f (s) = s(2 -s) and h(s) = s(2-s)(s 2 -2s+2) 4(1-s) 3 for all s < 1. Remark 3.2. Observe that if v ∈ N V(R) \ {0} satisfies J c (v) = 0, then -v + W * f (v) (1 -v) -c 2 h(v) = 0 on R. (3.3) Hence, setting ρ = 1 -v and noticing that h(1 -ρ) = (1 -ρ 4 )/(4ρ 3 ) and that f (1 -ρ) = 1 -ρ 2 ,
we conclude that ρ is a nontrivial solution to (2.13). Therefore, by Proposition 2.4, this provides a nontrivial finite energy solution u to (S(W, c)).

Proof of Lemma 3.1. First, we recall that since W is even, we have

R (W * g 1 )g 2 = R (W * g 2 )g 1 , for all g 1 , g 2 ∈ L 2 (R). (3.4)
In order to differentiate the nonlocal term of J c , by using the dominated convergence theorem, we conclude that the functional

v ∈ H 1 (R) → R (W * f (v)) f (v) ∈ R admits a Fréchet derivative, given by 2 R (W * f (v)) f (v)φ, for all φ ∈ H 1 (R).
Therefore, we easily deduce (3.1). Computing (3.2) is also straightforward.

In order to prove the continuity of

J c in N V(R), let v ∈ N V(R) and consider a sequence {v n } ⊂ H 1 (R) such that v n → v in H 1 (R). Then, v n → v in L ∞ (R). In particular, since there exists δ ∈ (0, 1) such that v ≤ 1 -δ on R, it follows that v n ≤ 1 -δ/2 on R, for n large enough. Thus, h (v n ) → h (v) in L 2 (
R) by using the dominated convergence theorem. The continuity of the other terms is standard.

To apply a mountain pass argument, we need to invoke a deformation lemma. Although there are many versions of this classical lemma, we did not find one that fits in our framework since our functional is well-defined only in the open set N V(R), and not in the whole space. For this reason, we give here a modification of Lemma 2.3 in [START_REF] Willem | Minimax theorems[END_REF] that can be applied to our purposes. Furthermore, such a version does not require any Palais-Smale condition. For the sake of completeness, we also include its proof in the appendix. Lemma 3.3. Let c > 0. For some R > 0 and for every δ ∈ (0, 1), let us consider the set

Z δ = {v ∈ N V(R) : v H 1 (R) ≤ R + 1 -δ, v ≤ 1 -δ in R}. (3.5) 
Assume that there exist constants

0 < δ 1 < δ 2 < δ 3 < 1, ε > 0 and γ ∈ R such that J c (v) H -1 (R) ≥ 2ε δ 3 -δ 2 , for all v ∈ J -1 c ([γ -2ε, γ + 2ε]) ∩ Z δ 1 .
Then there exists a continuous function h

: [0, 1] × N V(R) → N V(R) such that (i) h(0, v) = v, for all v ∈ N V(R), (ii) h(t, v) = v, for all v ∈ N V(R) \ J -1 c ([γ -2ε, γ + 2ε]) ∩ Z δ 1 , for all t ∈ [0, 1], (iii) h(t, Z δ 3 ) ⊂ Z δ 2 , for all t ∈ [0, 1], (iv) J c (h(t, v)) ≤ J c (v), for all v ∈ N V(R), for all t ∈ [0, 1], (v) h(1, J γ+ε c ∩ Z δ 3 ) ⊂ J γ-ε c ∩ Z δ 2 ,
where

J d c = J -1 c ((-∞, d]) for every d ∈ R.
Remark 3.4. To simplify the statement and the proof of Lemma 3.3, we used the sharp constant in the Sobolev embedding (see [START_REF] Burenkov | Sobolev spaces on domains[END_REF]p. 138,Theorem 4]), so that

v L ∞ (R) ≤ 1 2 ( v L 2 (R) + v L 2 (R) ) ≤ v 2 L 2 (R) + v 2 L 2 (R) = v H 1 (R) , (3.6) for all v ∈ H 1 (R).
The following two lemmas provide the mountain pass geometry of J c .

Lemma 3.5. Assume that W satisfies (H1), and let c ∈ (0, √ 2σ). Then, there is a constant r c > 0 such that, for every r ∈ (0, r c ], there exists l r > 0, depending on κ, σ, c and r, such that

J c (1 -ρ) ≥ l r for every ρ ∈ 1 + H 1 (R) with 1 -ρ H 1 (R) = r. Proof. Let ρ ∈ 1 + H 1 (R) be such that 1 -ρ H 1 (R) ≤ r c
for some r c ∈ (0, 1) to be chosen later, and let η = 1 -ρ 2 . By applying Plancherel's identity and (H1), we deduce that

J c (1 -ρ) ≥ 1 2 R (ρ ) 2 + 1 8π R (σ -κξ 2 )| η(ξ)| 2 dξ - c 2 8 R η 2 ρ 2 .
Using that

1 2π R (σ -κξ 2 )| η(ξ)| 2 dξ = σ R η 2 -κ R (η ) 2 ,
and that η = -2ρρ , we get the lower bound

J c (1 -ρ) ≥ 1 2 R (ρ ) 2 (1 -2κρ 2 ) + 1 4 R σ - c 2 2ρ 2 η 2 .
By invoking (3.6), we see that 1 -r c ≤ ρ ≤ 1 + r c on R, Thus, recalling that 2κ < 1 and c 2 < σ, we choose r c > 0 small enough so that 1 -2κ(1 + r c ) 2 > 0 and σ - 2 , we finally obtain

c 2 2(1-rc) 2 > 0. Consequently, using that η 2 = (1 -ρ) 2 (1 + ρ) 2 ≥ (1 -ρ)
J c (1 -ρ) ≥ r 1 -ρ 2 H 1 (R) , with r = min 1 -2κ(1 + r c ) 2 2 , 1 4 σ - c 2 2(1 -r c ) 2 .
The result follows by choosing l r = r r 2 .

Lemma 3.6. For every c > 0, there exists

φ c ∈ 1 + H 1 (R) such that J c (1 -φ c ) ∈ (-∞, 0) for every c ≥ c.
Proof. For any δ ∈ (0, 1) and r > 0 to be chosen later, let us consider a nonnegative even function φ, with 0 ≤ 1 -φ 2 ≤ 1 -δ in R, satisfying the following properties:

φ 2 = δ in [0, r], φ = 1 in [r + 1, ∞), φ(x + r) = ψ(x), for all x ∈ [0, 1],
where ψ : R → R is a function independent of r that we choose such that φ ∈ C ∞ (R). In particular, 1 -φ ∈ H 1 (R). Thus, by Plancherel's identity, we get for all c ≥ c,

J c (1 -φ) ≤ 1 2 R (φ ) 2 + W L ∞ (R) 4 R (1 -φ 2 ) 2 - c 2 8 R (1 -φ 2 ) 2 φ 2 = (1 -δ) 2 2 W L ∞ (R) - c 2 2δ r + r+1 r (φ ) 2 + W L ∞ (R) 2 - c 2 4φ 2 (1 -φ 2 ) . Let us choose δ ∈ (0, 1) so that W L ∞ (R) -c 2 /2δ < 0.
Notice that the last integral depends on δ and c, but not on r, since φ(x + r) = ψ(x) for all x ∈ [0, 1]. Therefore we may take r > 0 large enough so that J c (1 -φ) < 0. In this way, δ and r depend on only c and W L ∞ (R) . The proof concludes by taking φ c = φ.

In the rest of this section we assume that W satisfies (H1), we fix c ∈ (0, √ 2σ) and we focus on speeds c on the interval (c, √ 2σ). We consider the paths connecting the origin with 1 -φ c given by Lemma 3.6, as follows

Γ(c) = {g ∈ C([0, 1], N V(R)) : g(0) = 0, g(1) = 1 -φ c }.
Thanks to the mountain pass geometry (Lemma 3.5 and Lemma 3.6) and to the continuity of J c in N V(R), the so-called mountain pass level is well-defined and is positive:

γ c (c) := inf g∈Γ(c) max t∈[0,1] J c (g(t)) > 0, for all c ∈ [c, √ 2σ).
Notice that the Γ(c) and γ c (c) are not standard since the paths take values on the set N V(R) (and not on a vector space). We recall that the advantage of working only on N V(R) is that J c is smooth. However, the drawback of this setting if that one needs to control J c near ∂N V(R) in some sense. In fact, in principle there might exist a sequence {ρ n } ⊂ 1 -N V(R) such that inf R ρ n tends to zero but J c (1 -ρ n ) remains finite for all n. The next result provides some properties of the functional B that prevent undesirable phenomena to happen, so we can deal with the singular behavior near ∂N V(R).

Lemma 3.7. Given ρ ∈ 1 + H 1 (R), it holds that B(1 -ρ) < +∞ ⇐⇒ 1 -ρ ∈ N V(R). More precisely, if ρ ∈ 1 + H 1 (R) satisfies 1 -ρ H 1 (R) + B(1 -ρ) ≤ R. (3.7)
for some R > 0, then there exists δ ∈ (0, 1) such that ρ ≥ δ on R.

Proof. We first prove the equivalence. Let 1

-ρ ∈ N V(R), so that ρ is continuous, ρ > 0 on R and ρ(±∞) = 1. Thus, taking x 0 ∈ R such that ρ(x 0 ) = min R ρ > 0, we have 8B(1 -ρ) = R (1 -ρ 2 ) 2 ρ 2 = R (1 -ρ) 2 (1 + ρ) 2 ρ 2 ≤ 1 -ρ 2 L 2 (R) 1 + ρ 2 L ∞ (R) ρ(x 0 ) 2 < +∞.
For the converse implication, we consider ρ

∈ 1+H 1 (R) such that min R ρ ≤ 0. Since ρ(±∞) = 1,
we deduce that there is x 0 ∈ R such that ρ(x 0 ) = 0 and ρ(x) > 0 for all x > x 0 . Thus, the continuous embedding

H 1 (R) ⊂ C 0,1/2 (R) implies that ρ(x) 2 = (ρ(x) -ρ(x 0 )) 2 ≤ 1 -ρ 2 C 0, 1 2 (R) (x -x 0 ), for all x > x 0 , so that x 0 +δ x 0 1/ρ 2 = +∞, for every δ > 0. Now we choose δ > 0 such that min [x 0 ,x 0 +δ] (1-ρ 2 ) 2 > 0. Hence, 8B(1 -ρ) ≥ x 0 +δ x 0 (1 -ρ 2 ) 2 ρ 2 ≥ min [x 0 ,x 0 +δ] (1 -ρ 2 ) 2 x 0 +δ x 0 1 ρ 2 = +∞. Thus the equivalence B(1 -ρ) < +∞ ⇐⇒ 1 -ρ ∈ N V(R) holds true.
We turn now to the proof of the fact that ρ ≥ δ provided that (3.7) holds. First, we have already proved that any ρ ∈ 1 + H 1 (R) satisfying (3.7) belongs to 1 -N V(R). We argue now by contradiction and assume that there exist R > 0 and a sequence

{ρ n } ⊂ 1 -N V(R) such that ρ n satisfies (3.7) for all n but min R ρ n → 0 as n → ∞. Since {ρ n (• + x n )} ⊂ 1 + H 1 (R) still satisfies (3.7)
for any sequence {x n } ⊂ R, then we may assume without loss of generality that

ρ n (0) = min R ρ n → 0 as n → ∞. By the embedding H 1 (R) ⊂ C 0,1/2 (R), we deduce that there is a constant C > 0 such that 1 -ρ n C 0, 1 2 (R) ≤ C 1 -ρ n H 1 (R) ≤ CR for all n, so that ρ n (x) ≤ ρ n (0) + CR √
x, for all x > 0, for all n.

We conclude as before that lim n→∞ δ 0 1/ρ 2 n = +∞, for every δ > 0. If there exists δ > 0 such that the sequence {min [0,δ] (1 -ρ 2 n ) 2 } is bounded away from zero, then we may argue as above to conclude that lim n→∞ B(1 -ρ n ) = +∞, a contradiction. Otherwise, for every δ > 0, up a subsequence (that depends on δ), lim n→∞ min [0,δ] (1 -ρ 2 n ) 2 = 0. For some fixed δ > 0 to be chosen below, we consider the mentioned subsequence, which we do not relabel, and we take

{x n } ⊂ [0, δ] such that ρ n (x n ) = max [0,δ] ρ n . Observe that ρ n (x n ) → 1 as n → ∞ and ρ n (x n ) -ρ n (0) ≤ CR √ x n ≤ CR √ δ, for all n.
As the left hand side of the previous inequality tends to one as n → ∞, choosing 0 < δ < 1/(CR) 2 leads one more time to a contradiction. The proof is now concluded.

Following the ideas of [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R N[END_REF], we observe that γ c (c) is a nonincreasing function of c. Therefore, its derivative γ c (c) exists for almost every c ∈ [c, √ 2σ]. The points of differentiability of γ c will be crucial in our arguments. For this reason we introduce the set

D c = {c ∈ (c, √ 2σ) : γ c is differentiable at c}.
As we have pointed out,

|D c | = |(c, √ 2σ)| = √ 2σ -c. (3.8)
Now we can state the following result due to Jeanjean [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R N[END_REF] adapted to our setting. 

(i) For any t ∈ [0, 1] such that J c (g n (t)) ≥ γ c (c) -(c -c n ),
we have the estimate

g n (t) H 1 (R) + B(g n (t)) ≤ R. (ii) max t∈[0,1] J c (g n (t)) ≤ γ c (c) + (-γ c (c) + 2)(c -c n ).
Proof. The proof is exactly as the one of [33, Proposition 2.1]. We only point out that, in our case, we conclude using the coerciveness of A. We also stress that the estimate B(g n (t)) ≤ R follows directly from the proof of [33, Proposition 2.1], as it is also observed in [7, Lemma

The next result is also mainly due to Jeanjean [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R N[END_REF], but some crucial modifications are needed since J c is not of class C 2 in the whole space H 1 (R). Thus we adapt the proof thanks to Lemmas 3.3 and 3.7. Proposition 3.9. Assume that W satisfies (H1). Let c ∈ D c , let R c := R(γ c (c)) > 0 be given by Lemma 3.8 and let δ c := δ(R c ) ∈ (0, 1) be given by Lemma 3.7. For any α > 0 and δ ∈ (0, 1), let us consider the set

Y α,δ = J -1 c ([γ c (c) -α, γ c (c) + α]) ∩ Z δ ,
where Z δ is defined by (3.5). Then, Y α,δc is nonempty for every α > 0. Moreover,

inf{ J c (v) H -1 (R) : v ∈ Y α,δc } = 0,
for all α > 0.

(3.9)

Proof. We first show that Y α,δc = ∅ for any α > 0. Indeed, let {c n } ⊂ R be an increasing sequence such that c n → c, and let {g n } ⊂ Γ(c) be the sequence given by Lemma 3.8. For some n to be chosen later, let t n ∈ [0, 1] be such that

J c (g n (t n )) = max t∈[0,1] J c (g n (t)).
We check now that g n (t n ) ∈ Y α,δc . On the one hand, by definition of γ c (c), it follows that

J c (g n (t n )) ≥ γ c (c) -(c -c n ). (3.10)
In consequence, Lemmas 3.8 and 3.7 imply that g n (t n ) ∈ Z δc . On the other hand, from Lemma 3.8 we deduce that

J c (g n (t n )) ≤ γ c (c) + (-γ c (c) + 2)(c -c n ). (3.11)
Hence, bearing (3.10) and (3.11) in mind, n can be chosen large enough so that g n (t n ) ∈ Y α,δc .

