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Abstract

We consider the nonlocal Gross–Pitaevskii equation that models a Bose gas with general
nonlocal interactions between particles in one spatial dimension, with constant density far
away. We address the problem of the existence of traveling waves with nonvanishing condi-
tions at infinity, i.e. dark solitons. Under general conditions on the interactions, we prove
existence of dark solitons for almost every subsonic speed. Moreover, we show existence
in the whole subsonic regime for a family of potentials. The proofs rely on a Mountain
Pass argument combined with the so-called “monotonicity trick”, as well as on a priori es-
timates for the Palais–Smale sequences. Finally, we establish properties of the solitons such
as exponential decay at infinity and analyticity.
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1 Introduction

1.1 The problem

In order to describe the dynamics of a weakly interacting Bose gas, Gross [30] and Pitaevskii [51]
found that the wavefunction Ψ governing the condensate satisfies a Schrödinger equation, that
in dimension one and in its dimensionless form, is given by

i∂tΨ = −∂xxΨ + Ψ
∫
R
|Ψ(y, t)|2V (x− y) dy, in R× R. (1.1)

Here, Ψ : R× R→ C and V describes the interaction between bosons. In their works, they are
interested in a function Ψ satisfying the nonzero condition at infinity:

lim
|x|→∞

|Ψ(x, ·)| = 1, (1.2)

representing the fact that the density is constant far away.
Equation (1.1) also appears as the model for the evolution of a one-dimensional optical

beam of intensity |Ψ|2 in a self-defocusing nonlocal Kerr-like medium, where V characterizes
the nonlocal response of the medium [41, 49]. In this case, the condition (1.2) is natural when
studying dark optical solitons. In all of these physical situations, V is assumed to be real-
valued and symmetric. Moreover, in the most typical first approximation, V is considered as a
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Dirac delta function, which leads to the standard Gross–Pitaevskii equation with nonvanishing
condition at infinity, that has been intensively investigated (see e.g. [17, 34,35,39]).

To provide a clear mathematical context to the problem, it is useful to perform the change
of variables Ψ→ e−itΨ, which leads to the equation

i∂tΨ = ∂xxΨ + Ψ(W ∗ (1− |Ψ|2)) in R× R, (1.3)

where we assumed that V ∗ 1 = 1 and denoted by W the potential to make our following
assumptions more clear. Here ∗ denotes the convolution in R. We assume from now on that W
is a real-valued even tempered distribution. In this manner, (1.3) is Hamiltonian and its energy

E(Ψ(t)) = 1
2

∫
R
|∂xΨ(t)|2 dx+ 1

4

∫
R

(W ∗ (1− |Ψ(t)|2))(1− |Ψ(t)|2) dx,

is formally conserved. The (renormalized) momentum

p(Ψ(t)) =
∫
R
〈i∂xΨ(t),Ψ(t)〉C

(
1− 1
|Ψ(t)|2

)
dx,

is formally conserved too whenever infx∈R |Ψ(x, t)| > 0, where 〈z1, z2〉C = Re(z1z̄2), for z1,
z2 ∈ C (see [19]).

We will be interested in special solutions to (1.3) with boundary condition (1.2), the so-called
dark solitons. Roughly speaking, these are localized density notches that propagate without
spreading [38]. They have been observed for example in Bose–Einstein condensates [5,23]. More
precisely, dark solitons in our context will be nontrivial finite energy solutions to (1.3) of the
form

Ψc(x, t) = u(x− ct),

which represents a traveling wave with profile u : R → C propagating at speed c ∈ R. Hence,
the soliton u satisfies

icu′ + u′′ + u(W ∗ (1− |u|2)) = 0 in R. (S(W, c))

Notice that taking the complex conjugate of u in equation (S(W, c)), we are reduced to the case
c ≥ 0.

By finite energy solution to (S(W, c)) we mean a solution belonging to the energy space

E(R) = {v ∈ H1
loc(R) : 1− |v|2 ∈ L2(R), v′ ∈ L2(R)}.

This is justified by assuming that the Fourier transform of W is bounded, i.e. that Ŵ ∈ L∞(R).
Indeed, by Plancherel’s identity,

E(u) ≤ 1
2‖u

′‖2L2(R) + 1
4‖Ŵ‖L

∞(R)‖1− |u|2‖2L2(R).

We point out that any function in the energy space satisfies (1.2) (see Theorem 1.8 in [26]).
The simplest case for (S(W, c)) that one may consider corresponds to the contact interaction

W = δ0. In this way, (S(δ0, c)) becomes the classical Gross–Pitaevskii equation, which is a local
equation. In our one-dimensional case, (S(δ0, c)) can be solved explicitly. More precisely, as
explained in [9], if c ≥

√
2 the only solutions in E(R) are the trivial ones (i.e. the constant

functions of modulus one). On the contrary, if 0 ≤ c <
√

2, the nontrivial solutions in E(R) are
given, up to invariances (translations and multiplication by constants of modulus one), by

uc(x) =

√
2− c2

2 tanh
(√

2− c2

2 x

)
− i c√

2
. (1.4)
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Thus there is a family of dark solitons belonging to the nonvanishing energy space

NE(R) = {v ∈ E(R) : inf
R
|v| > 0},

for c ∈ (0,
√

2). We refer to them as the vortexless solutions, as usual in nonlinear optics. There
is also one stationary soliton that vanishes at exactly one point, associated with the speed c = 0,
that is called the black soliton. Notice also that the values of uc(∞) and uc(−∞) are different
if c 6= 0, and thus we cannot relax the condition (1.2) to lim|x|→∞Ψ = 1 (as in the higher
dimensional case, see e.g. [10]).

In the case of spatial dimension equal to two or three, the study of traveling waves for the
contact interaction W = δ0 started with numerical simulations in the Jones–Roberts program
[34, 35]. There, it was observed numerically that finite energy traveling waves should exist for
every c ∈ [0,

√
2), and should not otherwise. Rigorous proofs of these conjectures have been

established by Béthuel and Saut [11], Béthuel, Gravejat and Saut [10], Mariş [47], Ruiz and
Bellazzini [7], among others.

Despite the physical interest of the most realistic case where W is a more general distri-
bution, there are very few mathematical results concerning nonlocal interactions with nonzero
conditions at infinity. To our knowledge, most of the mathematical results concerning the exis-
tence of traveling waves deal with functions vanishing at infinity (see e.g. [3,6,16,42,46]) and the
techniques used in these works cannot be adapted to include solutions satisfying (1.2). Recently,
de Laire and Mennuni [22] proved the existence of a branch of solutions to (S(W, c)), by using
a minimization approach. For q ≥ 0, they consider the (nondecreasing) minimization curve

Emin(q) := inf{E(v) : v ∈ E(R), p(v) = q}, (1.5)

and set
q∗ = sup{q > 0 | ∀v ∈ E(R), E(v) ≤ Emin(q)⇒ inf

R
|v| > 0}. (1.6)

Under certain technical conditions onW, they show that q∗ > 0.027 and that for any q ∈ (0, q∗),
the minimum associated with Emin(q) is attained and the corresponding Euler–Lagrange equa-
tion satisfied by the minimizers is exactly (S(W, c)), where c ∈ (0,

√
2) appears as a Lagrange

multiplier. In addition, their solutions are orbitally stable. Therefore, their result establishes the
existence of a family of solutions to (S(W, c)) parametrized by the momentum. This theorem
applies for instance to the potentialWα,β = β

β−2α(δ0−αe−β|x|), for β > 2α > 0, which describes
a strong repulsion force when two particles are in the same place, but an attractive force other-
wise. However, the results in [22] do not apply to an interaction of the formW(x) = exp(−αx2),
α > 0, since its Fourier transform grows exponentially in the complex plane. The first goal of
this paper is to provide simple conditions on W that guarantee the existence of nontrivial finite
energy solutions to (S(W, c)), covering a large variety of relevant nonlocal interactions, such as
the Gaussian potential. The second one is to determine an optimal range for c (depending on
W) for which there exist finite energy traveling waves. Finally, a third goal is to establish the
regularity and the decay of these solutions, and their nonexistence at critical speed.

1.2 Main results

From now on we assume that Ŵ satisfies the following minimal regularity assumption:

(H0) W is an even tempered distribution such that Ŵ ∈ L∞(R).

Let us remark that the condition Ŵ ∈ L∞(R) is equivalent to the continuity of the application
η ∈ L2(R) 7→ W ∗ η ∈ L2(R) (see e.g. [27]). The parity assumption is necessary to have a
variational formulation (see Lemma 3.1).

3



As explained in [22], the Bogoliubov dispersion relation [12] is given by

w(ξ) =
√
ξ4 + 2Ŵ(ξ)ξ2. (1.7)

We formally get w(ξ) ≈ (2Ŵ(0))1/2
|ξ|, for ξ ≈ 0. The critical speed c∗(W) = (2Ŵ(0))1/2

corresponds to the so-called speed of sound. It is conjectured that there is no nontrivial solution
to (S(W, c)) with finite energy when c(W) ≥ c∗(W). Observe also that if Ŵ is continuous at the
origin, then we can assume without loss of generality thatW fulfills the normalization condition
(see [22]) Ŵ(0) = 1, so that the speed of sound is well-defined and equal to c∗(W) =

√
2.

Here and in what follows we use the convention that the Fourier transform of an integrable
function is

f̂(ξ) =
∫
R
e−ixξf(x)dx. (1.8)

In particular, the Fourier transform of the Dirac delta is δ̂0 = 1, so that c∗(δ0) =
√

2, and the
nonexistence conjecture holds when W = δ0, as explained before.

Our first result establishes the existence of dark solitons under the following assumption:

(H1) There exist σ ∈ (0, 1] and κ ∈ [0, 1/2) such that Ŵ(ξ) ≥ σ − κξ2 a.e. on R.

Theorem 1.1. Assume that W satisfies (H0) and (H1). Then there exists a nontrivial solution
to (S(W, c)) in E(R), for almost every c ∈ (0,

√
2σ).

As an easy consequence of Theorem 1.1, we prove the following existence result for nonnega-
tive potentials satisfying (H1) in the critical case κ = 1/2. This critical lower bound was already
considered in [22].

Corollary 1.2. Assume that W satisfies (H0), with Ŵ ≥ 0 a.e. on R, and that there is
σ ∈ (0, 1] such that Ŵ(ξ) ≥ σ− ξ2/2, for a.e. |ξ| ≤

√
2σ. Then there exists a nontrivial solution

to (S(W, c)) in E(R), for almost every c ∈ (0,
√

2σ).

Notice that there is no assumption on the continuity ofW. For instance, Theorem 1.1 applies
to the potential

W = 3δ0 −
J1(2| · |1/2)

2| · |1/2
, so that Ŵ(ξ) = 2 + cos(1/ξ), for all ξ ∈ R \ {0},

where J1 is the Bessel function of first kind, with σ = 1 and κ = 0. This gives us the existence
of nontrivial finite energy solutions to (S(W, c)) for a.e. c ∈ (0,

√
2).

We can also apply Theorem 1.1 to the potential

Ŵa,b,λ(ξ) = (1 + aξ2 + bξ4)e−λξ2
, (1.9)

that has been proposed in [8,53] to describe a quantum fluid exhibiting a roton-maxon spectrum
such as Helium 4. Indeed, as predicted by the Landau theory, in such a fluid, the dispersion
curve (1.7) cannot be monotone, and it should have a local maximum and a local minimum,
the so-called maxon and roton, respectively. In [22], some numerical simulations were done
for a = −36, b = 2687, λ = 30, and a branch of solitons was found with speeds in (0,

√
2).

These values are relevant because they provide the existence of a maxon and a roton. However,
the existence theorem in [22] does not apply to this potential. On the other hand, it can be
checked that, for these values of a, b and λ, condition (H1) is fulfilled with σ = 0.175 and
any κ ∈ (0, 1/2). Consequently, Theorem 1.1 provides the existence of nontrivial finite energy
solutions to (S(Wa,b,λ, c)) for a.e. c ∈ (0,

√
0.35).
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The first step to prove Theorem 1.1 is to show that, if c > 0, then any solution u ∈ E(R) must
belong to NE(R), which allows us to lift the function as u = ρeiθ, for some real-valued functions
ρ and θ. Then, we prove in Section 2 the crucial fact that (S(W, c)) is actually equivalent to
the nonlocal singular equation

−ρ′′ + c2

4
1− ρ4

ρ3 = ρ
(
W ∗ (1− ρ2)

)
in R. (1.10)

Therefore, we only need to look for a real solution ρ ∈ NE(R). Moreover, we know now that
ρ(x) = |u(x)| → 1 as |x| → ∞, so that we can suppose that ρ recast as ρ = 1 + v, for some
v ∈ H1(R). The drawback is that we have introduced a singularity in the equation, we need thus
to take care of the possible vanishing of functions on the variational approximation. Indeed, in
Section 3 we will show that the solutions to (1.10) correspond to critical points of the functional
Jc : H1(R)→ R ∪ {−∞} given by

Jc(1− ρ) = A(1− ρ)− c2B(1− ρ), for ρ ∈ 1 +H1(R),

where

A(1− ρ) = 1
2

∫
R

(ρ′)2 + 1
4

∫
R

(W ∗ (1− ρ2))(1− ρ2) and B(1− ρ) = 1
8

∫
R

(1− ρ2)2

ρ2 .

More precisely, it will be obtained as a mountain pass point. However, we cannot directly apply
the classical version of the mountain pass theorem for several reasons. First, to handle the
singularity of Jc, we do not work in H1, but in the nonvanishing open set

NV(R) = {v ∈ H1(R) : 1− v > 0 in R},

i.e. we consider ρ = 1 − v with v ∈ NV(R). Hence we need to verify that we can adapt the
deformation lemma in this setting. Second, our formulation does not give the boundedness
of Palais–Smale sequences. Nevertheless, we can apply the monotonicity trick introduced by
Struwe [54] and generalized by Jeanjean [33], that, roughly speaking, will provide bounded
Palais–Smale sequences for almost every c ∈ (0,

√
2σ).

In order to prove existence in the whole subsonic regime, we have to restrict the potentials
we work with; in particular, they will satisfy (H1) with σ = 1, so the subsonic interval becomes
(0,
√

2). One of the new assumptions on the potentials implies some a priori estimates on the
solutions. To see how this hypothesis is used, observe that, for any c ∈ (0,

√
2), one can apply

Theorem 1.1 to get the existence of a sequence of speeds {cn} and a sequence of associated
solutions {un} ⊂ E(R) to (S(W, cn)), such that cn → c. At this point, some a priori estimates
allow us to conclude that un → u ∈ Ckloc(R), so that u is a solution to (S(W, c)). However, from
our estimates, it is not clear that u has finite energy. Indeed, there are solutions with infinite
energy to (S(W, c)) that we need to avoid, for instance

u±r (x) = r exp
(
ix
(−c±√c2 + 4(1− r2)

2
))
, for all r ∈ (0, 1].

By imposing more restrictive conditions on the potential W, we by-pass this difficulty in Sec-
tion 4 by performing a more refined study of the Palais–Smale sequence and using the profile
decomposition theorem for bounded functions in H1(R).

For the sake of simplicity, we only state in this introduction the existence result in the whole
interval (0,

√
2) for potentials of the form

Wµ = Aµ(δ0 + µ), where µ is an even Borel measure with ‖µ−‖ < 1, Aµ = (1 + µ̂(0))−1.
(1.11)
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Here and it what follows, µ− and µ+ denote the negative and positive variations of µ, i.e.
µ = µ+ − µ− for some (unique) positive Borel measures such that µ+ ⊥ µ− (see [25]). Also, ‖·‖
stands for the total variation of a Borel measure. It can be justified that µ̂(0) = ‖µ+‖ − ‖µ−‖,
so that 1 + µ̂(0) > 0 and the normalization constant Aµ is well-defined.

Theorem 1.3. Let Wµ be as in (1.11). Assume that µ̂ is nondecreasing a.e. on R+ and that
µ̂ ∈W 1,∞(R). Then there exists a nontrivial solution to (S(W, c)) in NE(R) for all c ∈ (0,

√
2).

We will show below (see Theorem 1.8, case (i)) that the hypothesis of monotonicity in
Theorem 1.3 can be relaxed.

In Section 5 we study further properties of the solutions by considering the variable η =
1− |u|2, that satisfies the equation

−η′′ + 2W ∗ η − c2η = 2|u′|2 + 2η(W ∗ η) := F. (1.12)

From (1.12) we can deduce that every finite energy solution is smooth and that, if c > 0, then
|u| does not vanish, i.e. η < 1 on R (see Proposition 2.2). On the other hand, equation (1.12)
can be written as

Mc(ξ)η̂(ξ) = F̂ (ξ), with Mc(ξ) = ξ2 + 2Ŵ(ξ)− c2. (1.13)

If c ∈ [0,
√

2) and W satisfies (H1), then Mc is strictly positive, so (1.12) is an elliptic equation.
In this case, (1.12) can be written as the convolution equation:

η = Lc ∗ F, where L̂c = M−1
c .

In this way, L̂c appears as a Fourier multiplier.
Let us remark that this kind of convolution formulation has been used in several contexts to

get further properties of the solutions, see e.g. [18,20,29]. In our case, we can adapt and extend
the classical theory of Bona–Li [13, 14] to handle the nonlocal function F , and to deduce the
algebraic or exponential decay, and analyticity of the solutions depending on the properties of
W. For instance, our main result concerning the exponential decay reads as follows.

Theorem 1.4. Assume that W satisfies (H0). Let c ≥ 0 and let u ∈ E(R) be a solution to
(S(W, c)). Suppose that

em|·|Lc ∈ Lp(R) for some m > 0, p ∈ (1,∞]. (1.14)

Then, for all ` ∈ [0,m), the function η = 1− |u|2 has the exponential decay:

lim
|x|→∞

e`|x|Dkη(x) = 0, for all k ∈ N.

We refer to Section 5 for the precise statements for algebraic decay and the real analyticity of
u, in the sense that Re(u) and Im(u) are real analytic functions.

We now discuss the nonexistence conjecture of nontrivial finite energy solution to (S(W, c))
for c ≥

√
2. In the case W = δ0, the proof in [9] uses the Cauchy–Lipschitz theorem for ODEs.

Thus, this argument seems difficult to apply to the nonlocal equations (S(W, c)) or (1.10). In
the limit case c =

√
2, we can use (1.13) again to get the following nonexistence result.

Theorem 1.5. Assume that W satisfies (H0) and that Ŵ is of class C2 in a neighborhood of the
origin, with Ŵ ≥ 0 a.e. on R and Ŵ(0) = 1. Suppose that either (Ŵ)′′(0) 6= −1, or (Ŵ)′′ = −1
on a neighborhood of the origin. Then (S(W,

√
2)) admits no nontrivial solution in E(R).
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As a consequence of the real analyticity of the solutions to (S(W, c)), we can deduce that
the solutions obtained by minimization by de Laire and Mennuni in [22] are symmetric. By
combining the analyticity with a reflection argument, we get the following result.

Corollary 1.6. Let W be a potential satisfying the hypotheses in Theorem 1 in [22]. Let q ∈
(0, q∗) and let u = ρeiθ ∈ NE(R) be the nontrivial solution to (S(W, c)), for some c ∈ (0,

√
2),

satisfying p(u) = q, given by Theorem 1 in [22]. Then, up to translations, ρ is an even function
and, up to multiplying u by a constant of modulus one, θ is an odd function.

The uniqueness of solutions to (S(W, c)) is a difficult problem due to the nonlocal potential.
Actually, the uniqueness for nonlocal equations such as (S(W, c)) can be hard to establish (see
e.g. [2,43]). We do not know if the solutions to (S(W, c)) are unique (up to invariances) except
in the case W = δ0, where the solutions are explicitly given in (1.4). However, we think that
the uniqueness holds, at least for the potentials in the examples in the next subsection.

Another interesting open question is whether the solutions obtained via Theorem 1.1 are
orbitally stable. Unlike in [22], our solutions are not minimizers but mountain pass critical
points. This makes the analysis of the stability in our context a nontrivial task. Actually, since
uniqueness is not guaranteed, our solutions might in principle be different from those in [22] and,
in consequence, there might exist potentials W that provide unstable solutions. On the other
hand, we performed in [21] numerical computations for the potentials in the Subsection 1.3, that
suggest the orbital stability of the traveling waves in Theorem 1.8.

1.3 Examples

For β > 2α > 0, we consider the potential

Wα,β = β

β − 2α(δ0 − αe−β|·|), so that Ŵα,β(ξ) = β

β − 2α

(
1− 2αβ

ξ2 + β2

)
, ξ ∈ R. (1.15)

This kind of potential has been used in [49] for the study of dark solitons in a self-defocusing
nonlocal Kerr-like medium. The kernel Wα,β represents a strong repulsive interaction between
particles that coincide in space, while the interaction becomes attractive otherwise, being this
attraction significant at short distances.

From a mathematical point of view, this potential satisfies all the conditions to apply The-
orems 1.3, 1.4, 1.5 and 5.12. The result reads as follows.

Theorem 1.7. Let Wα,β be given by (1.15) with β > 2α > 0. Then for every c ∈ (0,
√

2),
there exists a nontrivial solution uc ∈ NE(R) to (S(Wα,β, c)). In addition, uc is real-analytic,
the limits uc(±∞) exist, and there exists ` > 0, depending only on c, α and β, such that
ηc = 1− |uc|2 satisfies

lim
|x|→∞

e`|x|Dkηc(x) = 0, for all k ∈ N. (1.16)

Furthermore, there is no nontrivial solution to (S(Wα,β,
√

2)) in E(R).

