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In emerging markets, the growth of supply chain networks and logistics industry leads to a significant increase in energy consumption and induces high carbon emissions. To design a sustainable low-carbon supply chain network, we consider a carbon emission-compliance green location-inventory problem. It is characterized by uncertain demand and volatile carbon prices under a multi-year emission regulation, inspired from the carbon-trading scheme in China. A two-stage stochastic mathematical model is built and is solved with a three-phase hierarchical metaheuristic on extensive numerical experiments, which mimic the business context of a supply chain network operated in China. The results show to which extent the carbon-trading emission-compliance scheme, with uncertainties in demand and carbon price, impacts the strategic decisions. Besides, carbon emissions and supply chain profits of the design solutions produced under alternative emission regulations are evaluated and discussed. We also underline the sensitivity of the amount of carbon emissions to the demand uncertainty, and to the level and volatility of the carbon price in the carbon-trading system. These results provide managerial insights for supply chain emitters, and indicate that reasonable and stable carbon prices should be maintained by governments in emerging markets.

Introduction

Designing a robust and cost-effective supply chain network (SCN) is required today in order to enhance the business competitiveness of a firm under uncertainty. With the increase of sustainability awareness nowadays, a firm's value is not only shaped by its economic performance, but also its ecological influences, which is integrated into the overall evaluation [START_REF] Choi | Sustainable fashion supply chain management: a system of systems analysis[END_REF]. The growth of consumption and purchasing power of consumers in emerging markets (e.g., China, India) has contributed to significant energy consumption in the supply chain and logistics industry, which leads to environmental concerns in these countries [START_REF] Van Wassenhove | Sustainable innovation: Pushing the boundaries of traditional operations management[END_REF][START_REF] Choi | Data quality challenges for sustainable fashion supply chain operations in emerging markets: Roles of blockchain, government sponsors and environment taxes[END_REF]. As the largest developing country with rich carbon emission resources, China plays an important role in establishing carbon-trading markets [START_REF] Zhou | Carbon finance and carbon market in china: Progress and challenges[END_REF]. In order to further control the carbon emissions, China launched the second stage national carbon-trading program (shown in Fig. 1) covering all industrial sectors from 2020 (International Carbon Action Partnership (ICAP), 2019). Consequently, governments, academia, and industries pay increasing attention to how to achieve the objective of low-carbon in the supply chain and logistics industry under the emission regulation system. As introduced by [START_REF] Narassimhan | Carbon pricing in practice: A review of existing emissions trading systems[END_REF], in emission-trading systems, governments provide emission allowances in the primary market through free allocation and auctions, companies can sell surplus allowances in the secondary market during a specified compliance period as obtaining a low-carbon reward, and the excessive emitters need to buy allowances to meet the compliance to avoid excess emissions-incurring penalties. Under the carbon emission regulation, firms tend to decrease emissions mainly through investing in energy-efficient technologies. However, given the limited economic conditions in the emerging markets, companies in developing countries may not always possess the resources for the pursuit of green technology innovations [START_REF] Jia | Sustainable supply chain management in developing countries: An analysis of the literature[END_REF]. Instead, [START_REF] Bouchery | Including sustainability criteria into inventory models[END_REF] and [START_REF] Benjaafar | Carbon footprint and the management of supply chains: Insights from simple models[END_REF] both noticed carbon emissions reduction can be achieved through operational adjustments that require only a small financial effort, without necessarily costly investments in carbon-reducing technologies. Therefore, we think it's the most cost-efficient way for emerging markets firms to decrease emissions by integrating sustainable principles into their strategic and tactical SCN decisions. In the supply chain network design context, the strategic decisions of the SCN include distribution center (DC) location and suppliers'/demand zones' allocation to DC decisions, which affect the overall performance of the network over a longer time scale (Klibi et al., 2010b). The tactical decisions such as inventory planning and control (i.e., inventory, ordering, and product flow decisions) are usually made independently from the strategic decisions. Many researchers have proved that integrated optimization of the strategic-and tactical-level decisions leads to supply chain cost savings [START_REF] Daskin | An inventory-location model: Formulation, solution algorithm and computational results[END_REF][START_REF] Miranda | Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand[END_REF][START_REF] Shen | Integrated supply chain design models: a survey and future research directions[END_REF][START_REF] Klibi | The impact of operations anticipations on the quality of stochastic location-allocation models[END_REF]. Despite the importance of sustainability in emerging markets such as China, there's still a lack of understanding of how low-carbon supply chain strategic decisions must be set under the carbon emission regulation. This motivates our research work, in which we propose the design of an emission-compliance green SCN. It is formulated as a green integrated location-inventory problem (ILIP) under uncertainty and capturing carbon-trading decisions under the emission-trading regulation.

For supply chain uncertainties, except the demand uncertainty, the carbon price in China is also volatile in practice [START_REF] Zhang | Carbon price volatility: The case of china[END_REF]. [START_REF] Zhang | Carbon price volatility: The case of china[END_REF] presented the carbon-trading prices of seven pilot carbon-trading markets in China from June 2013 to May 2017, which has the fluctuation between 140 CNY per ton to 30 CNY per ton. In recent years, the volatile carbon-trading price shows an increasing trend, especially in the Beijing carbon trading market (China's carbon emissions trading, 2017). Additionally, in the emission regulation scheme of China [START_REF] Zhou | Carbon finance and carbon market in china: Progress and challenges[END_REF], the carbon caps are tightened year by year in the multi-year emission-compliance (MYEC) horizon to achieve total emission decline (namely, time-declined carbon caps). These observations lead to an important question: how to make the sustainable low-carbon strategic and tactical decisions to comply with such MYEC regulation and reduce carbon emission costs (CEC) under demand and carbon price uncertainties?

To figure out the question, a two-stage stochastic model with recourse is built in this study, with the scenario-based characterization of uncertain demand and volatile carbon price. The stochastic model aims at optimizing the location-allocation and periodic inventory control decisions with the integration of carbon-trading decisions, anticipating sustainable and low-carbon operations. The ILIP is a complex optimization problem (see for instance, [START_REF] Darvish | Sequential versus integrated optimization: Production, location, inventory control, and distribution[END_REF]). To solve the problem, we propose a three-phase hierarchical metaheuristic (TPHM) algorithm based on the simulated annealing with two sequential solving methods to provide initial solutions.

With the integrated location-inventory model featured with uncertain demand and volatile carbon price considering a MYEC regulation in the emerging market, the following research questions are investigated in our study:

(1) Under the MYEC scheme in China, how would different levels of carbon prices and different degrees of carbon price volatility affect the strategic facility implementation decision, and carbon emissions associated with transportation and inventory storage?

(2) If the carbon price and volatility increase, what is the impact on the SCN profit and total SCN carbon emissions? How would different degrees of demand uncertainty affect the strategic network design, inventory control decisions, and carbon emissions?

(3) How would other alternative emission regulations (e.g., no regulation, carbon cap restriction, carbon tax, carbon cap and tax) with different levels of tax, moderate or strict time-declining carbon caps impact carbon emissions and SCN profits?

The remainder of this paper is organized as follows. Section 2 provides an overview of the related research areas and our contributions. In Section 3, we formally describe the problem and present a demand-modeling process to derive the optimal inventory policy parameters. Then, the two-stage stochastic model is proposed. The solution approach of our proposed metaheuristic is explained in Section 4. Section 5 presents the experiments and computational results that show the efficiency of our metaheuristic and lead to managerial insights. Section 6 provides the conclusions of the study and guidance for future research.

Literature review

In this section, we review the related work, namely the ILIP, supply chain management and operations in emerging markets, and sustainable operations and low-carbon green supply chain management.