We turn now to the proof of (3.9). Arguing by contradiction, let us assume that inf{

J c (v) H -1 (R) : v ∈ Y 2α,δc } > 0 for some α > 0. Let us denote X 2α,δc = J -1 c ((γ c (c) -2α, γ c (c) + 2α)) ∩ Z δc . Of course, inf{ J c (v) H -1 (R) : v ∈ X 2α,δc } > 0 too. By Lemma 6.3 in the appendix, there exists δ ∈ (0, δ c /2) such that inf{ J c (v) H -1 (R) : v ∈ X 2α,δc-2 δ } > 0.
Therefore, we immediately have that

inf{ J c (v) H -1 (R) : v ∈ Y α,δc-2 δ } > 0.
Let us choose ε > 0 small enough so that

2ε < α, J c (v) H -1 (R) ≥ 2ε δ , for all v ∈ Y α,δc-2 δ .
Thus, we may apply Lemma 3.3 with δ 1 = δ c -2 δ, δ 2 = δ c -δ and δ 3 = δ c , so that there exists a continuous function h

: [0, 1] × N V(R) → N V(R) satisfying items (i)-(v).
In the rest of the proof we will abuse of the notation and write h(v) = h(1, v) for simplicity.

Recall that {c n } is an increasing sequence such that c n → c and {g n } ⊂ Γ(c) is given by Lemma 3.8. We show now that h

• g n ∈ Γ(c) for all n. Notice that, since γ c (c) > 0, for every v ∈ N V(R) with J c (v) ≤ 0 one may choose ε > 0 small enough so that J c (v) ∈ [γ c (c) -2ε, γ c (c) + 2ε]. In consequence, recalling that J c (0) = 0 and J c (1 -φ c ) < 0, we deduce that 0, 1 -φ c ∈ N V(R) \ J -1 c ([γ c (c) -2ε, γ c (c) + 2ε]).
Therefore, item (ii) of Lemma 3.3 implies that h(g n (0)) = h(0) = 0 and h(g n (1)) = h(1 -φ c ) = 1 -φ c for all n. In sum, h • g n ∈ Γ(c) for all n.

We now claim that max

t∈[0,1] J c (h(g n (t))) ≤ γ c (c) -(c -c n ) (3.12)
for some n large enough. In order to prove the claim, let us fix t ∈ [0, 1]. On the one hand, if

J c (g n (t)) ≤ γ c (c)-(c-c n ), then item (iv) of Lemma 3.3 implies that J c (h(g n (t))) ≤ γ c (c)-(c-c n ). On the other hand, if J c (g n (t)) > γ c (c)-(c-c n ), then Lemma 3.8 implies that g n (t) H 1 (R) + B(g n (t)) ≤ R c . In turn, Lemma 3.7 yields that 1 -g n (t) ≥ δ c on R. In particular, g n (t) ∈ Z δc . Moreover, by Lemma 3.8, we have J c (g n (t)) ≤ γ c (c) + (-γ c (c) + 2)(c -c n ). Thus, by taking n large enough (independent of t) so that (-γ c (c) + 2)(c -c n ) ≤ ε, we derive that g n (t) ∈ J γc(c)+ε c . Therefore, item (v) of Lemma 3.3 implies that J c (h(g n (t))) ≤ γ c (c) -ε ≤ γ c (c) -(c -c n ).
In any case, since t was arbitrary, we have shown that (3.12) holds for some n large enough. This contradicts the definition of γ c (c).

Next result shows the existence of a bounded Palais-Smale sequence of J c in N V(R), for c ∈ D c . Proposition 3.10. Assume that W satisfies (H1). For any c ∈ D c , there exist R c > 0, δ c ∈ (0, 1) and a sequence {v n } ⊂ N V(R) such that

{v n } ⊂ Z δc , J c (v n ) → γ c (c), and J c (v n ) H -1 (R) → 0, (3.13)
where Z δc is defined by (3.5). Moreover, up a subsequence, v n v weakly in H 1 (R), for some v ∈ Z δc with v ≡ 0.

Before proving this proposition, let us recall a well-known result (see e.g. Lemma 3.3 in [START_REF] Tintarev | Concentration compactness[END_REF]). Lemma 3.11. Let {v n } ⊂ H 1 (R) be a bounded sequence and let q ∈ (2, ∞). Then v n → 0 in L q (R) if and only if v n (• + y n ) 0, for every sequence {y n } ⊂ R.

We will also need the following key lemma.

Lemma 3.12. Let v ∈ N E(R) and c > 0. Then the following identity holds

2J c (v) -J c (v)(v) = 1 2 R (W * (v(2 -v)))v 2 + c 2 4 R v(2 -v)v 2 (1 -v) 3 . (3.14) In particular, if v ≤ 1 -δ on R, then |2J c (v) -J c (v)(v)| ≤ max W L ∞ (R) 2 , c 2 4δ 3 (2 + v L ∞ (R) ) v L 2 (R) v 2 L 4 (R) . (3.15) Proof. Let ρ = 1 -v and η = 1 -ρ 2 , so that η = v(2 -v). From (3.1), we have 2J c (v) -J c (v)(v) = 1 2 R (W * η)(η -2(1 -v)v) - c 2 4 R η 2 ρ 2 - (1 -ρ 4 )(1 -ρ) ρ 3 = 1 2 R (W * η)v 2 + c 2 4 R ηv 2 ρ 3 ,
which is (3.14). Finally, the right-hand side can be bounded from above by max

W L ∞ (R) 2 , c 2 4δ 3 η L 2 (R) v 2 L 4 (R) , which, using that η L 2 (R) ≤ 2 -v L ∞ (R) v L 2 (R) , yields (3.15).
Proof of Proposition 3.10. Applying Proposition 3.9 with α = 1/n, we deduce the existence of R c , δ c and a sequence {w n } ⊂ N V(R) satisfying (3.13). Since {w n } is bounded in H 1 (R) and γ c (c) = 0, we infer from (3.15) that w n → 0 strongly in L 4 (R). Then we deduce from Lemma 3.11 the existence of a sequence {y n } ⊂ R such that v n := w n (• + y n ) does not converge weakly to 0 in H 1 (R). Of course, {v n } ⊂ Z δc still satisfies (3.13). Thus, there exists a subsequence (that we do not relabel) such that v n v in H 1 (R) for some v ≡ 0. In addition, since the

• H 1 (R) -norm is weakly lower semicontinuous, then v H 1 (R) ≤ R c + 1 -δ c . Moreover, since v n → v pointwise on R, it follows that v ≤ 1 -δ c on R, so that v ∈ Z δc .
Finally, we proceed to prove Theorem 1.1, that establishes the existence of solitons for a.e. c ∈ (0, √ 2σ).

Proof of Theorem 1.1. Let us fix c ∈ D c and let {v n } ⊂ H 1 (R) be the sequence given by Proposition 3.10. We set as usual ρ n = 1 -v n and η n = 1 -ρ 2 n . Then, by Remark 3.2,

J c (v n )(φ) = R v n φ + R (W * η n )ρ n φ - c 2 4 R 1 -ρ 4 n ρ 3 n φ → 0, for all φ ∈ C ∞ 0 (R), and v n v weakly in H 1 (R) for some v ∈ Z δ with v ≡ 0.
Observe that, by the Sobolev embedding (3.6), η n and 1 -ρ 4 n are also bounded in H 1 (R). Thus, by setting ρ = 1 -v and η = 1 -v 2 , we deduce by the uniqueness of the limit that, up to subsequences,

η n η and 1 -ρ 4 n 1 -ρ 4 in H 1 (R), (3.16 
)

v n → v and ρ n → ρ, in L ∞ loc (R).
(3.17)

We will show now that we can pass to the limit the three integral terms. The first one is trivial. For the second term, observe that by (1.23), the convolution is continuous in L 2 (R), which combined with (3.16) and the Rellich theorem implies that,

W * η n → W * η in L ∞ loc (R).
Since φ ∈ C ∞ 0 (R), using also (3.17), we conclude that (W * η n )ρ n φ → (W * η)ρφ in L 1 (R). For the last term, using that (1 -v n ) 3 ≥ δ 3 on R for all n, we similarly deduce that

R 1 -ρ 4 n ρ 3 n φ → R 1 -ρ 4 ρ 3 φ.
Gathering all together, we have proved that (2.13). Moreover, by elliptic regularity, we infer that ρ ∈ C ∞ (R). Therefore, by virtue of Proposition 2.4, it follows that u = ρe iθ , with θ defined by (2.14), belongs to N E(R) and is a nontrivial solution to (S(W, c)).

J (v) = 0, so that ρ = 1 -v ∈ 1 + H 1 (R) is a nontrivial positive solution to
In conclusion, we have shown that there exists a solution u ∈ N E(R) to (S(W, c)) for any c ∈ D c . Thus, the same holds for every c ∈ D, where

D := c∈(0, √ 2σ) D c ⊂ (0, √ 2σ). By (3.8) we have √ 2σ -c = |D c | ≤ |D| ≤ √ 2σ, for all c ∈ (0, √ 2σ). 
Taking limits as c → 0, we conclude that |D| = √ 2σ, which proves the theorem.

Proof of Corollary 1.2. Since W ≥ 0 a.e. and W(ξ) ≥ σ-ξ 2 /2, for a.e. |ξ| ≤ √ 2σ, it is immediate to check that for every σ ∈ (0, σ), we have W(ξ) ≥ σ-κ σ ξ 2 /2, for a.e. ξ ∈ R, where κ σ = σ/(2σ). By Theorem 1.1, we conclude the existence for a.e. speed in every the interval ]0, √ 2σ[, for any σ ∈ (0, σ), which yields the existence for a.e. c ∈ (0, √ 2σ).

Existence in the whole subsonic regime

Our next goal is to provide conditions on W in order to extend Theorem 1.1 and conclude the existence of solution for every subsonic speed. For this reason, we introduce the following assumptions.

(H2) W ∈ W 1,∞ (R). In addition either W ∈ W 2,∞ (R), or the map ξ → ξ W (ξ) is bounded and continuous a.e. on R.

(H3) W ∈ W 1,∞ loc (R) and there exists m ∈ [0, 1) such that W (ξ) ≥ -mξ for a.e. ξ > 0. Moreover, W(0) = 1.

(H4) W is given by a (signed) finite Borel measure. In particular, there is a constant

W such that W * f L p (R) ≤ W f L p (R) , for all f ∈ L p (R), p ∈ [1, ∞].
(H5) There exists a continuous function

V 0 : (0, √ 2) → (0, ∞) such that for any u ∈ N E(R) solution to (S(W, c)), with c ∈ (0, √ 2), we have u L ∞ (R) ≤ V 0 (c).
Recall that we are always assuming that (H0) holds. Observe that if W ∈ W 1,∞ loc (R), we can assume that W is continuous by the Sobolev embedding theorem, so that the condition W(0) = 1 in (H3) is meaningful. By integration, we also deduce that if (H3) holds, then

W(ξ) ≥ 1 -mξ 2 /2, for all ξ ∈ R. (4.1)
In particular, (H1) is satisfied with σ = 1 and κ = m/2, and Theorem 1.1 gives the existence of solitons for a.e. c ∈ (0, √ 2). Finally, let us remark that the condition W(0) = 1 is only a normalization of the potential, so that the speed of sound is from now on fixed and equal to c * (W) = √ 2. Indeed, if W(0) = 0, making a change of variable we can replace W(ξ) with W(ξ)/ W(0) as in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF], which gives the normalization.

Concerning (H4), invoking the results in [27, Section 2] and [START_REF] Folland | Real analysis[END_REF], we see that if f → W * f is a bounded linear operator from L 1 (R) to itself, then W is given by a finite Borel measure µ, i.e.

(W * f )(x) = R f (x -y)dµ(y), for all f ∈ L p (R), p ∈ [1, ∞]. (4.2) 
Thus W = R d|µ(y)| and (1.24) holds for f ∈ L p (R), g ∈ L p (R). In addition, µ is continuous, with µ(ξ) = R e -ixξ dµ(x). Consequently, if (H3) also holds, then

W(0) = µ(0) = W * 1 = 1. (4.3)
Now we can state our main theorem concerning the existence of solitons for every subsonic speed.

Theorem 4.1. Let c ∈ (0, √ 2 
) and assume that W satisfies (H2), (H3), (H4) and (H5). Assume in addition that mV 0 (c) 2 < 1, where m and V 0 (c) are given by (H3) and (H5) respectively. Then there exists a nontrivial solution u ∈ N E(R) to (S(W, c)).

Notice that assumption (H5) can be seen as an alternative way of imposing that the equation (S(W, c)) satisfies some type of maximum principle. Clearly, given a potential W, this is the only hypothesis difficult to verify. Remark that if one we can show the existence of a constant C > 0 such that any solution u ∈ N E(R) to (S(W, c)), with c ∈ (0, √ 2), satisfies u L ∞ (R) ≤ C, then (H5) holds true.

In Proposition 4.5, we will prove that (H5) holds for a potential of the form (1.11). Moreover, in this case ( W µ ) = A µ ( µ) , so that Theorem 1.3 follows immediately from Theorem 4.1 by taking m = 0 in (H3).

As explained in the introduction, for the proof of Theorem 4.1, we can take c ∈ (0, √ 2) and apply Theorem 1.1 to get the existence of a sequence of speeds {c n } and a sequence of associated solutions {v n } ∈ N E(R) to (S(W, c n )) such that c n → c. To conclude that {v n } converges to a finite energy solution v to (S(W, c)), we need to obtain uniform estimates for {v n }, and to get a more precise information of v, using the fact that each v n is the limit of a Palais-Smale sequence for J c . We deal with these problems in the following subsections.

Uniform estimates

We start by recalling a Pohozaev identity that was proved by the first author in [START_REF] De Laire | Non-existence for travelling waves with small energy for the Gross-Pitaevskii equation in dimension N ≥ 3[END_REF] in a more general framework. Proposition 4.2. Let c ≥ 0 and assume that W satisfies (H0) and (H2). Let u ∈ E(R) be a solution to S(W, c).

Then R |u | 2 = 1 4π R W(ξ) -ξ W (ξ) | η(ξ)| 2 dξ, ( 4.4 
)

where η = 1 -|u| 2 .
Proof. Let us remark that since η ∈ H 1 (R), we have

R |ξ|| η(ξ)| 2 dξ ≤ B(0,1) | η(ξ)| 2 dξ + B(0,1) c ξ 2 | η(ξ)| 2 dξ ≤ 2π f 2 H 1 (R) ,
so that ξ| η(ξ)| 2 ∈ L 1 (R) and the integral in (4.4) is well-defined when ( W ∈ L ∞ (R).

In the case that the map ξ → ξ W (ξ) is bounded and continuous a.e. on R, identity (4.4) is given by Propositions 5.1 and 5.3 in [START_REF] De Laire | Non-existence for travelling waves with small energy for the Gross-Pitaevskii equation in dimension N ≥ 3[END_REF], taking N = 1.

Let us suppose now that W ∈ W 2,∞ (R). By invoking Corollary 5.9, with s = 2 and = 1, we deduce that | • |η, | • |η ∈ L 2 (R). Then we can multiply S(W, c) by a test function, integrate by parts and apply the dominated convergence theorem, as explained in [START_REF] De Laire | Non-existence for travelling waves with small energy for the Gross-Pitaevskii equation in dimension N ≥ 3[END_REF], p. 1473, to obtain (4.4).

Notice that Proposition 4.2 can be applied to the focusing case W = -δ 0 , and it is immediate to deduce that then the only finite energy solution to S(W, c) are the constants, since W = -1.

More general examples can be constructed by defining an even function such that

W(ξ; g) = -ξ ∞ ξ g(y) y 2 dy, for ξ > 0,
with g a bounded nonnegative function, since W(ξ; g) -ξ W (ξ; g) ≤ 0 a.e. on R. For instance, if g = 1, then we obtain W(ξ; g) = -1. Consequently, we can construct potentials with arbitrary L 1 -norm, such that the only finite energy solution to (S(W, c)) are the trivial ones.