The following three examples will provide similar mathematical results, so we will gather
them in a single theorem after some comments. The first one was proposed in [58] as simple
model for interactions in a Bose–Einstein condensate. For λ > 0, it is given by a contact
interaction δ0 and two Dirac delta functions centered at ±λ, as

Wλ = 2δ0 −
1
2(δ−λ + δλ), so that Ŵλ(ξ) = 2− cos(λξ), ξ ∈ R. (1.17)

Notice that, as well as (1.15), (1.17) models a competition between repulsive and attractive
interactions.
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Another interesting example proposed in [45] is the Gaussian function,

Wλ(x) = 1
2λ
√
π
e−

x2
4λ2 , so that Ŵλ(ξ) = e−λξ

2
, ξ ∈ R. (1.18)

where λ > 0. In fact, for λ > 0 small, this potential represents a smooth approximation of the
Dirac delta.

Finally, we introduce the so-called soft core potential, which was used in [1, 36] to study
supersolids. It can be seen as a nonsmooth approximation of the Dirac delta when λ > 0 is
small,

Wλ(x) =


1

2λ, if |x| < λ,

0, otherwise,
so that Ŵλ(ξ) = sin(λξ)

λξ
, ξ ∈ R. (1.19)

Unlike Theorem 1.7, for this three potentials we prove existence of nontrivial finite energy
traveling waves for almost every c ∈ (0,

√
2). We summarize our main results for (1.17), (1.18)

and (1.19) as follows.

Theorem 1.8. Assume that one of the following cases holds.

(i) Wλ is given by (1.17) with 0 < λ.

(ii) Wλ is given by (1.18) with 0 < λ < 1/2.

(iii) Wλ is given by (1.19) with 0 < λ <
√

3.

Then, for almost every c ∈ (0,
√

2), there exists a nontrivial solution uc ∈ NE(R) to (S(Wλ, c)).
In addition, uc is real-analytic, the limits uc(±∞) exist, and there exists ` > 0, depending only
on c and λ, such that the function ηc = 1− |uc|2 satisfies

lim
|x|→∞

e`|x|Dkηc(x) = 0, for all k ∈ N. (1.20)

Moreover, in the case (i), there exists λ0 ≥
√

2/3 such that if λ ∈ (0, λ0), then the existence and
properties of uc hold for all c ∈ (0,

√
2). Finally, in the cases (i) and (ii), there is no nontrivial

solution to (S(Wλ,
√

2)) in E(R).

Some comments on this theorem are in order.

• If the Fourier transform of the potential is nonnegative, we can also apply Corollary 1.2
to study other ranges of λ. For instance, if Wλ is given by (1.18), a simple computation
shows that for λ ≥ 1/2, we have the estimate Ŵλ(ξ) ≥ σλ − ξ2/2, for all ξ ∈ R, where
σλ = 1+ln(2λ)

2λ . Therefore, we can deduce the existence of nontrivial solitons for a.e. c ∈
(0,
√

2σλ).

• If Wλ is given by (1.19), then Ŵλ changes sign. For this reason we cannot guarantee
nonexistence of finite energy traveling waves for the critical speed c =

√
2 in Theorem 1.8.

• Filling the existence in the complete interval (0,
√

2) in Theorem 1.8 for cases (ii) and (iii),
and even (i) for λ large, would require to prove several estimates, a task far from being
trivial without our assumptions (H3) and (H5) (see Section 4 for details).

• The arguments in the proof of Theorem 1.8 also apply to the potential (1.9), with the
values a = −36, b = 2687, λ = 30. Therefore, for a.e. c ∈ (0,

√
0.35), the solution uc is

real-analytic and decays exponentially at infinity. Also, there is no nontrivial solution with
critical speed c =

√
2 in E(R).
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The last example that we consider is given, for κ ∈ (0, 1/2], by

Wκ(x) = 2κ
πx2

(
sin(x/

√
κ)

x
− 1√

κ
cos(x/

√
κ)
)
, so that Ŵκ(ξ) = (1− κξ2)+, ξ ∈ R. (1.21)

It is simple to check that Wκ is bounded continuous, with Wκ ∈ L1(R). From a mathematical
point of view, this is an interesting example since it represents the limiting case among the
normalized potentials (i.e. Ŵ(0) = 1) satisfying (H1) with nonnegative Fourier transform. This
kernel also appears in the Bochner–Riesz means, and it is important in the Fourier multipliers
theory.

Due to the lack of regularity of Ŵκ, we do not expect an exponential decay of the solution.
Nevertheless, we will show that, in this case, Lc decays as 1/x2, which will lead us to the
following result.

Theorem 1.9. Let Wκ be given by (1.21), with κ ∈ (0, 1/2]. Then for almost every c ∈ (0,
√

2),
there exists a nontrivial solution uc ∈ NE(R) to (S(Wκ, c)). In addition, uc is real-analytic, the
limits uc(±∞) exist, and the function ηc = 1− |uc|2 satisfies the following algebraic decay

| · |`Dkηc ∈ L1(R), lim
|x|→∞

|x|`Dkηc(x) = 0, for all ` ∈ [0, 1), for all k ∈ N. (1.22)

Moreover, there is no nontrivial solution to (S(Wκ,
√

2)) in E(R).

We will study numerically the solitons given in this subsection in the forthcoming paper [21].

1.4 Notation

The usual real-valued Sobolev and Lebesgue spaces will be denoted, respectively, by W k,p(R)
and Lp(R) for p ∈ [1,∞] and k ∈ N. Moreover, W k,2(R) = Hk(R). The notation for the
Lebesgue spaces of complex-valued functions will be Lp(R;C), and analogously for the Sobolev
spaces of complex-valued functions, or simply Lp(R) if there is no ambiguity. For a real-valued
function f , we write f+ = max{f, 0} and f− = −min{f, 0}, so that f = f+ − f−.

In this paper we always assume that W satisfies (H0). In particular, this implies that

‖W ∗ f‖L2(R) ≤ ‖Ŵ‖L∞(R)‖f‖L2(R), for all f ∈ L2(R;C), (1.23)

and that Plancherel’s identity reads, with our convention for the Fourier transform,∫
R

(W ∗ f)g = 1
2π

∫
R
Ŵ(ξ)f̂(ξ)¯̂g(ξ), for all f, g ∈ L2(R;C). (1.24)

2 Some identities
We start recalling that any finite energy solution to (S(W, c)) is smooth and admits a lifting at
infinity (without restriction on c). This result corresponds to Corollary 2.4 in [18], where it was
proved in dimension greater or equal than two, but the same proof applies in our one-dimensional
setting.

Lemma 2.1. Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). Then u is bounded and of
class C∞(R). Moreover, η := 1 − |u|2 and u′ belong to W k,p(R), for all k ∈ N and p ∈ [2,∞].
Furthermore, there exists a smooth lifting of u. More precisely, there exist R > 0, δ ∈ (0, 1)
and θ ∈ C∞((−R,R)c) such that u = ρeiθ on (−R,R)c, with ρ ≥ δ on (−R,R)c. In particular,
θ′, 1− ρ ∈W k,p((−R,R)c) for all k ∈ N, p ∈ [2,∞], and

ρ(±∞) = 1, Dju(±∞) = Djρ(±∞) = Djθ(±∞) = Djη(±∞) = 0, for all j ≥ 1. (2.1)

Finally, if u ∈ NE(R), then the above conclusions still hold true in R, i.e. for R = 0.
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Proof. The proof is contained in [18] except for the regularity of 1− ρ. Notice that

1− ρ = 1− ρ2

1 + ρ
= η

1 + ρ
on R. (2.2)

Therefore, |1− ρ| ≤ |η|, so 1− ρ ∈ Lp(R) for every p ∈ [2,∞]. Moreover, using that |u| ≥ δ on
(−R,R)c and also Cauchy–Schwarz inequality, we deduce that

|ρ′| = |〈u, u
′〉|

|u|
≤ |u′| on (−R,R)c.

Thus 1− ρ ∈W 1,p((−R,R)c) for all p ∈ [2,∞]. Similarly, using that

ρ′′ = |u
′|2 + 〈u, u′′〉
|u|

− |〈u, u
′〉|2

|u|3
on (−R,R)c,

and that u, u′ ∈ L∞(R), we conclude that ρ′′ ∈ W 2,p((−R,R)c) for all p ∈ [2,∞]. Repeating
the previous arguments inductively, we arrive up to 1 − ρ ∈ W k,p((−R,R)c) for all k ∈ N and
p ∈ [2,∞]. Finally, if u ∈ NE(R), then ρ ≥ δ on R for some δ ∈ (0, 1), so that the previous
arguments are valid on R.

We now establish some key identities in terms of η = 1 − |u|2. In particular, we derive
equation (1.13) and we deduce that, if c > 0, the finite energy solutions to (S(W, c)) do not
vanish. Notice that η ≤ 1 on R, but η could be negative.

Proposition 2.2. Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). Setting K = |u′|2 and
η = 1− |u|2, the following identities are satisfied on R:

c

2η = −〈iu′, u〉, (2.3)

− η′′ + 2W ∗ η − c2η = 2K + 2η(W ∗ η), (2.4)
K ′ = η′(W ∗ η), (2.5)
c2η2 + (η′)2 = 4K(1− η). (2.6)

As a consequence, if c > 0, then η < 1 on R, u ∈ NE(R) and

2K = c2η2

2(1− η) + (η′)2

2(1− η) on R. (2.7)

Notice that (2.4) corresponds to equation (1.13), that we will use in Section 5 to establish
the decay and analyticity of solutions, as well as the nonexistence for the critical speed.

Proof of Proposition 2.2. Let u = u1 + iu2. Taking real and imaginary parts in (S(W, c)), we
obtain

u′′1 − cu′2 + u1
(
W ∗ (1− u2

1 − u2
2)
)

= 0, (2.8)

u′′2 + cu′1 + u2
(
W ∗ (1− u2

1 − u2
2)
)

= 0. (2.9)

Multiplying (2.8) by u2 and (2.9) by u1, we get
c

2η
′ = (u1u

′
2 − u2u

′
1)′.

Integrating over R and taking into account (2.1) yields
c

2η = u1u
′
2 − u2u

′
1,

10



which is exactly (2.3).
On the other hand, multiplying (2.8) by u1 and (2.9) by u2, and using (2.3), we deduce that

u′′1u1 + u′′2u2 = c2

2 η − (1− η)(W ∗ η). (2.10)

Hence, by differentiating,

η′′ = −2|u′|2 − 2〈u, u′′〉 = −2K − 2(u′′1u1 + u′′2u2), (2.11)

which allows us to obtain (2.4) by combining (2.10) and (2.11).
Let us now multiply (2.8) by u′1 and (2.9) by u′2. This gives

u′1u
′′
1 + u′2u

′′
2 + (u1u

′
1 + u2u

′
2)(W ∗ η) = 0.

Therefore, (2.5) follows directly by the definitions of η and K.
In order to show (2.6), let us multiply both sides of (2.4) by 2η′. Taking (2.5) into account,

it is easy to see that
−((η′)2)′ + 4K ′ − c2(η2)′ = 4(Kη)′.

Hence, (2.6) follows by integrating this equality.
Let us now show that if c > 0, then η < 1 on R. Since η ≤ 1 on R, we assume by contradiction

that there exists x0 ∈ R such that η(x0) = 1. Then, x0 is a maximum of η, so that η′(x0) = 0,
and substituting into (2.6) we get c2 = 0, a contradiction.

Finally, equation (2.7) is an immediate consequence of (2.6).

Remark 2.3. Recall that the energy functional is defined by

E(u) = 1
2

∫
R
|u′|2 + 1

4

∫
R

(W ∗ η)η for all u ∈ E(R),

where η = 1− |u|2. Moreover, the momentum reads

p(u) = −1
2

∫
〈iu′, u〉 η

1− η .

Taking (2.3) and (2.7) into account, we see that the energy and the momentum of any solution
u ∈ NE(R) to (S(W, c)), with c > 0, can be written only in terms of η and c as

E(u) = c2

8

∫
R

η2

1− η + 1
8

∫
R

(η′)2

1− η + 1
4

∫
R

(W ∗ η)η and p(u) = c

4

∫
R

η2

1− η .

Furthermore, since η = 1− ρ2 and η′ = −2ρρ′, we also have expressions for the energy and the
momentum of a solution u ∈ NE(R) in terms of ρ,

E(u) = c2

8

∫
R

(1− ρ2)2

ρ2 + 1
2

∫
R

(ρ′)2 + 1
4

∫
R

(W ∗ (1− ρ2))(1− ρ2) and p(u) = c

4

∫
R

(1− ρ2)2

ρ2 .

That is the key observation in order to establish the variational framework in Section 3.

The next result gives an essential reformulation of the complex-valued (S(W, c)) for vortex-
less solutions. In this case, we can reduce the problem to a single real-valued equation.
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Proposition 2.4. Let c ≥ 0. If u = ρeiθ ∈ NE(R) is a solution to (S(W, c)), then

θ′ = c

2

( 1
ρ2 − 1

)
on R, (2.12)

−ρ′′ + c2

4
1− ρ4

ρ3 = ρ
(
W ∗ (1− ρ2)

)
on R. (2.13)

Reciprocally, let ρ ∈ C2(R) be such that ρ > 0 on R and assume that it satisfies (2.13). For
any a ∈ R, let us define

θ(x) = c

2

∫ x

a

( 1
ρ(y)2 − 1

)
dy for all x ∈ R. (2.14)

Then, the function u = ρeiθ belongs to C2(R;C) and is a solution to (S(W, c)). If in addition
1− ρ ∈ H1(R), then u ∈ NE(R).

Proof. Let u = ρeiθ, with |u| > 0 on R and θ ∈ C2(R). By computing the derivatives of u and
taking real and imaginary parts, we check that u satisfies (S(W, c)) if and only if the couple
(ρ, θ) satisfies {

−cθ′ρ+ ρ′′ − ρ(θ′)2 + ρ
(
W ∗ (1− ρ2)

)
= 0 on R,

cρ′ + 2θ′ρ′ + θ′′ρ = 0 on R.
(2.15)

Let u = ρeiθ ∈ NE(R) be a solution to (S(W, c)). By Lemma 2.1, we have ρ, θ ∈ C∞(R), so
that (ρ, θ) satisfies (2.15). By multiplying the second equation in (2.15) by ρ, we obtain

(cρ2 + 2θ′ρ2)′ = 0. (2.16)

Bearing in mind (2.1), we can integrate (2.16) and obtain (2.12). Plugging (2.12) into the first
equation of (2.15), we get (2.13).

We turn now to the second part of the result. Indeed, let ρ ∈ C2(R) be such that ρ > 0 on
R. Assume that ρ satisfies (2.13) and consider θ defined by (2.14). Then, one may immediately
check that the equations (2.15) are satisfied. Hence, u = ρeiθ is a solution to (S(W, c)). It only
remains to verify that u ∈ NE(R) if 1−ρ ∈ H1(R). Indeed, by the Sobolev embedding theorem,
we get ρ ∈ L∞(R), with ρ(±∞) = 1 and ρ ≥ δ on R for some δ ∈ (0, 1). Thus

1− |u|2 = 1− ρ2 = (1− ρ)(1 + ρ) ∈ L2(R).

Moreover, by definition of θ,

|u′|2 = (ρ′)2 + ρ2(θ′)2 = (ρ′)2 + c2

4ρ2 (1− ρ2)2,

which also belongs to L2(R), since (1− ρ2)2 = (1− ρ)2(1 + ρ)2 and ρ ∈ L∞(R).

In view of Proposition 2.4, the problem of existence of vortexless finite energy solution to
(S(W, c)) is reduced to the existence of positive solution to (2.13) with 1− ρ ∈ H1(R). Abusing
of the concept of energy, we will say that a solution to (2.13) has finite if ρ ∈ 1 +H1(R).

3 The variational formulation
In this section we introduce a variational formulation that will lead to the proof of Theorem 1.1.
Formally speaking, it is showed in [22] that critical points of the functional E(u) − cp(u) are
(complex-valued) solutions to (S(W, c)). Thanks to Proposition 2.4, we may simplify the setting
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and work in a space of real-valued functions. More precisely, we will find solutions to (2.13) as
critical points of the functional Jc : H1(R)→ R ∪ {−∞} formally defined by

Jc(1− ρ) = A(1− ρ)− c2B(1− ρ), for ρ ∈ 1 +H1(R),

where

A(1− ρ) = 1
2

∫
R

(ρ′)2 + 1
4

∫
R

(W ∗ (1− ρ2))(1− ρ2) and B(1− ρ) = 1
8

∫
R

(1− ρ2)2

ρ2 .

It is easy to see, thanks to Remark 2.3, that for every solution u ∈ NE(R) to (S(W, c)), the
equality Jc(1− ρ) = E(u)− cp(u) holds, where ρ = |u|.

Notice that if ρ ∈ 1 +H1(R) with ρ ≥ 0, then 1− ρ ∈ L2(R) iff 1− ρ2 ∈ L2(R) by (2.2). To
avoid ambiguities in the definition, we will restrict Jc to the nonvanishing set

NV(R) = {v ∈ H1(R) : 1− v > 0 in R},

which is an open in H1(R) due to the continuous embedding H1(R) ⊂ L∞(R). Thus Jc is
defined in the variable v = 1− ρ ∈ NV(R) by

Jc(v) = 1
2

∫
R

(v′)2 + 1
4

∫
R

(W ∗ (v(2− v)))v(2− v)− c2

8

∫
R

v2(2− v)2

(1− v)2 .

It is not difficult to show that the functional satisfies a mountain pass geometry (see Lem-
mas 3.5 and 3.6). However, it is not clear at all that the Palais–Smale sequences are bounded. In
order to overcome this issue, we take advantage of the “monotonicity trick” of Struwe [54]. More
precisely, we are deeply inspired by the work of Jeanjean [33]. We adapt some of his results,
since several nontrivial modifications are needed due to the singular behavior of Jc. This way,
we are able to obtain bounded Palais–Smale sequences for almost every speed c ∈ (0,

√
2).

We start by showing that Jc is smooth onNV(R) and that the critical points provide solutions
to (S(W, c)).

Lemma 3.1. Let c > 0. The functional Jc is of class C2(NV(R)). Moreover, for any v ∈
NV(R), its Fréchet derivatives are given by

J ′c(v)(φ) =
∫
R
v′φ′ +

∫
R

(W ∗ f(v))(1− v)φ− c2
∫
R
h(v)φ, (3.1)

J ′′c (v)(φ, ψ) =
∫
R
φ′ψ′ − c2

∫
R
h′(v)φψ +

∫
R

(
W ∗ (f ′(v)ψ)

)
(1− v)φ−

∫
R

(
W ∗ f(v)

)
φψ, (3.2)

for all φ, ψ ∈ H1(R), where f(s) = s(2− s) and h(s) = s(2−s)(s2−2s+2)
4(1−s)3 for all s < 1.

Remark 3.2. Observe that if v ∈ NV(R) \ {0} satisfies J ′c(v) = 0, then

−v′′ +
(
W ∗ f(v)

)
(1− v)− c2h(v) = 0 on R. (3.3)

Hence, setting ρ = 1− v and noticing that h(1− ρ) = (1− ρ4)/(4ρ3) and that f(1− ρ) = 1− ρ2,
we conclude that ρ is a nontrivial solution to (2.13). Therefore, by Proposition 2.4, this provides
a nontrivial finite energy solution u to (S(W, c)).

Proof of Lemma 3.1. First, we recall that since W is even, we have∫
R

(W ∗ g1)g2 =
∫
R

(W ∗ g2)g1, for all g1, g2 ∈ L2(R). (3.4)
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In order to differentiate the nonlocal term of Jc, by using the dominated convergence theorem, we
conclude that the functional v ∈ H1(R) 7→

∫
R (W ∗ f(v)) f(v) ∈ R admits a Fréchet derivative,

given by
2
∫
R

(W ∗ f(v)) f ′(v)φ, for all φ ∈ H1(R).

Therefore, we easily deduce (3.1). Computing (3.2) is also straightforward.
In order to prove the continuity of J ′′c in NV(R), let v ∈ NV(R) and consider a sequence

{vn} ⊂ H1(R) such that vn → v in H1(R). Then, vn → v in L∞(R). In particular, since there
exists δ ∈ (0, 1) such that v ≤ 1− δ on R, it follows that vn ≤ 1− δ/2 on R, for n large enough.
Thus, h′(vn)→ h′(v) in L2(R) by using the dominated convergence theorem. The continuity of
the other terms is standard.

To apply a mountain pass argument, we need to invoke a deformation lemma. Although
there are many versions of this classical lemma, we did not find one that fits in our framework
since our functional is well-defined only in the open set NV(R), and not in the whole space.
For this reason, we give here a modification of Lemma 2.3 in [59] that can be applied to our
purposes. Furthermore, such a version does not require any Palais–Smale condition. For the
sake of completeness, we also include its proof in the appendix.

Lemma 3.3. Let c > 0. For some R > 0 and for every δ ∈ (0, 1), let us consider the set

Zδ = {v ∈ NV(R) : ‖v‖H1(R) ≤ R+ 1− δ, v ≤ 1− δ in R}. (3.5)

Assume that there exist constants 0 < δ1 < δ2 < δ3 < 1, ε > 0 and γ ∈ R such that

‖J ′c(v)‖H−1(R) ≥
2ε

δ3 − δ2
, for all v ∈ J−1

c ([γ − 2ε, γ + 2ε]) ∩ Zδ1 .