First, as this paper aims to contribute to the literature on the ILIP in the context of designing the low-carbon SCN with sustainable operations, we classify in Table 1.1 the published ILIP papers related to some critical features, such as the consideration of stochasticity, model formulation, inventory policy, and solution approach. A few recent studies proposed joint location-inventory models dealing with uncertain demand and revealed that optimizing both strategic location-allocation decisions and tactical inventory control decisions simultaneously can reduce the supply chain overall cost, and lead to optimal solutions [START_REF] Puga | A heuristic algorithm for solving large location-inventory problems with demand uncertainty[END_REF][START_REF] Shahabi | Joint production-inventorylocation problem with multi-variate normal demand[END_REF][START_REF] Tapia-Ubeda | A generalized benders decomposition based algorithm for an inventory location problem with stochastic inventory capacity constraints[END_REF][START_REF] Amiri-Aref | The multi-sourcing location inventory problem with stochastic demand[END_REF]. However, none of these works investigated the optimal location-inventory decisions with consideration of the low-carbon sustainability and the emission-compliance of the SCN. Furthermore, despite the low-carbon strategic design decisions of SCN have been widely investigated, optimizing tactical ones (i.e., inventory control) to reduce carbon emission has been ignored. As reported by [START_REF] Wakeland | Food transportation issues and reducing carbon footprint[END_REF] and [START_REF] Saif | Cold supply chain design with environmental considerations: A simulation-optimization approach[END_REF], long-term inventory storage emission especially in the cold chain can dominate a product's overall emission profile, which appeals to the integration of inventory decisions in a low-carbon perspective. Therefore, to fill this gap, we study the carbonemission compliance ILIP to investigate the low-carbon sustainable inventory control decisions by considering inventory storage CEC in our problem. As shown in Table 1.1, most of ILIP studies adopted (r, Q) inventory policy, and calculated the replenish quantity Q with the economic order quantity (EOQ) model [START_REF] Daskin | An inventory-location model: Formulation, solution algorithm and computational results[END_REF][START_REF] Miranda | Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand[END_REF][START_REF] Shen | Integrated supply chain design models: a survey and future research directions[END_REF][START_REF] Park | A three-level supply chain network design model with risk-pooling and lead times[END_REF][START_REF] Escalona | Joint location-inventory problem with differentiated service levels using critical level policy[END_REF][START_REF] Ahmadi-Javid | A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints[END_REF][START_REF] Puga | A heuristic algorithm for solving large location-inventory problems with demand uncertainty[END_REF][START_REF] Shahabi | Joint production-inventorylocation problem with multi-variate normal demand[END_REF][START_REF] Tapia-Ubeda | A generalized benders decomposition based algorithm for an inventory location problem with stochastic inventory capacity constraints[END_REF][START_REF] Guo | A multi-commodity location-inventory problem in a closed-loop supply chain with commercial product returns[END_REF]. [START_REF] Amiri-Aref | The multi-sourcing location inventory problem with stochastic demand[END_REF] reported that the periodic reorder point order-up-to level (T, s, S) inventory policy has been shown to be an optimal policy under stationary and non-stationary demand, with the capability of balancing the fixed ordering cost, the inventory holding cost and the shortage cost. In this research, the (T, s, S) inventory policy is also adopted to deal with nonstationary demand, besides sustainable low-carbon parameter settings of (T, s, S) policy are presented by integrating CEC associated with inventory storage. Second, several recent studies investigated supply chain and operations management in emerging markets [START_REF] Zhou | Supply chain management in emerging markets[END_REF][START_REF] Shou | Contract ineffectiveness in emerging markets: An institutional theory perspective[END_REF][START_REF] Tang | Socially responsible supply chains in emerging markets: Some research opportunities[END_REF][START_REF] Niu | Order timing and tax planning when selling to a rival in a low-tax emerging market[END_REF][START_REF] Choi | Data quality challenges for sustainable fashion supply chain operations in emerging markets: Roles of blockchain, government sponsors and environment taxes[END_REF]. In the literature, [START_REF] Shou | Contract ineffectiveness in emerging markets: An institutional theory perspective[END_REF] investigated the causative factors of contract ineffectiveness when firms form a supply chain partnership, and how social ties develop in emerging markets. [START_REF] Tang | Socially responsible supply chains in emerging markets: Some research opportunities[END_REF] argued that the socially responsible supply chains in emerging markets can be established by engaging the poor as producers or as distributors. [START_REF] Niu | Order timing and tax planning when selling to a rival in a low-tax emerging market[END_REF] investigated operational decisions in a cooperative supply chain structure under the preferential tax policy of emerging markets, and identify the multinational firm's early ordering decisions leading to sustainability. [START_REF] Choi | Data quality challenges for sustainable fashion supply chain operations in emerging markets: Roles of blockchain, government sponsors and environment taxes[END_REF] explored how data quality problems affect sustainable fashion supply chain operations in emerging markets. This paper also studies the emerging market and the respective sustainability challenges. However, different from the above-reviewed papers, we focus on investigating the strategic and tactical decisions using an integrated green location-inventory modeling approach under carbon-trading regulation, which is important in emerging markets, given the current environmental issues and the emission regulation scheme implemented in China.

Third, as the public awareness of environmental issues keeps rising, there are an increasing number of SCN management research considering sustainable and low-carbon operations [START_REF] Chaabane | Design of sustainable supply chains under the emission trading scheme[END_REF][START_REF] Diabat | An integrated supply chain problem with environmental considerations[END_REF][START_REF] Alhaj | A carbon-sensitive two-echelon-inventory supply chain model with stochastic demand[END_REF][START_REF] Rezaee | Green supply chain network design with stochastic demand and carbon price[END_REF][START_REF] Bian | Decentralization or integration: Distribution channel selection under environmental taxation[END_REF][START_REF] Li | A scenario-based stochastic programming approach for the product configuration problem under uncertainties and carbon emission regulations[END_REF][START_REF] Choi | Sustainable fashion supply chain management: a system of systems analysis[END_REF][START_REF] Agrawal | The effect of sourcing policies on suppliers sustainable practices[END_REF][START_REF] Daryanto | Three-echelon supply chain model considering carbon emission and item deterioration[END_REF][START_REF] Yuen | A taxonomy of resources for sustainable shipping management: Their interrelationships and effects on business performance[END_REF][START_REF] Villena | The missing link? The strategic role of procurement in building sustainable supply networks[END_REF][START_REF] Jia | Sustainable supply chain management in developing countries: An analysis of the literature[END_REF][START_REF] Trochu | A carbon-constrained stochastic model for eco-efficient reverse logistics network design under environmental regulations in the CRD industry[END_REF][START_REF] Li | Sustainable design and optimization of coal supply chain network under different carbon emission policies[END_REF][START_REF] De | Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy[END_REF]De et al., 2020). We list the relevant studies on the sustainable low-carbon SCN management concerning the critical features in Table 1.2. For instance, [START_REF] Wang | A multi-objective optimization for green supply chain network design[END_REF] added the environmental investments decisions into the SCN design, and they provided a bi-objective mixed integer programming model concerning the total supply chain cost and environmental influence. [START_REF] Chaabane | Design of sustainable supply chains under the emission trading scheme[END_REF] studied a closed-loop supply chain design model using the life cycle assessment (LCA) approach to demonstrate efficient carbon management strategies under emission-trading scenarios. [START_REF] Diabat | An integrated supply chain problem with environmental considerations[END_REF] studied ILIP with environmental consideration of carbon emissions at DCs and of shipping under the carbon cap and tax regulation, where the fixed carbon price and the emission cap are modeled. [START_REF] Rezaee | Green supply chain network design with stochastic demand and carbon price[END_REF] proposed a two-stage stochastic model to design a green SCN in a carbon-trading scheme with a scenario-based carbon price. However, their model didn't consider multi-period settings of the inventory optimization and time-declining carbon caps. [START_REF] Bian | Decentralization or integration: Distribution channel selection under environmental taxation[END_REF] investigated how distribution channel structures vary under environmental taxation in the context of supply chain management. [START_REF] Li | A scenario-based stochastic programming approach for the product configuration problem under uncertainties and carbon emission regulations[END_REF] investigated the impact of uncertainties in supply chains on product configuration decisions under four different carbon emission regulations, such as carbon cap, carbon tax, carbon cap and trade, and carbon offset regulations.

Moreover, [START_REF] Choi | Sustainable fashion supply chain management: a system of systems analysis[END_REF] explored sustainable fashion supply chain management, and showed the importance of managing leftover fabric in achieving the sustainable fashion supply chain. [START_REF] Agrawal | The effect of sourcing policies on suppliers sustainable practices[END_REF] investigated the buyer's sustainable sourcing policies to influence their suppliers to adopt a sustainable process. [START_REF] Daryanto | Three-echelon supply chain model considering carbon emission and item deterioration[END_REF] investigated a three-echelon supply chain model for deteriorating items considering variable transportation and CEC. [START_REF] Trochu | A carbon-constrained stochastic model for eco-efficient reverse logistics network design under environmental regulations in the CRD industry[END_REF] proposed a two-stage stochastic model for ecoefficient reverse logistics network design, which minimizes landfilling activities to give more incentive for materials recycling. [START_REF] De | Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy[END_REF] investigated a closedloop supply chain under different carbon emission reduction policies. The authors defined precisely transportation emission generation based on fuel consumption that depends on loading weight, the road, and vehicle's speed, etc. carbon supply chain management under carbon-emission regulations. However, this paper studies the sustainable low-carbon ILIP with the integration of carbon trading decisions under the carbon-trading regulation scheme in China to match MYEC with time-declining carbon caps and volatile carbon prices. Besides, the managerial insights for both carbon emitters and the regulator are highlighted. To the best of our knowledge, the joint consideration of a MYEC scheme in China with time-declining carbon caps, volatile carbon prices, and nonstationary demand, with the integration of carbon-trading decisions in a sustainable low-carbon ILIP is missing in the literature. Accordingly, this research work is the first attempt to study the design of a green SCN under the MYEC schema in emerging markets. The main contributions of this research work are two-fold:

-First, our characterization of the ILIP is to maximize the profit of a green SCN for a MYEC horizon in emerging markets. Uncertain carbon prices, time-declined carbon caps, and emissiontrading mechanisms are featured in the emission regulation scheme. Inventory-level decisions are integrated to handle nonstationary demand, which is subject to (T, s, S) inventory policy. In order to take the green aspect into account, we not only consider the carbon emissions related to transportation and DC openings but also the inventory storage carbon emissions in our problem.

-Second, we build a novel two-stage stochastic model relying on a hierarchical setting of the location-inventory problem, including demand and carbon price uncertainties, and considering timedeclined carbon caps and emission-trading scheme in the MYEC horizon. To solve the model, we propose an efficient hierarchical metaheuristic, which features the location-allocation neighborhoodexploration strategies, inventory control and emission-trading heuristics, and an exact method-based phase. Our proposed algorithm can provide near-optimal solutions in shorter running times compared with a commercial solver and can solve large scale instances that cannot be handled by Gurobi solver.