Corollary 4.3. For any α > 0, there exists a function W α ∈ C ∞ (R) satisfying (H0) and (H2),

with W α L 1 (R) = α and W α ≤ 0 on R, such that if u ∈ E(R) is a solution to (S(W α , c)) for some c ≥ 0, then u is constant.
Proof. Let us take g(y) = y 3 exp(-y 2 ), which gives W(ξ) = -|ξ|e -ξ 2 , for ξ ∈ R. In this manner, W is a smooth function with exponential decay, so that it suffices to consider W α = αW/ W L 1 (R) .

Identity (4.4), together with (2.4) and (2.6), allow us to prove the following nonvanishing property of nontrivial finite energy solutions to (S(W, c)). Then every nontrivial solution u ∈ E(R) to (S(W, c)) satisfies the estimate

W * η L ∞ (R) ≥ 2 -c 2 4 . (4.6)
In particular, if W satisfies (H3), then (4.6) holds.

Proof. Multiplying (2.4) by 2η and integrating by parts leads to 2

R (η ) 2 + 4 R η(W * η) -2c 2 R η 2 = 4 R |u | 2 η + 4 R η 2 (W * η).
Using now (2.6), we deduce that 3

R (η ) 2 + 4 R η(W * η) -c 2 R η 2 = 4 R |u | 2 + 4 R η 2 (W * η).
Combining with (4.4) and applying Plancherel's identity, we derive 3

R (η ) 2 + 2 R η(W * η) -c 2 R η 2 + 1 π R ξ W (ξ)| η(ξ)| 2 dξ = 4 R η 2 (W * η).
Again by Plancherel's identity, this equality can be recast as

1 2π R 3ξ 2 + 2 W(ξ) + 2ξ( W) (ξ) | η(ξ)| 2 dξ -c 2 R η 2 = 4 R η 2 (W * η).
Therefore, inequality (4.5) implies that

(2 -c 2 ) R η 2 ≤ 4 R η 2 (W * η) ≤ 4 W * η L ∞ (R) R η 2 .
Thus result (4.6) follows by taking into account that η is nontrivial, i.e. η L 2 (R) > 0.

Finally, we remark that if (H3) is satisfied, then (4.1) holds true, which implies that

3ξ 2 + 2 W(ξ) + 2ξ W (ξ) -2 ≥ 3ξ 2 + 2(1 -mξ 2 /2) -2mξ 2 -2 = 3(1 -m)ξ 2 ≥ 0.
This completes the proof.

The next proposition shows that the potential in (1.11) satisfies (H5).

Proposition 4.5. Let c > 0 and assume that W µ = A µ (δ 0 + µ) is as in (1.11). Then, for every solution u ∈ E(R) to (S(W, c)), the following estimates hold:

u 2 L ∞ (R) ≤ B 0 (µ) 1 + c 2 4 , (4.7 
)

u L ∞ (R) ≤ B 1 (µ) 1 + c 2 4 2 . ( 4.8) 
where B 0 (µ) = 1+ µ + 1µ -and B 1 (µ) is a constant depending only on µ + and µ -. Moreover, for any k ≥ 2 there is a constant C k (c) > 0, depending only on c and k, and B k (µ) > 0, depending only on µ + , µ -and k, such that

D k u L ∞ (R) ≤ B k (µ)C k (c).
(4.9)

Proof. Since c > 0, by Propositions 2.2 and 2.4, the function ρ = |u| satisfies the equation (2.13). By using Young's inequality and the fact that µ * 1 = R dµ(x) = µ(0), we estimate the term on the right-hand side of the equation as follows, where we drop the subscript µ for simplicity,

W * (1 -ρ 2 ) = A(1 -ρ 2 ) + Aµ * (1 -ρ 2 ) = A(1 -ρ 2 ) + A µ(0) -Aµ * (ρ 2 ) = 1 -Aρ 2 -Aµ * (ρ 2 ) = 1 -Aρ 2 -Aµ + * (ρ 2 ) + Aµ - * (ρ 2 ),
where we used that A(1

+ µ(0)) = 1. Therefore W * (1 -ρ 2 ) ≤ 1 -Aρ 2 + A(µ -) * (ρ 2 ) ≤ 1 -Aρ 2 + A µ -ρ 2 L ∞ (R) , (4.10) and W * (1 -ρ 2 ) L ∞ (R) ≤ 1 + A ρ 2 L ∞ (R) + A µ -ρ 2 L ∞ (R) . (4.11)
Plugging (4.10) into (2.13) leads to

-ρ + ρ Aρ 2 -1 - c 2 4 -A µ -ρ 2 L ∞ (R) ≤ 0 on R.
By applying the maximum principle or Proposition 2.1 in [START_REF] Farina | From Ginzburg-Landau to Gross-Pitaevskii[END_REF], we conclude that

ρ(x) 2 ≤ 1 A 1 + c 2 4 + µ -ρ 2 L ∞ (R) , for all x ∈ R. (4.12) 
Let us assume that there exists some x ∈ R such that ρ(x) > 1; otherwise, the result is trivial. Since ρ(±∞) = 1, there exists x ∈ R such that ρ(x) = ρ L ∞ (R) . Thus, using (4.12) in x, we get

(1 -µ -) ρ 2 L ∞ (R) ≤ 1 A 1 + c 2 2 ,
which proves (4.7).

In order to establish (4.8), we follow [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF][START_REF] Farina | From Ginzburg-Landau to Gross-Pitaevskii[END_REF] and define v(x) = u(x)e ic 2 x , for x ∈ R. It is immediate to verify that v ∈ E(R) and that it solves the equation

-v = c 2 4 + W * (1 -|v| 2 ) v on R. (4.13) 
From (4.7) and (4.11), it follows that

v L ∞ (R) ≤ v L ∞ (R) c 2 4 + 1 + A ρ 2 L ∞ (R) + A µ -ρ 2 L ∞ (R) ≤ 1 + c 2 4 3 2 B 1/2 0 1 + AB 0 + AB 0 µ -).
Recalling that A(1

+ µ + -µ -) = 1, it is clear that v L ∞ (R) ≤ 2 1 + c 2 4 3 2 B 1/2 0 .
Thus, using the Landau-Kolmogorov interpolation inequality (see e.g. p.133 in [START_REF] Burenkov | Sobolev spaces on domains[END_REF])

v L ∞ (R) ≤ √ 2 v L ∞ (R) v L ∞ (R) ,
we infer that

v L ∞ (R) ≤ 2 √ 2B 0 1 + c 2 4 2 .
Therefore, by definition of v and using that c/2 ≤ 1 + c 2 /4, we deduce that

u L ∞ (R) ≤ c 2 u L ∞ (R) + v L ∞ (R) ≤ 1 + c 2 4 2 B 1/2 0 1 + 2 √ 2B 1/2 0 . Hence, taking B 1 (µ) := B 1/2 0 1 + 2 √ 2B 1/2 0
, we have (4.8). Differentiating (4.13) and using the higher order Landau-Kolmogorov inequalities, we finally conclude the proof of (4.9).

Next two propositions show that, for general potentials satisfying the continuity property (H4), an L ∞ estimate for the solutions (i.e. condition (H5)) implies a priori estimates also for the derivatives as well as a uniform lower bound. Proposition 4.6. Assume that W satisfies (H4) and (H5). Then, for every k ∈ N, there exist continuous functions 2 , where B 1 (µ) is the constant in Proposition 4.5. Proof. By using (4.13) and (H4), the proof follows the same line as Proposition 4.5. Proposition 4.7. Assume that W satisfies (H4) and (H5). Let c ∈ (0, √ 2) and let u ∈ N E(R) be a solution to (S(W, c)). Then

V k : (0, √ 2) → (0, ∞) such that for any u ∈ N E(R) solution to (S(W, c)), with c ∈ (0, √ 2), we have D k u L ∞ (R) ≤ V k (c). In particular, if W = W µ is given by (1.11), then V 1 (c) = B 1 (µ)(1 + c 2 /4)
|u(x)| ≥ 1 + 4c 2 /V 1 (c) -1 1 + 4c 2 /V 1 (c) + 1 , for all x ∈ R, (4.14) 
where V 1 is the function given by Proposition 4.6.

Proof. Since u ∈ N E(R), we have that min R |u| > 0. Let x 0 ∈ R be such that u(x 0 ) = min R |u|.

From the identity (2.6), we deduce that the function η = 1 -|u| 2 satisfies

c 2 η(x 0 ) 2 ≤ u L ∞ (R) (1 -η(x 0 )). (4.15)
By using the estimate in Proposition 4.6, we get

c 2 η(x 0 ) 2 + V 1 (c)η(x 0 ) -V 1 (c) ≤ 0, which implies that η(x 0 ) ≤ -V 1 (c) + V 1 (c) 2 + 4V 1 (c)c 2 2c 2 .
In terms of |u(x 0 )| we get

|u(x 0 )| 2 ≥ 1 + V 1 (c) -V 1 (c) 2 + 4V 1 (c)c 2 2c 2 = V 1 (c) 2 + 4V 1 (c)c 2 -V 1 (c) V 1 (c) 2 + 4V 1 (c)c 2 + V 1 (c) ,
which completes the proof.

The following nonvanishing property of the functional A will be useful.

Lemma 4.8. Assume that W satisfies (H2), (H4), (H5) and (4.5). Then there exists C > 0 such that for any nonzero solution v ∈ H 1 (R) to (3.3), we have

A(v) ≥ C(2 -c 2 ) 2 16 . (4.16) Proof. Let η = 1 -|v| 2 . Then A(v) = 1 2 R (v ) 2 + 1 4 R (W * η)η = 1 8 R (η ) 2 1 -η + 1 4 R (W * η)η ≥ 1 8 1 -η L ∞ (R) W 2 L ∞ (R) R (W * η ) 2 + 1 4 W L ∞ (R) R (W * η) 2 .
By using the Sobolev's embedding, (4.6) and (4.14), we conclude that there exists C > 0 such that

A(v) ≥ C W * η 2 H 1 (R) ≥ C W * η 2 L ∞ (R) ≥ C(2 -c 2 ) 2 16 .

Refined study of Palais-Smale sequences

We start by recalling a classical result of profile decomposition of a bounded sequence, that is a refinement of the Banach-Alaoglu theorem. We use here the version given in Theorem 4.6.5 in [START_REF] Tintarev | of De Gruyter Series in Nonlinear Analysis and Applications[END_REF] (see also [START_REF] Banica | Global existence, scattering and blow-up for the focusing NLS on the hyperbolic space[END_REF][START_REF] Hmidi | Blowup theory for the critical nonlinear Schrödinger equations revisited[END_REF]).

Theorem 4.9. Let {v n } ⊂ H 1 (R) be a bounded sequence. Then there exist a family of concentration profiles {w j } ⊂ H 1 (R) and points {y n,j } ⊂ R such that, on a renumbered subsequence,

y n,1 = 0, lim n→∞ |y n,i -y n,j | → ∞, if i = j, v n (• + y n,j ) w j in H 1 (R) and v n (• + y n,j ) → w j in L ∞ loc (R), v n -S n → 0 in L q (R), where S n = ∞ j=1 w j (• -y n,j ), (4.17) 
for all q ∈ (2, ∞). Moreover, the series S n converges in H 1 (R) unconditionally and uniformly in n, and for all ϕ ∈ L 2 (R), {α n } ⊂ R and q ∈ (2, ∞), we have

v n = k j=1 w n,j + r n,k , with lim k→∞ lim sup n→∞ R r n,k (• -α n )ϕ = lim k→∞ lim sup n→∞ r n,k L q (R) = 0, (4.18)
where w n,j = w j (• -y n,j ). In addition,

D m v n 2 L 2 (R) = k j=1 D m w j 2 L 2 (R) + D m r n,k 2 L 2 (R) + o n (1), for m ∈ {0, 1}. (4.19) 
In Theorem 4.9 and for the rest of the article, the notation o n (1) stands for a sequence in R such that o n (1) → 0, as n → ∞. Besides, from now on o n (1; L 1 ) will denote a function such that o n (1; L 1 ) L 1 (R) → 0, as n → ∞.

Notice also that we added to the statement in [START_REF] Tintarev | of De Gruyter Series in Nonlinear Analysis and Applications[END_REF] that v n (•+y n,j ) converges to w j in L ∞ loc (R), by invoking the Rellich theorem.

We recall now a version of the Brezis-Lieb lemma given in [START_REF] Van Schaftingen | Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent[END_REF].

Lemma 4.10. Assume that G ∈ C 1 (R; R), with G(0) = 0, and that there exist a > 0 and q > 1 such that

|G (t)| ≤ a(|t| + |t| q ), for all t ∈ R. (4.20) 
If the sequence {v n } is bounded in H 1 (R) and converges a.e. to v, then

G(v n ) = G(v n -v) + G(v) + o n (1; L 1 ). (4.21)
Moreover, using the notations in Theorem 4.9, if the profile decomposition is finite, i.e. there exists k ≥ 1 such that

v n = k j=1
w n,j + r n , with r n 0 in H 1 (R) and r n → 0 in L q (R) for all q ∈ (2, ∞),

then 

G(v n ) = k j=1 G(w n,j ) + G(r n ) + o n (1; L 1 ). ( 4 
G(v n ) = G(w 1 ) + G(v n -w 1 ) + o n (1; L 1 ). (4.24)
Now, again by Theorem 4.9 and using that |y n,2 | → ∞ as n → ∞, we derive that τ n,2 v nτ n,2 w 1 → w 2 a.e. on R. Thus (4.21) implies that

G(τ n,2 v n -τ n,2 w 1 ) -G(w 2 ) -G(τ n,2 v n -τ n,2 w 1 -w 2 ) = o n (1; L 1 ).
Therefore, by a change of variables,

G(v n -w 1 ) -G(w n,2 ) -G(v n -w 1 -w n,2 ) = o n (1; L 1 ).
Combining with (4.24), we conclude that

G(v n ) = G(w 1 ) + G(w n,2 ) + G(v n -w 1 -w n,2 ) + o n (1; L 1 ).
By repeating the same argument k times, we get (4.23).

In the following lemma we deal with the splitting of the singular term B.

Lemma 4.11. Let {v

n } ⊂ H 1 (R) be a bounded sequence such that v n v in H 1 (R) for some v ∈ H 1 (R). Assume that there exists δ ∈ (0, 1) such that v n ≤ 1 -δ on R. Then, there is N ∈ N such that, v ≤ 1 -δ, v n -v ≤ 1 -δ/2 on R, for all n ≥ N, (4.25) and B(v n ) = B(v n -v) + B(v) + o n (1). (4.26)
Moreover, if the profile decomposition is finite as in (4.22), then w j ≤ 1 -δ, on R, for all j = 1, . . . , k, (4.27)

r n ≤ 1 - δ 2 , on R, for all n ≥ N, ( 4.28) 
and

B(v n ) = k j=1 B(w j ) + B(r n ) + o n (1). ( 4 

.29)

Proof. We first prove (4.25). Since v n → v a.e. on R and

v n ≤ 1 -δ, it follows that v ≤ 1 -δ. Now, since v ∈ H 1 (R), we can fix R > 0 such that |v| ≤ δ/2 a.e. on R \ B R (0). Then, for all n, v n -v ≤ 1 -δ + δ/2 = 1 -δ/2 on R \ B R (0). Moreover, since v n → v in L ∞ (B R (0)), then, for any n large enough, v n -v ≤ v n -v L ∞ (B R (0)) ≤ 1 -δ/2 on B R (0).
In any case, (4.25) holds.

We turn now to proving (4.26). Using the notation in Lemma 3.1, we see that

B(v) = R H(v(x))dx, where H(t) = t 0 h(s)ds, h(s) = s(2 -s)(s 2 -2s + 2)
4(1 -s) 3 .