Then there exists a continuous function h : [0, 1]×NV(R)→ NV(R) such that

(i) h(0, v) = v, for all v ∈ NV(R),

(ii) h(t, v) = v, for all v ∈ NV(R) \
(
J−1
c ([γ − 2ε, γ + 2ε]) ∩ Zδ1

)
, for all t ∈ [0, 1],

(iii) h(t, Zδ3) ⊂ Zδ2 , for all t ∈ [0, 1],

(iv) Jc(h(t, v)) ≤ Jc(v), for all v ∈ NV(R), for all t ∈ [0, 1],

(v) h(1, Jγ+ε
c ∩ Zδ3) ⊂ Jγ−εc ∩ Zδ2 ,

where Jdc = J−1
c ((−∞, d]) for every d ∈ R.

Remark 3.4. To simplify the statement and the proof of Lemma 3.3, we used the sharp constant
in the Sobolev embedding (see [15, p. 138, Theorem 4]), so that

‖v‖L∞(R) ≤
1
2(‖v‖L2(R) + ‖v′‖L2(R)) ≤

√
‖v‖2L2(R) + ‖v′‖2L2(R) = ‖v‖H1(R), (3.6)

for all v ∈ H1(R).

The following two lemmas provide the mountain pass geometry of Jc.

Lemma 3.5. Assume that W satisfies (H1), and let c ∈ (0,
√

2σ). Then, there is a constant
rc > 0 such that, for every r ∈ (0, rc], there exists lr > 0, depending on κ, σ, c and r, such that
Jc(1− ρ) ≥ lr for every ρ ∈ 1 +H1(R) with ‖1− ρ‖H1(R) = r.
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Proof. Let ρ ∈ 1 +H1(R) be such that ‖1− ρ‖H1(R) ≤ rc for some rc ∈ (0, 1) to be chosen later,
and let η = 1− ρ2. By applying Plancherel’s identity and (H1), we deduce that

Jc(1− ρ) ≥ 1
2

∫
R

(ρ′)2 + 1
8π

∫
R

(σ − κξ2)|η̂(ξ)|2dξ − c2

8

∫
R

η2

ρ2 .

Using that
1

2π

∫
R

(σ − κξ2)|η̂(ξ)|2dξ = σ

∫
R
η2 − κ

∫
R

(η′)2,

and that η′ = −2ρρ′, we get the lower bound

Jc(1− ρ) ≥ 1
2

∫
R

(ρ′)2(1− 2κρ2) + 1
4

∫
R

(
σ − c2

2ρ2

)
η2.

By invoking (3.6), we see that 1− rc ≤ ρ ≤ 1 + rc on R, Thus, recalling that 2κ < 1 and c2 < σ,
we choose rc > 0 small enough so that 1− 2κ(1 + rc)2 > 0 and σ − c2

2(1−rc)2 > 0. Consequently,
using that η2 = (1− ρ)2(1 + ρ)2 ≥ (1− ρ)2, we finally obtain

Jc(1− ρ) ≥ `r‖1− ρ‖2H1(R), with `r = min
{

1− 2κ(1 + rc)2

2 ,
1
4

(
σ − c2

2(1− rc)2

)}
.

The result follows by choosing lr = `rr
2.

Lemma 3.6. For every c > 0, there exists φc ∈ 1 + H1(R) such that Jc(1 − φc) ∈ (−∞, 0) for
every c ≥ c.

Proof. For any δ ∈ (0, 1) and r > 0 to be chosen later, let us consider a nonnegative even
function φ, with 0 ≤ 1− φ2 ≤ 1− δ in R, satisfying the following properties:

φ2 = δ in [0, r], φ = 1 in [r + 1,∞), φ(x+ r) = ψ(x), for all x ∈ [0, 1],

where ψ : R → R is a function independent of r that we choose such that φ ∈ C∞(R). In
particular, 1− φ ∈ H1(R). Thus, by Plancherel’s identity, we get for all c ≥ c,

Jc(1− φ) ≤ 1
2

∫
R

(φ′)2 +
‖Ŵ‖L∞(R)

4

∫
R

(1− φ2)2 − c2

8

∫
R

(1− φ2)2

φ2

= (1− δ)2

2

(
‖Ŵ‖L∞(R) −

c2

2δ

)
r +

∫ r+1

r

[
(φ′)2 +

(
‖Ŵ‖L∞(R)

2 − c2

4φ2

)
(1− φ2)

]
.

Let us choose δ ∈ (0, 1) so that ‖Ŵ‖L∞(R) − c2/2δ < 0. Notice that the last integral depends
on δ and c, but not on r, since φ(x+ r) = ψ(x) for all x ∈ [0, 1]. Therefore we may take r > 0
large enough so that Jc(1− φ) < 0. In this way, δ and r depend on only c and ‖Ŵ‖L∞(R). The
proof concludes by taking φc = φ.

In the rest of this section we assume that W satisfies (H1), we fix c ∈ (0,
√

2σ) and we focus
on speeds c on the interval (c,

√
2σ). We consider the paths connecting the origin with 1 − φc

given by Lemma 3.6, as follows

Γ(c) = {g ∈ C([0, 1],NV(R)) : g(0) = 0, g(1) = 1− φc}.

Thanks to the mountain pass geometry (Lemma 3.5 and Lemma 3.6) and to the continuity of
Jc in NV(R), the so-called mountain pass level is well-defined and is positive:

γc(c) := inf
g∈Γ(c)

max
t∈[0,1]

Jc(g(t)) > 0, for all c ∈ [c,
√

2σ).
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Notice that the Γ(c) and γc(c) are not standard since the paths take values on the set NV(R)
(and not on a vector space). We recall that the advantage of working only on NV(R) is that Jc
is smooth. However, the drawback of this setting if that one needs to control Jc near ∂NV(R)
in some sense. In fact, in principle there might exist a sequence {ρn} ⊂ 1 − NV(R) such that
infR ρn tends to zero but Jc(1 − ρn) remains finite for all n. The next result provides some
properties of the functional B that prevent undesirable phenomena to happen, so we can deal
with the singular behavior near ∂NV(R).

Lemma 3.7. Given ρ ∈ 1 +H1(R), it holds that

B(1− ρ) < +∞ ⇐⇒ 1− ρ ∈ NV(R).

More precisely, if ρ ∈ 1 +H1(R) satisfies

‖1− ρ‖H1(R) + B(1− ρ) ≤ R. (3.7)

for some R > 0, then there exists δ ∈ (0, 1) such that ρ ≥ δ on R.

Proof. We first prove the equivalence. Let 1− ρ ∈ NV(R), so that ρ is continuous, ρ > 0 on R
and ρ(±∞) = 1. Thus, taking x0 ∈ R such that ρ(x0) = minR ρ > 0, we have

8B(1− ρ) =
∫
R

(1− ρ2)2

ρ2 =
∫
R

(1− ρ)2(1 + ρ)2

ρ2 ≤
‖1− ρ‖2L2(R)‖1 + ρ‖2L∞(R)

ρ(x0)2 < +∞.

For the converse implication, we consider ρ ∈ 1+H1(R) such that minR ρ ≤ 0. Since ρ(±∞) = 1,
we deduce that there is x0 ∈ R such that ρ(x0) = 0 and ρ(x) > 0 for all x > x0. Thus, the
continuous embedding H1(R) ⊂ C0,1/2(R) implies that

ρ(x)2 = (ρ(x)− ρ(x0))2 ≤ ‖1− ρ‖2
C0, 1

2 (R)
(x− x0), for all x > x0,

so that
∫ x0+δ
x0

1/ρ2 = +∞, for every δ > 0. Now we choose δ > 0 such that min[x0,x0+δ](1−ρ2)2 >
0. Hence,

8B(1− ρ) ≥
∫ x0+δ

x0

(1− ρ2)2

ρ2 ≥ min
[x0,x0+δ]

(1− ρ2)2
∫ x0+δ

x0

1
ρ2 = +∞.

Thus the equivalence B(1− ρ) < +∞ ⇐⇒ 1− ρ ∈ NV(R) holds true.
We turn now to the proof of the fact that ρ ≥ δ provided that (3.7) holds. First, we have

already proved that any ρ ∈ 1 + H1(R) satisfying (3.7) belongs to 1 − NV(R). We argue now
by contradiction and assume that there exist R > 0 and a sequence {ρn} ⊂ 1 − NV(R) such
that ρn satisfies (3.7) for all n but minR ρn → 0 as n→∞. Since {ρn(·+xn)} ⊂ 1 +H1(R) still
satisfies (3.7) for any sequence {xn} ⊂ R, then we may assume without loss of generality that
ρn(0) = minR ρn → 0 as n→∞. By the embedding H1(R) ⊂ C0,1/2(R), we deduce that there is
a constant C > 0 such that ‖1− ρn‖C0, 1

2 (R)
≤ C‖1− ρn‖H1(R) ≤ CR for all n, so that

ρn(x) ≤ ρn(0) + CR
√
x, for all x > 0, for all n.

We conclude as before that limn→∞
∫ δ

0 1/ρ2
n = +∞, for every δ > 0. If there exists δ > 0 such

that the sequence {min[0,δ](1 − ρ2
n)2} is bounded away from zero, then we may argue as above

to conclude that limn→∞ B(1 − ρn) = +∞, a contradiction. Otherwise, for every δ > 0, up a
subsequence (that depends on δ), limn→∞min[0,δ](1 − ρ2

n)2 = 0. For some fixed δ > 0 to be
chosen below, we consider the mentioned subsequence, which we do not relabel, and we take
{xn} ⊂ [0, δ] such that ρn(xn) = max[0,δ] ρn. Observe that ρn(xn)→ 1 as n→∞ and

ρn(xn)− ρn(0) ≤ CR
√
xn ≤ CR

√
δ, for all n.

As the left hand side of the previous inequality tends to one as n→∞, choosing 0 < δ < 1/(CR)2

leads one more time to a contradiction. The proof is now concluded.
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Following the ideas of [33], we observe that γc(c) is a nonincreasing function of c. Therefore,
its derivative γ′c(c) exists for almost every c ∈ [c,

√
2σ]. The points of differentiability of γc will

be crucial in our arguments. For this reason we introduce the set

Dc = {c ∈ (c,
√

2σ) : γc is differentiable at c}.

As we have pointed out,
|Dc| = |(c,

√
2σ)| =

√
2σ − c. (3.8)

Now we can state the following result due to Jeanjean [33] adapted to our setting.

Lemma 3.8. Assume that W satisfies (H1). Let c ∈ Dc and let {cn} be an increasing sequence
such that cn → c. Then there exist a sequence {gn} ⊂ Γ(c) and a constant R = R(γ′c(c)) > 0
such that the following holds:

(i) For any t ∈ [0, 1] such that Jc(gn(t)) ≥ γc(c)− (c− cn), we have the estimate

‖gn(t)‖H1(R) + B(gn(t)) ≤ R.

(ii) maxt∈[0,1] Jc(gn(t)) ≤ γc(c) + (−γ′c(c) + 2)(c− cn).

Proof. The proof is exactly as the one of [33, Proposition 2.1]. We only point out that, in our
case, we conclude using the coerciveness of A. We also stress that the estimate B(gn(t)) ≤ R
follows directly from the proof of [33, Proposition 2.1], as it is also observed in [7, Lemma
4.5].

The next result is also mainly due to Jeanjean [33], but some crucial modifications are
needed since Jc is not of class C2 in the whole space H1(R). Thus we adapt the proof thanks to
Lemmas 3.3 and 3.7.

Proposition 3.9. Assume that W satisfies (H1). Let c ∈ Dc, let Rc := R(γ′c(c)) > 0 be given
by Lemma 3.8 and let δc := δ(Rc) ∈ (0, 1) be given by Lemma 3.7. For any α > 0 and δ ∈ (0, 1),
let us consider the set

Yα,δ = J−1
c ([γc(c)− α, γc(c) + α]) ∩ Zδ,

where Zδ is defined by (3.5). Then, Yα,δc is nonempty for every α > 0. Moreover,

inf{‖J ′c(v)‖H−1(R) : v ∈ Yα,δc} = 0, for all α > 0. (3.9)

Proof. We first show that Yα,δc 6= ∅ for any α > 0. Indeed, let {cn} ⊂ R be an increasing
sequence such that cn → c, and let {gn} ⊂ Γ(c) be the sequence given by Lemma 3.8. For some
n to be chosen later, let tn ∈ [0, 1] be such that

Jc(gn(tn)) = max
t∈[0,1]

Jc(gn(t)).

We check now that gn(tn) ∈ Yα,δc . On the one hand, by definition of γc(c), it follows that

Jc(gn(tn)) ≥ γc(c)− (c− cn). (3.10)

In consequence, Lemmas 3.8 and 3.7 imply that gn(tn) ∈ Zδc . On the other hand, from
Lemma 3.8 we deduce that

Jc(gn(tn)) ≤ γc(c) + (−γ′c(c) + 2)(c− cn). (3.11)

Hence, bearing (3.10) and (3.11) in mind, n can be chosen large enough so that gn(tn) ∈ Yα,δc .
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We turn now to the proof of (3.9). Arguing by contradiction, let us assume that inf{‖J ′c(v)‖H−1(R) :
v ∈ Y2α,δc} > 0 for some α > 0. Let us denote

X2α,δc = J−1
c ((γc(c)− 2α, γc(c) + 2α)) ∩ Zδc .

Of course, inf{‖J ′c(v)‖H−1(R) : v ∈ X2α,δc} > 0 too. By Lemma 6.3 in the appendix, there exists
δ̃ ∈ (0, δc/2) such that

inf{‖J ′c(v)‖H−1(R) : v ∈ X2α,δc−2δ̃} > 0.

Therefore, we immediately have that

inf{‖J ′c(v)‖H−1(R) : v ∈ Yα,δc−2δ̃} > 0.

Let us choose ε > 0 small enough so that

2ε < α, ‖J ′c(v)‖H−1(R) ≥
2ε
δ̃
, for all v ∈ Yα,δc−2δ̃.

Thus, we may apply Lemma 3.3 with δ1 = δc − 2δ̃, δ2 = δc − δ̃ and δ3 = δc, so that there exists
a continuous function h : [0, 1] × NV(R) → NV(R) satisfying items (i)-(v). In the rest of the
proof we will abuse of the notation and write h(v) = h(1, v) for simplicity.

Recall that {cn} is an increasing sequence such that cn → c and {gn} ⊂ Γ(c) is given by
Lemma 3.8. We show now that h◦ gn ∈ Γ(c) for all n. Notice that, since γc(c) > 0, for every v ∈
NV(R) with Jc(v) ≤ 0 one may choose ε > 0 small enough so that Jc(v) 6∈ [γc(c)−2ε, γc(c)+2ε].
In consequence, recalling that Jc(0) = 0 and Jc(1− φc) < 0, we deduce that

0, 1− φc ∈ NV(R) \ J−1
c ([γc(c)− 2ε, γc(c) + 2ε]).

Therefore, item (ii) of Lemma 3.3 implies that h(gn(0)) = h(0) = 0 and h(gn(1)) = h(1− φc) =
1− φc for all n. In sum, h ◦ gn ∈ Γ(c) for all n.

We now claim that
max
t∈[0,1]

Jc(h(gn(t))) ≤ γc(c)− (c− cn) (3.12)

for some n large enough. In order to prove the claim, let us fix t ∈ [0, 1]. On the one hand, if
Jc(gn(t)) ≤ γc(c)−(c−cn), then item (iv) of Lemma 3.3 implies that Jc(h(gn(t))) ≤ γc(c)−(c−cn).

On the other hand, if Jc(gn(t)) > γc(c)−(c−cn), then Lemma 3.8 implies that ‖gn(t)‖H1(R)+
B(gn(t)) ≤ Rc. In turn, Lemma 3.7 yields that 1 − gn(t) ≥ δc on R. In particular, gn(t) ∈ Zδc .
Moreover, by Lemma 3.8, we have Jc(gn(t)) ≤ γc(c) + (−γ′c(c) + 2)(c − cn). Thus, by taking n
large enough (independent of t) so that (−γ′c(c) + 2)(c− cn) ≤ ε, we derive that gn(t) ∈ Jγc(c)+εc .
Therefore, item (v) of Lemma 3.3 implies that Jc(h(gn(t))) ≤ γc(c)− ε ≤ γc(c)− (c− cn).

In any case, since t was arbitrary, we have shown that (3.12) holds for some n large enough.
This contradicts the definition of γc(c).

Next result shows the existence of a bounded Palais–Smale sequence of Jc in NV(R), for
c ∈ Dc.

Proposition 3.10. Assume thatW satisfies (H1). For any c ∈ Dc, there exist Rc > 0, δc ∈ (0, 1)
and a sequence {vn} ⊂ NV(R) such that

{vn} ⊂ Zδc , Jc(vn)→ γc(c), and ‖J ′c(vn)‖H−1(R) → 0, (3.13)

where Zδc is defined by (3.5). Moreover, up a subsequence, vn ⇀ v weakly in H1(R), for some
v ∈ Zδc with v 6≡ 0.
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Before proving this proposition, let us recall a well-known result (see e.g. Lemma 3.3 in [56]).

Lemma 3.11. Let {vn} ⊂ H1(R) be a bounded sequence and let q ∈ (2,∞). Then vn → 0 in
Lq(R) if and only if vn(·+ yn) ⇀ 0, for every sequence {yn} ⊂ R.

We will also need the following key lemma.

Lemma 3.12. Let v ∈ NE(R) and c > 0. Then the following identity holds

2Jc(v)− J ′c(v)(v) = 1
2

∫
R

(W ∗ (v(2− v)))v2 + c2

4

∫
R

v(2− v)v2

(1− v)3 . (3.14)

In particular, if v ≤ 1− δ on R, then

|2Jc(v)− J ′c(v)(v)| ≤ max
{
‖Ŵ‖L∞(R)

2 ,
c2

4δ3

}
(2 + ‖v‖L∞(R))‖v‖L2(R)‖v‖2L4(R). (3.15)

Proof. Let ρ = 1− v and η = 1− ρ2, so that η = v(2− v). From (3.1), we have

2Jc(v)− J ′c(v)(v) =1
2

∫
R

(W ∗ η)(η − 2(1− v)v)− c2

4

∫
R

(
η2

ρ2 −
(1− ρ4)(1− ρ)

ρ3

)

= 1
2

∫
R

(W ∗ η)v2 + c2

4

∫
R

ηv2

ρ3 ,

which is (3.14). Finally, the right-hand side can be bounded from above by

max
{
‖Ŵ‖L∞(R)

2 ,
c2

4δ3

}
‖η‖L2(R)‖v‖2L4(R),

which, using that ‖η‖L2(R) ≤ ‖2− v‖L∞(R)‖v‖L2(R), yields (3.15).

Proof of Proposition 3.10. Applying Proposition 3.9 with α = 1/n, we deduce the existence of
Rc, δc and a sequence {wn} ⊂ NV(R) satisfying (3.13). Since {wn} is bounded in H1(R) and
γc(c) 6= 0, we infer from (3.15) that wn 6→ 0 strongly in L4(R). Then we deduce from Lemma 3.11
the existence of a sequence {yn} ⊂ R such that vn := wn(·+ yn) does not converge weakly to 0
in H1(R). Of course, {vn} ⊂ Zδc still satisfies (3.13). Thus, there exists a subsequence (that we
do not relabel) such that vn ⇀ v in H1(R) for some v 6≡ 0. In addition, since the ‖ · ‖H1(R)-norm
is weakly lower semicontinuous, then ‖v‖H1(R) ≤ Rc + 1− δc. Moreover, since vn → v pointwise
on R, it follows that v ≤ 1− δc on R, so that v ∈ Zδc .

Finally, we proceed to prove Theorem 1.1, that establishes the existence of solitons for a.e.
c ∈ (0,

√
2σ).

Proof of Theorem 1.1. Let us fix c ∈ Dc and let {vn} ⊂ H1(R) be the sequence given by Propo-
sition 3.10. We set as usual ρn = 1− vn and ηn = 1− ρ2

n. Then, by Remark 3.2,

J ′c(vn)(φ) =
∫
R
v′nφ

′ +
∫
R

(W ∗ ηn)ρnφ−
c2

4

∫
R

1− ρ4
n

ρ3
n

φ→ 0,

for all φ ∈ C∞0 (R), and vn ⇀ v weakly in H1(R) for some v ∈ Zδ with v 6≡ 0. Observe that,
by the Sobolev embedding (3.6), ηn and 1 − ρ4

n are also bounded in H1(R). Thus, by setting
ρ = 1− v and η = 1− v2, we deduce by the uniqueness of the limit that, up to subsequences,

ηn ⇀ η and 1− ρ4
n ⇀ 1− ρ4 in H1(R), (3.16)

vn → v and ρn → ρ, in L∞loc(R). (3.17)
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We will show now that we can pass to the limit the three integral terms. The first one is
trivial. For the second term, observe that by (1.23), the convolution is continuous in L2(R),
which combined with (3.16) and the Rellich theorem implies that,

W ∗ ηn →W ∗ η in L∞loc(R).

Since φ ∈ C∞0 (R), using also (3.17), we conclude that (W ∗ ηn)ρnφ→ (W ∗ η)ρφ in L1(R).
For the last term, using that (1− vn)3 ≥ δ3 on R for all n, we similarly deduce that∫

R

1− ρ4
n

ρ3
n

φ→
∫
R

1− ρ4

ρ3 φ.

Gathering all together, we have proved that J ′(v) = 0, so that ρ = 1 − v ∈ 1 + H1(R) is a
nontrivial positive solution to (2.13). Moreover, by elliptic regularity, we infer that ρ ∈ C∞(R).
Therefore, by virtue of Proposition 2.4, it follows that u = ρeiθ, with θ defined by (2.14), belongs
to NE(R) and is a nontrivial solution to (S(W, c)).