Problem definition and mathematical formulation

Problem definition

The business context studied here is a two-echelon SCN operated by a company that includes a set of DCs and a set of demand zones. DCs procure a product family (i.e., referred to as a single product) from sources (i.e., suppliers, manufacturers), then ship to a large number of geographically scattered demand zones. A typical potential SCN is defined by a directed graph G = (N , A), illustrated in Fig. 2, where N is the node set that consists of the set of potential DCs denoted by J = {1, . . . , J}, the set of existing sources given by I = {1, . . . , I}, and the set of existing demand zones denoted by K = {1, . . . , K}, such that N = I ∪ J ∪ K. A = B ∪ C is the arc set, where the arc set B = {(i, j) | i ∈ I, j ∈ J } consists of the arcs from source i ∈ I to DC j ∈ J , and the arc set C = {(j, k) | j ∈ J , k ∈ K} consists of the arcs from DC j ∈ J to demand zone k ∈ K. The optimal subset of DCs to be opened is selected from the set of potential DCs to cope with future business operations. Inventories are kept in the opened DCs to meet demand requests of demand zones. Additionally, a subset of the arcs in A need to be selected to ensure the delivery of products from sources to opened DCs and from opened DCs to demand zones, with respect to supply and DC throughput capacities.

Given the structure of the network, the SCN design decisions include the location decisions of DCs, the allocation decisions associated with arcs from sources to DCs, and the allocation decisions associated with arcs from DCs to demand zones. In addition to the network design decisions, the inventory control decisions, including inventory, ordering, and product flow decisions, are determined in each period t ∈ T = {1, . . . , T } along the tactical planning horizon. An individual period-review Fig. 2. Multi-echelon SCN structure (t, s, S) inventory policy of each opened DC is assumed in this paper, which indicates the inventory review is carried out at each period t. After demand fulfillment, the inventory position is reviewed at the end of period t, and if the inventory position is less than or equal to the DC's reorder point s, an order quantity is placed by the DC to replenish its inventory back to the order-up-to level S. The lead time of replenishment is assumed to be L, indicating the quantity ordered at the end of period t will arrive at the DCs at the beginning of t + L + 1 period.

Additionally, the strategic issues of carbon trading are determined in the second stage yearly τ ∈ T along the MYEC horizon. The time-declining annual carbon caps are assumed in the compliance period, which is the common practice to ensure emissions continue to decline [START_REF] Narassimhan | Carbon pricing in practice: A review of existing emissions trading systems[END_REF]. The SCN operates under an emission-trading scheme in the compliance period. Thus, carbon price and CEC related to DC implementation, inventory holding, and transportation are taken into account.

As the location-allocation, carbon-trading, and inventory control decisions are integrated into our model, their decision-making hierarchies and distinct time granularity should be taken into consideration. The hierarchies and timing structures are illustrated in Fig. 3. The lower layer of Fig. 3 indicates the tactical level horizon composed of a set of planning periods t ∈ T . At the tactical level, at each planning cycle, inventory control decisions are made/revised based on demand planning from demand zones. The upper level illustrates the long-term location-allocation decisions implemented at the beginning of the horizon to cope with future supply chain operations, and these decisions may last several years without change. This upper layer also reflects a MYEC horizon T along which companies make carbon-trading decisions each year τ ∈ T to comply with the annual cap. As shown in Fig. 3, the granularity of emission-compliance year τ necessitates the aggregation of some tactical periods, which means carbon emissions generated during these periods is subject to the emission-compliance year accordingly. Therefore, T τ is denoted as the set of periods t in the emission compliance year τ . The time lag between design and carbon-trading decisions and their usage periods implies that the information available at the decision timing on the future business environment is partially known. Accordingly, these strategic decisions must be made under uncertainty.

Uncertainty and inventory policy modeling

In the context of uncertainty, we assume that each demand zone k ∈ K faces a Poisson-normal compound demand during each period t ∈ T , which is independent among demand zones and over the tactical planning horizon T . For such a compound stochastic process, it is assumed that the demand is characterized by a random order interarrival time and by random order size. Here, the random order interarrival time is shaped by an exponential distribution, and the random order sizes are shaped by a normal distribution. In addition to the stochastic product demand, this study contributes to the existing literature by incorporating uncertainty in carbon prices. As the carbon price in the secondary market fluctuates between its highest value and its lowest value during a period of time, this behavior is characterized by a stochastic process. Therefore, we capture this volatility in the carbon price using a uniform distribution that delimits the random carbon price in a given range. Therefore, a finite number of scenarios ξ = {χ, φ} is generated, concatenating the realization of both random variables: the demand (χ) and the carbon price (φ). These scenarios are introduced to examine the effect of the uncertainties on the emission-compliance green ILIP. Table 2 summarizes the notation of sets, variables, and parameters used in our model.

We denote the mean and standard deviation of demand for zone k ∈ K during period t ∈ T as µ kt and σ kt , respectively. In SCN, the demand of each opened DC is the aggregation of demands faced by demand zones allocated to the DC. If the allocation variables Y jk equals one, the demand of zone k ∈ K is assigned to DC j ∈ J . With the assumption of the number of products ordered at the end of period t will arrive at the beginning of the period t + L + 1, the mean and standard deviation of the demand faced by each DC over delivery time L + 1 can be calculated as follows:

μDC jt = (L + 1) k∈K µ kt • Y jk ∀ j, t (1) 
σDC jt = (L + 1) k∈K (σ kt • Y jk ) 2 ∀ j, t (2) 
Then, the inventory policy (s, S) can be derived following the Newsboy adjustment model in [START_REF] Porteus | Numerical comparisons of inventory policies for periodic review systems[END_REF]. Because the inventory policy will be integrated into the constraints to condition the ordering decisions, Amiri-Aref et al. ( 2018) proposed the linear approximation of the order-up-to level S and the reorder point s. We extend the approximation to take into account the sustainability (i.e., low-carbon) as Eq. ( 3) and Eq. ( 4), in which the CEC for inventory storage ϑ is embedded to give more weight to holding inventories.

Sjt = (L + 1) k∈K µ kt Y jk + (L + 1)σ DC t Φ -1 N γ γ + λ + ϑ ∀ j, t (3) 
sjt = (L + 1) k∈K µ kt Y jk + (L + 1)σ DC t × I -1 N η + μDC t /2 (γ + λ + ϑ) (L + 1)σ DC t + I N Φ -1 N γ γ + λ + ϑ ∀ j, t (4) 
Where μDC W ij Source selection binary decision, equals to one if source i is selected to supply product to DC j (∀ i ∈ I, j ∈ J )

t = ñ k∈K µ kt Y jk /|K|, σDC t = ñ k∈K (σ kt ) 2 /|K|
Y jk DC demand zone allocation binary decision, equals to one if demand zone k is allocated to DC j (∀ j ∈ J , k ∈ K)

I H jt (ξ)
Inventory on-hand of DC j at the end of period t under scenario ξ (∀ j ∈ J , t ∈ T , ξ ∈ Ω)

I P jt (ξ) Inventory position of DC j at the end of period t under scenario ξ (∀ j ∈ J , t ∈ T , ξ ∈ Ω) O jt (ξ)
Order placing binary decision, equals to one if order is placed by DC j in period t under scenario ξ (∀ j ∈ J , t ∈ T , ξ ∈ Ω)

Q jt (ξ)
Order quantity placed by DC j in period t under scenario ξ (∀ j ∈ J , t ∈ T , ξ ∈ Ω)

L ijt (ξ) Amount of products flow from source i to DC j in period t under scenario ξ (∀ i ∈ I, j ∈ J , t ∈ T , ξ ∈ Ω)

F s jkt (ξ) Amount of products dispatched from DC j to demand zone k in period t under scenario ξ (∀ j ∈ J , k ∈ K, t ∈ T , ξ ∈ Ω) F n jkt (ξ) Amount of unfulfilled demand of demand zone k assigned to DC j in period t under scenario ξ (∀ j ∈ J , k ∈ K, t ∈ T , ξ ∈ Ω) E τ (ξ)
Amount of emission allowances traded in compliance year τ under scenario ξ (∀ τ ∈ T , ξ ∈ Ω)

Integrated location-inventory stochastic model

This paper proposes a two-stage stochastic optimization model to decide the location-allocation decisions, inventory control decisions, and carbon-trading decisions. In our problem settings, the network design variables are identified as the first stage, which are also known as here-and-now decisions made before the realization of uncertainties. All the other decision variables linked to period t or τ (i.e., inventory control, carbon trading) are referred as the second stage, which are defined to be associated with each scenario ξ, and the occurrence probability of each scenario is denoted by p(ξ). Our model aims to maximize the profits of the SCN during the planning horizon, which includes the sales profit and the carbon-trading income. Costs in our model include the fixed DC location opening costs, the fixed allocation costs, the transportation costs, the product procurement costs, the inventory control costs, and the CEC. The model is then formulated as follows:

max R = ξ∈Ω p(ξ) j∈J k∈K t∈T ρF s jkt (ξ) - τ ∈T φ τ (ξ)E τ (ξ) (5.1) - j∈J t∈T i∈I α ij L ijt (ξ) + k∈K β jk F s jkt (ξ) - i∈I j∈J t∈T δL ijt (ξ) (5.2) - t∈T j∈J λI H jt (ξ) + ηO jt (ξ) + j∈J k∈K γF n jkt (ξ) (5.3) - τ ∈T φ τ (ξ) j∈J t∈Tτ i∈I em ij L ijt (ξ) + k∈K en jk F s jkt (ξ) + ϑI H jt (ξ) (5.4) - j∈J (f j + Λ j )X j + i∈I j∈J g ij W ij + j∈J k∈K l jk Y jk (5.5)
Expression (5.1)-(5.4) constitutes the second-stage objective function that is the total expected net revenue. It is calculated by aggregating revenues minus costs obtained under each scenario and weighting them by the scenario probability. More specifically, the sales revenues and the carbontrading reward are calculated in (5.1). In (5.2), the inbound transportation costs, the outbound transportation costs, and the procurement costs are calculated based on the inbound flow L ijt (ξ) and the outbound flow F s jkt (ξ). The product inbound and outbound transportation costs per unit, α ij and β jk , are defined by α ij = α 0 ij + α 1 ij m ij , and β jk = β 0 jk + β 1 jk n jk where α 0 ij and β 0 jk are the fixed transportation costs, α 1 ij and β 1 jk are the variable transportation costs, m ij and n jk are distances from source i to DC j and distances from DC j to demand zone k, respectively. The total inventoryholding costs, the total fixed-ordering costs, and the total backordering costs are calculated in (5.3). The total transportation CEC and the total storage CEC are computed by (5.4). The amount of inbound and outbound transportation carbon emissions per unit are defined by em ij = e ij • m ij , and en jk = e jk • n jk where e ij and e jk are transportation carbon emissions per product per kilometer. Finally to get the expected profit, the first stage costs calculated in (5.5) must be added. This term includes, respectively, the total fixed DC-opening costs, the CEC associated with DC implementation, and the total fixed allocation costs.