We remark that we can easily construct a bounded function

χ δ ∈ C 1 (R) such that χ δ (s) = 1 4(1 -s) 3 for all s ≤ 1 - δ 2 , χ δ L ∞ (R) ≤ B δ , ( 4.30) 
for some constant B δ > 0 depending only on δ. Then the function h(s

) = s(2-s)(s 2 -2s+2)χ δ (s) clearly satisfies | h(s)| ≤ C δ (|s| + s 4 ), for all s ∈ R,
for some C δ > 0 depending only on δ. Therefore, condition (4.20) holds for G = H, being H(t) = t 0 h(s)ds. Thus we obtain

H(v n ) = H(v n -v) + H(v) + o n (1; L 1 ).
Using now (4.25), we conclude that

H(v n ) = H(v n -v) + H(v) + o n (1; L 1 ), (4.31) 
which gives (4.26).

Next, we prove (4.27) and (4.28). In order to do so, let us fix ε > 0 to be chosen later. The density of C ∞ 0 (R) in H 1 (R) implies that, for every j = 1, . . . , k, there exist g j ∈ C ∞ 0 (R) and

ϕ j ∈ H 1 (R) such that w j = g j + ϕ j , ϕ j L ∞ (R) < ε/k. (4.32)
Hence, we can take R > 0 such that ∪ k j=1 supp(g j ) ⊂ B R (0). Let us denote g n,j = g j (• -y n,j ). It is clear that supp(g n,j ) ⊂ B R (y n,j ), for all j = 1, . . . , k.

In particular, since |y n,i -y n,j | → ∞ for all i = j, there is N ∈ N such that, for all n ≥ N , supp(g n,i ) ∩ supp(g n,j ) = ∅ for all i = j. (4.33)

On the other hand, by Theorem 4.9, v n (• + y n,j ) → w j a.e. on R, so (4.27) follows directly from the fact that v n ≤ 1 -δ. Moreover, v n (• + y n,j ) → w j in L ∞ (B R (0)), for all j = 1, . . . , k. Thus, we may take N larger if necessary in order to get, for all n ≥ N and for all j = 1, . . . , k,

v n (• + y n,j ) -w j L ∞ (B R (0)) < ε/k. (4.34)
To show (4.28), fix x ∈ R and n ≥ N . Observe that

r n (x) = v n (x) - k j=1 g n,j (x) - k j=1 ϕ j (x -y n,j ).
Now we have two possibilities. On the one hand, if x ∈ supp(g n,j ) for any j = 1, . . . , k, then, using (4.32), we obtain

r n (x) = v n (x) - k j=1 ϕ j (x -y n,j ) < 1 -δ + ε.
On the other hand, if x ∈ supp(g n,i ) for some i = 1, . . . , k, then i is unique by virtue of (4.33). We may assume without loss of generality that i = 1. Moreover, x ∈ B R (y n,1 ), so z n := x -y n,1 ∈ B R (0). Therefore, using (4.32) and (4.34), we deduce that

r n (x) = v n (x) -g n,1 (x) - k j=1 ϕ j (x -y n,j ) = v n (z n + y n,1 ) -w 1 (z n ) - k j=2 ϕ j (x -y n,j ) < v n (• + y n,1 ) -w 1 L ∞ (B R (0)) + (k -1)ε k < ε.
In any case, we can choose ε = min{δ/2, 1 -δ/2} = δ/2 so that (4.28) holds. Once (4.27) and (4.28) are proved, (4.29) follows from Lemma 4.10 by applying the same procedure by truncation described above.

In order to deal with the splitting of the nonlocal term, we introduce the notation

u, v = R (W * u)v, |||u||| 2 = u, u , Q(u) = u(2 -u), u(2 -u) , for all u, v ∈ H 1 (R).
Notice that •, • is symmetric and bilinear, so that ||| • ||| defines a norm provided that W 0. Lemma 4.12. Let {v n } ⊂ H 1 (R) be a bounded sequence. Using the notation in Theorem 4.9, we have, up to a subsequence, 

Q(v n ) = k j=1 Q(w j ) + Q(r n,k ) + ε n,k , ( 4 
A(v n ) = k j=1 A(w j ) + A(r n,k ) + ε n,k ,
for some {ε n,k } ⊂ R satisfying (4.36). Moreover, if W ≥ 0 a.e. on R, then A(r n,k ) ≥ 0, so that

k j=1 A(w j ) ≤ lim sup n→∞ (A(v n ) + |ε n,k |) ≤ lim sup n→∞ A(v n ) + lim sup n→∞ |ε n,k |.
Then, (4.36) implies that

∞ k=1 A(w k ) ≤ lim sup n→∞ A(v n ). (4.37)
The inequality (4.37) will be used below in order to show that, if {v n } is a Palais-Smale sequence of J c at level γ c (c) = 0, then v n is decomposed only in a finite number of profiles w 1 , . . . , w k .

Proof of Lemma 4.12. To prove (4.35), we first remark that

Q(u) = 4|||u||| 2 + |||u 2 ||| 2 -4 u, u 2 .
Observe also that, for any

f f f = (f 1 , f 2 , . . . , f m ) ∈ H 1 (R) m , we have m i=1 f i 2 = m i=1 |||f i ||| 2 + T 1 (f f f ), T 1 (f f f ) = m i =j f i , f j , (4.38) m i=1 f i 2 2 = m i=1 |||f 2 i ||| 2 + T 2 (f f f ), T 2 (f f f ) = m i =j f 2 i , f 2 j + 2 m k;i =j f 2 k , f i f j + m i =j;k = f i f j , f k f , (4.39) m i=1 f i , m i=1 f i 2 = m i=1 f i , f 2 i + T 3 (f f f ), T 3 (f f f ) = m i =j f i , f 2 j + m k;i =j f k , f i f j . (4.40)
In sum,

Q m i=1 f i = m i=1 Q(f i ) + T (f f f ), with T = 4T 1 + T 2 -4T 3 . (4.41)
From now on, the notation X Y means that there exists a constant C independent of n and k such that X ≤ CY . Since we are assuming that We aim to show that ε n,k satisfies (4.36).

{v n } is bounded in H 1 (R), we can write v n H 1 (R)
w i L p (R) 1, r n,k L p (R)
Let us start with T 1 (w n,1 , . . . , w n,k , r n,k ), where there are two types of terms. The first type is of the form w n,i , w n,j with i = j. This case is simple to handle by using that |y n,j -y n,i | → ∞, which leads to w n,i , w n,j = w i , w j (• -y n,j + y n,i ) → 0, as n → ∞.

The other terms in the summation T 1 (w n,1 , . . . , w n,k , r n,k ) are of the form w n,i , r n,k . In this case we apply (4.18) with ϕ = W * w i and α n = -y n,i , so we get

lim k→∞ lim sup n→∞ | w n,i , r n,k | = lim k→∞ lim sup n→∞ | w i , r n,k (• + y n,i ) | = 0.
Let us study now T 2 (w n,1 , . . . , w n,k , r n,k ) and T 3 (w n,1 , . . . , w n,k , r n,k ). Here we find several types of terms. We first remark that the terms of the form w n,i , w 2 n,j and w 2 n,i , w 2 n,j , with i = j, and r n,k , w 2 n,i can be dealt with as we did above for the terms in T 1 (w n,1 , . . . , w n,k , r n,k ). Next we show how to treat the rest of the terms.

First we consider the terms of the form, for i = j,

F n = g n , w n,i w n,j , (4.43)
for some g n with g n L p (R)

1 for every p ∈ [2, ∞].
In view of (4.42), this is the case when considering, for 1 ≤ ≤ m ≤ k,

g n ∈ {r n,k , r 2 n,k , r n,k w n, , w n, w n,m , w n, }. (4.44)
In order to deal with (4.43), by the density of C ∞ 0 (R) in H 1 (R), we may consider two sequences

{a m }, {b m } ⊂ C ∞ 0 (R) such that a m → w i and b m → w j , in H 1 (R).
Of course, {a m }, {b m } depend on i, j respectively, we do not denote explicitly this dependence for clarity. Notice that

F n = A n,k,m + B n,k,m , (4.45) 
where

A n,k,m = g n , w n,i [w n,j -b m (• -y n,j )] + g n , b m (• -y n,j )[w n,i -a m (• -y n,i )] and B n,k,m = g n , b m (• -y n,j )a m (• -y n,i ) .
On the one hand, we have by (1.23) and Hölder's inequality,

|A n,k,m | w j -b m L 2 (R) + b m L ∞ (R) w i -a m L 2 (R) .
Thus, given ε > 0, we may fix m, independent of n, such that |A n,k,m | < ε for every n. On the other hand, since a m and b m have compact support and |y n,i -y n,j | → ∞ as n → ∞, it follows that B n,k,m = 0 for every n large enough. In sum,

lim n→∞ F n = 0.
We focus now on the terms of the form G n = g n , w n,i r n,k , with g n satisfying (4.44). Again by (1.23), (4.42) and Hölder's inequality, we deduce the estimate

|G n | w n,i r n,k L 2 (R) r n,k L 4 (R) .
Using (4.18) with q = 4, we conclude that

lim k→∞ lim sup n→∞ |G n | = 0.
Finally, it remains to consider the terms of the form w n,i , r 2 n,k and w 2 n,i , r 2 n,k , which can be handled as G n . Consequently, the proof of is complete.

Applying the splitting properties that we have proved to bounded Palais-Smale sequences, we obtain the following general theorem. Theorem 4.14. Assume that W satisfies (H2), (H4), (H5), (4.5) and W ≥ 0 a.e. on R. Let c > 0 and let {v n } ⊂ N V(R) be a Palais-Smale sequence of J c at level γ, for some γ = 0, i.e.

J c (v n ) → γ, J c (v n ) H -1 (R) → 0. (4.46)
Assume in addition that there exist R > 0 and δ ∈ (0, 1) such that, for all n,

v n H 1 (R) ≤ R and v n ≤ 1 -δ on R. (4.47)
Then there exist k ∈ N and w 1 , w 2 , . . . ,

w k ∈ N V(R) such that k j=1 J c (w j ) = γ. (4.48)
In addition, for any 1 ≤ j ≤ k, the function ρ j = 1 -w j is a nontrivial finite energy solution to (2.13) and ρ j ≥ δ on R.

Proof. Since {v n } is bounded in H 1 (R), by Theorem 4.9, there are profiles {w j } j≥1 ⊂ H 1 (R) and points {y n,j } ⊂ R such that (4.17), (4.18) and (4.19) hold. In addition, as in Lemma 4.11, we infer that w j ≤ 1 -δ on R, for all j ≥ 1. Moreover, as in the proof of Theorem 1.1, we conclude that J c (w j ) = 0, so that w j is a solution to (3.3) and ρ j = 1 -w j is solution to (2.13). Furthermore, we see that {A(v n )} is bounded. Since W ≥ 0 a.e. on R, we deduce from (4.37) in Remark 4.13 that

∞ j=1 A(w j ) ≤ C, ( 4.49) 
for some constant C > 0 depending only on sup n v n H 1 (R) and W L ∞ (R) . Let us show that there is j 0 ≥ 1 such that w j 0 = 0. Indeed, assuming otherwise, i.e. w j = 0, for all j ≥ 1, we deduce from (4.17) that S n = 0, so that v n → 0 in L 4 (R). On the other hand, (4.46) 

implies that 2J c (v n ) -J c (v n )(v n ) → 2γ.
This leads to a contradiction with the estimate in (3.15), since γ = 0.

In addition, there can only be a finite number of nonzero profiles. Indeed, if w j is nonzero, then Lemma 4.8 provides a positive lower bound for A(w j ), which is independent of j. Therefore, (4.49) implies that the number of nonzero profiles if finite. Consequently, without loss of generality, we can assume that there is k ≥ 1 such that w j ≡ 0, for all j ≤ k, and w j ≡ 0, for all j > k. In this manner, the profile decomposition is finite, and we can write 

v n = k j=1 w n,j + r n , ( 4 
J c (v n ) = k j=1 J c (w j ) + J c (r n ) + o n (1). (4.51)
Therefore, to prove (4.48), it is enough to show that

J c (r n )(r n ) → 0. (4.52)
Indeed, assuming this claim and using that r n L 4 (R) → 0, we can invoke the estimate in (3.15) to conclude that J c (r n ) converges to 0. Thus, taking the limit in (4.51), we obtain (4.48), which concludes the proof the theorem.

To establish (4.52), recall that by (3.1),

J c (r n )(r n ) = R r 2 n + f (r n ), (1 -r n )r n -c 2 R h(r n )r n . Remark that, if {z n } is bounded in H 1 (R) and {a n } is bounded in L 4 (R), then f (z n ), a n r n = o n (1). (4.53)
Indeed, this follows from the fact that r n L 4 (R) → 0 and the estimate

| f (z n ), a n r n | ≤ W L ∞ (R) f (z n ) L 2 (R) a n L 4 (R) r n L 4 (R) .
Therefore, using also (4.50), we obtain

J c (r n )(r n ) = R v n r n - k j=1 R w n,j r n + f (r n ), r n -c 2 R h(r n )r n + o n (1). (4.54)
On the other hand, since J c (w j ) = 0, we deduce that J c (w n,j ) = 0, so that, using also (4.53), we get

0 = J c (w n,j )(r n ) = R w n,j r n + f (w n,j ), r n -c 2 R h(w n,j )r n + o n (1). (4.55)
Similarly, using that J c (v n ) H -1 (R) → 0 and (4.53), we obtain

o n (1) = J c (v n )(r n ) = R v n r n + f (v n ), r n -c 2 R h(v n )r n + o n (1). (4.56)
By putting together (4.54), (4.55) and (4.56), we conclude that

J c (r n )(r n ) = r n , f (r n ) -f (v n ) + k j=1 f (w n,j ) -c 2 R (h(r n ) -h(v n ) + k j=1 h(w n,j ))r n + o n (1).
(4.57) Notice now that, using (4.50) and that f (s) = 2s -s 2 ,

f (r n ) -f (v n ) + k j=1 f (w n,j ) = -r 2 n + v 2 n - k j=1 w 2 n,j .
Similarly,

h(r n ) -h(v n ) + k j=1 h(w n,j ) = g(r n ) -g(v n ) + k j=1 g(w n,j ), with g(s) := h(s) -s = 3s 2 -8s + 6 4(1 -s) 3 s 2 .
In sum, (4.57) can be simplified as

J c (r n )(r n ) = -r n , r 2 n -v 2 n + k j=1 w 2 n,j -c 2 R (g(r n ) -g(v n ) + k j=1 g(w n,j ))r n + o n (1). (4.58)
Moreover, since r n ≤ 1 -δ/2, v n ≤ 1 -δ and w n,j ≤ 1 -δ, we can replace g with gχ δ , where g(s) = (3s 2 -8s+6)s 2 and χ δ is defined in (4.30). Applying Lemma 4.10 to (4.58) with G(s) = s 2 and with G = gχ δ , and using (H4), we finally conclude that there is a function

o n (1; L 1 ) such that |J c (r n )(r n )| W ∞ r n L ∞ (R) o n (1; L 1 ) L 1 (R) .
This completes the proof of (4.52).