In conclusion, we have shown that there exists a solution u ∈ NE(R) to (S(W, c)) for any
c ∈ Dc. Thus, the same holds for every c ∈ D, where

D :=
⋃

c∈(0,
√

2σ)

Dc ⊂ (0,
√

2σ).

By (3.8) we have √
2σ − c = |Dc| ≤ |D| ≤

√
2σ, for all c ∈ (0,

√
2σ).

Taking limits as c→ 0, we conclude that |D| =
√

2σ, which proves the theorem.

Proof of Corollary 1.2. Since Ŵ ≥ 0 a.e. and Ŵ(ξ) ≥ σ−ξ2/2, for a.e. |ξ| ≤
√

2σ, it is immediate
to check that for every σ̃ ∈ (0, σ), we have Ŵ(ξ) ≥ σ̃−κσξ2/2, for a.e. ξ ∈ R, where κσ = σ̃/(2σ).
By Theorem 1.1, we conclude the existence for a.e. speed in every the interval ]0,

√
2σ̃[, for any

σ̃ ∈ (0, σ), which yields the existence for a.e. c ∈ (0,
√

2σ).

4 Existence in the whole subsonic regime
Our next goal is to provide conditions on W in order to extend Theorem 1.1 and conclude
the existence of solution for every subsonic speed. For this reason, we introduce the following
assumptions.

(H2) Ŵ ∈ W 1,∞(R). In addition either Ŵ ∈ W 2,∞(R), or the map ξ 7→ ξ
(
Ŵ
)′(ξ) is bounded

and continuous a.e. on R.

(H3) Ŵ ∈ W 1,∞
loc (R) and there exists m ∈ [0, 1) such that

(
Ŵ
)′(ξ) ≥ −mξ for a.e. ξ > 0.

Moreover, Ŵ(0) = 1.

(H4) W is given by a (signed) finite Borel measure. In particular, there is a constant ‖W‖ such
that ‖W ∗ f‖Lp(R) ≤ ‖W‖‖f‖Lp(R), for all f ∈ Lp(R), p ∈ [1,∞].

(H5) There exists a continuous function V0 : (0,
√

2) → (0,∞) such that for any u ∈ NE(R)
solution to (S(W, c)), with c ∈ (0,

√
2), we have ‖u‖L∞(R) ≤ V0(c).

Recall that we are always assuming that (H0) holds. Observe that if Ŵ ∈ W 1,∞
loc (R), we

can assume that Ŵ is continuous by the Sobolev embedding theorem, so that the condition
Ŵ(0) = 1 in (H3) is meaningful. By integration, we also deduce that if (H3) holds, then

Ŵ(ξ) ≥ 1−mξ2/2, for all ξ ∈ R. (4.1)
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In particular, (H1) is satisfied with σ = 1 and κ = m/2, and Theorem 1.1 gives the existence
of solitons for a.e. c ∈ (0,

√
2). Finally, let us remark that the condition Ŵ(0) = 1 is only a

normalization of the potential, so that the speed of sound is from now on fixed and equal to
c∗(W) =

√
2. Indeed, if Ŵ(0) 6= 0, making a change of variable we can replace Ŵ(ξ) with

Ŵ(ξ)/Ŵ(0) as in [22], which gives the normalization.
Concerning (H4), invoking the results in [27, Section 2] and [25], we see that if f 7→ W ∗ f is

a bounded linear operator from L1(R) to itself, then W is given by a finite Borel measure µ, i.e.

(W ∗ f)(x) =
∫
R
f(x− y)dµ(y), for all f ∈ Lp(R), p ∈ [1,∞]. (4.2)

Thus ‖W‖ =
∫
R d|µ(y)| and (1.24) holds for f ∈ Lp(R), g ∈ Lp′(R). In addition, µ̂ is continuous,

with µ̂(ξ) =
∫
R e
−ixξdµ(x). Consequently, if (H3) also holds, then

Ŵ(0) = µ̂(0) =W ∗ 1 = 1. (4.3)

Now we can state our main theorem concerning the existence of solitons for every subsonic
speed.

Theorem 4.1. Let c ∈ (0,
√

2) and assume thatW satisfies (H2), (H3), (H4) and (H5). Assume
in addition that mV0(c)2 < 1, where m and V0(c) are given by (H3) and (H5) respectively. Then
there exists a nontrivial solution u ∈ NE(R) to (S(W, c)).

Notice that assumption (H5) can be seen as an alternative way of imposing that the equation
(S(W, c)) satisfies some type of maximum principle. Clearly, given a potential W, this is the
only hypothesis difficult to verify. Remark that if one we can show the existence of a constant
C > 0 such that any solution u ∈ NE(R) to (S(W, c)), with c ∈ (0,

√
2), satisfies ‖u‖L∞(R) ≤ C,

then (H5) holds true.
In Proposition 4.5, we will prove that (H5) holds for a potential of the form (1.11). Moreover,

in this case (Ŵµ)′ = Aµ(µ̂)′, so that Theorem 1.3 follows immediately from Theorem 4.1 by
taking m = 0 in (H3).

As explained in the introduction, for the proof of Theorem 4.1, we can take c ∈ (0,
√

2) and
apply Theorem 1.1 to get the existence of a sequence of speeds {cn} and a sequence of associated
solutions {vn} ∈ NE(R) to (S(W, cn)) such that cn → c. To conclude that {vn} converges to
a finite energy solution v to (S(W, c)), we need to obtain uniform estimates for {vn}, and to
get a more precise information of v, using the fact that each vn is the limit of a Palais–Smale
sequence for Jc. We deal with these problems in the following subsections.

4.1 Uniform estimates

We start by recalling a Pohozaev identity that was proved by the first author in [18] in a more
general framework.

Proposition 4.2. Let c ≥ 0 and assume that W satisfies (H0) and (H2). Let u ∈ E(R) be a
solution to S(W, c). Then∫

R
|u′|2 = 1

4π

∫
R

(
Ŵ(ξ)− ξ

(
Ŵ
)′(ξ)) |η̂(ξ)|2dξ, (4.4)

where η = 1− |u|2.

Proof. Let us remark that since η ∈ H1(R), we have∫
R
|ξ||η̂(ξ)|2dξ ≤

∫
B(0,1)

|η̂(ξ)|2dξ +
∫
B(0,1)c

ξ2|η̂(ξ)|2dξ ≤ 2π‖f‖2H1(R),
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so that ξ|η̂(ξ)|2 ∈ L1(R) and the integral in (4.4) is well-defined when (Ŵ
)′ ∈ L∞(R).

In the case that the map ξ 7→ ξ
(
Ŵ
)′(ξ) is bounded and continuous a.e. on R, identity (4.4)

is given by Propositions 5.1 and 5.3 in [18], taking N = 1.
Let us suppose now that Ŵ ∈ W 2,∞(R). By invoking Corollary 5.9, with s = 2 and ` = 1,

we deduce that | · |η, | · |η′ ∈ L2(R). Then we can multiply S(W, c) by a test function, integrate
by parts and apply the dominated convergence theorem, as explained in [18], p. 1473, to obtain
(4.4).

Notice that Proposition 4.2 can be applied to the focusing caseW = −δ0, and it is immediate
to deduce that then the only finite energy solution to S(W, c) are the constants, since Ŵ = −1.

More general examples can be constructed by defining an even function such that

Ŵ(ξ; g) = −ξ
∫ ∞
ξ

g(y)
y2 dy, for ξ > 0,

with g a bounded nonnegative function, since Ŵ(ξ; g)− ξ
(
Ŵ
)′(ξ; g) ≤ 0 a.e. on R. For instance,

if g = 1, then we obtain Ŵ(ξ; g) = −1. Consequently, we can construct potentials with arbitrary
L1-norm, such that the only finite energy solution to (S(W, c)) are the trivial ones.

Corollary 4.3. For any α > 0, there exists a function Wα ∈ C∞(R) satisfying (H0) and (H2),
with ‖Wα‖L1(R) = α and Ŵα ≤ 0 on R, such that if u ∈ E(R) is a solution to (S(Wα, c)) for
some c ≥ 0, then u is constant.

Proof. Let us take g(y) = y3 exp(−y2), which gives Ŵ(ξ) = −|ξ|e−ξ2 , for ξ ∈ R. In this
manner, W is a smooth function with exponential decay, so that it suffices to consider Wα =
αW/‖W‖L1(R).

Identity (4.4), together with (2.4) and (2.6), allow us to prove the following nonvanishing
property of nontrivial finite energy solutions to (S(W, c)).

Proposition 4.4. Let c ≥ 0. Assume that W satisfies (H2) and that

3ξ2 + 2Ŵ(ξ) + 2ξ(Ŵ)′(ξ) ≥ 2 a.e. on R. (4.5)

Then every nontrivial solution u ∈ E(R) to (S(W, c)) satisfies the estimate

‖W ∗ η‖L∞(R) ≥
2− c2

4 . (4.6)

In particular, if W satisfies (H3), then (4.6) holds.

Proof. Multiplying (2.4) by 2η′ and integrating by parts leads to

2
∫
R

(η′)2 + 4
∫
R
η(W ∗ η)− 2c2

∫
R
η2 = 4

∫
R
|u′|2η + 4

∫
R
η2(W ∗ η).

Using now (2.6), we deduce that

3
∫
R

(η′)2 + 4
∫
R
η(W ∗ η)− c2

∫
R
η2 = 4

∫
R
|u′|2 + 4

∫
R
η2(W ∗ η).

Combining with (4.4) and applying Plancherel’s identity, we derive

3
∫
R

(η′)2 + 2
∫
R
η(W ∗ η)− c2

∫
R
η2 + 1

π

∫
R
ξ
(
Ŵ
)′(ξ)|η̂(ξ)|2dξ = 4

∫
R
η2(W ∗ η).
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Again by Plancherel’s identity, this equality can be recast as

1
2π

∫
R

(
3ξ2 + 2Ŵ(ξ) + 2ξ(Ŵ)′(ξ)

)
|η̂(ξ)|2dξ − c2

∫
R
η2 = 4

∫
R
η2(W ∗ η).

Therefore, inequality (4.5) implies that

(2− c2)
∫
R
η2 ≤ 4

∫
R
η2(W ∗ η) ≤ 4‖W ∗ η‖L∞(R)

∫
R
η2.

Thus result (4.6) follows by taking into account that η is nontrivial, i.e. ‖η‖L2(R) > 0.
Finally, we remark that if (H3) is satisfied, then (4.1) holds true, which implies that

3ξ2 + 2Ŵ(ξ) + 2ξ
(
Ŵ
)′(ξ)− 2 ≥ 3ξ2 + 2(1−mξ2/2)− 2mξ2 − 2 = 3(1−m)ξ2 ≥ 0.

This completes the proof.

The next proposition shows that the potential in (1.11) satisfies (H5).

Proposition 4.5. Let c > 0 and assume that Wµ = Aµ(δ0 +µ) is as in (1.11). Then, for every
solution u ∈ E(R) to (S(W, c)), the following estimates hold:

‖u‖2L∞(R) ≤ B0(µ)
(
1 + c2

4
)
, (4.7)

‖u′‖L∞(R) ≤ B1(µ)
(
1 + c2

4
)2
. (4.8)

where B0(µ) = 1+ ‖µ+‖
1−‖µ−‖ and B1(µ) is a constant depending only on ‖µ+‖ and ‖µ−‖. Moreover,

for any k ≥ 2 there is a constant Ck(c) > 0, depending only on c and k, and Bk(µ) > 0, depending
only on ‖µ+‖, ‖µ−‖ and k, such that

‖Dku‖L∞(R) ≤ Bk(µ)Ck(c). (4.9)

Proof. Since c > 0, by Propositions 2.2 and 2.4, the function ρ = |u| satisfies the equation (2.13).
By using Young’s inequality and the fact that µ ∗ 1 =

∫
R dµ(x) = µ̂(0), we estimate the term on

the right-hand side of the equation as follows, where we drop the subscript µ for simplicity,

W ∗ (1− ρ2) = A(1− ρ2) +Aµ ∗ (1− ρ2) = A(1− ρ2) +Aµ̂(0)−Aµ ∗ (ρ2)
= 1−Aρ2 −Aµ ∗ (ρ2) = 1−Aρ2 −Aµ+ ∗ (ρ2) +Aµ− ∗ (ρ2),

where we used that A(1 + µ̂(0)) = 1. Therefore

W ∗ (1− ρ2) ≤ 1−Aρ2 +A(µ−) ∗ (ρ2) ≤ 1−Aρ2 +A‖µ−‖‖ρ‖2L∞(R), (4.10)

and
‖W ∗ (1− ρ2)‖L∞(R) ≤ 1 +A‖ρ‖2L∞(R) +A‖µ−‖‖ρ‖2L∞(R). (4.11)

Plugging (4.10) into (2.13) leads to

−ρ′′ + ρ
(
Aρ2 − 1− c2

4 −A‖µ
−‖‖ρ‖2L∞(R)

)
≤ 0 on R.

By applying the maximum principle or Proposition 2.1 in [24], we conclude that

ρ(x)2 ≤ 1
A

(
1 + c2

4
)

+ ‖µ−‖‖ρ‖2L∞(R), for all x ∈ R. (4.12)
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Let us assume that there exists some x̄ ∈ R such that ρ(x̄) > 1; otherwise, the result is trivial.
Since ρ(±∞) = 1, there exists x̃ ∈ R such that ρ(x̃) = ‖ρ‖L∞(R). Thus, using (4.12) in x̃, we get

(1− ‖µ−‖)‖ρ‖2L∞(R) ≤
1
A

(
1 + c2

2
)
,

which proves (4.7).
In order to establish (4.8), we follow [10, 24] and define v(x) = u(x)e

ic
2 x, for x ∈ R. It is

immediate to verify that v ∈ E(R) and that it solves the equation

−v′′ =
(c2

4 +W ∗ (1− |v|2)
)
v on R. (4.13)

From (4.7) and (4.11), it follows that

‖v′′‖L∞(R) ≤ ‖v‖L∞(R)
(c2

4 + 1 +A‖ρ‖2L∞(R) +A‖µ−‖‖ρ‖2L∞(R)

)
≤
(
1 + c2

4
) 3

2
B

1/2
0
(
1 +AB0 +AB0‖µ−‖).

Recalling that A(1 + ‖µ+‖ − ‖µ−‖) = 1, it is clear that

‖v′′‖L∞(R) ≤ 2
(
1 + c2

4
) 3

2
B

1/2
0 .

Thus, using the Landau–Kolmogorov interpolation inequality (see e.g. p.133 in [15])

‖v′‖L∞(R) ≤
√

2‖v‖L∞(R)‖v′′‖L∞(R),

we infer that
‖v′‖L∞(R) ≤ 2

√
2B0

(
1 + c2

4
)2
.

Therefore, by definition of v and using that c/2 ≤ 1 + c2/4, we deduce that

‖u′‖L∞(R) ≤
c

2‖u‖L
∞(R) + ‖v′‖L∞(R) ≤

(
1 + c2

4

)2

B
1/2
0
(
1 + 2

√
2B1/2

0
)
.

Hence, taking B1(µ) := B
1/2
0
(
1 + 2

√
2B1/2

0
)
, we have (4.8). Differentiating (4.13) and using the

higher order Landau–Kolmogorov inequalities, we finally conclude the proof of (4.9).

Next two propositions show that, for general potentials satisfying the continuity property
(H4), an L∞ estimate for the solutions (i.e. condition (H5)) implies a priori estimates also for
the derivatives as well as a uniform lower bound.

Proposition 4.6. Assume that W satisfies (H4) and (H5). Then, for every k ∈ N, there exist
continuous functions Vk : (0,

√
2)→ (0,∞) such that for any u ∈ NE(R) solution to (S(W, c)),

with c ∈ (0,
√

2), we have ‖Dku‖L∞(R) ≤ Vk(c). In particular, if W = Wµ is given by (1.11),
then V1(c) = B1(µ)(1 + c2/4)2, where B1(µ) is the constant in Proposition 4.5.

Proof. By using (4.13) and (H4), the proof follows the same line as Proposition 4.5.

Proposition 4.7. Assume that W satisfies (H4) and (H5). Let c ∈ (0,
√

2) and let u ∈ NE(R)
be a solution to (S(W, c)). Then

|u(x)| ≥
√

1 + 4c2/V1(c)− 1√
1 + 4c2/V1(c) + 1

, for all x ∈ R, (4.14)

where V1 is the function given by Proposition 4.6.
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Proof. Since u ∈ NE(R), we have that minR |u| > 0. Let x0 ∈ R be such that u(x0) = minR |u|.
From the identity (2.6), we deduce that the function η = 1− |u|2 satisfies

c2η(x0)2 ≤ ‖u′‖L∞(R)(1− η(x0)). (4.15)

By using the estimate in Proposition 4.6, we get

c2η(x0)2 + V1(c)η(x0)− V1(c) ≤ 0,

which implies that

η(x0) ≤ −V1(c) +
√
V1(c)2 + 4V1(c)c2

2c2 .

In terms of |u(x0)| we get

|u(x0)|2 ≥ 1 + V1(c)−
√
V1(c)2 + 4V1(c)c2

2c2 =
√
V1(c)2 + 4V1(c)c2 − V1(c)√
V1(c)2 + 4V1(c)c2 + V1(c)

,

which completes the proof.

The following nonvanishing property of the functional A will be useful.

Lemma 4.8. Assume that W satisfies (H2), (H4), (H5) and (4.5). Then there exists C > 0
such that for any nonzero solution v ∈ H1(R) to (3.3), we have

A(v) ≥ C(2− c2)2

16 . (4.16)

Proof. Let η = 1− |v|2. Then

A(v) = 1
2

∫
R

(v′)2 + 1
4

∫
R

(W ∗ η)η = 1
8

∫
R

(η′)2

1− η + 1
4

∫
R

(W ∗ η)η

≥ 1
8‖1− η‖L∞(R)‖Ŵ‖2L∞(R)

∫
R

(W ∗ η′)2 + 1
4‖Ŵ‖L∞(R)

∫
R

(W ∗ η)2.

By using the Sobolev’s embedding, (4.6) and (4.14), we conclude that there exists C > 0 such
that

A(v) ≥ C‖W ∗ η‖2H1(R) ≥ C‖W ∗ η‖
2
L∞(R) ≥

C(2− c2)2

16 .

4.2 Refined study of Palais–Smale sequences

We start by recalling a classical result of profile decomposition of a bounded sequence, that is
a refinement of the Banach–Alaoglu theorem. We use here the version given in Theorem 4.6.5
in [55] (see also [4, 31]).

Theorem 4.9. Let {vn} ⊂ H1(R) be a bounded sequence. Then there exist a family of concen-
tration profiles {wj} ⊂ H1(R) and points {yn,j} ⊂ R such that, on a renumbered subsequence,

yn,1 = 0, lim
n→∞

|yn,i − yn,j | → ∞, if i 6= j,

vn(·+ yn,j) ⇀ wj in H1(R) and vn(·+ yn,j)→ wj in L∞loc(R),

vn − Sn → 0 in Lq(R), where Sn =
∞∑
j=1

wj(· − yn,j), (4.17)
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for all q ∈ (2,∞). Moreover, the series Sn converges in H1(R) unconditionally and uniformly
in n, and for all ϕ ∈ L2(R), {αn} ⊂ R and q ∈ (2,∞), we have

vn =
k∑
j=1

wn,j + rn,k, with lim
k→∞

lim sup
n→∞

∣∣∣∣∫
R
rn,k(· − αn)ϕ

∣∣∣∣ = lim
k→∞

lim sup
n→∞

‖rn,k‖Lq(R) = 0, (4.18)

where wn,j = wj(· − yn,j). In addition,

‖Dmvn‖2L2(R) =
k∑
j=1
‖Dmwj‖2L2(R) + ‖Dmrn,k‖2L2(R) + on(1), for m ∈ {0, 1}. (4.19)

In Theorem 4.9 and for the rest of the article, the notation on(1) stands for a sequence in
R such that on(1) → 0, as n → ∞. Besides, from now on on(1;L1) will denote a function such
that ‖on(1;L1)‖L1(R) → 0, as n→∞.

Notice also that we added to the statement in [55] that vn(·+yn,j) converges to wj in L∞loc(R),
by invoking the Rellich theorem.

We recall now a version of the Brezis–Lieb lemma given in [57].

Lemma 4.10. Assume that G ∈ C1(R;R), with G(0) = 0, and that there exist a > 0 and q > 1
such that

|G′(t)| ≤ a(|t|+ |t|q), for all t ∈ R. (4.20)
If the sequence {vn} is bounded in H1(R) and converges a.e. to v, then

G(vn) = G(vn − v) +G(v) + on(1;L1). (4.21)

Moreover, using the notations in Theorem 4.9, if the profile decomposition is finite, i.e. there
exists k ≥ 1 such that

vn =
k∑
j=1

wn,j + rn, with rn ⇀ 0 in H1(R) and rn → 0 in Lq(R) for all q ∈ (2,∞), (4.22)

then

G(vn) =
k∑
j=1

G(wn,j) +G(rn) + on(1;L1). (4.23)

Proof. The decomposition in (4.21) corresponds to Lemma 2.3 in [57]. To show (4.23), let us
denote by τn,j the translation by yn,j , i.e. τn,jv = v(· + yn,j). Using that yn,1 = 0, we have by
Theorem 4.9 that vn ⇀ w1 in H1(R). Then, by (4.21) we obtain

G(vn) = G(w1) +G(vn − w1) + on(1;L1). (4.24)

Now, again by Theorem 4.9 and using that |yn,2| → ∞ as n → ∞, we derive that τn,2vn −
τn,2w1 → w2 a.e. on R. Thus (4.21) implies that

G(τn,2vn − τn,2w1)−G(w2)−G(τn,2vn − τn,2w1 − w2) = on(1;L1).