Objective function (5.1)-(5.5) is subject to the following constraints: SCN configuration

W ij ≤ X j i ∈ I, j ∈ J (6) Y jk ≤ X j j ∈ J , k ∈ K (7) i∈I W ij ≥ X j j ∈ J (8) j∈J Y jk = 1 k ∈ K (9) 
Constraints ( 6) and ( 7) ensure that allocation decisions are attributed to the opened DCs. Constraint (8) guarantees that each opened DC can place orders with multiple sources. Constraint (9) ensures that each demand zone is assigned to only one opened DC. Carbon emission-compliance restriction

CE Loc = j∈J ε j X j (10) CE τ T r = i∈I j∈J t∈Tτ em ij L ijt (ξ) + j∈J k∈K t∈Tτ en jk F s jkt (ξ) τ ∈ T (11) CE τ Inv = j∈J t∈Tτ ϑI H jt (ξ) τ ∈ T (12) CE Loc + CE τ =1 T r + CE τ =1 Inv ≤ Φ cap τ =1 + E τ =1 (ξ) ( 13 
)
CE τ T r + CE τ Inv ≤ Φ cap τ + E τ (ξ) τ ∈ T \{1} (14) -CC sale ≤ E τ (ξ) ≤ CC buy τ ∈ T (15)
The carbon emissions associated with DC implementation, transportation, and inventory storage are declared in Constraints ( 10)-( 12), respectively. Constraints ( 13) and ( 14) restrict the total carbon emissions in each compliance year. Constraint (15) limits the highest amount of allowances that can be sold or purchased annually, where -CC sale and CC buy are the lower and upper bounds of the amount of allowances traded. Inventory control and order restriction

I P jt (ξ) ≤ sjt + M (1 -O jt (ξ)) j ∈ J , t ∈ T (16) Q jt (ξ) = Sjt -I P jt (ξ) j ∈ J , t ∈ T (17) O jt (ξ) ≤ X j j ∈ J , t ∈ T (18)
Constraints ( 16) and ( 17) guarantee that inventory-ordering decisions follow the (s, S) inventory policy. Constraint (18) ensures that only opened DCs can place orders. Inventory balance and flow management

Q jt (ξ) = i∈I L ijt (ξ) j ∈ J , t ∈ T ( 19 
)
I P jt (ξ) = I H jt (ξ) + lt∈{t-L,...,t-1} Q j,lt (ξ) - k∈K F n jkt (ξ) j ∈ J , t ∈ T (20) I H jt (ξ) = I H j,t-1 (ξ) + Q j,t-L-1 (ξ) - k∈K F s jkt (ξ) j ∈ J , t ∈ T (21) k∈K F s jkt (ξ) = k∈K χ kt (ξ)Y jk - k∈K F n jkt (ξ) + k∈K F n jk,t-1 (ξ) j ∈ J , t ∈ T (22)
Constraint ( 19) states that the ordered quantity equals the product flow from sources. Constraint (20) states that the inventory position is equal to the current inventory on-hand plus the pipe inventory (i.e., the cumulative orders made since the last replenishment period) and minus the cumulative shortage occurred at DCs. This inventory accounting formula is necessary to apply the inventory policy, as given in Constraint (17). Constraint (21) ensures the inventory balance at DCs. Constraint ( 22) indicates demand zones' demand satisfaction by the product flow from DCs. Supply-distribution capacity and backordering restriction k∈K

F s jkt (ξ) ≤ cap j X j j ∈ J , t ∈ T (23) L ijt (ξ) ≤ ψ i • W ij i ∈ I, j ∈ J , t ∈ T (24) F e jkt (ξ) ≤ M • Y jk e ∈ {s, n}, j ∈ J , k ∈ K, t ∈ T (25) F n jkt (ξ) ≤ ζ k χ kt (ξ) j ∈ J , k ∈ K, t ∈ T (26)
Constraints ( 23)-( 25) indicate the throughput capacity at DCs and the supply-distribution capacity limits from sources to DC, and from DCs to demand zones. Constraint (26) indicates the allowable backordering ratio of each demand zone. Value restriction of decision variables

X j , W ij , Y jk , O jt (ξ) ∈ {0, 1} i ∈ I, j ∈ J , k ∈ K, t ∈ T , ξ ∈ Ω (27) F s jkt (ξ), F n jkt (ξ), L ijt (ξ), I H jt (ξ), I P jt (ξ), Q jt (ξ) ≥ 0 i ∈ I, j ∈ J , k ∈ K, t ∈ T , ξ ∈ Ω (28)
Constraints ( 27) and ( 28) impose the binary and the nonnegative continuous decision variables in our model.

Solution approach

To solve the problem in a reasonable time, we propose a customized TPHM algorithm. The algorithm explores a complex neighborhood heuristically, having the capability to jump out of a local optimum and be integrated with MIP optimization. In the first phase, the model in Section 3.3 is separated into subproblems, and two sequential-solving procedures are designed to provide different initial solutions to the second phase. Then, we perform a simulated annealing process to find nearoptimal solutions in the second phase. Different DC location-allocation neighborhood-exploration strategies and inventory control and carbon-trading decision-making heuristics are proposed to search the solution efficiently. Finally, the third phase is integrated to move the near-optimal solution to the global optimal one, so we intensify the current best solution obtained from the simulated annealing by solving the model in Section 3.3 with an exact method (i.e., Gurobi solver) for a given period of time.

Subproblem sequential solving and initial solution construction phase

According to the hierarchies of decisions in our design problem, we decompose it into a locationallocation subproblem, a demand fulfill and inventory control subproblem, and a carbon-trading subproblem. We propose the location-oriented sequential (LOS) procedure in Section 4.1.1, and the demand-fulfilled sequential (DFS) procedure in Section 4.1.2. The initial solution construction procedure is introduced in Section 4.1.3.

LOS procedure

In the LOS procedure, the SCN design decisions D = (X, W , Y ) are determined first by minimizing the SCN design costs F (X, W , Y ) = j∈J (f j + Λ j )X j + i∈I j∈J g ij W ij + j∈J k∈K l jk Y jk , subject to Constraints ( 6)-( 28), where X, W , and Y denote the vectors of DC location decision variables, source DC allocation decision variables, and DC demand zone allocation decision variables, respectively. The solution values D = (X , W , Y ) present the most cost-effective supply chain design without any integrated consideration of demand fulfillment, inventory control, and carbon-trading reward.

Then, the supply chain user determines the inventory control decisions I = (L, F , O, Q, I) given the fixed SCN by solving the demand fulfill and inventory control subproblem with the objective Eq. ( 29), subject to Constraints ( 6)-( 28), and to X = X , W = W , and

Y = Y . max G(L, F , O, Q, I) = ξ∈Ω p(ξ) j∈J k∈K t∈T ρF s jkt (ξ) - j∈J t∈T i∈I α ij L ijt (ξ) + k∈K β jk F s jkt (ξ) - i∈I j∈J t∈T δL ijt (ξ) - t∈T j∈J λI H jt (ξ) + ηO jt (ξ) + j∈J k∈K γF n jkt (ξ) - τ ∈T φ τ (ξ) j∈J t∈Tτ i∈I em ij L ijt (ξ) + k∈K en jk F s jkt (ξ) + ϑI H jt (ξ) (29) 
Where L, F , O, Q, I denote the vectors of inbound and outbound flow decision variables, binary and continuous ordering decision variables, and inventory decision variables. The solution values I = (L , F , O , Q , I ) present the best demand fulfill and inventory control decisions based on the given SCN design.

Finally, the vector of the best carbon-trading decisions E are determined by maximizing the carbon-trading reward H(E) = ξ∈Ω p(ξ)τ ∈T φ τ (ξ)E τ (ξ) , subject to Constraints ( 6)-( 28), and with D, I fixed to values D , I . Note that all subproblems are subject to Constraints ( 6)-( 28) in order to make sure the overall solution D , I , E obtained by sequential procedures is feasible in the original problem, and it can be used as the initial solution to the simulated annealing process.