The property (4.48) given by Theorem 4.14 can be seen as an a priori estimate for solutions obtained via splitting of Palais-Smale sequences. However, it is not clear how to use this property if J c changes sign. The following lemma guarantees that, actually, J c (1 -ρ) is nonnegative if ρ is a finite energy solution with sufficiently small maximum. (i) If (H2) is satisfied, then

J c (1 -ρ) = R (ρ ) 2 + 1 8π R ξ W (ξ)| η| 2 . (4.59) (ii) If (H3) is satisfied, then J c (1 -ρ) ≥ 1 2 R (1 -mρ 2 )(ρ ) 2 + 1 4 R 1 - c 2 2ρ 2 η 2 . (4.60) (iii) If (H2
) and (H3) are satisfied, then

J c (1 -ρ) ≥ R (1 -mρ 2 )(ρ ) 2 . (4.61)
Proof. Combining (4.4) and (2.7) yields

c 2 4 R η 2 1 -η + 1 4 R (η ) 2 1 -η = 1 4π R W(ξ) -ξ W (ξ) | η(ξ)| 2 dξ.
Writing the left-hand side in terms of ρ and multiplying by 1/2, we arrive at

c 2 8 R (1 -ρ 2 ) 2 ρ 2 + 1 2 R (ρ ) 2 = 1 8π R W(ξ) -ξ W (ξ) | η(ξ)| 2 dξ.
Observe now that, by Plancherel's identity,

J c (1 -ρ) = 1 2 R (ρ ) 2 + 1 8π R W(ξ)| η(ξ)| 2 dξ - c 2 8 R η 2 ρ 2 . (4.62)
From both previous identities, we conclude the proof of (4.59). Now, using (H3) and that η = -2ρρ , we derive

J c (1 -ρ) ≥ R (ρ ) 2 - m 8π R ξ 2 | η| 2 = R (ρ ) 2 - m 8π R | η | 2 = R (ρ ) 2 - m 4 R (η ) 2 = R (1 -mρ 2 )(ρ ) 2 ,
which gives (4.61). The proof of (4.60) follows directly from (4.62), using (4.1) and that η = -2ρρ .

We are now in position to prove a uniform estimate for solutions obtained from bounded Palais-Smale sequences. Corollary 4.16. Assume that W satisfies (H2), (H3), (H4) and (H5). Assume in addition that mV 0 (c) 2 < 1, where m and V 0 (c) are given by (H3) and (H5) respectively. Then, for any c ∈ (0, √ 2), there exist sequences {c n } ⊂ (c, √ 2) and {u n } ⊂ N E(R) such that c n → c and u n is a nontrivial solution to (S(W, c n )) for all n. In addition, there exist C 1 , C 2 > 0 and δ c ∈ (0, 1), independent of n, such that, denoting

ρ n = |u n |, ρ n 2 L 2 (R) ≤ C 1 J cn (1 -ρ n ) ≤ C 2 ,
for all n, 

n,m } ⊂ N V(R) such that v n,m H 1 (R) ≤ R n , v n,m ≤ 1 -δ n , lim m→∞ J cn (v n,m ) = γ c (c n ), lim m→∞ J cn (v n,m ) H -1 (R) = 0,
where R n > 0 and δ n ∈ (0, 1) do not depend on m. Therefore, Theorem 4.14 yields

kn j=1 J cn (w j,n ) = γ c (c n ),
being 1 -w j,n nontrivial finite energy solutions to (2.13) for every j = 1, . . . , k n . Let us denote w 1,n = w n and ρ n = 1 -w n . The continuity of V 0 implies that mV 0 (c n ) 2 < 1 for every n large enough. Then, by Lemma 4.15, we deduce that

(1 -mV 0 (c n ) 2 ) R (ρ n ) 2 ≤ J cn (w n ) ≤ γ c (c n ).
Since γ c is a nonincreasing function and {c n } is nondecreasing, we have that γ c (c n ) ≤ γ c (c 1 ). Moreover, again by the continuity of V 0 , it is clear that the sequence {1 -mV 0 (c n ) 2 } is bounded away from zero. In conclusion, we obtain (4.63).

By Lemma 2.4, there is θ n such that u n = ρ n e iθn is a finite energy solution to (S(W, c n )). Finally, we deduce from (4.14) in Proposition 4.7, that for all x ∈ R,

|u n (x)| ≥ δ c := inf s∈[c,c] 1 + 4s 2 /V 1 (s) -1 1 + 4c 2 /V 1 (s) + 1 ,
which proves (4.64).

Passing to the limit

For any c ∈ (0, √ 2), Corollary 4.16 provides a sequence of nontrivial finite energy solutions u n to (S(W, c n )) with c n → c. The last step for completing the proof of Theorem 4.1 consists of passing to the limit in (S(W, c n )), controlling that the limit is nontrivial and has finite energy. To this aim, the estimates proved in the previous subsections will be essential. In this subsection we adapt a technique from [START_REF] Bellazzini | Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime[END_REF] in a similar context.

We start with a lemma that provides a sufficient condition for the boundedness of the sequence of energies. Lemma 4.17. Assume that the hypotheses in Corollary 4.16 hold, and let {ρ n } be given by Corollary 4. [START_REF] Carles | On the Gross-Pitaevskii equation for trapped dipolar quantum gases[END_REF]

. Set S r n = {x ∈ R : ρ n (x) < r}. If for some r ∈ (c/ √ 2, 1) the sequence {|S r n |} is bounded, then {E(u n )} is also bounded.
Proof. Let {c n } and δ c ∈ (0, 1) be given by Corollary 4.16, and let us take some r ∈ (0, 1). Since mV 0 (c n ) 2 < 1 for all n large, we have 1 -mρ 2 n , so by invoking (4.60), we obtain

C ≥ J cn (1 -ρ n ) ≥ 1 4 S r n 1 - c 2 n 2ρ 2 n (1 -ρ 2 n ) 2 + 1 4 (S r n ) c 1 - c 2 n 2ρ 2 n (1 -ρ 2 n ) 2 ≥ 1 4 1 - c 2 n 2r 2 R (1 -ρ 2 n ) 2 - c 2 n (1 -δ 2 c ) 2 8δ 2 c |S r n |. Since c n → c, choosing r ∈ (c/ √ 2, 1), we infer that R (1 -ρ 2 n ) 2 ≤ C 1 (1 + |S r n |), for all n, for some constant C 1 > 0 independent of n. Thus, if {|S r n |} is bounded, we get R (1 -ρ 2 n ) 2 ≤ C 2 , for some C 2 > 0. Recall that J cn (1 -ρ n ) = E(u n ) -c n p(u n ) (see Remark 2.
3). Then, using (4.63) and (4.64) again, we conclude

E(u n ) = J cn (1 -ρ n ) + c 2 n 4 R (1 -ρ 2 n ) 2 ρ 2 n ≤ C + c 2 n 4δ 2 c R (1 -ρ 2 n ) 2 ≤ C 3 ,
for some C 3 > 0.

Next result is proved as Lemma 6.6 in [START_REF] Bellazzini | Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime[END_REF].

Lemma 4.18. Let {f n } ⊂ L 1 (R) be a bounded sequence, and consider a sequence {S n } of measurable subsets of R such that |S n | → ∞. Then, for every n, there exist

x n ∈ S n and R n > 0 with R n → ∞ such that B(xn,Rn) |f n | → 0.
So far, we have only used the condition (H4) for p = 2 or p = ∞. In the next lemma we will use it also for p = 1 in order to handle the weak star convergence, denoted by * , in L ∞ .

Lemma 4.19. Assume that W satisfies (H4) and let {η n } be a bounded sequence in W 1,∞ (R).

Then there exists η ∈ L ∞ (R) such that, up to a subsequence,

η n → η in L ∞ loc (R) and W * η n * W * η in L ∞ (R). In addition, for any sequence {f n } ⊂ L ∞ (R) such that f n → f in L ∞ loc (R)
, we have the following convergence in the sense of distributions,

f n (W * η n ) → f (W * η) in D (R).
(4.65)

Proof. First, a standard diagonal argument together with Ascoli-Arzela's theorem imply that there exists η ∈ L ∞ (R) such that, up to a subsequence,

η n → η in L ∞ loc (R). (4.66) 
On the other hand, we also deduce that there is g ∈ L ∞ (R) such that, up to a subsequence, η n * g in L ∞ (R). By (4.66), we get g = η. Let us now fix a function ϕ ∈ L 1 (R). By (H4), we have W * ϕ ∈ L 1 (R) and, using that W is even, we deduce that

R (W * η n )ϕ = R η n (W * ϕ) → R η(W * ϕ) = R (W * η)ϕ. Therefore, W * η n * W * η in L ∞ (R). (4.67) 
To prove (4.65), we consider φ ∈ C ∞ 0 (R), with supp φ ⊂ K, for some compact set K, and notice that

R (W * η n )f n φ = R (W * η n )f φ + K (W * η n )(f n -f )ηφ. ( 4.68) 
The second term in the right-hand side can be bounded by

W ∞ η n L ∞ (R) f n -f L ∞ (K) φ L 1 (K) ,
which goes to zero by hypothesis. Since f φ ∈ L 1 (R), using (4.67) we can thus pass to the limit in (4.68) and obtain (4.65).

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Let {c n } and {u n } be the sequences given by Corollary 4.16. Thus,

{c n } ⊂ (0, √ 2) with c n → c and u n ∈ N E(R) is a nontivial solution to (S(W, c n )
) for all n. We start by proving that {E(u n )} remains bounded. Indeed, arguing by contradiction, assume that {|S r n |} is unbounded for every r ∈ (c/ √ 2, 1), where S r n is defined in Lemma 4.17. Let us thus fix r ∈ (c/ √ 2, 1) to be chosen later. Observe that, by (4.63), the sequence {(ρ n ) 2 } is bounded in L 1 (R). Then, applying Lemma 4.18, for every n there exist x n ∈ S r n and R n > 0 such that R n → ∞ and B(0,Rn)

ρ n (x + x n ) 2 dx → 0. ( 4.69) 
Now we define ũn = u n (• + x n ) and ρn = |ũ n |. We know from (H5) and Proposition 4.5 that

{ũ n } is bounded in W k,∞ (R; C) for every k ∈ N.
As a consequence, arguing as in the proof of Lemma 2.1 and taking (4.64) into account, we deduce that {ρ n } is bounded in W k,∞ (R) for every k ∈ N. In particular, there exists ρ ∈ W 2,∞ (R) such that, up to a subsequence,

ρn → ρ in W 2,∞ loc (R).
Moreover, thanks to (4.69), we deduce that ρ ≡ 0, so ρ is a constant. Furthermore, the pointwise convergence ρn → ρ leads to

ρ n (x n ) = ρn (0) → ρ.
Therefore, since ρ n (x n ) < r for all n, it follows that ρ ≤ r. Notice that ρn ∈ 1 + H 1 (R) satisfies the equation

-ρ n + c 2 n (1 -ρ4 n ) 4ρ 3 n = ρn (W * (1 -ρ2 n )) on R. (4.70) 
We aim to pass to the limit in (4.70). In order to do so we notice that, since ρ is a constant,

ρ n → 0 in L ∞ loc (R).
Besides, by virtue of Lemma 4.19 and (4.3), we have

ρn (W * (1 -ρ2 n )) → ρ(W * (1 -ρ 2 )) = ρ(1 -ρ 2 ) W(0) in D (R).
Thus, using that W(0) = 1, we can to pass to the limit in (4.70) in D (R) to obtain

c 2 (1 -ρ 4 ) = 4ρ 4 (1 -ρ 2 ).
Using that 1 -

ρ 4 = (1 -ρ 2 )(1 + ρ 2 ), it follows that c 2 (1 + ρ 2 ) = 4ρ 4 .
From this equation, it is immediate to check that

ρ 2 = c 2 + c √ c 2 + 16 8 . Observe that c 2 +c √ c 2 +16 8 > c 2 2 since c < √ 2.
Therefore, we can choose ε > 0 small enough (independent of r) so that

ε + c 2 2 < c 2 + c √ c 2 + 16 8 = ρ 2 ≤ r 2 .
Finally, if we choose r = ε + c 2 2 and take ε > 0 possibly smaller so that r ∈ (c/ √ 2, 1), then we arrive at a contradiction. Therefore, {|S r n |} must be bounded for some r ∈ (c/ √ 2, 1). Consequently, Lemma 4.17 implies that {E(u n )} is bounded too.

Arguing as before, there exists u ∈ C 2 (R; C) such that, up to a subsequence,

u n → u in W 2,∞ loc (R). Moreover, Lemma 4.19 implies that W * (1 -|u n | 2 ) * W * (1 -|u| 2 ) in L ∞ (R)
. Thus, we can pass to the limit in (S(W, c n )) so that u is a solution to (S(W, c)).

Let us now check that u ∈ E(R). Indeed, as in Lemma 4.15, using (4.1), we have

E(u n ) ≥ 1 2 R |u n | 2 + 1 4 R (1 -|u n | 2 ) 2 - m 16π R |ξ| 2 | η n | 2 = 1 2 R |u n | 2 + 1 4 R (1 -|u n | 2 ) 2 - m 2 R ρ 2 n (ρ n ) 2 .
Hence, (H5), (4.63) and the fact that {E(u n )} is bounded, imply that

1 2 R |u n | 2 + 1 4 R (1 -|u n | 2 ) 2 ≤ C,
for all n and for some C > 0 independent of n. By virtue of Fatou's lemma,

1 2 R |u | 2 + 1 4 R (1 -|u| 2 ) 2 ≤ C. That is, u ∈ E(R).
Finally, the estimate (4.64) ensures that u ∈ N E(R), while Proposition 4.4 implies that u is nontrivial. The proof is concluded.

Nonexistence and properties of solitons

This section is devoted to the study of the Fourier transform of equation (2.4), that is

M c (ξ) η(ξ) = F (ξ), with M c (ξ) = ξ 2 + 2 W(ξ) -c 2 , ( 5.1) 
where

F = 2K + 2η(W * η), η = 1 -|u| 2 and K = |u | 2 .
for some δ ∈ (0, δ). Thus, taking δ even smaller if necessary,

|M (ξ)| ≤ (|M (0)| + 1)|ξ|, for all ξ ∈ (-δ, δ).
In consequence,

δ - δ L(ξ)dξ ≥ 1 |M (0)| + 1 δ - δ dξ |ξ| = ∞.
In particular, L ∈ L 2 ((-δ, δ)). Hence, taking (5.6) into account, in order η to belong to L 2 (R), it is necessary that F (0) = 0. This is again a contradiction with (5.5).

We can prove now the nonexistence result stated in the Introduction.

Proof of Theorem 1.5.

Let δ > 0 be such that W ∈ C 2 ((-δ, δ)). Recall that W(0) = 1 and ( W) (0) = 0. If ( W) (ξ) = -1 for all (-δ, δ), then W(ξ) = 1 -ξ 2 /2, for ξ ∈ (-δ, δ)
, so that we are in the case (ii) of Theorem 5.1. Assume now that ( W) (0) = -1. Then, by decreasing δ if necessary, we deduce by continuity that ( W) > -1 on (-δ, δ), or ( W) < -1 on (-δ, δ). On the other hand, by Taylor's theorem, and using that W is even, we deduce that for any ξ ∈ (-δ, δ), there exists ξ ∈ (-δ, δ) such that

W(ξ) = 1 + ( W) ( ξ) ξ 2 2 .
Thus we are in the case (ii) of Theorem 5.1, and the conclusion follows.

Decay at infinity

We assume now that M c > 0 a.e. on R so that (5.2) holds a.e. Notice also that if

L c ∈ S (R), then D k η = L c * D k F, for all k ∈ N. (5.7) 
This equation will be the key for analyzing the decay of the solutions u ∈ E(R) to (S(W, c)) as x → ±∞. More precisely, it will be provided the decay of η = 1 -|u| 2 at infinity. We start by showing that we can also recover limits of u at ±∞. First, we need to establish the integrability of η, which means that u has finite mass.

Lemma 5.2. Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)).

If L c ∈ L 1 (R), then η ∈ W k,1 (R) for every k ∈ N.
Proof. In the case k = 0, we argue as in the proof of Theorem 5.1 to prove that F ∈ L 1 (R).

Then, if L c ∈ L 1 (R), Young's inequality applied to (5.7) with k = 0 implies that η ∈ L 1 (R).