Therefore, by a change of variables,

G(vn − w1)−G(wn,2)−G(vn − w1 − wn,2) = on(1;L1).

Combining with (4.24), we conclude that

G(vn) = G(w1) +G(wn,2) +G(vn − w1 − wn,2) + on(1;L1).

By repeating the same argument k times, we get (4.23).
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In the following lemma we deal with the splitting of the singular term B.

Lemma 4.11. Let {vn} ⊂ H1(R) be a bounded sequence such that vn ⇀ v in H1(R) for some
v ∈ H1(R). Assume that there exists δ ∈ (0, 1) such that vn ≤ 1− δ on R. Then, there is N ∈ N
such that,

v ≤ 1− δ, vn − v ≤ 1− δ/2 on R, for all n ≥ N, (4.25)

and
B(vn) = B(vn − v) + B(v) + on(1). (4.26)

Moreover, if the profile decomposition is finite as in (4.22), then

wj ≤ 1− δ, on R, for all j = 1, . . . , k, (4.27)

rn ≤ 1− δ

2 , on R, for all n ≥ N, (4.28)

and

B(vn) =
k∑
j=1
B(wj) + B(rn) + on(1). (4.29)

Proof. We first prove (4.25). Since vn → v a.e. on R and vn ≤ 1 − δ, it follows that v ≤ 1 − δ.
Now, since v ∈ H1(R), we can fix R > 0 such that |v| ≤ δ/2 a.e. on R \BR(0). Then, for all n,

vn − v ≤ 1− δ + δ/2 = 1− δ/2 on R \BR(0).

Moreover, since vn → v in L∞(BR(0)), then, for any n large enough,

vn − v ≤ ‖vn − v‖L∞(BR(0)) ≤ 1− δ/2 on BR(0).

In any case, (4.25) holds.
We turn now to proving (4.26). Using the notation in Lemma 3.1, we see that

B(v) =
∫
R
H(v(x))dx, where H(t) =

∫ t

0
h(s)ds, h(s) = s(2− s)(s2 − 2s+ 2)

4(1− s)3 .

We remark that we can easily construct a bounded function χδ ∈ C1(R) such that

χδ(s) = 1
4(1− s)3 for all s ≤ 1− δ

2 , ‖χδ‖L∞(R) ≤ Bδ, (4.30)

for some constant Bδ > 0 depending only on δ. Then the function h̃(s) = s(2−s)(s2−2s+2)χδ(s)
clearly satisfies

|h̃(s)| ≤ Cδ(|s|+ s4), for all s ∈ R,

for some Cδ > 0 depending only on δ. Therefore, condition (4.20) holds for G = H̃, being
H̃(t) =

∫ t
0 h̃(s)ds. Thus we obtain

H̃(vn) = H̃(vn − v) + H̃(v) + on(1;L1).

Using now (4.25), we conclude that

H(vn) = H(vn − v) +H(v) + on(1;L1), (4.31)

which gives (4.26).
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Next, we prove (4.27) and (4.28). In order to do so, let us fix ε > 0 to be chosen later. The
density of C∞0 (R) in H1(R) implies that, for every j = 1, . . . , k, there exist gj ∈ C∞0 (R) and
ϕj ∈ H1(R) such that

wj = gj + ϕj , ‖ϕj‖L∞(R) < ε/k. (4.32)

Hence, we can take R > 0 such that ∪kj=1 supp(gj) ⊂ BR(0). Let us denote gn,j = gj(· − yn,j).
It is clear that

supp(gn,j) ⊂ BR(yn,j), for all j = 1, . . . , k.
In particular, since |yn,i − yn,j | → ∞ for all i 6= j, there is N ∈ N such that, for all n ≥ N ,

supp(gn,i) ∩ supp(gn,j) = ∅ for all i 6= j. (4.33)

On the other hand, by Theorem 4.9, vn(· + yn,j) → wj a.e. on R, so (4.27) follows directly
from the fact that vn ≤ 1 − δ. Moreover, vn(· + yn,j) → wj in L∞(BR(0)), for all j = 1, . . . , k.
Thus, we may take N larger if necessary in order to get, for all n ≥ N and for all j = 1, . . . , k,

‖vn(·+ yn,j)− wj‖L∞(BR(0)) < ε/k. (4.34)

To show (4.28), fix x ∈ R and n ≥ N . Observe that

rn(x) = vn(x)−
k∑
j=1

gn,j(x)−
k∑
j=1

ϕj(x− yn,j).

Now we have two possibilities. On the one hand, if x 6∈ supp(gn,j) for any j = 1, . . . , k, then,
using (4.32), we obtain

rn(x) = vn(x)−
k∑
j=1

ϕj(x− yn,j) < 1− δ + ε.

On the other hand, if x ∈ supp(gn,i) for some i = 1, . . . , k, then i is unique by virtue of
(4.33). We may assume without loss of generality that i = 1. Moreover, x ∈ BR(yn,1), so
zn := x− yn,1 ∈ BR(0). Therefore, using (4.32) and (4.34), we deduce that

rn(x) = vn(x)− gn,1(x)−
k∑
j=1

ϕj(x− yn,j) = vn(zn + yn,1)− w1(zn)−
k∑
j=2

ϕj(x− yn,j)

< ‖vn(·+ yn,1)− w1‖L∞(BR(0)) + (k − 1)ε
k

< ε.

In any case, we can choose ε = min{δ/2, 1− δ/2} = δ/2 so that (4.28) holds.
Once (4.27) and (4.28) are proved, (4.29) follows from Lemma 4.10 by applying the same

procedure by truncation described above.

In order to deal with the splitting of the nonlocal term, we introduce the notation

〈u, v〉 =
∫
R

(W ∗ u)v, |||u|||2 = 〈u, u〉, Q(u) = 〈u(2− u), u(2− u)〉, for all u, v ∈ H1(R).

Notice that 〈·, ·〉 is symmetric and bilinear, so that ||| · ||| defines a norm provided that Ŵ  0.

Lemma 4.12. Let {vn} ⊂ H1(R) be a bounded sequence. Using the notation in Theorem 4.9,
we have, up to a subsequence,

Q(vn) =
k∑
j=1
Q(wj) +Q(rn,k) + εn,k, (4.35)

where {εn,k} ⊂ R satisfies
lim
k→∞

lim sup
n→∞

|εn,k| = 0. (4.36)
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Remark 4.13. It is clear from (4.19) and (4.35) that

A(vn) =
k∑
j=1
A(wj) +A(rn,k) + εn,k,

for some {εn,k} ⊂ R satisfying (4.36). Moreover, if Ŵ ≥ 0 a.e. on R, then A(rn,k) ≥ 0, so that

k∑
j=1
A(wj) ≤ lim sup

n→∞
(A(vn) + |εn,k|) ≤ lim sup

n→∞
A(vn) + lim sup

n→∞
|εn,k|.

Then, (4.36) implies that
∞∑
k=1
A(wk) ≤ lim sup

n→∞
A(vn). (4.37)

The inequality (4.37) will be used below in order to show that, if {vn} is a Palais–Smale sequence
of Jc at level γc(c) 6= 0, then vn is decomposed only in a finite number of profiles w1, . . . , wk.

Proof of Lemma 4.12. To prove (4.35), we first remark that

Q(u) = 4|||u|||2 + |||u2|||2 − 4〈u, u2〉.

Observe also that, for any fff = (f1, f2, . . . , fm) ∈ H1(R)m, we have∣∣∣∣∣∣∣∣∣ m∑
i=1

fi
∣∣∣∣∣∣∣∣∣2 =

m∑
i=1
|||fi|||2 + T1(fff), T1(fff) =

m∑
i 6=j
〈fi, fj〉, (4.38)

∣∣∣∣∣∣∣∣∣( m∑
i=1

fi
)2∣∣∣∣∣∣∣∣∣2 =

m∑
i=1
|||f2

i |||
2 + T2(fff), T2(fff) =

m∑
i 6=j
〈f2
i , f

2
j 〉+ 2

m∑
k;i 6=j

〈f2
k , fifj〉+

m∑
i 6=j;k 6=`

〈fifj , fkf`〉,

(4.39)

〈
m∑
i=1

fi,
( m∑
i=1

fi
)2
〉 =

m∑
i=1
〈fi, f2

i 〉+ T3(fff), T3(fff) =
m∑
i 6=j
〈fi, f2

j 〉+
m∑

k;i 6=j
〈fk, fifj〉. (4.40)

In sum,

Q
( m∑
i=1

fi
)

=
m∑
i=1
Q(fi) + T (fff), with T = 4T1 + T2 − 4T3. (4.41)

From now on, the notation X . Y means that there exists a constant C independent of n
and k such that X ≤ CY . Since we are assuming that {vn} is bounded in H1(R), we can write
‖vn‖H1(R) . 1. Thus, it follows from (4.19) and the Sobolev’s embedding that

k∑
i=1
‖wi‖Lp(R) . 1, ‖rn,k‖Lp(R) . 1, for all p ∈ [2,∞]. (4.42)

Now we apply (4.41) with m = k + 1, fi = wn,i, for 1 ≤ i ≤ k, and fm = rn,k. Hence, one
obtains (4.35) with

εn,k = T (wn,1, . . . , wn,k, rn,k).

We aim to show that εn,k satisfies (4.36).
Let us start with T1(wn,1, . . . , wn,k, rn,k), where there are two types of terms. The first type is

of the form 〈wn,i, wn,j〉 with i 6= j. This case is simple to handle by using that |yn,j − yn,i| → ∞,
which leads to

〈wn,i, wn,j〉 = 〈wi, wj(· − yn,j + yn,i)〉 → 0, as n→∞.
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The other terms in the summation T1(wn,1, . . . , wn,k, rn,k) are of the form 〈wn,i, rn,k〉. In this
case we apply (4.18) with ϕ =W ∗ wi and αn = −yn,i, so we get

lim
k→∞

lim sup
n→∞

|〈wn,i, rn,k〉| = lim
k→∞

lim sup
n→∞

|〈wi, rn,k(·+ yn,i)〉| = 0.

Let us study now T2(wn,1, . . . , wn,k, rn,k) and T3(wn,1, . . . , wn,k, rn,k). Here we find several
types of terms. We first remark that the terms of the form 〈wn,i, w2

n,j〉 and 〈w2
n,i, w

2
n,j〉, with

i 6= j, and 〈rn,k, w2
n,i〉 can be dealt with as we did above for the terms in T1(wn,1, . . . , wn,k, rn,k).

Next we show how to treat the rest of the terms.
First we consider the terms of the form, for i 6= j,

Fn = 〈gn, wn,iwn,j〉, (4.43)

for some gn with ‖gn‖Lp(R) . 1 for every p ∈ [2,∞]. In view of (4.42), this is the case when
considering, for 1 ≤ ` ≤ m ≤ k,

gn ∈ {rn,k, r2
n,k, rn,kwn,`, wn,`wn,m, wn,`}. (4.44)

In order to deal with (4.43), by the density of C∞0 (R) inH1(R), we may consider two sequences
{am}, {bm} ⊂ C∞0 (R) such that am → wi and bm → wj , in H1(R). Of course, {am}, {bm} depend
on i, j respectively, we do not denote explicitly this dependence for clarity. Notice that

Fn = An,k,m +Bn,k,m, (4.45)

where

An,k,m = 〈gn, wn,i[wn,j − bm(· − yn,j)]〉+ 〈gn, bm(· − yn,j)[wn,i − am(· − yn,i)]〉

and
Bn,k,m = 〈gn, bm(· − yn,j)am(· − yn,i)〉.

On the one hand, we have by (1.23) and Hölder’s inequality,

|An,k,m| . ‖wj − bm‖L2(R) + ‖bm‖L∞(R)‖wi − am‖L2(R).

Thus, given ε > 0, we may fix m, independent of n, such that |An,k,m| < ε for every n. On the
other hand, since am and bm have compact support and |yn,i − yn,j | → ∞ as n→∞, it follows
that Bn,k,m = 0 for every n large enough. In sum,

lim
n→∞

Fn = 0.

We focus now on the terms of the form Gn = 〈gn, wn,irn,k〉, with gn satisfying (4.44). Again
by (1.23), (4.42) and Hölder’s inequality, we deduce the estimate

|Gn| . ‖wn,irn,k‖L2(R) . ‖rn,k‖L4(R).

Using (4.18) with q = 4, we conclude that

lim
k→∞

lim sup
n→∞

|Gn| = 0.

Finally, it remains to consider the terms of the form 〈wn,i, r2
n,k〉 and 〈w2

n,i, r
2
n,k〉, which can

be handled as Gn. Consequently, the proof of is complete.

Applying the splitting properties that we have proved to bounded Palais–Smale sequences,
we obtain the following general theorem.
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Theorem 4.14. Assume that W satisfies (H2), (H4), (H5), (4.5) and Ŵ ≥ 0 a.e. on R. Let
c > 0 and let {vn} ⊂ NV(R) be a Palais–Smale sequence of Jc at level γ, for some γ 6= 0, i.e.

Jc(vn)→ γ, ‖J ′c(vn)‖H−1(R) → 0. (4.46)

Assume in addition that there exist R > 0 and δ ∈ (0, 1) such that, for all n,

‖vn‖H1(R) ≤ R and vn ≤ 1− δ on R. (4.47)

Then there exist k ∈ N and w1, w2, . . . , wk ∈ NV(R) such that

k∑
j=1

Jc(wj) = γ. (4.48)

In addition, for any 1 ≤ j ≤ k, the function ρj = 1−wj is a nontrivial finite energy solution
to (2.13) and ρj ≥ δ on R.

Proof. Since {vn} is bounded in H1(R), by Theorem 4.9, there are profiles {wj}j≥1 ⊂ H1(R)
and points {yn,j} ⊂ R such that (4.17), (4.18) and (4.19) hold. In addition, as in Lemma 4.11,
we infer that wj ≤ 1 − δ on R, for all j ≥ 1. Moreover, as in the proof of Theorem 1.1, we
conclude that J ′c(wj) = 0, so that wj is a solution to (3.3) and ρj = 1−wj is solution to (2.13).
Furthermore, we see that {A(vn)} is bounded. Since Ŵ ≥ 0 a.e. on R, we deduce from (4.37)
in Remark 4.13 that ∞∑

j=1
A(wj) ≤ C, (4.49)

for some constant C > 0 depending only on supn‖vn‖H1(R) and ‖Ŵ‖L∞(R).
Let us show that there is j0 ≥ 1 such that wj0 6= 0. Indeed, assuming otherwise, i.e. wj = 0,

for all j ≥ 1, we deduce from (4.17) that Sn = 0, so that vn → 0 in L4(R). On the other hand,
(4.46) implies that 2Jc(vn)− J ′c(vn)(vn) → 2γ. This leads to a contradiction with the estimate
in (3.15), since γ 6= 0.

In addition, there can only be a finite number of nonzero profiles. Indeed, if wj is nonzero,
then Lemma 4.8 provides a positive lower bound for A(wj), which is independent of j. There-
fore, (4.49) implies that the number of nonzero profiles if finite. Consequently, without loss of
generality, we can assume that there is k ≥ 1 such that wj 6≡ 0, for all j ≤ k, and wj ≡ 0, for all
j > k. In this manner, the profile decomposition is finite, and we can write

vn =
k∑
j=1

wn,j + rn, (4.50)

with rn ≤ 1− δ/2, for n large enough, by Lemma 4.11. Also, by (4.19), (4.29) and (4.35),

Jc(vn) =
k∑
j=1

Jc(wj) + Jc(rn) + on(1). (4.51)

Therefore, to prove (4.48), it is enough to show that

J ′c(rn)(rn)→ 0. (4.52)

Indeed, assuming this claim and using that ‖rn‖L4(R) → 0, we can invoke the estimate in (3.15)
to conclude that Jc(rn) converges to 0. Thus, taking the limit in (4.51), we obtain (4.48), which
concludes the proof the theorem.
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To establish (4.52), recall that by (3.1),

J ′c(rn)(rn) =
∫
R
r′2n + 〈f(rn), (1− rn)rn〉 − c2

∫
R
h(rn)rn.

Remark that, if {zn} is bounded in H1(R) and {an} is bounded in L4(R), then

〈f(zn), anrn〉 = on(1). (4.53)

Indeed, this follows from the fact that ‖rn‖L4(R) → 0 and the estimate

|〈f(zn), anrn〉| ≤ ‖Ŵ‖L∞(R)‖f(zn)‖L2(R)‖an‖L4(R)‖rn‖L4(R).

Therefore, using also (4.50), we obtain

J ′c(rn)(rn) =
∫
R
v′nr
′
n −

k∑
j=1

∫
R
w′n,jr

′
n + 〈f(rn), rn〉 − c2

∫
R
h(rn)rn + on(1). (4.54)

On the other hand, since J ′c(wj) = 0, we deduce that J ′c(wn,j) = 0, so that, using also (4.53),
we get

0 = J ′c(wn,j)(rn) =
∫
R
w′n,jr

′
n + 〈f(wn,j), rn〉 − c2

∫
R
h(wn,j)rn + on(1). (4.55)

Similarly, using that ‖J ′c(vn)‖H−1(R) → 0 and (4.53), we obtain

on(1) = J ′c(vn)(rn) =
∫
R
v′nr
′
n + 〈f(vn), rn〉 − c2

∫
R
h(vn)rn + on(1). (4.56)

By putting together (4.54), (4.55) and (4.56), we conclude that

J ′c(rn)(rn) = 〈rn, f(rn)− f(vn) +
k∑
j=1

f(wn,j)〉 − c2
∫
R

(h(rn)− h(vn) +
k∑
j=1

h(wn,j))rn + on(1).

(4.57)
Notice now that, using (4.50) and that f(s) = 2s− s2,

f(rn)− f(vn) +
k∑
j=1

f(wn,j) = −r2
n + v2

n −
k∑
j=1

w2
n,j .

Similarly,

h(rn)−h(vn)+
k∑
j=1

h(wn,j) = g(rn)−g(vn)+
k∑
j=1

g(wn,j), with g(s) := h(s)−s = 3s2 − 8s+ 6
4(1− s)3 s2.

In sum, (4.57) can be simplified as

J ′c(rn)(rn) = −〈rn, r2
n − v2

n +
k∑
j=1

w2
n,j〉 − c2

∫
R

(g(rn)− g(vn) +
k∑
j=1

g(wn,j))rn + on(1). (4.58)

Moreover, since rn ≤ 1 − δ/2, vn ≤ 1 − δ and wn,j ≤ 1 − δ, we can replace g with g̃χδ, where
g̃(s) = (3s2−8s+6)s2 and χδ is defined in (4.30). Applying Lemma 4.10 to (4.58) with G(s) = s2

and with G = g̃χδ, and using (H4), we finally conclude that there is a function on(1;L1) such
that

|J ′c(rn)(rn)| . ‖W‖∞‖rn‖L∞(R)‖on(1;L1)‖L1(R).

This completes the proof of (4.52).
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The property (4.48) given by Theorem 4.14 can be seen as an a priori estimate for solutions
obtained via splitting of Palais–Smale sequences. However, it is not clear how to use this property
if Jc changes sign. The following lemma guarantees that, actually, Jc(1− ρ) is nonnegative if ρ
is a finite energy solution with sufficiently small maximum.

Lemma 4.15. Let c > 0 and let u ∈ NE(R) be a solution to (S(W, c)). Then we have the
following estimates in terms of ρ = |u| and η = 1− |u|2.

(i) If (H2) is satisfied, then

Jc(1− ρ) =
∫
R

(ρ′)2 + 1
8π

∫
R
ξ
(
Ŵ
)′(ξ)|η̂|2. (4.59)

(ii) If (H3) is satisfied, then

Jc(1− ρ) ≥ 1
2

∫
R

(1−mρ2)(ρ′)2 + 1
4

∫
R

(
1− c2

2ρ2

)
η2. (4.60)

(iii) If (H2) and (H3) are satisfied, then

Jc(1− ρ) ≥
∫
R

(1−mρ2)(ρ′)2. (4.61)

Proof. Combining (4.4) and (2.7) yields

c2

4

∫
R

η2

1− η + 1
4

∫
R

(η′)2

1− η = 1
4π

∫
R

(
Ŵ(ξ)− ξ

(
Ŵ
)′(ξ)) |η̂(ξ)|2dξ.

Writing the left-hand side in terms of ρ and multiplying by 1/2, we arrive at

c2

8

∫
R

(1− ρ2)2

ρ2 + 1
2

∫
R

(ρ′)2 = 1
8π

∫
R

(
Ŵ(ξ)− ξ

(
Ŵ
)′(ξ)) |η̂(ξ)|2dξ.

Observe now that, by Plancherel’s identity,

Jc(1− ρ) = 1
2

∫
R

(ρ′)2 + 1
8π

∫
R
Ŵ(ξ)|η̂(ξ)|2dξ − c2

8

∫
R

η2

ρ2 . (4.62)

From both previous identities, we conclude the proof of (4.59). Now, using (H3) and that
η′ = −2ρρ′, we derive

Jc(1− ρ) ≥
∫
R

(ρ′)2 − m

8π

∫
R
ξ2|η̂|2 =

∫
R

(ρ′)2 − m

8π

∫
R
|η̂′|2

=
∫
R

(ρ′)2 − m

4

∫
R

(η′)2 =
∫
R

(1−mρ2)(ρ′)2,

which gives (4.61).
The proof of (4.60) follows directly from (4.62), using (4.1) and that η′ = −2ρρ′.