DFS procedure

In the DFS procedure, the demand fulfill and inventory control subproblem with the objective in Eq. ( 29), subject to Constraints (6)-( 28) is solved as the first priority. Then, the moderate SCN configuration is determined respecting the previously fixed demand fulfillment and inventory control plan by minimizing the supply chain design costs F (X, W , Y ), subject to Constraints ( 6)-( 28) with the inventory control decisions fixed as parameters.

After the inventory control and the SCN design are planned, the companies need to determine their carbon-trading decisions to maximize the low-carbon reward. Therefore, the carbon-trading subproblem is solved by maximizing the carbon-trading reward H(E), subject to Constraints ( 6)-( 28) with previously determined decision variables fixed as parameters. By integrating the solutions of the subproblems, we can get an overall solution to the DFS procedure.

Initial solution construction

To diversify the starting point, one of the sequential procedures is selected to construct the initial solution X 0 = (D , I , E ) according to the specified neighborhood exploration strategy introduced in Section 4.2.1. As shown in Algorithm 1, we use the LOS procedure to construct the initial solution with the neighborhood exploration strategy 1 (S1), and the DFS procedure is selected to construct the initial solution with the neighborhood exploration strategy 2 (S2).

Algorithm 1 Initial solution construction procedure.

1: procedure Construct: F (X, W , Y ) ; G(L, F , O, Q, I) ; H(E)
Output: Initial solution X 0 to the simulated annealing process 2:

if Neighborhood exploration strategy 1 (S1) then 3:

LOS procedure: 6) -(28)

4: D ← Minimize F (X, W , Y ) s.t.(
5: 6) -(28)

I ← Fix D , Maximize G(L, F , O, Q, I) s.t.(
6:

E ← Fix D , I , Maximize H(E) s.t.( 6) -(28)

7:

X 0 ← solutions from LOS procedure 8:

else if Neighborhood exploration strategy 2 (S2) then 9:

DFS procedure:

10: 6) -(28)

I ← Maximize G(L, F , O, Q, I) s.t.(
11: 6) -(28)

D ← Fix I , Minimize F (X, W , Y ) s.t.(
12: 6) -(28)

E ← Fix D , I , Maximize H(E) s.t.(
13:

X 0 ← solutions from DFS procedure

Simulated annealing process phase and intensification phase

The second phase of our proposed metaheuristic is a simulated annealing process, which is a probabilistic technique for approximating the global optimum of a given function in a large search space. The readers who are interested could refer to [START_REF] Kirkpatrick | Optimization by simulated annealing: Quantitative studies[END_REF] for more details about this technique. The main features of our simulated annealing process are as follows:

• Initialization: After the first phase of initial solution construction, we initiate the current solution X c := X 0 , and the current best solution X best := X 0 of the simulated annealing. Fix the cooling schedule parameters: the initial temperature F max , the final temperature F min , the cooling rate κ ∈ (0, 1), the maximum number of iterations n max at each temperature. Then, set the iteration counter n := 0, and the current temperature F := F max .

• Generate neighborhood solution: In each iteration, a neighborhood solution X new is reached by either of the two following methods: Method 1 changes all decision variables, the DC locationallocation decisions (i.e., X, Y ) are reached by possible moves from current decisions (i.e., X c , Y c ) following neighborhood exploration strategies in Section 4.2.1. Then, the inventory control and carbon-trading decisions (i.e., I, E), as well as the source DC allocation decision W , are calculated based on the DC location-allocation decisions (i.e., X, Y ) following the inventory control and carbon-trading decision-making heuristics in Section 4.2.2; For Method 2, the current DC location-allocation decisions (i.e., X c , Y c ) remain fixed, and the rest of the decisions are changed following the inventory control and carbon-trading decision-making heuristics. In iterations, the two methods are selected randomly to generate neighborhood solutions, then the neighborhood solution is evaluated as R(X new ).

• Probabilistic acceptance criteria: The probabilistic acceptance criteria is used to diversify solutions. Denote R = R(X new ) -R(X c ), and the current temperature as F . If U(0, 1) < e R/F , the solution X new is accepted over the current solution X c ; otherwise, the current solution X c is kept. After comparing R(X new ) with R(X best ), set the better solution as the new incumbent.

• Annealing: The number of iterations n is counted by setting n := n + 1 at each iteration. If the number of iterations n at the current temperature exceeds the maximum number of iterations n max , the temperature is cooled by the rate of cooling κ.

• Termination condition: The simulated annealing ends, if the temperature F is lowered to the final temperature F min . Additionally, if the iteration number of continuous no improvement ϕ is more than ϕ max iterations, the simulated annealing process stops to enter the third phase of intensification.

After the simulated annealing process, the third phase of intensification through MIP optimization begins to fine-tune the solutions. The MIP model in Section 3.3 is solved by the exact method to intensify the incumbent for time limit. If the global optimal X * is reached during the intensification, the algorithm stops, or the new incumbent X best is updated as the near-optimal solution when the allotted time of the intensification phase is reached. The flowchart of the three-phase metaheuristic is presented in Fig. 4. open , then reassign each k ∈ K to DC j = arg min j ∈{j }∪J c open /{j} β j k + en j k + l j k . Note that we use per unit cost parameters (e.g., β jk , en jk ) to find the suitable allocation decisions for each k. When the arc of the lowest per unit cost between k and j is selected, this would promote that the total cost for satisfying the total demand of k will be potentially the lowest along this arc. The same method is also used in the following drop move and add move.

(iii) Drop move (m drop ): randomly close an opened DC j and reassign each k ∈ K c j to DC j = arg min j ∈J c open /{j} β j k + en j k + l j k . (iv) Add move (m add ): randomly open a closed DC j in J c close and reassign each k ∈ K to DC j = arg min j ∈{j }∪J c open β j k + en j k + l j k . To diversify the search route in the simulated annealing process, two neighborhood exploration strategies of DC location-allocation decisions are inspired by the neighborhood search proposed by Klibi et al. (2010a) to explore the general neighborhood as follows:

Strategy 1 (S1): For this strategy, the solution obtained from the LOS procedure is selected as the initial solution to the simulated annealing, which means the minimum requirement of DCs is initially opened. Therefore, in this strategy, the possible add (m add ), shift (m shif t ), and exchange (m exchange ) moves are used to generate new DC location-allocation solutions in each iteration. In iterations of S1 in the simulated annealing process, an add move is followed by Strategy 2 (S2): Contrarily, this strategy starts with the initial solution obtained from the DFS procedure, which provides surplus opened DCs initially. There, the possible drop (m drop ), shift (m shif t ), and exchange (m exchange ) moves are used to generate new DC location-allocation solutions in this strategy. In iterations of S2, a drop move is made followed by

|J |! |J c open |!|J c close |! times of shift moves resulting in non-repeat opened DC combinations, then |J c open |! (|J c open |-2)!2! times of non-repeat exchange moves.
After the move of DC location and DC demand zone allocation decisions, the inventory control and carbon-trading decision-making heuristics are used to calculate inventory control decisions and carbontrading decisions based on the new location-allocation decisions X and Y ; meanwhile, the source DC allocation decision W is updated after the ordering and inbound flow decisions are determined.

Inventory control and carbon-trading decision-making heuristics

According to the DC location-allocation decisions, we denote the set of opened DCs as J open and the set of demand zones assigned to DC j as K j . The inventory control decisions and carbon-trading decisions are calculated by the following procedure in Algorithm 2.

As shown in Algorithm 2, the amount of unfulfilled demand at each opened DC and the number of products shipped to demand zones from each opened DC for a given period t under scenario ξ are Algorithm 2 Inventory control and carbon-trading heuristics procedure.

1: procedure Input: I, J open , K, T , T , Ω N ; X j ∀ j; Y jk ∀ j, k; χ kt (ξ) ∀ k, t, ξ; φ τ (ξ) ∀ ξ, τ Output: Q jt (ξ), O jt (ξ), I P jt (ξ), I H jt (ξ), L ijt (ξ), F s jkt (ξ), F n jkt (ξ) ∀ j, k, t, ξ; W ij ∀ i, j; E τ (ξ) ∀ τ 2:
for t in T ; ξ in Ω N do 3:

for j in J open do 4:

Determine k∈K F n jkt (ξ) and k∈K F s jkt (ξ) according to Eq. ( 30) and Eq. ( 31)

5:

Determine I H jt (ξ) and I P jt (ξ) according to Eq. ( 32) and Eq. ( 33)

6:
Determine O jt (ξ) and Q jt (ξ) according to Eq. ( 16) and Eq. ( 17)

7:

Set J order ← DCs placing orders; SC i ← supply capacity ψ i of source i ∈ I 8:

while J order = ∅ do 9:

Randomly choose a DC j from J order ; Q order ← Q jt (ξ) 10:

while Q order > 0 do 11:

Set I j ← sorted(I according to the distance to DC j if SC i > 0)

12:

Get the nearest i to DC j ← I j [0]; L ijt (ξ) ← min{Q order , SC i } 13:

if Q order > SC i then 14:

Q order ← Q order -L ijt (ξ); SC i ← 0 15: else if Q order ≤ SC i then 16: SC i ← SC i -L ijt (ξ); Q order ← 0; remove DC j from J order 17: Update W ij ∀ i, j 18: Set J unmet ← j ∈ J open if k∈K F n jkt (ξ) > 0 19:
for j in J unmet do 20:

D unmet ← k∈K F n jkt (ξ); Set K j ← demand zones assigned to DC j 21:

Set K j ← reversesorted(K j according to allowable backordering ratio ζ k )