The case k ≥ 1 may be tackled similarly by taking into account that F = 4η W * η + 2ηW * η , so the successive derivatives of F have the form

D k F = 2k j=1 a j b j , where a j , b j ∈ L 2 (R).
For any u ∈ E(R), the limits lim x→± u(x) do not exist in general (see [START_REF] Gérard | The Gross-Pitaevskii equation in the energy space[END_REF]). The following result shows that, if u solves (S(W, c)), then they do exist whenever u presents no vortices and η = 1 -|u| 2 has finite mass. Proposition 5.3. Let c > 0 and let u = ρe iθ ∈ N E(R) be a solution to (S(W, c)). Assume that η ∈ L 1 (R). Then the following limits exist and are finite:

θ(±∞) = θ(0) + c 2 ±∞ 0 η 1 -η . (5.8)
In particular, u(+∞) = e iθ(+∞) , u(-∞) = e iθ(-∞) .

(5.9)

Remark 5.4. On the one hand, we recall that Lemma 5.2 provides sufficient conditions that assure that η ∈ L 1 (R). On the other hand, we stress the fact that the limits u(±∞), if they exist, may be different from each other. In fact, from Proposition 5.3 it is easy to see that

u(+∞) = u(-∞) if and only if R η 1-η = 0.
Proof of Proposition 5.3. By Proposition 2.4, θ satisfies (2.12). By integrating, we have

θ(x) -θ(0) = c 2 x 0 1 ρ(y) 2 -1 dy = c 2 x 0 η(y) 1 -η(y)
dy, for all x ∈ R.

Therefore,

θ(+∞) := lim x→∞ θ(x) = θ(0) + ∞ 0 η 1 -η , θ(-∞) := lim x→-∞ θ(x) = θ(0) - 0 -∞ η 1 -η . Since inf R (1 -η) = inf R ρ 2 > 0 and η ∈ L 1 (R)
, it follows that both limits θ(+∞) and θ(-∞) are finite. Hence, we deduce directly (5.9) from the fact that ρ(±∞) = 1.

In the rest of the subsection we will adapt the Bona-Li theory in [START_REF] Bona | Analyticity of solitary-wave solutions of model equations for long waves[END_REF][START_REF] Bona | Decay and analyticity of solitary waves[END_REF] to our equation. First, we recall the following technical result proved in [START_REF] Pei | Exponential decay and symmetry of solitary waves to Degasperis-Procesi equation[END_REF].

Lemma 5.5 ([50]). For any 0 < < m and ε > 0, the following inequality holds,

R e |x| (1 + εe |x| ) m e m|x-y| dx ≤ B e |y| (1 + εe |y| ) m , for all y ∈ R, (5.10) 
where B = (min{ , m -}) -1 .

Proof of Theorem 1.4. First, we point out that the result holds true for = 0. Indeed, (1.14) and Hölder's inequality yield L c ∈ L 1 (R). Thus, by virtue of Lemmas 2.1 and 5.2, D k η ∈ L 1 (R) ∩ L ∞ (R) for every k ∈ N. We will then focus only on the case ∈ (0, m). From (5.7), Hölder's inequality and (1.14), we deduce the following estimate,

|η(x)| ≤ R |L c (x -y)|e m|x-y| |F (y)| e m|x-y| dy ≤ C 1 q 1 R |F (y)| q e qm|x-y| dy 1 q , ( 5.11) 
where C 1 = e m|•| L c q L p (R) . We will prove next that e |•| η ∈ L q (R) and e |•| η ∈ L q (R) for all ∈ (0, m). In order to do so, let ∈ (0, m) and, for all ε ∈ (0, 1], let us consider the functions

h ε (x) = e |x| (1 + εe |x| ) m |η(x)|, hε (x) = e |x| (1 + εe |x| ) m |η (x)|.
Since η, η ∈ L ∞ (R) and < m, it is clear that h ε , hε ∈ L q (R). Let us take now r ∈ (0, q) and R > 1. Using (5.11) and Hölder's inequality with exponents q q-r and q r , we deduce that On the other hand, recall that, by Lemma 2.1, η(±∞) = η (±∞) = (W * η)(±∞) = 0. Hence, equation (2.6) in Proposition 2.2 implies that, for any fixed δ > 0 we may choose R > 1 large enough so that |F (y)| q ≤ δ|η(y)| q + δ|η (y)| q , for all |y| > R.

{|x|>R} |h ε (x)| q dx = {|x|>R} |h ε (x)| q-r e r|x| (1 + εe |x| ) rm |η(x)| r dx ≤ C r q 1 {|x|>R} |h ε (x)| q-r e r|x| (1 + εe |x| ) rm R |F (y)| q e qm|x-y| dy r q dx ≤ C r q 1 {|x|>R} |h ε (x)| q dx q-r q {|x|>R} e q|x| (1 + εe |x|
(5.12) Therefore,

{|y|>R} |F (y)| q Be q|y| (1 + εe |y| ) qm dy ≤ δB {|x|>R} |h ε (x)| q dx + δB {|x|>R} | hε (x)| q dx.
In sum,

{|x|>R} |h ε (x)| q dx ≤ δBC 1 {|x|>R} |h ε (x)| q dx + δBC 1 {|x|>R} | hε (x)| q dx + C 2 .
(5.13)

We will now derive a similar estimate for hε . Indeed, from (5.7) with k = 1 and using (2.5), it follows that

η = L c * 4η W * η + 2ηW * η .
Notice that (W * η )(±∞) = 0 too. Hence, taking R > 1 larger if necessary, we deduce that 4η (y)W * η(y) + 2η(y)W * η (y) q ≤ δ|η(y)| q + δ|η (y)| q , for all |y| > R.

This estimate allows us to follow the same arguments as we did for h ε in order to deduce

{|x|>R} | hε (x)| q dx ≤ δBC 1 {|x|>R} | hε (x)| q dx + δBC 1 {|x|>R} |h ε (x)| q dx + C 3 , ( 5.14) 
where

C 3 = C 2 F q L ∞ (R) / F q L ∞ (R)
. Taking now δ ∈ (0, 1/2BC 1 ), it follows directly from (5.13) and (5.14) 

that {|x|>R} |h ε (x)| q dx + {|x|>R} | hε (x)| q dx ≤ C 4 ,
where C 4 = (C 2 + C 3 )/(1 -2δBC 1 ). By virtue of Fatou's lemma, we take limits as ε tends to zero and obtain {|x|>R} e q|x| |η(x)| q dx + {|x|>R} e q|x| |η (x)| q dx ≤ C 4 .

In conclusion, e

|•| η ∈ L q (R), e |•| η ∈ L q (R).
Notice that both e x η(x) and e -x η(x) belong to W 1,q (R). Indeed, from what we have already proved, it is clear that

e ± x η(x) ∈ L q (R), e ± x η(x) = ± η(x) + η (x) e ± x ∈ L q (R).
Hence, the Sobolev's embedding theorem implies that e |•| η ∈ L ∞ (R) and lim x→±∞ e |x| η(x) = 0.

We have just proved the result for k = 0. Taking k = 2 in (5.7), we deduce analogously as before that η = L c * F , where F satisfies |F (y)| q ≤ δ|η(y)| q + δ|η (y)| q + δ|η (y)| q , for all |y| > R.

Following the same process as above, and using the estimates we already have for e |•| η and e |•| η , we prove the result for k = 1. The complete proof follows easily by induction.

Conditions (1.14) in Theorem 1.4 is not easy to check, since the operator L c is not simple to compute in general. For this reason, we recall the following Paley-Wiener theorem that provides sufficient conditions on L c that we will use when applying Theorem 1.4 to our examples in Section 6. We refer to Theorem 5.4.2 in [START_REF] Krantz | A primer of real analytic functions[END_REF] or Theorem IX.13 in [START_REF] Reed | Methods of modern mathematical physics. II. Fourier analysis, selfadjointness[END_REF] for details. (5.15)

We now tackle the algebraic decay, whose proof will follow similar lines to that of Theorem 1.4. We will employ the following lemma proved in [START_REF] Bona | Decay and analyticity of solitary waves[END_REF]. Lemma 5.7. For every m, ∈ R such that m > 1 and 0 < < m -1, there exists B > 0 such that the following inequality holds: 

• |) s L c ∈ L p (R) for some p ∈ (1, ∞], s > 1 - 1 p .
(5.17)

Setting q = p and η = 1 -|u| 2 , we have

| • | D k η ∈ L q (R) ∩ L ∞ (R), lim x→±∞ |x| D k η(x) = 0, for all ∈ 0, s -1 + 1 p , k ∈ N.
Proof. First, from (5.7) with k = 0, Hölder's inequality and (5.17), we deduce that

|η(x)| ≤ C 1 q 1 R |F (y)| q (1 + |x -y|) sq dy 1 q , where C 1 = (1 + | • |) s L c q L p (R)
. Now, for ∈ (0, s -1 + 1/p) and ε ∈ (0, 1], we consider the functions

h ε (x) = |x| (1 + ε|x|) s |η(x)|, hε (x) = |x| (1 + ε|x|) s |η (x)|.
Let us take R > 1. Arguing as in the proof of Theorem 1.4 and using Lemma 5.7, we obtain the estimate

{|x|>R} |h ε (x)| q dx ≤ C 1 {|y|>R} |F (y)| q B|y| q
(1 + ε|y|) sq dy (5.18)

+ C 1 {|y|≤R} |F (y)| q {|x|>R} |x| q (1 + ε|x|) sq (1 + |x -y|) sq dxdy.
On the one hand, since q < sq -1, then the function x →

|x| q (|x|+1-R) sq belongs to L 1 ((R, ∞)). Hence, the inequality ||x| -|y|| ≤ |x -y| leads to {|y|≤R} |F (y)| q {|x|>R} |x| q (1 + ε|x|) sq (1 + |x -y|) sq dxdy ≤ 2R F q L ∞ (R) {|x|>R} |x| q (|x| + 1 -R) sq dx := C 2 /C 1 .
On the other hand, a shown in the proof of Theorem 1.4, for any fixed δ > 0, we may choose R 1 large enough so that (5.12) holds. Therefore,

{|y|>R} |F (y)| q B|y| q (1 + ε|y|) sq dy ≤ δB {|x|>R} |h ε (x)| q dx + δB {|x|>R} | hε (x)| q dx.
In sum, by (5.18),

{|x|>R} |h ε (x)| q dx ≤ δBC 1 {|x|>R} |h ε (x)| q dx + δBC 1 {|x|>R} | hε (x)| q dx + C 2 .
Reasoning as in the proof of Theorem 1.4, we derive the analogous estimate for hε :

{|x|>R} | hε (x)| q dx ≤ δBC 1 {|x|>R} |h ε (x)| q dx + δBC 1 {|x|>R} | hε (x)| q dx + C 3 ,
where

C 3 = C 2 F q L ∞ (R) / F q L ∞ (R) .
Combining the last two inequalities and taking δ ∈ (0, 1/2BC 1 ) yields

{|x|>R} |h ε (x)| q dx + {|x|>R} | hε (x)| q dx ≤ C 4 , where C 4 = (C 2 + C 3 )/(1 -2δBC 1 )
. By virtue of Fatou's lemma, we take limits as ε tends to zero, and obtain

{|x|>R} |x| q |η(x)| q dx + {|x|>R} |x| q |η (x)| q dx ≤ C 4 . Equivalently, | • | η ∈ L q (R) and | • | η ∈ L q (R).
Let us now consider a function ϕ : R → (0, ∞) that is of class C 1 and satisfies that ϕ(x) = |x| for every |x| > 1. At this point, it is clear that ϕη ∈ W 1,q (R). Hence, the Sobolev's embedding implies that ϕη ∈ L ∞ (R) and lim x→±∞ ϕ(x)η(x) = 0. This proves the result for k = 0. As in the proof of Theorem 1.4, the rest of the proof follows by induction. Conditions (5.17) in Theorem 5.8 can be difficult to verify. The next corollary provides sufficient (and easy to check) conditions on W that guarantee (5.17) and, in turn, algebraic decay of finite energy traveling waves. Corollary 5.9. Assume that W satisfies (H1) and that weakly differentiable up to order s ∈ N \ {0}, with D s W ∈ L ∞ (R).

(5. [START_REF] De Laire | Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at infinity[END_REF])

Let c ∈ [0, √ 2σ 
) and let u ∈ E(R) be a solution to (S(W, c)). Then,

| • | D k η ∈ L 2 (R) ∩ L ∞ (R), lim x→±∞ |x| D k η(x) = 0, for all ∈ (0, s -1/2), k ∈ N.
Proof. By (5.3), since (H1) holds, we see L c is bounded with

L c ∈ L 1 (R), so that L c ∈ L 2 (R).
Using also (5.19), one may verify that

D s L c ∈ L 1 (R) ∩ L ∞ (R) too. In particular, D s L c ∈ L 2 (R). Then, applying Fourier transform, | • | s L c ∈ L 2 (R). Hence, since L c ∈ L ∞ (R)
, it follows that (5.17) holds for p = 2 and we can apply Theorem 5.8.

Analyticity

Let us recall that for H ∈ S (R), the associated multiplier operator H is defined by

H(ϕ)(ξ) = H(ξ) ϕ(ξ), for all ϕ ∈ S(R).
We say that H is an L p -multiplier, with p ∈ [1, ∞], if there exists α > 0 such that

H(ϕ) L p (R) ≤ α ϕ L p (R) , for all ϕ ∈ L p (R).
The smallest α > 0 for which the previous inequality holds is the norm of the multiplier, and it is denoted by H p . For instance, by assumption (H0), W is an L 2 -multiplier and, by (1.23),

W 2 = W L ∞ (R) .
We recall the so-called Hörmander-Mikhlin multiplier theorem in [START_REF] Hörmander | The analysis of linear partial differential operators I[END_REF][START_REF] Mikhlin | On the multipliers of Fourier integrals[END_REF] (see also [START_REF] Littman | Multipliers in L p and interpolation[END_REF]) adapted to our one-dimensional setting, as follows.

Theorem 5.10 ( [START_REF] Hörmander | The analysis of linear partial differential operators I[END_REF][START_REF] Mikhlin | On the multipliers of Fourier integrals[END_REF]). Let H : R → R be a weakly differentiable function and suppose that there exists M > 0 such that

sup{|ξ k D k H(ξ)| : ξ ∈ R \ {0}, k ∈ {0, 1}} ≤ M.
(5.20)

Then H is an L p -multiplier for every p ∈ (1, ∞). Moreover, there exists a constant C p > 0, depending only on p, such that

H p ≤ C p M.
Assume that W satisfies (H1), and including also the limit case κ = 1/2, and that W is (weakly) differentiable. We will apply this theorem to the function

H c (ξ) = -ξ 2 ξ 2 + 2 W(ξ) -c 2 , for c ∈ [0, √ 2σ).
Observe that then H c ∈ L ∞ (R) and that

ξH c (ξ) = 2ξ 3 W (ξ) -4ξ 2 W(ξ) + 2c 2 ξ 2 (ξ 2 + 2 W(ξ) -c 2 ) 2 . Therefore, ξ → ξH c (ξ) is a bounded function if W (ξ) ≤ C(|ξ| + 1) a.e. ξ ∈ R, (5.21) 
for some C > 0. In this case, using Theorem 5.10 we conclude that H c is an L p -multiplier for every p ∈ (1, ∞). More precisely, for every p ∈ (1, ∞), there exists a constant α p > 0 such that

H c (ϕ) L p (R) ≤ α p ϕ L p (R) , for all ϕ ∈ L p (R), (5.22) 
where H c = H c . Let u ∈ E(R) be a solution to (S(W, c)). We will exploit (5.7) in order to prove that η is a real analytic function. First, we prove a technical lemma. Lemma 5.11. Assume that there exist σ ∈ (0, 1] and κ ∈ [0, 1/2] such that W(ξ) ≥ σ -κξ 2 a.e. on R. Assume in addition that W is weakly differentiable and that there exists C > 0 such that (5.21) 

holds. Let c ∈ [0, √ 2σ 
) and let u ∈ E(R) be a solution to (S(W, c)). Let us denote

µ k := max{ D j F L q (R) : j = 0, . . . , k}, for all k ∈ N.
Then there exist β, γ > 0, depending on η only through

D j η L 2 (R) and D j η L ∞ (R) for j = 0, 1, 2, such that D j η L ∞ (R)
≤ βµ k for all k ∈ N, for all j = 0, . . . , k + 2, (5.23)

D j η L 2 (R) ≤ βµ k for all k ∈ N, for all j = 0, . . . , k + 2, ( 5.24 
)

µ k ≤ γ k k k-1 for all k ∈ N \ {0}, µ 0 ≤ γ 24ωβ 2 -1, (5.25) 
where ω = W L ∞ (R) .