We are now in position to prove a uniform estimate for solutions obtained from bounded
Palais–Smale sequences.
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Corollary 4.16. Assume that W satisfies (H2), (H3), (H4) and (H5). Assume in addition
that mV0(c)2 < 1, where m and V0(c) are given by (H3) and (H5) respectively. Then, for any
c ∈ (0,

√
2), there exist sequences {cn} ⊂ (c,

√
2) and {un} ⊂ NE(R) such that cn → c and un is

a nontrivial solution to (S(W, cn)) for all n. In addition, there exist C1, C2 > 0 and δc ∈ (0, 1),
independent of n, such that, denoting ρn = |un|,

‖ρ′n‖2L2(R) ≤ C1Jcn(1− ρn) ≤ C2, for all n, (4.63)

and
ρn ≥ δc on R, for all n. (4.64)

Proof. Notice thatW satisfies (H3), so that (4.1) and (4.5) hold, and (H1) is fulfilled with σ = 1
and κ = m/2.

Let c ∈ (0, c). Consider the set Dc = {s ∈ (c,
√

2) : γc is differentiable at s}. Let {cn} ∈ Dc

be a nondecreasing sequence such that cn → c. Recall that such a sequence exists thanks to
(3.8). Proposition 3.10 implies that, for every fixed n, there exists a sequence {vn,m} ⊂ NV(R)
such that

‖vn,m‖H1(R) ≤ Rn, vn,m ≤ 1− δn, lim
m→∞

Jcn(vn,m) = γc(cn), lim
m→∞

‖J ′cn(vn,m)‖H−1(R) = 0,

where Rn > 0 and δn ∈ (0, 1) do not depend on m. Therefore, Theorem 4.14 yields

kn∑
j=1

Jcn(wj,n) = γc(cn),

being 1− wj,n nontrivial finite energy solutions to (2.13) for every j = 1, . . . , kn. Let us denote
w1,n = wn and ρn = 1 − wn. The continuity of V0 implies that mV0(cn)2 < 1 for every n large
enough. Then, by Lemma 4.15, we deduce that

(1−mV0(cn)2)
∫
R

(ρ′n)2 ≤ Jcn(wn) ≤ γc(cn).

Since γc is a nonincreasing function and {cn} is nondecreasing, we have that γc(cn) ≤ γc(c1).
Moreover, again by the continuity of V0, it is clear that the sequence {1−mV0(cn)2} is bounded
away from zero. In conclusion, we obtain (4.63).

By Lemma 2.4, there is θn such that un = ρne
iθn is a finite energy solution to (S(W, cn)).

Finally, we deduce from (4.14) in Proposition 4.7, that for all x ∈ R,

|un(x)| ≥ δc := inf
s∈[c,c]

√
1 + 4s2/V1(s)− 1√
1 + 4c2/V1(s) + 1

,

which proves (4.64).

4.3 Passing to the limit

For any c ∈ (0,
√

2), Corollary 4.16 provides a sequence of nontrivial finite energy solutions un
to (S(W, cn)) with cn → c. The last step for completing the proof of Theorem 4.1 consists of
passing to the limit in (S(W, cn)), controlling that the limit is nontrivial and has finite energy.
To this aim, the estimates proved in the previous subsections will be essential. In this subsection
we adapt a technique from [7] in a similar context.

We start with a lemma that provides a sufficient condition for the boundedness of the se-
quence of energies.
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Lemma 4.17. Assume that the hypotheses in Corollary 4.16 hold, and let {ρn} be given by
Corollary 4.16. Set

Srn = {x ∈ R : ρn(x) < r}.

If for some r ∈ (c/
√

2, 1) the sequence {|Srn|} is bounded, then {E(un)} is also bounded.

Proof. Let {cn} and δc ∈ (0, 1) be given by Corollary 4.16, and let us take some r ∈ (0, 1). Since
mV0(cn)2 < 1 for all n large, we have 1−mρ2

n, so by invoking (4.60), we obtain

C ≥ Jcn(1− ρn) ≥ 1
4

∫
Srn

(
1− c2

n

2ρ2
n

)
(1− ρ2

n)2 + 1
4

∫
(Srn)c

(
1− c2

n

2ρ2
n

)
(1− ρ2

n)2

≥ 1
4

(
1− c2

n

2r2

)∫
R

(1− ρ2
n)2 − c2

n(1− δ2
c )2

8δ2
c

|Srn|.

Since cn → c, choosing r ∈ (c/
√

2, 1), we infer that∫
R

(1− ρ2
n)2 ≤ C1(1 + |Srn|), for all n,

for some constant C1 > 0 independent of n. Thus, if {|Srn|} is bounded, we get∫
R

(1− ρ2
n)2 ≤ C2,

for some C2 > 0.
Recall that Jcn(1− ρn) = E(un)− cnp(un) (see Remark 2.3). Then, using (4.63) and (4.64)

again, we conclude

E(un) = Jcn(1− ρn) + c2
n

4

∫
R

(1− ρ2
n)2

ρ2
n

≤ C + c2
n

4δ2
c

∫
R

(1− ρ2
n)2 ≤ C3,

for some C3 > 0.

Next result is proved as Lemma 6.6 in [7].

Lemma 4.18. Let {fn} ⊂ L1(R) be a bounded sequence, and consider a sequence {Sn} of
measurable subsets of R such that |Sn| → ∞. Then, for every n, there exist xn ∈ Sn and Rn > 0
with Rn →∞ such that ∫

B(xn,Rn)
|fn| → 0.

So far, we have only used the condition (H4) for p = 2 or p =∞. In the next lemma we will
use it also for p = 1 in order to handle the weak star convergence, denoted by ∗

⇀, in L∞.

Lemma 4.19. Assume that W satisfies (H4) and let {ηn} be a bounded sequence in W 1,∞(R).
Then there exists η ∈ L∞(R) such that, up to a subsequence, ηn → η in L∞loc(R) and W ∗ ηn

∗
⇀

W ∗ η in L∞(R). In addition, for any sequence {fn} ⊂ L∞(R) such that fn → f in L∞loc(R), we
have the following convergence in the sense of distributions,

fn(W ∗ ηn)→ f(W ∗ η) in D′(R). (4.65)

Proof. First, a standard diagonal argument together with Ascoli–Arzela’s theorem imply that
there exists η ∈ L∞(R) such that, up to a subsequence,

ηn → η in L∞loc(R). (4.66)
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On the other hand, we also deduce that there is g ∈ L∞(R) such that, up to a subsequence,
ηn

∗
⇀ g in L∞(R). By (4.66), we get g = η. Let us now fix a function ϕ ∈ L1(R). By (H4), we

have W ∗ ϕ ∈ L1(R) and, using that W is even, we deduce that∫
R

(W ∗ ηn)ϕ =
∫
R
ηn(W ∗ ϕ)→

∫
R
η(W ∗ ϕ) =

∫
R

(W ∗ η)ϕ.

Therefore,
W ∗ ηn

∗
⇀W ∗ η in L∞(R). (4.67)

To prove (4.65), we consider φ ∈ C∞0 (R), with suppφ ⊂ K, for some compact set K, and notice
that ∫

R
(W ∗ ηn)fnφ =

∫
R

(W ∗ ηn)fφ+
∫
K

(W ∗ ηn)(fn − f)ηφ. (4.68)

The second term in the right-hand side can be bounded by ‖W‖∞‖ηn‖L∞(R)‖fn−f‖L∞(K)‖φ‖L1(K),
which goes to zero by hypothesis. Since fφ ∈ L1(R), using (4.67) we can thus pass to the limit
in (4.68) and obtain (4.65).

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Let {cn} and {un} be the sequences given by Corollary 4.16. Thus,
{cn} ⊂ (0,

√
2) with cn → c and un ∈ NE(R) is a nontivial solution to (S(W, cn)) for all n. We

start by proving that {E(un)} remains bounded. Indeed, arguing by contradiction, assume that
{|Srn|} is unbounded for every r ∈ (c/

√
2, 1), where Srn is defined in Lemma 4.17. Let us thus

fix r ∈ (c/
√

2, 1) to be chosen later. Observe that, by (4.63), the sequence {(ρ′n)2} is bounded
in L1(R). Then, applying Lemma 4.18, for every n there exist xn ∈ Srn and Rn > 0 such that
Rn →∞ and ∫

B(0,Rn)
ρ′n(x+ xn)2dx→ 0. (4.69)

Now we define ũn = un(· + xn) and ρ̃n = |ũn|. We know from (H5) and Proposition 4.5 that
{ũn} is bounded in W k,∞(R;C) for every k ∈ N. As a consequence, arguing as in the proof
of Lemma 2.1 and taking (4.64) into account, we deduce that {ρ̃n} is bounded in W k,∞(R) for
every k ∈ N. In particular, there exists ρ ∈W 2,∞(R) such that, up to a subsequence,

ρ̃n → ρ in W 2,∞
loc (R).

Moreover, thanks to (4.69), we deduce that ρ′ ≡ 0, so ρ is a constant. Furthermore, the pointwise
convergence ρ̃n → ρ leads to

ρn(xn) = ρ̃n(0)→ ρ.

Therefore, since ρn(xn) < r for all n, it follows that ρ ≤ r.
Notice that ρ̃n ∈ 1 +H1(R) satisfies the equation

−ρ̃′′n + c2
n(1− ρ̃4

n)
4ρ̃3

n

= ρ̃n(W ∗ (1− ρ̃2
n)) on R. (4.70)

We aim to pass to the limit in (4.70). In order to do so we notice that, since ρ is a constant,

ρ̃′′n → 0 in L∞loc(R).

Besides, by virtue of Lemma 4.19 and (4.3), we have

ρ̃n(W ∗ (1− ρ̃2
n))→ ρ(W ∗ (1− ρ2)) = ρ(1− ρ2)Ŵ(0) in D′(R).

36



Thus, using that Ŵ(0) = 1, we can to pass to the limit in (4.70) in D′(R) to obtain

c2(1− ρ4) = 4ρ4(1− ρ2).

Using that 1− ρ4 = (1− ρ2)(1 + ρ2), it follows that

c2(1 + ρ2) = 4ρ4.

From this equation, it is immediate to check that

ρ2 = c2 + c
√
c2 + 16

8 .

Observe that c2+c
√
c2+16

8 > c2

2 since c <
√

2. Therefore, we can choose ε > 0 small enough
(independent of r) so that

ε+ c2

2 <
c2 + c

√
c2 + 16

8 = ρ2 ≤ r2.

Finally, if we choose r =
√
ε+ c2

2 and take ε > 0 possibly smaller so that r ∈ (c/
√

2, 1),
then we arrive at a contradiction. Therefore, {|Srn|} must be bounded for some r ∈ (c/

√
2, 1).

Consequently, Lemma 4.17 implies that {E(un)} is bounded too.
Arguing as before, there exists u ∈ C2(R;C) such that, up to a subsequence, un → u in

W 2,∞
loc (R). Moreover, Lemma 4.19 implies that W ∗ (1− |un|2) ∗⇀W ∗ (1− |u|2) in L∞(R). Thus,

we can pass to the limit in (S(W, cn)) so that u is a solution to (S(W, c)).
Let us now check that u ∈ E(R). Indeed, as in Lemma 4.15, using (4.1), we have

E(un) ≥ 1
2

∫
R
|u′n|2 + 1

4

∫
R

(1− |un|2)2 − m

16π

∫
R
|ξ|2|η̂n|2

= 1
2

∫
R
|u′n|2 + 1

4

∫
R

(1− |un|2)2 − m

2

∫
R
ρ2
n(ρ′n)2.

Hence, (H5), (4.63) and the fact that {E(un)} is bounded, imply that

1
2

∫
R
|u′n|2 + 1

4

∫
R

(1− |un|2)2 ≤ C,

for all n and for some C > 0 independent of n. By virtue of Fatou’s lemma,

1
2

∫
R
|u′|2 + 1

4

∫
R

(1− |u|2)2 ≤ C.

That is, u ∈ E(R).
Finally, the estimate (4.64) ensures that u ∈ NE(R), while Proposition 4.4 implies that u is

nontrivial. The proof is concluded.

5 Nonexistence and properties of solitons
This section is devoted to the study of the Fourier transform of equation (2.4), that is

Mc(ξ)η̂(ξ) = F̂ (ξ), with Mc(ξ) = ξ2 + 2Ŵ(ξ)− c2, (5.1)

where
F = 2K + 2η(W ∗ η), η = 1− |u|2 and K = |u′|2.
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We keep this notation for F and η for the rest of the Section, and we assume, as always, that
W satisfies (H0). If Mc > 0 a.e., we can recast (5.1) as

η̂(ξ) = Lc(ξ)F̂ (ξ), with Lc(ξ) = L̂c(ξ) = 1
Mc(ξ)

. (5.2)

We will see that the operator Lc plays an essential role in order to study the regularity and
asymptotic behavior at infinity of the solitons given by Theorems 1.1 and 4.1.

We also stress that (H1) is sufficient condition for Lc to be well defined, for c ∈ [0,
√

2σ).
Indeed, we have Mc(ξ) ≥ (1− 2κ)ξ2 + 2σ − c2 > 0 for a.e. ξ ∈ R, so that∫

R
|Lc(ξ)|dξ ≤

∫
R

dξ

(1− 2κ)ξ2 + 2σ − c2 <∞. (5.3)

Thus Lc ∈ L1(R) and Lc is a bounded continuous function on R.
We can now establish our nonexistence result for solitons with critical speed.

Theorem 5.1. Assume that Ŵ ≥ 0 a.e. on R and that there exists δ > 0 such that one of the
following holds:

(i) Ŵ(ξ) = 1− ξ2/2, for all ξ ∈ (−δ, δ).

(ii) Ŵ is differentiable on (−δ, δ), Ŵ(0) = 1 and Ŵ(ξ) 6= 1− ξ2/2 for a.e. ξ ∈ (−δ, δ).

Then (S(W,
√

2)) admits no nontrivial solution in E(R).

Proof. Arguing by contradiction, assume that there exists a nontrivial solution u ∈ E(R) to
(S(W,

√
2)). Then, Proposition 2.2 implies that (5.1) holds, i.e.

M(ξ)η̂(ξ) = F̂ (ξ), with M(ξ) = ξ2 + 2Ŵ(ξ)− 2, (5.4)

On the other hand, by virtue of Lemma 2.1, η and K belong to W k,p(R) for all k ∈ N and all
p ∈ [2,∞].

Let us show that F̂ is continuous and F̂ (0) > 0. Indeed, from (2.6) and from the fact that
η(±∞) = 0, we deduce the existence of constants R,C > 0 such that

|u′(x)|2 ≤ C(η(x)2 + η′(x)2) for all x ∈ R \ [−R,R].

Hence K ∈ L1(R) and, in turn, F ∈ L1(R) and F̂ is continuous. Also, it follows from (5.4) that
we can assume that Mη̂ is also continuous. Moreover, since u is not trivial and Ŵ ≥ 0 a.e.,
Plancherel’s identity yields

F̂ (0) =
∫
R
F (x)dx = 2

∫
R
|u′|2 + 1

π

∫
R
Ŵ(ξ)|η̂(ξ)|2dξ > 0. (5.5)

If assumption (i) holds, we deduce that Mη̂ = 0 on (−δ, δ), so that, by (5.4), F̂ (0) = 0,
which contradicts (5.5).

If assumption (ii) holds, then M is differentiable on (−δ, δ), M(0) = 0 and M(ξ) 6= 0 for a.e.
ξ ∈ (−δ, δ). Therefore,

η̂(ξ) = L(ξ)F̂ (ξ) a.e. ξ ∈ (−δ, δ), (5.6)

where L = 1/M . Let us show now that L 6∈ L1((−δ̃, δ̃)) for every δ̃ ∈ (0, δ) small enough.
Expanding M around zero leads to

M(ξ) = M ′(0)ξ + o(ξ2), for all ξ ∈ (−δ̃, δ̃),
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for some δ̃ ∈ (0, δ). Thus, taking δ̃ even smaller if necessary,

|M(ξ)| ≤ (|M ′(0)|+ 1)|ξ|, for all ξ ∈ (−δ̃, δ̃).

In consequence, ∫ δ̃

−δ̃
L(ξ)dξ ≥ 1

|M ′(0)|+ 1

∫ δ̃

−δ̃

dξ

|ξ|
=∞.

In particular, L 6∈ L2((−δ̃, δ̃)). Hence, taking (5.6) into account, in order η̂ to belong to L2(R),
it is necessary that F̂ (0) = 0. This is again a contradiction with (5.5).

We can prove now the nonexistence result stated in the Introduction.

Proof of Theorem 1.5. Let δ > 0 be such that Ŵ ∈ C2((−δ, δ)). Recall that Ŵ(0) = 1 and
(Ŵ)′(0) = 0. If (Ŵ)′′(ξ) = −1 for all (−δ, δ), then Ŵ(ξ) = 1− ξ2/2, for ξ ∈ (−δ, δ), so that we
are in the case (ii) of Theorem 5.1.

Assume now that (Ŵ)′′(0) 6= −1. Then, by decreasing δ if necessary, we deduce by continuity
that (Ŵ)′′ > −1 on (−δ, δ), or (Ŵ)′′ < −1 on (−δ, δ). On the other hand, by Taylor’s theorem,
and using that Ŵ is even, we deduce that for any ξ ∈ (−δ, δ), there exists ξ̃ ∈ (−δ, δ) such that

Ŵ(ξ) = 1 + (Ŵ)′′(ξ̃)ξ
2

2 .

Thus we are in the case (ii) of Theorem 5.1, and the conclusion follows.

5.1 Decay at infinity

We assume now that Mc > 0 a.e. on R so that (5.2) holds a.e. Notice also that if Lc ∈ S ′(R),
then

Dkη = Lc ∗DkF, for all k ∈ N. (5.7)

This equation will be the key for analyzing the decay of the solutions u ∈ E(R) to (S(W, c)) as
x → ±∞. More precisely, it will be provided the decay of η = 1− |u|2 at infinity. We start by
showing that we can also recover limits of u at ±∞. First, we need to establish the integrability
of η, which means that u has finite mass.

Lemma 5.2. Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). If Lc ∈ L1(R), then
η ∈W k,1(R) for every k ∈ N.

Proof. In the case k = 0, we argue as in the proof of Theorem 5.1 to prove that F ∈ L1(R).
Then, if Lc ∈ L1(R), Young’s inequality applied to (5.7) with k = 0 implies that η ∈ L1(R).
The case k ≥ 1 may be tackled similarly by taking into account that F ′ = 4η′W ∗ η + 2ηW ∗ η′,
so the successive derivatives of F have the form DkF =

∑2k
j=1 ajbj , where aj , bj ∈ L2(R).

For any u ∈ E(R), the limits limx→± u(x) do not exist in general (see [26]). The following
result shows that, if u solves (S(W, c)), then they do exist whenever u presents no vortices and
η = 1− |u|2 has finite mass.

Proposition 5.3. Let c > 0 and let u = ρeiθ ∈ NE(R) be a solution to (S(W, c)). Assume that
η ∈ L1(R). Then the following limits exist and are finite:

θ(±∞) = θ(0) + c

2

∫ ±∞
0

η

1− η . (5.8)

In particular,
u(+∞) = eiθ(+∞), u(−∞) = eiθ(−∞). (5.9)

39



Remark 5.4. On the one hand, we recall that Lemma 5.2 provides sufficient conditions that
assure that η ∈ L1(R). On the other hand, we stress the fact that the limits u(±∞), if they
exist, may be different from each other. In fact, from Proposition 5.3 it is easy to see that
u(+∞) = u(−∞) if and only if

∫
R

η
1−η = 0.

Proof of Proposition 5.3. By Proposition 2.4, θ satisfies (2.12). By integrating, we have

θ(x)− θ(0) = c

2

∫ x

0

( 1
ρ(y)2 − 1

)
dy = c

2

∫ x

0

η(y)
1− η(y)dy, for all x ∈ R.

Therefore,

θ(+∞) := lim
x→∞

θ(x) = θ(0) +
∫ ∞

0

η

1− η , θ(−∞) := lim
x→−∞

θ(x) = θ(0)−
∫ 0

−∞

η

1− η .

Since infR(1 − η) = infR ρ2 > 0 and η ∈ L1(R), it follows that both limits θ(+∞) and θ(−∞)
are finite. Hence, we deduce directly (5.9) from the fact that ρ(±∞) = 1.

In the rest of the subsection we will adapt the Bona–Li theory in [13, 14] to our equation.
First, we recall the following technical result proved in [50].

Lemma 5.5 ([50]). For any 0 < ` < m and ε > 0, the following inequality holds,∫
R

e`|x|

(1 + εe|x|)mem|x−y|
dx ≤ B e`|y|

(1 + εe|y|)m
, for all y ∈ R, (5.10)

where B = (min{`,m− `})−1.

Proof of Theorem 1.4. First, we point out that the result holds true for ` = 0. Indeed, (1.14)
and Hölder’s inequality yield Lc ∈ L1(R). Thus, by virtue of Lemmas 2.1 and 5.2, Dkη ∈
L1(R) ∩ L∞(R) for every k ∈ N. We will then focus only on the case ` ∈ (0,m).

From (5.7), Hölder’s inequality and (1.14), we deduce the following estimate,

|η(x)| ≤
∫
R
|Lc(x− y)|em|x−y| |F (y)|

em|x−y|
dy ≤ C

1
q

1

(∫
R

|F (y)|q

eqm|x−y|
dy

) 1
q

, (5.11)

where C1 = ‖em|·|Lc‖qLp(R). We will prove next that e`|·|η ∈ Lq(R) and e`|·|η′ ∈ Lq(R) for all
` ∈ (0,m). In order to do so, let ` ∈ (0,m) and, for all ε ∈ (0, 1], let us consider the functions

hε(x) = e`|x|

(1 + εe|x|)m
|η(x)|, h̃ε(x) = e`|x|

(1 + εe|x|)m
|η′(x)|.