22:

for k in K j do 23:

Assign F n jkt (ξ) to k according to ζ k ; D unmet ← D unmet -F n jkt (ξ) 24:
if D unmet ≤ 0, Break 25:

F s jkt (ξ) ← χ kt (ξ) -F n jkt (ξ) + F n jk,t-1 (ξ) 26:
Calculate CE Loc , CE τ T r , and CE τ Inv based on Eq. ( 10)-Eq. ( 12) for each τ 27:

for τ in T ; ξ in Ω N do 28:

E τ =1 (ξ) = CE Loc + CE τ =1 T r + CE τ =1 Inv -Φ cap τ =1
29:

E τ (ξ) = CE τ T r + CE τ Inv -Φ cap τ τ ∈ T \{1} calculated first as follows: k∈K F n jkt (ξ) = max k∈K χ kt (ξ)Y jk -Q j,t-L-1 (ξ) -I H j,t-1 (ξ) + k∈K F n jk,t-1 (ξ), 0 (30) k∈K F s jkt (ξ) = max k∈K χ kt (ξ)Y jk - k∈K F n jkt (ξ) + k∈K F n jk,t-1 (ξ), 0 (31) 
Then, the current inventory on hand and the current inventory position of each opened DC for a given period t under scenario ξ can be calculated as follows:

I H jt (ξ) = max I H j,t-1 (ξ) + Q j,t-L-1 (ξ) - k∈K F s jkt (ξ), 0 (32) 
I P jt (ξ) = max I H jt (ξ) + lt∈{t-L,...,t-1} Q j,lt (ξ) - k∈K F n jkt (ξ), 0 (33) 
After the order-placing decision O jt (ξ) and the order quantity decision Q jt (ξ) of each opened DC for a given period t under scenario ξ are determined according to (s jt , Sjt ) policy, we denote the set of DCs placing an order as J order . Then, the products flowing L ijt (ξ) from capacitated sources to each DC j ∈ J order can be determined heuristically according to the procedure from Line 9 to Line 16 in Algorithm 2. To be specific, each DC j ∈ J order is chosen randomly; the nearest source i is chosen each time to satisfy the DC j's order quantity Q jt (ξ) respecting the source's supply capability ψ i until all of the order quantity Q jt (ξ) is divided and allocated to sources.

The product flow decisions F s jkt (ξ) and F n jkt (ξ) are determined based on Line 18 to Line 25 in Algorithm 2. The unfulfilled amount of flow F n jkt (ξ) is obtained heuristically by separating the total amount of unfulfilled demand k∈K F n jkt (ξ) of each DC j to its allocated demand zones k ∈ K j according to demand zones' allowable backordering ratio ζ k . Then, the number of products shipped from DC j to demand zone k for a given period t under scenario ξ is determined as follows:

F s jkt (ξ) = χ kt (ξ) -F n jkt (ξ) + F n jk,t-1 (ξ) (34) 
After the user's inventory control decisions are determined, we calculate the carbon emissions associated with DC implementation CE Loc , transportation CE τ T r , and inventory storage CE τ Inv for each emission compliance year according to Eq. ( 10)-Eq. ( 12). Then, determine the number of emission allowances traded for each emission compliance year under each scenario as follows:

E τ =1 (ξ) = CE Loc + CE τ =1 T r + CE τ =1 Inv -Φ cap τ =1 (35) 
E τ (ξ) = CE τ T r + CE τ Inv -Φ cap τ τ ∈ T \{1} (36) 
We notice that, based on several calibration tests performed, the initial temperature F max is set to 100 × |J |; the final temperature F min is set to 0.001. The cooling rate κ is tuned to 0.99 with the maximum inner loop iteration n max equaling 100, and we set maximum no improve ϕ max to 10 iterations with equal to 3,000 seconds for the intensification phase. The pseudo-code of the TPHM is provided in Appendix A.

Numerical experiments

Generation of the instances and scenarios

In order to illustrate how to cope with a carbon-trading system, as in the case of China described in Fig. 1, we run a strategic decision-making process with |T | = 3 emission-compliance years encompassing |T | = 12 planning seasons. This is conducted with three SCNs of different sizes in China (i.e., P1 for small SCN in Southwest China, P2 for medium SCN in South and Southwest China, P3 for large SCN in East, South and Southwest China). Besides, two sizes of scenario samples (i.e., N1 for a small sample, N2 for a large sample) are defined. In total, six problem instances are constructed as given in Table 3.

The basic data of the SCN are adjusted into the following parameter values in Table 4. The parameters associated with carbon emissions are estimated based on public data that align with practices. For the DC implementation carbon emission, we assume a uniform distribution in the interval [7,000,8,500] in tons of CO 2 for constructing a 100,000 square feet DC [START_REF] De Wolf | Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice[END_REF]. The transportation carbon emissions are estimated by uniform distribution in [6e-7, 8e-7] tons of CO 2 /kg-km [START_REF] Reich-Weiser | The role of transportation on the of wine[END_REF]. The inventory storage carbon emissions is estimated by uniform distribution in [5e-5, 8e-5] tons of CO 2 /kg [START_REF] Arıkan | Impact of transportation lead-time variability on the economic and environmental performance of inventory systems[END_REF]. As previously mentioned, the demand of each zone k ∈ K during each period t ∈ T follows a Poisson-normal compound demand process. More specifically, the demand arrival follows a Poisson distribution P ois(λ kt ) which determines how many times the demand occurs at demand zone k during each period t with the average occurrence rate as λ kt , whereas the quantity of each demand is assumed to follow a normal distribution N ormal(µ kt , σ kt ) with the mean µ kt and the standard deviation σ kt at demand zone k during each period t. In order to control the dispersion of the normal order size, we used a coefficient of variation (σ kt /µ kt ) of 1, which corresponds to a moderate variability of the demand level per zone and period. Recall that another variability is introduced to the demand process through the Poisson order inter-arrival rate. Three demand process types with different degrees of uncertainty are defined in Table 5. Namely, in stationary demand (D1), the parameters are constant over the planning horizon; in nonstationary demand (D2), the parameters are time-varying over the planning horizon; in nonstationary demand with the seasonal trend (D3), the parameters of the normal distribution are following a seasonal fluctuation pattern over the planning horizon. Moreover, the annual carbon prices and carbon caps are also expressed stochastically to reflect the volatility of carbon prices and the uncertainty of emission allowances issued, which follow uniform distributions shown in Table 6.

A Monte Carlo simulation is used to generate realizations of demand and carbon prices under each scenario ξ. According to the parameters of distributions shown in Table 5 andTable 6, and randomly generated quantiles p, q, and l ∈ [0, 1], realizations of demand and carbon prices under each scenario ξ can be sampled from inverse distribution functions: P ois -1 t (p, •), N ormal -1 t (q, •), and U nif -1 t (l, •). Then, the Poisson-normal compound demand is calculated as χ kt (ξ) = P ois -1 t (p, •)N ormal -1 t (q, •) for each zone k during each period t under each scenario ξ, and the carbon price is obtained as φ τ (ξ) = U nif -1 τ (l, •) for each compliance year τ under each scenario ξ. We obtain a set of required numbers (i.e., N = 50, 100) of independent demand and carbon price scenarios, denoted by Ω N . the Gurobi best upper bound U B, expressed as (U B -LB)/LB × 100%. The optimization gap obtained by our proposed metaheuristic is also presented in terms of the same best upper bound as (U B -R)/R × 100%, where R represents the objective value of the best solution obtained through the metaheuristic. From Table 8, it can be seen that for small instances P1/N1 and P1/N2 both the exact method and the metaheuristic reach to the optimal solutions. For larger instances, the Gurobi's branch-and-bound method can't reach optimal solutions within a reasonable amount of time, however, the metaheuristic finds much better solutions in a shorter time than the exact method. As we set a time limit (24h and 48h) to the resolution time we observed that the exact method stops before reaching optimality in large instances, whereas the metaheuristic reaches good quality solutions in terms of design value and solution time. According to the optimization gaps obtained, we can state that the metaheuristic with S1 and S2 exploration strategies can always provide near-optimal solutions. For example, in the P2/N2 instance, the exact method provides a 1.48% gap after solving for 24h, and the metaheuristic with S1 and S2 exploration strategies can provide near-optimal solutions with a 0.14% gap and a 0.01% gap in 26,183s and 24,992s respectively. Additionally, metaheuristic (S2) exhibits the shortest running time over metaheuristic (S1). That's because the DFS procedure builds much better initial solutions as shown in Table 7; in addition, the neighborhood exploration strategy 2 (S2) reflects an efficient search route. In the next sections, we carry out numerical experiments solved by the metaheuristic (S2) to provide managerial insights.