Proof. We start by proving (5.23) and (5.24). These estimates hold true for k = 0 by simply choosing

β ≥ max{ D j η L ∞ (R) , D j η L 2 (R) : j = 0, 1, 2} F L 2 (R) .
Let us take k ≥ 1 and j ∈ {3, . . . , k + 2}. By (5.7), we have η = H c (F ) on R, with F = 4η (W * η) + 2η(W * η ).

(5.26) By using also (5.22) with p = 2, it follows that

D j η L 2 (R) ≤ α 2 D j-3 F L 2 (R) ≤ α 2 µ k .
Moreover, by invoking the Sobolev's embedding (see Remark 3.4), we obtain

D j η L ∞ (R) ≤ 1 2 D j η L 2 (R) + D j+1 η L 2 (R) ≤ α 2 2 D j-3 F L 2 (R) + D j-2 F L 2 (R) ≤ α 2 µ k .
Therefore, we take β ≥ α 2 so that (5.23) and (5.24) follow. As far as (5.25) is concerned, we will prove it by induction. Indeed, it holds true for k = 1 if one chooses γ ≥ µ 1 . Let us assume as induction hypothesis that there exists k ∈ N \ {0, 1} such that (5.25) holds for every k ≤ k. Next we compute for k = k, taking (5.7) into account,

D k+1 F L 2 (R) = D k+1 2η(W * η ) + 4η (W * η) L 2 (R) = 2D k η (W * η ) + η(W * η ) + 4D k η (W * η ) + η (W * η ) L 2 (R) ≤ 2 k j=0 k j ( D j+1 η(W * D k-j+1 η) L 2 (R) + D j η(W * D k-j+2 η) L 2 (R) ) + 4 k j=0 k j ( (W * D j+1 η)D k-j+1 η L 2 (R) + (W * D j η)D k-j+2 η L 2 (R) ).
Using (1.23), (5.23) and (5.24), we deduce that

D k+1 F L 2 (R) ≤ 2ω k j=0 k j ( D j+1 η L ∞ (R) D k-j+1 η L 2 (R) + D j η L ∞ (R) D k-j+2 η L 2 (R) ) + 4ω k j=0 k j ( D j+1 η L 2 (R) D k-j+1 η L ∞ (R) + D j η L 2 (R) D k-j+2 η L ∞ (R) ) ≤ 12ωβ 2 k j=0 k j µ j µ k-j .
The induction hypothesis leads to

D k+1 F L 2 (R) ≤ 12ωβ 2 2µ 0 µ k + γ k k-1 j=1 k j j j-1 (k -j) k-j-1 = 12ωβ 2 2(µ 0 µ k -γ k k k-1 ) + γ k k j=0 k! j!(k -j)! j (j-1) + (k -j) (k-j-1) + ,
where we adopt the convention 0 0 = 1. Now, a combinatorial lemma due to Kahane [START_REF] Kahane | On the spatial analyticity of solutions of the Navier-Stokes equations[END_REF] implies that

D k+1 F L 2 (R) ≤ 12ωβ 2 2(µ 0 µ k -γ k k k-1 ) + 4γ k k k-1 .
Using the induction hypothesis again and choosing γ > 0 large enough so that µ 0 ≤ γ 24ωβ 2 -1, we deduce that

D k+1 F L 2 (R) ≤ 24ωβ 2 (µ 0 + 1)γ k k k-1 ≤ γ k+1 k k-1 .
In conclusion,

µ k+1 = max{µ k , D k+1 F L 2 (R) } ≤ max{γ k k k-1 , γ k+1 k k-1 } = γ k+1 k k-1 ≤ γ k+1 (k + 1) k ,
which completes the proof.

We are thus led to the following analyticity of η as follows.

Theorem 5.12. Under the hypotheses of Lemma 5.11, for every solution u ∈ E(R) to (S(W, c)) with c ∈ [0, √ 2σ), there exists r > 0 such that η = 1 -|u| 2 and u have analytic extensions to the strip

S r = {z ∈ C : | Im z| < r}. If c ∈ (0, √ 2σ 
), then u is real analytic on R, in the sense that Re(u) and Im(u) are real analytic on R.

Proof. We need to prove that the Taylor series expansion about any point x 0 ∈ R converges with radius of convergence r > 0 independent of x 0 . Indeed, let I r = [x 0 -r, x 0 + r], then, by Taylor's theorem,

η(x) - n k=0 D k η(x 0 ) k! (x -x 0 ) k = D n+1 η(ζ) (n + 1)! (x -x 0 ) n+1 (5.27)
for every x ∈ I r and for some ζ ∈ I r . Now we deduce from Lemma 5.11 that

|D k η(ζ)| ≤ βµ k ≤ βγ k k k-1 for every k ∈ N \ {0}. Since γ k k k-1 k! 1/k → γe, as k → ∞,
we conclude that the left-hand side of (5.27) goes to zero as n → ∞ and that the radius of convergence satisfies r ≥ (γe) -1 . In addition, η has an analytic extensions to the strip S r .

In the case that c ∈ (0, √ 2σ), by Proposition 2.2, we have sup R η < 1, so that ρ = |u| = √ 1 -u 2 is a real analytic function, as a composition of real analytic functions. Also, θ given by (2.14) is real analytic as the integral of a real analytic function. Consequently, Re(u) = ρ cos(θ) and Im(u) = ρ sin(θ) are real analytic functions on R. Remark 5.13. As pointed out by Corollary 4.1.5 in [START_REF] Bona | Decay and analyticity of solitary waves[END_REF], the fact that η has an analytic extension to the strip S r implies the following exponential decay of its Fourier transform: R |η(ξ)| 2 e 2µ|ξ| dξ < ∞, for all µ ∈ (0, r).

We end this section by proving Corollary 1.6 as a consequence of Theorem 5.12.

Proof of Corollary 1.6. Let q ∈ (0, q * ) and let u = ρe iθ ∈ N E(R) be the nontrivial solution to (S(W, c)), given by Theorem 1 in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF], satisfying

E(u) = E min (q).
(5.28)

Arguing as in the proof of Proposition 3.12 in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF], we see that there exists

a 0 ∈ R such that 1 2 ∞ a 0 (1 -ρ 2 )θ = q 2 ,
which allows us to define the following function ũ(x) := ρ(x)e i θ(x) = ρ(x -a 0 )e i(θ(x-a 0 )-θ(-a 0 )) .

Notice that ũ is nothing but u multiplied by the constant of modulus one e iθ(-a 0 ) and translated in the space variable, so ũ is still satisfies (5.28), i.e. it is a solution to the minimization problem. Moreover, ũ satisfies that θ(0) = 0 and

1 2 ∞ 0 (1 -ρ2 ) θ = q 2 . (5.29) Furthermore, 1 2 0 -∞ (1 -ρ2 ) θ = p(v) - 1 2 ∞ 0 (1 -ρ2 ) θ = q 2 . ( 5.30) 
For notational simplicity, we continue to write u, ρ and θ for ũ, ρ and θ. By using the reflection operators T ± and S ± introduced in the proof of Proposition 3.12 in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF], and the fact that ρ and θ are continuous, it follows that the functions

u ± = (T ± ρ)e iS ± θ
belong to N E(R). Bearing in mind (5.29) and (5.30), we obtain that p(u ± ) = q, which implies that E min (q) ≤ E(u ± ).

On the other hand, as in Proposition 3.12 in [START_REF] De Laire | Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity[END_REF], we get

E(u + ) + E(u -) = 2E k (u) + E p (u + ) + E p (u -) and E p (u + ) + E p (u -) ≤ 2E p (u).
Since u satisfies (5.28), we deduce that

E min (q) ≤ E(u + ) + E(u -) 2 ≤ E(u) = E min (q).
Hence,

E(u + ) + E(u -) 2 = E(u) = E min (q).
Observe that

E min (q) ≤ E(u + ) = 2E(u) -E(u -) ≤ E min (q).
In consequence, E(u + ) = E(u -) = E(u) = E min (q). This shows that u ± and u are solutions to the minimization problem (1.5) and therefore, u ± and u satisfy (S(W, c)), for some c depending on q. By virtue of Theorem 5.12, we have that |u ± | 2 and |u| 2 are real analytic functions. Thus, since

|u + | = |u| in R + , then |u + | = |u| in R.
This proves that ρ = |u| is even. On the other hand, from (2.12), from the symmetry of ρ and from the fact that θ(0) = 0, we derive

θ(x) = c 2 x 0 1 ρ(y) 2 -1 dy = - c 2 -x 0 1 ρ(y) 2 -1 dy = -θ(-x).
This concludes the proof.

Proofs of the examples

Proof of Theorem 1.7. The existence of a solution u for every c ∈ (0, √ 2) is an immediate consequence of Theorem 4.1. Also, since W α,β fulfills (5.17), η = 1 -|u| 2 is real analytic by Theorem 5.12. The nonexistence of finite energy solutions follow from Theorem 1.8 and the fact that

( W α,β ) (0) = 4αβ -2 (β -2α) -1 = -1.
It remains to prove the exponential decay. By explicit computations, we can find for some β 1 , β 2 > 0, depending only on α, β and c such that

L c (x) = α 1 e -β 1 |x| + α 2 e -β 2 |x| , for all x ∈ R, with α 1 = β 2 -β 2 1 2β 1 (β 2 2 -β 2 1 ) , α 2 = β 2 2 -β 2 2β 2 (β 2 2 -β 2 1 )
.

Thus, L c satisfies the condition (1.14) in Theorem 1.4 with m = min{β 1 , β 2 } and p = ∞.

Proof of Theorem 1.8. It is clear that (H0) holds for the three potentials. Notice that 2cos(λξ) ≥ 1, for ξ ∈ R, and using the elementary inequalities e x ≥ 1+x and sin(x)/x ≥ 1-x 2 /6, for x ∈ R,

e -λξ 2 ≥ 1 -λξ 2 and sin(λξ) λξ ≥ 1 - λ 2 ξ 2 6 
, for all ξ ∈ R.

Hence, (H1) is satisfied, with (σ, κ) = (1, 0), (σ, κ) = (1, λ) and (σ, κ) = (1, λ 2 /3), in case (i), (ii) and (iii), respectively. In particular, in the three cases we have

M c (ξ) = ξ 2 + 2 W λ (ξ) -c 2 ≥ 2 -c 2 + ξ 2 (1 -2κ) > 0, for all ξ ∈ R and c ∈ (0, √ 2), (6.2)
and the existence of solutions is given by Theorem 1.1. The analyticity of η = 1 -|u| 2 follows from Theorem 5.12. The nonexistence of finite energy solutions follows from Theorem 1.5 and the fact that in the case (i) we have ( W λ ) (0) = λ 2 , while in the case (ii), ( W λ ) (0) = -2λ.

To prove the exponential decay, in view of (6.2), we deduce that in all the cases W λ can be extended as an analytic function on C. Hence, we only need to verify that for fixed c ∈ (0, √ 2) and λ, we can find a constant δ = δ(c, λ) > 0 such that M c (z) = z 2 +2 W λ (z)-c 2 does not vanish on the strip S δ := {z ∈ C : | Im z| < δ} and that L c (z) = (M c (z)) -1 satisfies the integrability condition in (5.15). This will imply that e δ|•| L c ∈ L 2 (R), so that the decay follows by invoking Theorem 1.4 with p = 2.

Let us show that there is δ = δ(c, λ) ∈ (0, 1) such that Hence, W λ is bounded on the strip S 1 , that is, there is K > 0 such that | W λ (ξ + iw)| ≤ K, for all ξ + iw ∈ S 1 . Therefore, we infer from (6.4) that {ξ n } is bounded, so that there are ξ * ∈ R and subsequence, that we do not relabel, such that ξ n → ξ * . In this manner, passing to the limit in (6.4), we conclude that T (ξ * , 0) = 0, i.e. M c (ξ * ) = 0, which contradicts (6.2). The proof of (6.3) is completed. By (6.3), the function

L c (ξ + iw) = 1 M c (ξ + iw) = 1 T (ξ, w) + iG(ξ, w)
defines an analytic function on the strip S δ . Also, for all |w| ≤ δ ≤ 1, we infer the estimate

|L c (ξ + iw)| ≤      1 ξ 2 -3 -2K , if ξ 2 ≥ 4 + 2K, δ -1 , otherwise.
Consequently, sup |w|≤δ L c (• + iw) L 2 (R) < ∞, which completes the proof of the exponential decay.

It is left to prove the existence of u c for every c ∈ (0, √ 2) in the case (i) for λ ≤ 2/3. To do so, it is enough to verify that the hypotheses of Theorem 4.1 hold. It is clear that (H2) and (H4) are satisfied. In order to check (H5), let us denote µ λ = -1 4 δ -λ + δ λ , so that W λ = 2(δ 0 + µ λ ). Thus µ + λ = 0 and µ - λ = 1/2 < 1, so that Proposition 4.5 implies that (H5) holds with V 0 (c) = 1 + c 2 /4.

Finally, we show that (H3) is fulfilled, at least for λ ∈ (0, 2/3]. Indeed, in this case, let us set s = min x∈R (sin(x)/x) ∈ (-1, 0) and m λ = -sλ 2 ∈ (0, 2/3). Thus W (ξ) = λ sin(λξ) ≥ -m λ ξ, for all ξ ≥ 0. Furthermore, with this choice of m λ , we get, for all c ∈ (0, √ 2),

m λ V 0 (c) 2 ≤ (3/2)m λ < 1.
Hence, we can apply Theorem 4.1.

Remark 6.1. A careful study of the functions T (ξ, w) and G(ξ, w) in the proof of Theorem 1.8 should lead to the sharp exponential decay of the solitons. Remark 6.2. Notice that if W λ is given by (1.19), then ( W λ ) (0) = -λ 2 /3, so that ( W λ ) (0) = -1, for all λ ∈ (0, √ 3). However, we cannot apply Theorem 1.8 due to the change of sign of W λ .

Proof of Theorem 1.9. For κ ∈ (0, 1/2), it is obvious that W κ satisfies (H0) and (H1), so we can use Theorem 1.1. For κ = 1/2, we can apply Corollary 1.2. Therefore, for any κ ∈ (0, 1/2), we conclude the existence of nontrivial solutions to (S(W κ , c)) in N E(R) for almost every c ∈ (0, √ 2). Moreover, since ( W κ ) (ξ) = -2κ|ξ| for |ξ| < 1/ √ κ, and ( W κ ) (ξ) = 0, for |ξ| > 1/ √ κ, we can apply Theorem 5.12 to obtain that η = 1 -|u| 2 is real analytic. In addition, since W κ fulfills condition (i) if κ = 1/2 in Theorem 5.1, and condition (ii) otherwise, we get the nonexistence for c = √ 2. It is left to prove the algebraic decay of η. Remark that we can apply Corollary 5.9 with s = 1, but we can get a better decay by computing explicitly L c . In fact, since L c ∈ L 1 (R), then Observe that g ∈ L ∞ (R). We are not interested in the value L c (0). We simply remark that, since L c ∈ L 1 (R), it follows that L c ∈ L ∞ (R) and therefore, (1+|•| 2 )L c ∈ L ∞ (R). Consequently, the decay in (1.22) follows by applying Theorem 5.8 with s = 2 and p = ∞.