Since η, η′ ∈ L∞(R) and ` < m, it is clear that hε, h̃ε ∈ Lq(R). Let us take now r ∈ (0, q) and
R > 1. Using (5.11) and Hölder’s inequality with exponents q

q−r and q
r , we deduce that

∫
{|x|>R}

|hε(x)|qdx =
∫
{|x|>R}

|hε(x)|q−r e`r|x|

(1 + εe|x|)rm
|η(x)|rdx

≤ C
r
q

1

∫
{|x|>R}

|hε(x)|q−r e`r|x|

(1 + εe|x|)rm

(∫
R

|F (y)|q

eqm|x−y|
dy

) r
q

dx

≤ C
r
q

1

(∫
{|x|>R}

|hε(x)|qdx
) q−r

q
(∫
{|x|>R}

e`q|x|

(1 + εe|x|)qm

(∫
R

|F (y)|q

eqm|x−y|
dy

)
dx

) r
q

.

40



From the previous inequality, one gets directly∫
{|x|>R}

|hε(x)|qdx ≤ C1

∫
{|x|>R}

e`q|x|

(1 + εe|x|)qm

(∫
R

|F (y)|q

eqm|x−y|
dy

)
dx.

Now, by Fubini’s theorem and Lemma 5.5, we derive∫
{|x|>R}

|hε(x)|qdx ≤ C1

∫
R
|F (y)|q

(∫
{|x|>R}

e`q|x|

(1 + εe|x|)qmeqm|x−y|
dx

)
dy

≤ C1

∫
{|y|>R}

|F (y)|q Be`q|y|

(1 + εe|y|)qm
dy

+C1

∫
{|y|≤R}

|F (y)|q
∫
{|x|>R}

e`q|x|

(1 + εe|x|)qmeqm|x−y|
dxdy.

We will now estimate the last two integrals. On the one hand, using the inequality ||x| − |y|| ≤
|x− y|, we obtain∫
{|y|≤R}

|F (y)|q
∫
{|x|>R}

e`q|x|

(1 + εe|x|)qmeqm|x−y|
dxdy ≤ ‖F‖qL∞(R)

∫
{|y|≤R}

∫
{|x|>R}

e`q|x|

eqm|x−y|
dxdy

≤ ‖F‖qL∞(R)

(∫
{|y|≤R}

eqm|y|dy

)(∫
{|x|>R}

e−(m−`)q|x|dx

)
:= C2/C1.

On the other hand, recall that, by Lemma 2.1, η(±∞) = η′(±∞) = (W ∗ η)(±∞) = 0. Hence,
equation (2.6) in Proposition 2.2 implies that, for any fixed δ > 0 we may choose R > 1 large
enough so that

|F (y)|q ≤ δ|η(y)|q + δ|η′(y)|q, for all |y| > R. (5.12)

Therefore,∫
{|y|>R}

|F (y)|q Be`q|y|

(1 + εe|y|)qm
dy ≤ δB

∫
{|x|>R}

|hε(x)|qdx+ δB

∫
{|x|>R}

|h̃ε(x)|qdx.

In sum,∫
{|x|>R}

|hε(x)|qdx ≤ δBC1

∫
{|x|>R}

|hε(x)|qdx+ δBC1

∫
{|x|>R}

|h̃ε(x)|qdx+ C2. (5.13)

We will now derive a similar estimate for h̃ε. Indeed, from (5.7) with k = 1 and using (2.5),
it follows that

η′ = Lc ∗
(
4η′W ∗ η + 2ηW ∗ η′

)
.

Notice that (W ∗ η′)(±∞) = 0 too. Hence, taking R > 1 larger if necessary, we deduce that∣∣4η′(y)W ∗ η(y) + 2η(y)W ∗ η′(y)
∣∣q ≤ δ|η(y)|q + δ|η′(y)|q, for all |y| > R.

This estimate allows us to follow the same arguments as we did for hε in order to deduce∫
{|x|>R}

|h̃ε(x)|qdx ≤ δBC1

∫
{|x|>R}

|h̃ε(x)|qdx+ δBC1

∫
{|x|>R}

|hε(x)|qdx+ C3, (5.14)

where C3 = C2‖F ′‖qL∞(R)/‖F‖
q
L∞(R). Taking now δ ∈ (0, 1/2BC1), it follows directly from (5.13)

and (5.14) that ∫
{|x|>R}

|hε(x)|qdx+
∫
{|x|>R}

|h̃ε(x)|qdx ≤ C4,
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where C4 = (C2 + C3)/(1 − 2δBC1). By virtue of Fatou’s lemma, we take limits as ε tends to
zero and obtain ∫

{|x|>R}
e`q|x||η(x)|qdx+

∫
{|x|>R}

e`q|x||η′(x)|qdx ≤ C4.

In conclusion, e`|·|η ∈ Lq(R), e`|·|η′ ∈ Lq(R).
Notice that both e`xη(x) and e−`xη(x) belong toW 1,q(R). Indeed, from what we have already

proved, it is clear that

e±`xη(x) ∈ Lq(R),
(
e±`xη(x)

)′
=
(
±`η(x) + η′(x)

)
e±`x ∈ Lq(R).

Hence, the Sobolev’s embedding theorem implies that e`|·|η ∈ L∞(R) and limx→±∞ e
`|x|η(x) = 0.

We have just proved the result for k = 0. Taking k = 2 in (5.7), we deduce analogously as
before that η′′ = Lc ∗ F ′′, where F ′′ satisfies

|F ′′(y)|q ≤ δ|η(y)|q + δ|η′(y)|q + δ|η′′(y)|q, for all |y| > R.

Following the same process as above, and using the estimates we already have for e`|·|η and
e`|·|η′, we prove the result for k = 1. The complete proof follows easily by induction.

Conditions (1.14) in Theorem 1.4 is not easy to check, since the operator Lc is not simple to
compute in general. For this reason, we recall the following Paley–Wiener theorem that provides
sufficient conditions on Lc that we will use when applying Theorem 1.4 to our examples in
Section 6. We refer to Theorem 5.4.2 in [40] or Theorem IX.13 in [52] for details.

Theorem 5.6. Let T ∈ L2(R). Then eb|x|T ∈ L2(R) for all b < a, if and only if T̂ has an
analytical continuation to the strip {z ∈ C : |z| < a} with the property that for each ζ ∈ R with
|ζ| < a, T̂ (·+ iζ) ∈ L2(R) and for any b < a,

sup
|ζ|≤b
‖T̂ (·+ iζ)‖L2(R) <∞. (5.15)

We now tackle the algebraic decay, whose proof will follow similar lines to that of Theo-
rem 1.4. We will employ the following lemma proved in [14].

Lemma 5.7. For every m, ` ∈ R such that m > 1 and 0 < ` < m− 1, there exists B > 0 such
that the following inequality holds:∫

R

|x|`

(1 + ε|x|)m(1 + |x− y|)mdx ≤
B|y|`

(1 + ε|y|)m , for all y ∈ R and for all ε ∈ (0, 1]. (5.16)

Theorem 5.8. Let c ≥ 0 and let u ∈ E(R) be a solution to (S(W, c)). Assume that Lc ∈ S ′(R)
and

(1 + | · |)sLc ∈ Lp(R) for some p ∈ (1,∞], s > 1− 1
p
. (5.17)

Setting q = p′ and η = 1− |u|2, we have

| · |`Dkη ∈ Lq(R) ∩ L∞(R), lim
x→±∞

|x|`Dkη(x) = 0, for all ` ∈
(
0, s− 1 + 1

p

)
, k ∈ N.

Proof. First, from (5.7) with k = 0, Hölder’s inequality and (5.17), we deduce that

|η(x)| ≤ C
1
q

1

(∫
R

|F (y)|q

(1 + |x− y|)sq dy
) 1
q

,
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where C1 = ‖(1 + | · |)sLc‖qLp(R). Now, for ` ∈ (0, s− 1 + 1/p) and ε ∈ (0, 1], we consider the
functions

hε(x) = |x|`

(1 + ε|x|)s |η(x)|, h̃ε(x) = |x|`

(1 + ε|x|)s |η
′(x)|.

Let us take R > 1. Arguing as in the proof of Theorem 1.4 and using Lemma 5.7, we obtain the
estimate∫

{|x|>R}
|hε(x)|qdx ≤ C1

∫
{|y|>R}

|F (y)|q B|y|`q

(1 + ε|y|)sq dy (5.18)

+ C1

∫
{|y|≤R}

|F (y)|q
∫
{|x|>R}

|x|`q

(1 + ε|x|)sq(1 + |x− y|)sq dxdy.

On the one hand, since `q < sq − 1, then the function x 7→ |x|`q
(|x|+1−R)sq belongs to L1((R,∞)).

Hence, the inequality ||x| − |y|| ≤ |x− y| leads to∫
{|y|≤R}

|F (y)|q
∫
{|x|>R}

|x|`q

(1 + ε|x|)sq(1 + |x− y|)sq dxdy

≤ 2R‖F‖qL∞(R)

∫
{|x|>R}

|x|`q

(|x|+ 1−R)sq dx
:= C2/C1.

On the other hand, a shown in the proof of Theorem 1.4, for any fixed δ > 0, we may choose
R > 1 large enough so that (5.12) holds. Therefore,∫

{|y|>R}
|F (y)|q B|y|`q

(1 + ε|y|)sq dy ≤ δB
∫
{|x|>R}

|hε(x)|qdx+ δB

∫
{|x|>R}

|h̃ε(x)|qdx.

In sum, by (5.18),∫
{|x|>R}

|hε(x)|qdx ≤ δBC1

∫
{|x|>R}

|hε(x)|qdx+ δBC1

∫
{|x|>R}

|h̃ε(x)|qdx+ C2.

Reasoning as in the proof of Theorem 1.4, we derive the analogous estimate for h̃ε:∫
{|x|>R}

|h̃ε(x)|qdx ≤ δBC1

∫
{|x|>R}

|hε(x)|qdx+ δBC1

∫
{|x|>R}

|h̃ε(x)|qdx+ C3,

where C3 = C2‖F ′‖qL∞(R)/‖F‖
q
L∞(R). Combining the last two inequalities and taking δ ∈

(0, 1/2BC1) yields ∫
{|x|>R}

|hε(x)|qdx+
∫
{|x|>R}

|h̃ε(x)|qdx ≤ C4,

where C4 = (C2 + C3)/(1 − 2δBC1). By virtue of Fatou’s lemma, we take limits as ε tends to
zero, and obtain ∫

{|x|>R}
|x|`q|η(x)|qdx+

∫
{|x|>R}

|x|`q|η′(x)|qdx ≤ C4.

Equivalently, | · |`η ∈ Lq(R) and | · |`η′ ∈ Lq(R).
Let us now consider a function ϕ : R→ (0,∞) that is of class C1 and satisfies that ϕ(x) = |x|`

for every |x| > 1. At this point, it is clear that ϕη ∈W 1,q(R). Hence, the Sobolev’s embedding
implies that ϕη ∈ L∞(R) and limx→±∞ ϕ(x)η(x) = 0. This proves the result for k = 0. As in
the proof of Theorem 1.4, the rest of the proof follows by induction.

Conditions (5.17) in Theorem 5.8 can be difficult to verify. The next corollary provides
sufficient (and easy to check) conditions on W that guarantee (5.17) and, in turn, algebraic
decay of finite energy traveling waves.
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Corollary 5.9. Assume that W satisfies (H1) and that weakly differentiable up to order s ∈
N \ {0}, with

DsŴ ∈ L∞(R). (5.19)

Let c ∈ [0,
√

2σ) and let u ∈ E(R) be a solution to (S(W, c)). Then,

| · |`Dkη ∈ L2(R) ∩ L∞(R), lim
x→±∞

|x|`Dkη(x) = 0, for all ` ∈ (0, s− 1/2), k ∈ N.

Proof. By (5.3), since (H1) holds, we see Lc is bounded with Lc ∈ L1(R), so that Lc ∈ L2(R).
Using also (5.19), one may verify that DsLc ∈ L1(R)∩L∞(R) too. In particular, DsLc ∈ L2(R).
Then, applying Fourier transform, | · |sLc ∈ L2(R). Hence, since Lc ∈ L∞(R), it follows that
(5.17) holds for p = 2 and we can apply Theorem 5.8.

5.2 Analyticity

Let us recall that for H ∈ S ′(R), the associated multiplier operator H is defined by

Ĥ(ϕ)(ξ) = H(ξ)ϕ̂(ξ), for all ϕ ∈ S(R).

We say that H is an Lp-multiplier, with p ∈ [1,∞], if there exists α > 0 such that

‖H(ϕ)‖Lp(R) ≤ α‖ϕ‖Lp(R), for all ϕ ∈ Lp(R).

The smallest α > 0 for which the previous inequality holds is the norm of the multiplier, and it
is denoted by ‖H‖p. For instance, by assumption (H0), W is an L2-multiplier and, by (1.23),
‖W‖2 = ‖Ŵ‖L∞(R).

We recall the so-called Hörmander–Mikhlin multiplier theorem in [32, 48] (see also [44])
adapted to our one-dimensional setting, as follows.

Theorem 5.10 ([32, 48]). Let H : R → R be a weakly differentiable function and suppose that
there exists M > 0 such that

sup{|ξkDkH(ξ)| : ξ ∈ R \ {0}, k ∈ {0, 1}} ≤M. (5.20)

Then H is an Lp-multiplier for every p ∈ (1,∞). Moreover, there exists a constant Cp > 0,
depending only on p, such that

‖H‖p ≤ CpM.

Assume that W satisfies (H1), and including also the limit case κ = 1/2, and that Ŵ is
(weakly) differentiable. We will apply this theorem to the function

Hc(ξ) = −ξ2

ξ2 + 2Ŵ(ξ)− c2
, for c ∈ [0,

√
2σ).

Observe that then Hc ∈ L∞(R) and that

ξH ′c(ξ) =
2ξ3(Ŵ)′(ξ)− 4ξ2Ŵ(ξ) + 2c2ξ2

(ξ2 + 2Ŵ(ξ)− c2)2
.

Therefore, ξ 7→ ξH ′c(ξ) is a bounded function if∣∣(Ŵ)′(ξ)∣∣ ≤ C(|ξ|+ 1) a.e. ξ ∈ R, (5.21)
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for some C > 0. In this case, using Theorem 5.10 we conclude that Hc is an Lp-multiplier for
every p ∈ (1,∞). More precisely, for every p ∈ (1,∞), there exists a constant αp > 0 such that

‖Hc(ϕ)‖Lp(R) ≤ αp‖ϕ‖Lp(R), for all ϕ ∈ Lp(R), (5.22)

where Ĥc = Hc.
Let u ∈ E(R) be a solution to (S(W, c)). We will exploit (5.7) in order to prove that η is a

real analytic function. First, we prove a technical lemma.

Lemma 5.11. Assume that there exist σ ∈ (0, 1] and κ ∈ [0, 1/2] such that Ŵ(ξ) ≥ σ−κξ2 a.e.
on R. Assume in addition that Ŵ is weakly differentiable and that there exists C > 0 such that
(5.21) holds. Let c ∈ [0,

√
2σ) and let u ∈ E(R) be a solution to (S(W, c)). Let us denote

µk := max{‖DjF ′‖Lq(R) : j = 0, . . . , k}, for all k ∈ N.

Then there exist β, γ > 0, depending on η only through ‖Djη‖L2(R) and ‖Djη‖L∞(R) for j =
0, 1, 2, such that

‖Djη‖L∞(R) ≤ βµk for all k ∈ N, for all j = 0, . . . , k + 2, (5.23)
‖Djη‖L2(R) ≤ βµk for all k ∈ N, for all j = 0, . . . , k + 2, (5.24)

µk ≤ γkkk−1 for all k ∈ N \ {0}, µ0 ≤
γ

24ωβ2 − 1, (5.25)

where ω = ‖Ŵ‖L∞(R).

Proof. We start by proving (5.23) and (5.24). These estimates hold true for k = 0 by simply
choosing

β ≥
max{‖Djη‖L∞(R), ‖Djη‖L2(R) : j = 0, 1, 2}

‖F ′‖L2(R)
.

Let us take k ≥ 1 and j ∈ {3, . . . , k + 2}. By (5.7), we have

η′′′ = Hc(F ′) on R, with F ′ = 4η′(W ∗ η) + 2η(W ∗ η′). (5.26)

By using also (5.22) with p = 2, it follows that

‖Djη‖L2(R) ≤ α2‖Dj−3F ′‖L2(R) ≤ α2µk.

Moreover, by invoking the Sobolev’s embedding (see Remark 3.4), we obtain

‖Djη‖L∞(R) ≤
1
2
(
‖Djη‖L2(R) + ‖Dj+1η‖L2(R)

)
≤ α2

2
(
‖Dj−3F ′‖L2(R) + ‖Dj−2F ′‖L2(R)

)
≤ α2µk.

Therefore, we take β ≥ α2 so that (5.23) and (5.24) follow.
As far as (5.25) is concerned, we will prove it by induction. Indeed, it holds true for k = 1 if

one chooses γ ≥ µ1. Let us assume as induction hypothesis that there exists k̃ ∈ N \ {0, 1} such
that (5.25) holds for every k ≤ k̃. Next we compute for k = k̃, taking (5.7) into account,

‖Dk+1F ′‖L2(R) = ‖Dk+1 (2η(W ∗ η′) + 4η′(W ∗ η)
)
‖L2(R)

= ‖2Dk (η′(W ∗ η′) + η(W ∗ η′′)
)

+ 4Dk (η′(W ∗ η′) + η′(W ∗ η′′)
)
‖L2(R)

≤ 2
k∑
j=0

(
k

j

)
(‖Dj+1η(W ∗Dk−j+1η)‖L2(R) + ‖Djη(W ∗Dk−j+2η)‖L2(R))

+ 4
k∑
j=0

(
k

j

)
(‖(W ∗Dj+1η)Dk−j+1η‖L2(R) + ‖(W ∗Djη)Dk−j+2η‖L2(R)).
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Using (1.23), (5.23) and (5.24), we deduce that

‖Dk+1F ′‖L2(R) ≤ 2ω
k∑
j=0

(
k

j

)
(‖Dj+1η‖L∞(R)‖Dk−j+1η‖L2(R) + ‖Djη‖L∞(R)‖Dk−j+2η‖L2(R))

+ 4ω
k∑
j=0

(
k

j

)
(‖Dj+1η‖L2(R)‖Dk−j+1η‖L∞(R) + ‖Djη‖L2(R)‖Dk−j+2η‖L∞(R))

≤ 12ωβ2
k∑
j=0

(
k

j

)
µjµk−j .

The induction hypothesis leads to

‖Dk+1F ′‖L2(R) ≤ 12ωβ2
(

2µ0µk + γk
k−1∑
j=1

(
k

j

)
jj−1(k − j)k−j−1

)

= 12ωβ2
(

2(µ0µk − γkkk−1) + γk
k∑
j=0

k!
j!(k − j)!j

(j−1)+(k − j)(k−j−1)+
)
,

where we adopt the convention 00 = 1. Now, a combinatorial lemma due to Kahane [37] implies
that

‖Dk+1F ′‖L2(R) ≤ 12ωβ2
(
2(µ0µk − γkkk−1) + 4γkkk−1

)
.

Using the induction hypothesis again and choosing γ > 0 large enough so that µ0 ≤ γ
24ωβ2 − 1,

we deduce that
‖Dk+1F ′‖L2(R) ≤ 24ωβ2(µ0 + 1)γkkk−1 ≤ γk+1kk−1.

In conclusion,

µk+1 = max{µk, ‖Dk+1F ′‖L2(R)} ≤ max{γkkk−1, γk+1kk−1} = γk+1kk−1 ≤ γk+1(k + 1)k,

which completes the proof.

We are thus led to the following analyticity of η as follows.

Theorem 5.12. Under the hypotheses of Lemma 5.11, for every solution u ∈ E(R) to (S(W, c))
with c ∈ [0,

√
2σ), there exists r > 0 such that η = 1− |u|2 and u have analytic extensions to the

strip Sr = {z ∈ C : | Im z| < r}. If c ∈ (0,
√

2σ), then u is real analytic on R, in the sense that
Re(u) and Im(u) are real analytic on R.

Proof. We need to prove that the Taylor series expansion about any point x0 ∈ R converges
with radius of convergence r > 0 independent of x0. Indeed, let Ir = [x0 − r, x0 + r], then, by
Taylor’s theorem,

η(x)−
n∑
k=0

Dkη(x0)
k! (x− x0)k = Dn+1η(ζ)

(n+ 1)! (x− x0)n+1 (5.27)

for every x ∈ Ir and for some ζ ∈ Ir. Now we deduce from Lemma 5.11 that

|Dkη(ζ)| ≤ βµk ≤ βγkkk−1

for every k ∈ N \ {0}. Since

(γkkk−1

k!
)1/k → γe, as k →∞,
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we conclude that the left-hand side of (5.27) goes to zero as n → ∞ and that the radius of
convergence satisfies r ≥ (γe)−1. In addition, η has an analytic extensions to the strip Sr.

In the case that c ∈ (0,
√

2σ), by Proposition 2.2, we have supR η < 1, so that ρ = |u| =√
1− u2 is a real analytic function, as a composition of real analytic functions. Also, θ given by

(2.14) is real analytic as the integral of a real analytic function. Consequently, Re(u) = ρ cos(θ)
and Im(u) = ρ sin(θ) are real analytic functions on R.