Impact of carbon prices in the carbon-trading system on SCN decisions and carbon emission

To investigate the impact of the emission regulation on the SCN decisions and carbon emissions, we first inspect the multi-year emission-compliance (MYEC) under the carbon-trading system in China. We analyze the impact of different degrees of uncertain carbon price under the carbon-trading regulation on the strategic decisions and their tactical effect, as well as on the amount of carbon emission. The results of the P2/N2 instance under the nonstationary demand are provided in Table 9. Similar insights are observed from the results of P1/N2 and P3/N2 instances shown in Table B2 and Table B3 of Appendix B. Table 9 lists the SCN decisions, the total carbon emission, the carbon-trading income, and the SCN profit under the carbon-trading system of volatile carbon prices. Four cases of volatile carbon prices are defined in the first column of Table 9. The first is the fixed annual carbon prices (φ τ =1 (ξ) = 10; φ τ =2 (ξ) = 12; φ τ =3 (ξ) = 15), and the annual carbon prices of the other three cases are uniformly distributed with the same median, namely, low volatile (φ τ =1 (ξ) ∼ U(8, 12); φ τ =2 (ξ) ∼ U(10, 14); φ τ =3 (ξ) ∼ U(13, 17)), medium volatile (φ τ =1 (ξ) ∼ U(5, 15); φ τ =2 (ξ) ∼ U(7, 17); φ τ =3 (ξ) ∼ U(10, 20)), and high volatile(φ τ =1 (ξ) ∼ U(1, 19); φ τ =2 (ξ) ∼ U(3, 21); φ τ =3 (ξ) ∼ U(6, 24)). The carbon caps in the carbon-trading system are fixed to Φ cap τ =1 = 85, 000, Φ cap τ =2 = 65, 000, and Φ cap τ =3 = 45, 000. From a strategic perspective, all the cases lead to the same 4 opened DCs, which indicates the volatility of carbon prices won't affect the network design. The distribution network design decisions are shown in Fig. 5. The four opened DCs are located at Chongqing, Kunming, Changsha, and Guangzhou. As the transportation costs are linearly proportional to distances, the demand zones are allocated to their nearest opened DCs. Additionally, the results show that as the volatility of carbon prices increases, the total carbon emission increases, the amount of carbon-trading decreases, and the SCN profits decreases. The rationale behind the phenomenon is the following. If the degree of carbon price uncertainty is high, the value of excessive emission permits is unclear. Therefore, the supply chain companies won't consider the emission permits as a valuable asset to be traded, thus reducing the carbon-trading and increasing the carbon emissions. The findings suggest that the SCN company would be better to focus on supply chain services to obtain a profit rather than trading extra carbon emission allowances in a secondary market of high volatility. From the carbon emission regulator's perspective, the carbon emission regulator should stabilize the carbon prices in the secondary market so that the carbon emitters can be more aware of the reward of trading emission permits, thus encouraging low-carbon operations.

Impact of demand on SCN decisions and carbon emission

The instances of different network sizes under different degrees of demand uncertainty are solved to derive managerial insights in terms of the network design, the inventory control decisions, and carbon emissions.

Fig. 6 indicates the number of opened DCs in different network sizes under three different demand types. It is obvious that as the network size increases, more DCs are opened. Moreover, one important insight is that the degree of demand uncertainty affects the number of opened DCs. Given the P3/N2 instance as an example, the network opens three DCs under the stationary demand type (D1) but opens eight DCs under the nonstationary with trend demand type (D3). The underlying rationale of this result is that if the demand zones face the nonstationary demand, under (T, s, S) inventory policy, higher inventory levels would be set for the distribution system, which requires more opened DCs to keep and allocate the inventory. The findings suggest that the supply chain company should open more DCs when facing higher degree of demand uncertainty. Also, more DCs can compensate for the reduction of service level caused by higher degree of demand uncertainty. We also present the expected amount of inventory control decisions of different instances under three different demand types in Table 10. We can see that as the degree of demand uncertainty increases from D1 to D3, the inventory level, shipped quantity, and backordering quantity also increase. For example, as the demand type changes from D1 to D3 in P1/N2 instances, the amount of inventory holding increases from 180,629 to 201,337, the shipped quantity increases from 168,202 to 227,897, and the backordering quantity increases from 31,919 to 67,533. The P2/N2 and P3/N2 instances also exhibit the same phenomenon. It is obvious that when faced with a higher degree of demand uncertainty, more backordering situations will happen. Also, the results suggest that more inventory should be held at DCs to cope with uncertain demand, especially the nonstationary types, which is congruent with the results of [START_REF] Amiri-Aref | The multi-sourcing location inventory problem with stochastic demand[END_REF]. Besides the fact that the demand uncertainty affects the SCN design and inventory control decisions, the amount of carbon emission is also affected by the degree of the demand uncertainty. In Fig. 7, the impact of demand uncertainty on the total amount of carbon emission is displayed. The total amount of carbon emission increases as the scale of the SCN increases from P1 to P3. Moreover, the figure shows that the total amount of carbon emission increases as the degree of demand uncertainty increases. The nonstationary with trend demand type (D3) always generates the highest amount of carbon emission among the other two demand types. The rationale behind this observation is that, as discussed earlier, the demand uncertainty enlarges the inventory holding quantity at DCs. On the one hand, more inventory holding leads to higher inventory storage carbon emission. On the other hand, more DCs are required to allocate inventory and to maintain the service level, thus increasing the total carbon emission associated with DC implementation. One managerial insight can be drawn here, which suggests that the regulator's determination of annual emission allowance allocation to the SCN companies should not only be based on the scale of their businesses but also the degree of demand uncertainty faced by supply chain emitters.

Table 11 provides the calculation of Pearson's correlation among the inventory storage emission cost, transportation emission cost, DC opening cost, and backordering cost of the P3/N2 instance. The total inventory storage emission cost has a positive correlation with the total DC opening cost and has a negative relationship with the total backordering cost. The correlation values are 0.67 and -0.71, respectively. It is evident that the higher total DC opening cost incurred by more DCs opened results in more DCs increasing inventory; thus, they are less likely to have backorders. Additionally, the total transportation emission cost has a negative correlation with the total DC opening cost. This phenomenon explains the fact that more opened DCs leads to less total transportation distances, thus less total transportation emission costs. 

Impact of alternative emission regulations on SCN decisions and carbon emission

To investigate emission regulations from a broader perspective, we also examine how the design decisions produced by our modeling approach under no regulation, carbon cap restriction, carbon tax, and carbon cap and tax regulations. Models under these emission regulations can be derived from the model under the carbon-trading scheme in Section 3.3 as explained hereafter. All emission regulation cases are listed as follows:

(i) No regulation (NR)
No carbon price (e.g., Set φ τ (ξ) = 0, Λ j = 0); No carbon emission-compliance constraints (e.g., remove Constraints ( 13)-( 15)).

(ii) Carbon cap restriction (CCR)

No carbon price (e.g., Set φ τ (ξ) = 0, Λ j = 0); No carbon-trading decisions in emission-compliance constraints (e.g., remove carbon-trading decisions E ∆ τ (ξ) in Constraints ( 13)-( 15)). No carbon-trading income/cost (e.g., remove carbon-trading termτ ∈T φ τ (ξ)E τ (ξ) in Eq. (5.1)); No carbon emission-compliance constraints (e.g., remove Constraints ( 13)-( 15)).

• Low case:

φ τ =1 (ξ) = 10; φ τ =2 (ξ) = 12; φ τ =3 (ξ) = 15. • Medium case: φ τ =1 (ξ) = 15; φ τ =2 (ξ) = 17; φ τ =3 (ξ) = 20. • High case: φ τ =1 (ξ) = 20; φ τ =2 (ξ) = 22; φ τ =3 (ξ) = 25.
(iv) Carbon cap and tax (CC&TX)

No carbon-trading income/cost (e.g., remove carbon-trading termτ ∈T φ τ (ξ)E τ (ξ) in Eq. (5.1)); No carbon-trading decisions in emission-compliance constraints (e.g., remove carbon-trading decisions E ∆ τ (ξ) in Constraints ( 13)-( 15)). 

(ξ) = 20; φ τ =2 (ξ) = 22; φ τ =3 (ξ) = 25. (v) Carbon-trading (CT) • Low price case: φ τ =1 (ξ) = 10; φ τ =2 (ξ) = 12; φ τ =3 (ξ) = 15. • Medium price case: φ τ =1 (ξ) = 15; φ τ =2 (ξ) = 17; φ τ =3 (ξ) = 20. • High price case: φ τ =1 (ξ) = 20; φ τ =2 (ξ) = 22; φ τ =3 (ξ) = 25.
The carbon emission caps are fixed to Φ cap τ =1 = 80, 000; Φ cap τ =2 = 65, 000; Φ cap τ =3 = 50, 000.

The SCN decisions and emissions under different emission regulations of the P2/N2 instance under the nonstationary demand are provided in Table 12. Similar insights are observed from the results in the P1/N2 and the P3/N2 instances shown in Table B4 andTable B5 of Appendix The results show that the NR, CCR (Moderate), CTX (Low), CTX (Medium) open the most DCs (i.e., 5 opened DCs) among the other emission regulations. The optimal distribution network design decisions under the NR are shown in Fig. 8. The five opened DCs are located at Chongqing, Kunming, Guiyang, Changsha, and Guangzhou. The DC opening decisions under CCR (Moderate), CTX (Low), and CTX (Medium) are the same as under the NR. As shown in Table 12, the NR has the highest total carbon emissions equal to 121,997 tons, while the other three regulations (e.g, CCR (Moderate), CTX (Low), CTX (Medium)) have close total amount of carbon emissions, which equal to 121,950 tons, 121,416 tons, and 119,822 tons, respectively. The results indicate that the CTX regulation with a low or medium tax won't force the emitters to change their decisions and to reduce carbon emissions significantly, and that the CCR with moderate caps works almost nothing in reducing carbon emissions. As the annual carbon caps tighten, the number of opened DCs decreases. For example, the strict annual carbon caps lead to only 4 opened DCs. Although the CTX (High) changes the SCN decisions (e.g., 4 opened DCs) and reduces the total emissions to 104,520 tons, the high tax leads to only $1,896,184 SCN profit. As the CC&TX regulation combines both carbon cap and tax policies, the two CC&TX regulations (e.g., strict, and moderate caps) lead to the lowest range of the total emissions equal to 96,241 tons and 104,151 tons, and the lowest SCN profit equal to $849,980 and $1,870,350, respectively.