Let us now consider the vector field ϕ : H 1 (R) → H 1 (R) given by

ϕ(v) =      -ψ(v) J c (v) J c (v) H -1 (R)
for all v ∈ A 1 , 0 for all v ∈ H 1 (R) \ A 1 .

Clearly, ϕ ∈ C 1 (H 1 (R)) (see Lemma 3.1) and ϕ(v) H 1 (R) ≤ 1 for every v ∈ H 1 (R).

For any v ∈ H 1 (R), we consider the Cauchy problem w (t) = ϕ(w(t)), for all t ≥ 0, w(0) = v.

The classical ODE theory, the Cauchy problem has a unique solution w(•, v) ∈ H 1 (R) defined in [0, +∞). Let us show that w(t, N V(R)) ⊂ N V(R) for every t ≥ 0. Indeed, let v ∈ N V(R).

Clearly, w(0, v) = v ∈ N V(R). Moreover, since w(•, v) is continuous and v ∈ N V(R), there exists t > 0 such that w(t, v) ∈ N V(R) for every t ∈ [0, t). Let us assume by contradiction that s := sup{ t > 0 : w(t, v) ∈ N V(R) ∀t ∈ [0, t)} < +∞. Then, w(s, v) ∈ ∂N V(R). In particular, w(s, v) ∈ H 1 (R) \ A 1 , so ϕ(w(s, v)) = 0. Actually, since H 1 (R) \ A 1 is open, then there exists s ∈ (0, s) such that w(t, v) ∈ H 1 (R) \ A 1 for every t ∈ [ss, s]. Therefore, ϕ(w(t, v)) = 0 for every t ∈ [ss, s]. That is, w (t, v) = 0 for every t ∈ [ss, s], so w must be constant in [ss, s] and, in consequence, w(s -s, v) = w(s, v). But this is a contradiction since, by definition of s, it is necessary that w(s -s, v) ∈ N V(R).

On the other hand, for any v ∈ H 1 (R) and t ≥ 0, we have

w(t, v) -v L ∞ (R) ≤ w(t, v) -v H 1 (R) ≤ t 0
ϕ(w(s, v))ds

H 1 (R) ≤ t.
Observe that, in the previous inequality, we have used that the norm of the continuous embedding H 1 (R) ⊂ L ∞ (R) is equal to one (see Remark 3.4). Hence, we deduce that w(t, Z δ 3 ) ⊂ Z δ 2 for every t ≤ δ 3 -δ 2 .

Let us define h : [0, 1] × N V(R) → H 1 (R) by h(t, v) = w ((δ 3 -δ 2 )t, v) , for all (t, v) ∈ [0, 1] × N V(R).

We have already verified that h([0, 1] × N V(R)) ⊂ N V(R). Furthermore, with this definition, items (i) and (iii) are obviously satisfied. On the other hand, if v ∈ N V(R) \ A 1 , then ϕ(v) = 0, so w(t) = v is the unique solution to the Cauchy problem and item (ii) is satisfied too. As far as item (iv) is concerned, let v ∈ N V(R). Since w(t, v) ∈ N V(R) for every t ≥ 0, then the function J c (w(•, v)) is differentiable and d dt J c (w(t, v)) = J c (w(t, v)), w (t, v) = J c (w(t, v)), ϕ(w(t, v)) ≤ 0.

Thus, J c (w(•, v)) is nonincreasing and item (iv) holds true. Lastly, we check item (v). Indeed, let v ∈ J γ+ε c ∩ Z δ 3 . If there exists t ∈ [0, δ 3 -δ 2 ) such that J c (w(t, v)) < γ -ε, then item (iv) implies that J c (w (δ 3 -δ 2 , v)) < γ -ε, so w (δ 3 -δ 2 , v) ∈ J γ-ε c ∩ Z δ 2 . Otherwise, for every t ∈ [0, δ 3 -δ 2 ), one has γ -ε ≤ J c (w(t, v)) ≤ J c (w(0, v)) = J c (v) ≤ γ + ε.

In particular, w(t, v) ∈ A 2 for every t ∈ [0, δ 3 -δ 2 ). In addition, by the definition of ϕ, we derive J c (w (δ 3 -δ 2 , v)) = J c (v) + J c (w(t, v)), ϕ(w(t, v)) dt

= J c (v) - δ 3 -δ 2 0 J c (t, v)) H -1 (R) dt ≤ γ + ε -(δ 3 -δ 2 ) 2ε δ 3 -δ 2 = γ -ε.
This concludes the proof.

We include also a technical lemma needed in the proof of Proposition 3.9. Even though the proof of the lemma is elementary, it is not straightforward and a sort of uniform continuity of the functional J c is required. Lemma 6.3. Let c > 0 and fix δ c ∈ (0, 1), R c > 0 and γ c > 0. For every α > 0 and δ ∈ (0, 1), we consider the set X α,δ = J -1 c ((γ c -α, γ c + α)) ∩ Z δ , where Z δ is defined by (3.5), i.e.

Z δ = {v ∈ N V(R) : v H 1 (R) ≤ R c + 1 -δ, v ≤ 1 -δ on R}.
Let us also denote I α,δ = inf{ J c (v) H -1 (R) : v ∈ X α,δ }.

Assume that there exists α > 0 such that I α,δc > 0. Then there exists δ ∈ (0, δ c ) such that I α, δ > 0.

Proof. Let us take δ ∈ (0, δ c ). Observe that Z δc ⊂ Z δ . Recall that J c ∈ C 2 (N V(R)), see Lemma 3.1. It is simple to check from (3.2) that J c (v) ≤ C for every v ∈ Z δ , where C > 0 depends only on R c and δ. Hence, since Z δ is connected and convex, the Mean Value theorem implies that J c is Lipschitz in Z δ , with Lipschitz constant denoted by l δ > 0. In consequence, for every ε > 0, if we take β = ε/l δ , then the following holds for any v, w ∈ Z δ satisfying v -w H 1 (R) < β,

J c (v) H -1 (R) -J c (w) H -1 (R) ≤ J c (v) -J c (w) H -1 (R) ≤ l δ v -w H 1 (R) < ε.
In the previous inequality, we take ε = I α,δc /2. Therefore, if v ∈ Z δ , w ∈ X α,δc and vw H 1 (R) ≤ β, then

J c (v) H -1 (R) > J c (w) H -1 (R) - I α,δc 2 ≥ I α,δc 2 > 0.
We have proved that

J c (v) H -1 (R) ≥ I α,δc 2 > 0 for all v ∈ X , ( 6.7) 
where X = {v ∈ X α,δ : dist(v, X α,δc ) < β}.

Notice that X α,δc ⊂ X ⊂ X α,δ .

Using (6.7), the proof of the lemma will be finished as soon as we show that there exists δ ∈ (δ, δ c ) such that X α,δc ⊂ X α, δ ⊂ X ⊂ X α,δ .

In order to do so, let δ ∈ (δ, δ c ) to be chosen later, and let v ∈ X α, δ . For some λ > 0 to be chosen later too, we aim to prove that λv ∈ X α,δc and v -λv H 1 (R) < β, (6.8) which implies that v ∈ X . On the one hand, simple computations show that a sufficient condition for λv ∈ Z δc and v -λv

H 1 (R) < β is 1 - β R c + 1 - δ < λ < 1 -δ c 1 - δ . (6.9)
Observe that λ > 0 can be chosen so that (6.9) holds whenever δ is close enough to δ c . On the other hand, it is left to prove that J c (λv) ∈ (γ c -α, γ c + α). Indeed, since J c is uniformly continuous in Z δ and J c (v) ∈ (γ c -α, γ c + α), it follows that there exists λ 0 ∈ (0, 1), independent of v, such that J c (λv) ∈ (γ c -α, γ c + α) for every λ ∈ (λ 0 , 1]. Now we take δ even closer to δ c so that λ 0 < 1-δc 1-δ . Thus, for every λ ∈ (λ 0 , 1) satisfying (6.9), we have that (6.8) holds. The proof is finished.

Lemma 2 . 1 .

 21 Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). Then u is bounded and of class C ∞ (R). Moreover, η := 1 -|u| 2 and u belong to W k,p (R), for all k ∈ N and p ∈ [2, ∞].

Lemma 3 . 8 .

 38 Assume that W satisfies (H1). Let c ∈ D c and let {c n } be an increasing sequence such that c n → c. Then there exist a sequence {g n } ⊂ Γ(c) and a constant R = R(γ c (c)) > 0 such that the following holds:

Proposition 4 . 4 .

 44 Let c ≥ 0. Assume that W satisfies (H2) and that 3ξ 2 + 2 W(ξ) + 2ξ( W) (ξ) ≥ 2 a.e. on R.(4.5)

Lemma 4 . 15 .

 415 Let c > 0 and let u ∈ N E(R) be a solution to (S(W, c)). Then we have the following estimates in terms of ρ = |u| and η = 1 -|u| 2 .

  (4.63) and ρ n ≥ δ c on R, for all n. (4.64) Proof. Notice that W satisfies (H3), so that (4.1) and (4.5) hold, and (H1) is fulfilled with σ = 1 and κ = m/2. Let c ∈ (0, c). Consider the set D c = {s ∈ (c, √ 2) : γ c is differentiable at s}. Let {c n } ∈ D c be a nondecreasing sequence such that c n → c. Recall that such a sequence exists thanks to (3.8). Proposition 3.10 implies that, for every fixed n, there exists a sequence {v

. 1 R 1 {|y|≤R}|F (y)| q {|x|>R} e q|x| ( 1 +

 111 ) qm R |F (y)| q e qm|x-y| dy dx r q From the previous inequality, one gets directly{|x|>R} |h ε (x)| q dx ≤ C 1 {|x|>R} e q|x| (1 + εe |x| ) qm R |F (y)| q e qm|x-y| dy dx.Now, by Fubini's theorem and Lemma 5.5, we derive{|x|>R} |h ε (x)| q dx ≤ C |F (y)| q {|x|>R} e q|x| (1 + εe |x| ) qm e qm|x-y| dx dy ≤ C 1 {|y|>R} |F (y)| q Be q|y| (1 + εe |y| ) qm dy +C εe |x|) qm e qm|x-y| dxdy.We will now estimate the last two integrals. On the one hand, using the inequality ||x| -|y|| ≤ |x -y|, we obtain{|y|≤R} |F (y)| q {|x|>R} e q|x| (1 + εe |x| ) qm e qm|x-y| dxdy ≤ F q L ∞ (R) {|y|≤R} {|x|>R} e q|x| e qm|x-y| dxdy ≤ F q L ∞ (R) {|y|≤R}e qm|y| dy {|x|>R} e -(m-)q|x| dx := C 2 /C 1 .

Theorem 5 . 6 .

 56 Let T ∈ L 2 (R). Then e b|x| T ∈ L 2 (R) for all b < a, if and only if T has an analytical continuation to the strip {z ∈ C : |z| < a} with the property that for each ζ ∈ R with |ζ| < a, T (• + iζ) ∈ L 2 (R) and for any b < a, sup |ζ|≤b T (• + iζ) L 2 (R) < ∞.

R |x| ( 1 +Theorem 5 . 8 .

 158 ε|x|) m (1 + |x -y|) m dx ≤ B|y| (1 + ε|y|) m ,for all y ∈ R and for all ε ∈ (0, 1]. (5.16) Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). Assume that L c ∈ S (R) and(1 + |

  |M c (ξ + iw)| ≥ δ,for all |w| ≤ δ, for all ξ ∈ R.(6.3) Arguing by contradiction, we get the existence of sequences δ n ∈ (0, 1), |w n | ≤ 1, ξ n ∈ R, with δ n → 0, w n → 0, and such thatT (ξ n , w n ) = o n (1), with T (ξ, w) := ξ 2 -w 2 + 2 Re( W λ (ξ + iw)) -c 2 , (6.4) G(ξ n , w n ) = o n (1), with G(ξ, w) := 2ξw + 2 Im( W λ (ξ + iw)). (6.5)By using the explicit expressions for W λ , it is easy to check that in the case (i), we have| W λ (ξ + iw)| = |2 -cos(λξ) cosh(λw) + i sin(λξ) sinh(λw)| ≤ 2 + cosh(λw) + sinh(λ|w|). (6.6)In the case (ii), we get| W λ (ξ + iw)| = |e -λ(ξ 2 -w 2 +2iξw) | ≤ e λw 2 ,while in the case (iii), | W λ (ξ + iw)| = | sin(λξ) cosh(λw) + i cos(λξ) sinh(λw)| λ ξ 2 + w 2 ≤ cosh(λw) + sinh(λ|w|) λ|w| .

(3ξ 2 + 2 ( 1 -2κ) π α 0 ( 3 ( 1 -

 221031 L c (x) = 1 2π R e ixξ L c (ξ)dξ = 1 2π α -α cos(xξ) (1 -2κ)ξ 2 + 2 -c 2 dξ + 1 2π {|ξ|>α} cos(xξ) ξ 2 -c 2 dξ,where we have used that L c is even. Now, after applying integration by parts twice, we getL c (x) = 1 x 2 (A cos(αx) + g(x)) for all x = 0, where A = 4ακ π(α 2 -c 2 ) c 2 ) cos(xξ) (ξ 2 -c 2 ) 3 dξ -2κ)ξ 2 + 2 -c 2 ) cos(xξ) ((1 -2κ)ξ 2 + 2 -c 2 ) 3 dξ.

  w(t, v))dt = J c (v) + δ 3 -δ 2 0
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We keep this notation for F and η for the rest of the Section, and we assume, as always, that W satisfies (H0). If M c > 0 a.e., we can recast (5.1) as

.

(5.2)

We will see that the operator L c plays an essential role in order to study the regularity and asymptotic behavior at infinity of the solitons given by Theorems 1.1 and 4.1.

We also stress that (H1) is sufficient condition for L c to be well defined, for c ∈ [0, √ 2σ). Indeed, we have

(5.3)

We can now establish our nonexistence result for solitons with critical speed.

Theorem 5.1. Assume that W ≥ 0 a.e. on R and that there exists δ > 0 such that one of the following holds:

)) admits no nontrivial solution in E(R).

Proof. Arguing by contradiction, assume that there exists a nontrivial solution u ∈ E(R) to (S(W, √ Let us show that F is continuous and F (0) > 0. Indeed, from (2.6) and from the fact that η(±∞) = 0, we deduce the existence of constants R, C > 0 such that

Hence K ∈ L 1 (R) and, in turn, F ∈ L 1 (R) and F is continuous. Also, it follows from (5.4) that we can assume that M η is also continuous. Moreover, since u is not trivial and W ≥ 0 a.e., Plancherel's identity yields

If assumption (i) holds, we deduce that M η = 0 on (-δ, δ), so that, by (5.4), F (0) = 0, which contradicts (5.5).

If assumption (ii) holds, then M is differentiable on (-δ, δ), M (0) = 0 and M (ξ) = 0 for a.e. ξ ∈ (-δ, δ). Therefore, η(ξ) = L(ξ) F (ξ) a.e. ξ ∈ (-δ, δ), (5.6) where L = 1/M . Let us show now that L ∈ L 1 ((-δ, δ)) for every δ ∈ (0, δ) small enough.

Expanding M around zero leads to

Appendix

We include here the proof of the deformation lemma.

Proof of Lemma 3.3. For j = 1, 2, 3, let us denote

Since these are closed sets in H 1 (R), we may define a functional ψ : H 1 (R) → R of class C 1 such that 0 ≤ ψ(v) ≤ 1 for every v ∈ H 1 (R) and