Remark 5.13. As pointed out by Corollary 4.1.5 in [14], the fact that η has an analytic extension
to the strip Sr implies the following exponential decay of its Fourier transform:∫

R
|η̂(ξ)|2e2µ|ξ|dξ <∞, for all µ ∈ (0, r).

We end this section by proving Corollary 1.6 as a consequence of Theorem 5.12.

Proof of Corollary 1.6. Let q ∈ (0, q∗) and let u = ρeiθ ∈ NE(R) be the nontrivial solution to
(S(W, c)), given by Theorem 1 in [22], satisfying

E(u) = Emin(q). (5.28)

Arguing as in the proof of Proposition 3.12 in [22], we see that there exists a0 ∈ R such that

1
2

∫ ∞
a0

(1− ρ2)θ′ = q

2 ,

which allows us to define the following function

ũ(x) := ρ̃(x)eiθ̃(x) = ρ(x− a0)ei(θ(x−a0)−θ(−a0)).

Notice that ũ is nothing but u multiplied by the constant of modulus one eiθ(−a0) and translated
in the space variable, so ũ is still satisfies (5.28), i.e. it is a solution to the minimization problem.
Moreover, ũ satisfies that θ̃(0) = 0 and

1
2

∫ ∞
0

(1− ρ̃2)θ̃′ = q

2 . (5.29)

Furthermore,
1
2

∫ 0

−∞
(1− ρ̃2)θ̃′ = p(v)− 1

2

∫ ∞
0

(1− ρ̃2)θ̃′ = q

2 . (5.30)

For notational simplicity, we continue to write u, ρ and θ for ũ, ρ̃ and θ̃. By using the reflection
operators T± and S± introduced in the proof of Proposition 3.12 in [22], and the fact that ρ
and θ are continuous, it follows that the functions

u± = (T±ρ)eiS±θ

belong to NE(R). Bearing in mind (5.29) and (5.30), we obtain that p(u±) = q, which implies
that Emin(q) ≤ E(u±).

On the other hand, as in Proposition 3.12 in [22], we get

E(u+) + E(u−) = 2Ek(u) + Ep(u+) + Ep(u−) and Ep(u+) + Ep(u−) ≤ 2Ep(u).

Since u satisfies (5.28), we deduce that

Emin(q) ≤ E(u+) + E(u−)
2 ≤ E(u) = Emin(q).
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Hence,
E(u+) + E(u−)

2 = E(u) = Emin(q).

Observe that
Emin(q) ≤ E(u+) = 2E(u)− E(u−) ≤ Emin(q).

In consequence, E(u+) = E(u−) = E(u) = Emin(q). This shows that u± and u are solutions to
the minimization problem (1.5) and therefore, u± and u satisfy (S(W, c)), for some c depending
on q. By virtue of Theorem 5.12, we have that |u±|2 and |u|2 are real analytic functions. Thus,
since |u+| = |u| in R+, then |u+| = |u| in R. This proves that ρ = |u| is even. On the other
hand, from (2.12), from the symmetry of ρ and from the fact that θ(0) = 0, we derive

θ(x) = c

2

∫ x

0

( 1
ρ(y)2 − 1

)
dy = − c2

∫ −x
0

( 1
ρ(y)2 − 1

)
dy = −θ(−x).

This concludes the proof.

6 Proofs of the examples
Proof of Theorem 1.7. The existence of a solution u for every c ∈ (0,

√
2) is an immediate

consequence of Theorem 4.1. Also, since Ŵα,β fulfills (5.17), η = 1 − |u|2 is real analytic by
Theorem 5.12. The nonexistence of finite energy solutions follow from Theorem 1.8 and the fact
that (Ŵα,β)′′(0) = 4αβ−2(β − 2α)−1 6= −1.

It remains to prove the exponential decay. By explicit computations, we can find for some
β1, β2 > 0, depending only on α, β and c such that

Lc(x) = α1e
−β1|x| + α2e

−β2|x|, for all x ∈ R, with α1 = β2 − β2
1

2β1(β2
2 − β2

1)
, α2 = β2

2 − β2

2β2(β2
2 − β2

1)
.

Thus, Lc satisfies the condition (1.14) in Theorem 1.4 with m = min{β1, β2} and p =∞.

Proof of Theorem 1.8. It is clear that (H0) holds for the three potentials. Notice that 2 −
cos(λξ) ≥ 1, for ξ ∈ R, and using the elementary inequalities ex ≥ 1+x and sin(x)/x ≥ 1−x2/6,
for x ∈ R,

e−λξ
2 ≥ 1− λξ2 and sin(λξ)

λξ
≥ 1− λ2ξ2

6 , for all ξ ∈ R. (6.1)

Hence, (H1) is satisfied, with (σ, κ) = (1, 0), (σ, κ) = (1, λ) and (σ, κ) = (1, λ2/3), in case (i),
(ii) and (iii), respectively. In particular, in the three cases we have

Mc(ξ) = ξ2 + 2Ŵλ(ξ)− c2 ≥ 2− c2 + ξ2(1− 2κ) > 0, for all ξ ∈ R and c ∈ (0,
√

2), (6.2)

and the existence of solutions is given by Theorem 1.1. The analyticity of η = 1 − |u|2 follows
from Theorem 5.12.

The nonexistence of finite energy solutions follows from Theorem 1.5 and the fact that in
the case (i) we have (Ŵλ)′′(0) = λ2, while in the case (ii), (Ŵλ)′′(0) = −2λ.

To prove the exponential decay, in view of (6.2), we deduce that in all the cases Ŵλ can be
extended as an analytic function on C. Hence, we only need to verify that for fixed c ∈ (0,

√
2)

and λ, we can find a constant δ = δ(c, λ) > 0 such thatMc(z) = z2 +2Ŵλ(z)−c2 does not vanish
on the strip Sδ := {z ∈ C : | Im z| < δ} and that Lc(z) = (Mc(z))−1 satisfies the integrability
condition in (5.15). This will imply that eδ|·|Lc ∈ L2(R), so that the decay follows by invoking
Theorem 1.4 with p = 2.
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Let us show that there is δ = δ(c, λ) ∈ (0, 1) such that

|Mc(ξ + iw)| ≥ δ, for all |w| ≤ δ, for all ξ ∈ R. (6.3)

Arguing by contradiction, we get the existence of sequences δn ∈ (0, 1), |wn| ≤ 1, ξn ∈ R, with
δn → 0, wn → 0, and such that

T (ξn, wn) = on(1), with T (ξ, w) := ξ2 − w2 + 2 Re(Ŵλ(ξ + iw))− c2, (6.4)
G(ξn, wn) = on(1), with G(ξ, w) := 2ξw + 2 Im(Ŵλ(ξ + iw)). (6.5)

By using the explicit expressions for Ŵλ, it is easy to check that in the case (i), we have

|Ŵλ(ξ + iw)| = |2− cos(λξ) cosh(λw) + i sin(λξ) sinh(λw)| ≤ 2 + cosh(λw) + sinh(λ|w|). (6.6)

In the case (ii), we get |Ŵλ(ξ + iw)| = |e−λ(ξ2−w2+2iξw)| ≤ eλw2 , while in the case (iii),

|Ŵλ(ξ + iw)| = | sin(λξ) cosh(λw) + i cos(λξ) sinh(λw)|
λ
√
ξ2 + w2 ≤ cosh(λw) + sinh(λ|w|)

λ|w|
.

Hence, Ŵλ is bounded on the strip S1, that is, there is K > 0 such that |Ŵλ(ξ + iw)| ≤ K, for
all ξ + iw ∈ S1. Therefore, we infer from (6.4) that {ξn} is bounded, so that there are ξ∗ ∈ R
and subsequence, that we do not relabel, such that ξn → ξ∗. In this manner, passing to the limit
in (6.4), we conclude that T (ξ∗, 0) = 0, i.e. Mc(ξ∗) = 0, which contradicts (6.2). The proof of
(6.3) is completed.

By (6.3), the function

Lc(ξ + iw) = 1
Mc(ξ + iw) = 1

T (ξ, w) + iG(ξ, w)

defines an analytic function on the strip Sδ. Also, for all |w| ≤ δ ≤ 1, we infer the estimate

|Lc(ξ + iw)| ≤


1

ξ2 − 3− 2K , if ξ2 ≥ 4 + 2K,

δ−1, otherwise.

Consequently, sup|w|≤δ‖Lc(· + iw)‖L2(R) < ∞, which completes the proof of the exponential
decay.

It is left to prove the existence of uc for every c ∈ (0,
√

2) in the case (i) for λ ≤
√

2/3.
To do so, it is enough to verify that the hypotheses of Theorem 4.1 hold. It is clear that (H2)
and (H4) are satisfied. In order to check (H5), let us denote µλ = −1

4
(
δ−λ + δλ

)
, so that

Wλ = 2(δ0 + µλ). Thus µ+
λ = 0 and ‖µ−λ ‖ = 1/2 < 1, so that Proposition 4.5 implies that (H5)

holds with V0(c) =
√

1 + c2/4.
Finally, we show that (H3) is fulfilled, at least for λ ∈ (0,

√
2/3]. Indeed, in this case, let us

set s = minx∈R(sin(x)/x) ∈ (−1, 0) and mλ = −sλ2 ∈ (0, 2/3). Thus(
Ŵ
)′(ξ) = λ sin(λξ) ≥ −mλξ, for all ξ ≥ 0.

Furthermore, with this choice of mλ, we get, for all c ∈ (0,
√

2),

mλV0(c)2 ≤ (3/2)mλ < 1.

Hence, we can apply Theorem 4.1.
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Remark 6.1. A careful study of the functions T (ξ, w) and G(ξ, w) in the proof of Theorem 1.8
should lead to the sharp exponential decay of the solitons.

Remark 6.2. Notice that ifWλ is given by (1.19), then (Ŵλ)′′(0) = −λ2/3, so that (Ŵλ)′′(0) 6=
−1, for all λ ∈ (0,

√
3). However, we cannot apply Theorem 1.8 due to the change of sign ofWλ.

Proof of Theorem 1.9. For κ ∈ (0, 1/2), it is obvious that Wκ satisfies (H0) and (H1), so we can
use Theorem 1.1. For κ = 1/2, we can apply Corollary 1.2. Therefore, for any κ ∈ (0, 1/2),
we conclude the existence of nontrivial solutions to (S(Wκ, c)) in NE(R) for almost every c ∈
(0,
√

2). Moreover, since (Ŵκ)′(ξ) = −2κ|ξ| for |ξ| < 1/
√
κ, and (Ŵκ)′(ξ) = 0, for |ξ| > 1/

√
κ,

we can apply Theorem 5.12 to obtain that η = 1 − |u|2 is real analytic. In addition, since
Wκ fulfills condition (i) if κ = 1/2 in Theorem 5.1, and condition (ii) otherwise, we get the
nonexistence for c =

√
2.

It is left to prove the algebraic decay of η. Remark that we can apply Corollary 5.9 with
s = 1, but we can get a better decay by computing explicitly Lc. In fact, since Lc ∈ L1(R), then

Lc(x) = 1
2π

∫
R
eixξLc(ξ)dξ = 1

2π

∫ α

−α

cos(xξ)
(1− 2κ)ξ2 + 2− c2dξ + 1

2π

∫
{|ξ|>α}

cos(xξ)
ξ2 − c2 dξ,

where we have used that Lc is even. Now, after applying integration by parts twice, we get

Lc(x) = 1
x2 (A cos(αx) + g(x)) for all x 6= 0, where A = 4ακ

π(α2 − c2)2

and

g(x) = − 2
π

∫ ∞
α

(3ξ2 + c2) cos(xξ)
(ξ2 − c2)3 dξ − 2(1− 2κ)

π

∫ α

0

(3(1− 2κ)ξ2 + 2− c2) cos(xξ)
((1− 2κ)ξ2 + 2− c2)3 dξ.

Observe that g ∈ L∞(R). We are not interested in the value Lc(0). We simply remark that,
since Lc ∈ L1(R), it follows that Lc ∈ L∞(R) and therefore, (1+ | · |2)Lc ∈ L∞(R). Consequently,
the decay in (1.22) follows by applying Theorem 5.8 with s = 2 and p =∞.

Acknowledgments. The authors acknowledge support from the Labex CEMPI (ANR-11-LABX-
0007-01). A. de Laire was also supported by the ANR project ODA (ANR-18-CE40-0020-01).
S. López-Martínez was also supported by PGC2018-096422-B-I00 (MCIU/AEI/FEDER, UE)
and Junta de Andalucía FQM-116. S. López-Martínez would like to thank the members of the
Laboratoire Paul Painlevé (Université de Lille) and of the team PARADYSE (Inria Lille - Nord
Europe) for their support and hospitality during his postdoc stay, where this work was carried
out.

Appendix
We include here the proof of the deformation lemma.

Proof of Lemma 3.3. For j = 1, 2, 3, let us denote

Aj = J−1
c ([γ − 2ε, γ + 2ε]) ∩ Zδj .

Since these are closed sets in H1(R), we may define a functional ψ : H1(R)→ R of class C1 such
that 0 ≤ ψ(v) ≤ 1 for every v ∈ H1(R) and

ψ(v) =
{

1 for all v ∈ A2,
0 for all v ∈ H1(R) \A1.
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Let us now consider the vector field ϕ : H1(R)→ H1(R) given by

ϕ(v) =

 −ψ(v) J ′c(v)
‖J ′c(v)‖H−1(R)

for all v ∈ A1,

0 for all v ∈ H1(R) \A1.

Clearly, ϕ ∈ C1(H1(R)) (see Lemma 3.1) and ‖ϕ(v)‖H1(R) ≤ 1 for every v ∈ H1(R).
For any v ∈ H1(R), we consider the Cauchy problem{

w′(t) = ϕ(w(t)), for all t ≥ 0,
w(0) = v.

The classical ODE theory, the Cauchy problem has a unique solution w(·, v) ∈ H1(R) defined
in [0,+∞). Let us show that w(t,NV(R)) ⊂ NV(R) for every t ≥ 0. Indeed, let v ∈ NV(R).
Clearly, w(0, v) = v ∈ NV(R). Moreover, since w(·, v) is continuous and v ∈ NV(R), there
exists t̃ > 0 such that w(t, v) ∈ NV(R) for every t ∈ [0, t̃). Let us assume by contradiction that
s := sup{t̃ > 0 : w(t, v) ∈ NV(R) ∀t ∈ [0, t̃)} < +∞. Then, w(s, v) ∈ ∂NV(R). In particular,
w(s, v) ∈ H1(R) \ A1, so ϕ(w(s, v)) = 0. Actually, since H1(R) \ A1 is open, then there exists
s̃ ∈ (0, s) such that w(t, v) ∈ H1(R) \ A1 for every t ∈ [s − s̃, s]. Therefore, ϕ(w(t, v)) = 0 for
every t ∈ [s− s̃, s]. That is, w′(t, v) = 0 for every t ∈ [s− s̃, s], so w must be constant in [s− s̃, s]
and, in consequence, w(s− s̃, v) = w(s, v). But this is a contradiction since, by definition of s,
it is necessary that w(s− s̃, v) ∈ NV(R).

On the other hand, for any v ∈ H1(R) and t ≥ 0, we have

‖w(t, v)− v‖L∞(R) ≤ ‖w(t, v)− v‖H1(R) ≤
∥∥∥∥∫ t

0
ϕ(w(s, v))ds

∥∥∥∥
H1(R)

≤ t.

Observe that, in the previous inequality, we have used that the norm of the continuous embedding
H1(R) ⊂ L∞(R) is equal to one (see Remark 3.4). Hence, we deduce that w(t, Zδ3) ⊂ Zδ2 for
every t ≤ δ3 − δ2.

Let us define h : [0, 1]×NV(R)→ H1(R) by

h(t, v) = w ((δ3 − δ2)t, v) , for all (t, v) ∈ [0, 1]×NV(R).

We have already verified that h([0, 1] × NV(R)) ⊂ NV(R). Furthermore, with this definition,
items (i) and (iii) are obviously satisfied. On the other hand, if v ∈ NV(R) \A1, then ϕ(v) = 0,
so w(t) = v is the unique solution to the Cauchy problem and item (ii) is satisfied too.

As far as item (iv) is concerned, let v ∈ NV(R). Since w(t, v) ∈ NV(R) for every t ≥ 0, then
the function Jc(w(·, v)) is differentiable and

d

dt
Jc(w(t, v)) = 〈J ′c(w(t, v)), w′(t, v)〉 = 〈J ′c(w(t, v)), ϕ(w(t, v))〉 ≤ 0.

Thus, Jc(w(·, v)) is nonincreasing and item (iv) holds true.
Lastly, we check item (v). Indeed, let v ∈ Jγ+ε

c ∩Zδ3 . If there exists t ∈ [0, δ3 − δ2) such that
Jc(w(t, v)) < γ − ε, then item (iv) implies that Jc (w (δ3 − δ2, v)) < γ − ε, so w (δ3 − δ2, v) ∈
Jγ−εc ∩ Zδ2 . Otherwise, for every t ∈ [0, δ3 − δ2), one has

γ − ε ≤ Jc(w(t, v)) ≤ Jc(w(0, v)) = Jc(v) ≤ γ + ε.
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In particular, w(t, v) ∈ A2 for every t ∈ [0, δ3 − δ2). In addition, by the definition of ϕ, we derive

Jc (w (δ3 − δ2, v)) = Jc(v) +
∫ δ3−δ2

0

d

dt
Jc(w(t, v))dt

= Jc(v) +
∫ δ3−δ2

0
〈J ′c(w(t, v)), ϕ(w(t, v))〉dt

= Jc(v)−
∫ δ3−δ2

0
‖J ′c(t, v))‖H−1(R)dt

≤ γ + ε− (δ3 − δ2) 2ε
δ3 − δ2

= γ − ε.

This concludes the proof.

We include also a technical lemma needed in the proof of Proposition 3.9. Even though the
proof of the lemma is elementary, it is not straightforward and a sort of uniform continuity of
the functional Jc is required.

Lemma 6.3. Let c > 0 and fix δc ∈ (0, 1), Rc > 0 and γc > 0. For every α > 0 and δ ∈ (0, 1),
we consider the set

Xα,δ = J−1
c ((γc − α, γc + α)) ∩ Zδ,

where Zδ is defined by (3.5), i.e.

Zδ = {v ∈ NV(R) : ‖v‖H1(R) ≤ Rc + 1− δ, v ≤ 1− δ on R}.

Let us also denote
Iα,δ = inf{‖J ′c(v)‖H−1(R) : v ∈ Xα,δ}.

Assume that there exists α > 0 such that Iα,δc > 0. Then there exists δ̄ ∈ (0, δc) such that
Iα,δ̄ > 0.

Proof. Let us take δ ∈ (0, δc). Observe that Zδc ⊂ Zδ. Recall that Jc ∈ C2(NV(R)), see
Lemma 3.1. It is simple to check from (3.2) that ‖J ′′c (v)‖ ≤ C for every v ∈ Zδ, where C > 0
depends only on Rc and δ. Hence, since Zδ is connected and convex, the Mean Value theorem
implies that J ′c is Lipschitz in Zδ, with Lipschitz constant denoted by lδ > 0. In consequence,
for every ε > 0, if we take β = ε/lδ, then the following holds for any v, w ∈ Zδ satisfying
‖v − w‖H1(R) < β,∣∣‖J ′c(v)‖H−1(R) − ‖J ′c(w)‖H−1(R)

∣∣ ≤ ‖J ′c(v)− J ′c(w)‖H−1(R) ≤ lδ‖v − w‖H1(R) < ε.

In the previous inequality, we take ε = Iα,δc/2. Therefore, if v ∈ Zδ, w ∈ Xα,δc and ‖v −
w‖H1(R) ≤ β, then

‖J ′c(v)‖H−1(R) > ‖J ′c(w)‖H−1(R) −
Iα,δc

2 ≥ Iα,δc
2 > 0.

We have proved that
‖J ′c(v)‖H−1(R) ≥

Iα,δc
2 > 0 for all v ∈ X , (6.7)

where
X = {v ∈ Xα,δ : dist(v,Xα,δc) < β}.

Notice that
Xα,δc ⊂ X ⊂ Xα,δ.
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Using (6.7), the proof of the lemma will be finished as soon as we show that there exists δ̄ ∈ (δ, δc)
such that

Xα,δc ⊂ Xα,δ̄ ⊂ X ⊂ Xα,δ.

In order to do so, let δ̄ ∈ (δ, δc) to be chosen later, and let v ∈ Xα,δ̄. For some λ > 0 to be
chosen later too, we aim to prove that

λv ∈ Xα,δc and ‖v − λv‖H1(R) < β, (6.8)

which implies that v ∈ X .
On the one hand, simple computations show that a sufficient condition for λv ∈ Zδc and

‖v − λv‖H1(R) < β is

1− β

Rc + 1− δ̄
< λ <

1− δc
1− δ̄

. (6.9)

Observe that λ > 0 can be chosen so that (6.9) holds whenever δ̄ is close enough to δc.
On the other hand, it is left to prove that Jc(λv) ∈ (γc − α, γc + α). Indeed, since Jc is

uniformly continuous in Zδ and Jc(v) ∈ (γc − α, γc + α), it follows that there exists λ0 ∈ (0, 1),
independent of v, such that Jc(λv) ∈ (γc − α, γc + α) for every λ ∈ (λ0, 1]. Now we take δ̄ even
closer to δc so that λ0 <

1−δc
1−δ̄ . Thus, for every λ ∈ (λ0, 1) satisfying (6.9), we have that (6.8)

holds. The proof is finished.
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