In the CT regulation, all three levels of carbon price lead to the same 4 opened DCs, which indicates the level of carbon price also won't impact the design decisions. As shown in Fig. 5, the four opened DCs are located at Chongqing, Kunming, Changsha, and Guangzhou. Compared with the optimal SCN under the NR, the optimal distribution network design under the CT closes the DC at Guiyang to reduce carbon emissions. Since the DC at Guiyang is surrounded with opened DCs at Chongqing, Changsha, Kunming, and Guangzhou, the demand zones of Guiyang DC are readily reallocated to these nearest opened DCs. The SCN design is congruous with our insights and the objective. Because the carbon-trading mechanism encourages to reduce carbon emissions, and 8,500 tons of carbon emission is associated with one DC implementation, the optimal SCN under the emission policy tends to open fewer DCs. As the level of the carbon price increases from the low level to the high level in the CT regulation, the total emissions shown in Table 12 decreases from 105,469 tons to 92,683 tons, and the carbon-trading income increases from $1,128,068 to $2,343,441. That's because the higher carbon price curbs the carbon emission, but encourages the companies to trade more carbon permits in the carbon-trading system. The SCN profit column in Table 12 shows that the CT regulations lead to the highest range of SCN profits, which equal to $4,134,666 under Low price, $4,065,178 under Medium price, and $4,040,970 under High price, though not as high as SCN profits under the NR and the CCR (Moderate). The CT regulations can also reduce carbon emissions to the lowest range among other regulations. For example, the CT (High price) reduces the total emissions to 92,683 tons even less than the total emissions under the CCR (Strict) and the CC&TX (Strict), but it has a much higher SCN profit equal to $4,040,970 compared with the latter two regulations. That's because carbon caps in the CCR and CC&TX not only restrict the carbon emissions but also restrict the supply chain activities. However, the carbon-trading serves not just as a disincentive on carbon emissions, it also encourages the SCN decision-maker searching for alternatives to balance the reduction of carbon emission and the supply chain service, thus leading to a much higher SCN profit.

The above results suggest the following findings and insights: 1. The SCN decisions and carbon emissions are not sensitive to the carbon tax regulation when the low range of taxes are imposed. Therefore, the carbon tax regulation may harm the economical benefits of the SCN; 2. The strict caps can limit the total emissions, thus leading to a low-carbon SCN design and operations. But, the strict caps also restrict the business of the SCN, thus lowering its economical performance. On the other hand, with the moderate caps, the SCN doesn't have any pressure or incentives to turn to a greener SCN design and operations; 3. The carbon-trading regulation encourages the companies to reduce the total emissions so that the excessive emission permits can be traded to obtain additional incomes.

Conclusion

Summary of findings

Motivated by environmental problems and significant energy consumption in the supply chain and logistics industry of emerging markets, we investigated a challenging carbon emission-compliance green ILIP for a SCN operating in China with demand and carbon price uncertainties. Then, we formulated a two-stage stochastic optimization model, which maximizes the expected profits of the SCN, including the sales profit and the carbon-trading reward, during a MYEC period. To solve the model, we developed a hierarchical metaheuristic. Within the proposed algorithm, the LOS procedure leads to fewer opened DCs, whereas the DFS procedure leads to more opened DCs than the optimal number of opened DCs.

From the results, we have observed that the increase in carbon price volatility leads to the increase of carbon emissions and the decrease of SCN profits. Also, we have analyzed the impact of demand uncertainty on the SCN design decisions, the inventory control decisions, and the amount of carbon emissions. Similar to the finding of prior literature, we found that the demand uncertainty affects the SCN decisions, additionally, we have found that it affects the amount of carbon emissions too. After investigating the impact of different emission regulations on SCN decisions and carbon emissions, we have discovered that: under the no emission regulation, the SCN opens the most DCs and generates the highest amount of carbon emissions compared with that under the other emission regulations. With the moderate caps in the carbon cap restriction regulation, the SCN doesn't have any pressure or incentives to turn to a greener SCN design and operations, thus generates almost the same amount of emissions as with no emission regulation. The strict caps and the high tax in the carbon tax regulation lead to fewer opened DCs, whereas, under the carbon-trading regulation, the level of carbon prices and the degree of carbon price volatility won't affect the number of opened DCs. We have found that the strict carbon caps, the increase of carbon prices in the carbon-trading, and the high carbon tax lead to the decrease of carbon emissions. However, the SCN decisions and carbon emissions are not sensitive to the carbon tax regulation when the low range of taxes are imposed, which suggests that the carbon tax may harm the economical benefits of the SCN more easily than it brings the low-carbon sustainability to it. Compared with all emission regulations, the carbon-trading system can not only reduce the carbon emissions, but also lead to the highest range of SCN profits, because it serves not just as a disincentive to carbon emissions, but also encourages the SCN companies to seek for sustainable operations to reduce the emissions so that the excessive emission permits can be traded to obtain additional incomes.

Managerial implications

For the decision-making approach, we highlighted the fact that integrating strategic and tactical decisions in SCN design models is essential. Despite the fact that the supply chain business would be restricted under emission regulations, their carbon emissions can be reduced, which is needed in emerging markets like China to control carbon emission problems. Because the economical and environmental sustainability are both important in developing countries, from the emission regulation policy choice perspective, the carbon trading system might be a more flexible and suitable regulation scheme. The most suitable level of carbon price depends on the emissions-reduction goals and economic effectiveness. Because the findings show the high carbon price volatility leads to the increase of carbon emissions, the decrease of the amount of carbon traded, and the decrease of SCN profit, the supply chain managers could use emission allowances more on supply chain business to obtain higher profit rather than trading surplus allowances in a secondary market of high volatility. And, from emission regulators' perspective, the regulators should stabilize the carbon prices in the secondary market so that the carbon emitters can be more aware of the reward of trading emission permits, thus encouraging low-carbon operations.

The findings also revealed that the operating company needs to open more distribution facilities to compensate for the reduction of service level caused by a high degree of demand uncertainty. Also, a higher level of inventory needs to be maintained to satisfy a high degree of demand uncertainty. Because the increase of demand uncertainty leads to the increase of carbon emissions, the regulator's determination of annual emission allowance allocation to operating companies should not only be based on the scale of their businesses but also on the degree of demand uncertainty faced by supply chain emitter.

Limitations and future studies

Although we believe that our study can provide a new framework for the emission-compliance green SCN, our research work could be expanded in future research as follows:

(i) This study only includes the low-carbon strategic-and tactical-level decisions in the supply chain. So, an emission-compliance green location-inventory-routing problem integrating lowcarbon operational-level decisions (e.g., vehicle routing decisions) could be studied in the future. The calculation of transportation carbon emissions in the study is estimated based on aggregated product flows along arcs. With the consideration of vehicle routing decisions, the transportation carbon emissions could be estimated precisely based on the fuel consumption of vehicle routes.

(ii) Since the model of this study only describes the multi-year emission-compliance ILIP under the carbon-trading regulation, the models of multi-year emission-compliance SCN optimization under other carbon regulation schemes (e.g., carbon offset, and quota borrowing and banking) still need to be further studied.

(iii) Besides considering economic costs and environmental issues, it would be important to demonstrate the decision-making in the green SCN under the consideration of customers low carbon behaviors, which could affect both the premium prices and the total demand of low carbon products.

(iv) Furthermore, social aspects also should be considered to provide a model for a sustainable SCN design based on the triple bottom line (TBL) approach. Additionally, the development of more efficient heuristics should be carried out. The numerical results of the impact of emission regulations on SCN decisions and carbon emissions for the P1/N2 and the P3/N2 instances under the nonstationary demand are presented in Table B4 and Table B5, respectively. The strict and moderate carbon cap regulations for the P1/N2 instance in Table B4 are defined as (Φ cap τ =1 = 25, 000; Φ cap τ =2 = 20, 000; Φ cap τ =3 = 15, 000), and (Φ cap τ =1 = 45, 000; Φ cap τ =2 = 35, 000; Φ cap τ =3 = 25, 000), respectively. The carbon tax regulations for the P1/N2 instance have the same low, medium and high taxes as for the P2/N2 instance. The carbon cap and tax regulations for the P1/N2 instance are with strict caps (Φ cap τ =1 = 20, 000; Φ cap τ =2 = 15, 000; Φ cap τ =3 = 10, 000), and with moderate caps (Φ cap τ =1 = 45, 000; Φ cap τ =2 = 35, 000; Φ cap τ =3 = 25, 000), where the tax is fixed to (φ τ =1 (ξ) = 15; φ τ =2 (ξ) = 17; φ τ =3 (ξ) = 20). The carbon-trading regulation for the P1/N2 instance in Table B4 has the same levels of carbon prices as in the P2/N2 instance, with the carbon caps fixed to Φ cap τ =1 = 45, 000, Φ cap τ =2 = 35, 000, and Φ cap τ =3 = 25, 000. The strict and moderate carbon cap regulations for the P3/N2 instance in Table B5 are defined as (Φ cap τ =1 = 90, 000; Φ cap τ =2 = 80, 000; Φ cap τ =3 = 70, 000), and (Φ cap τ =1 = 140, 000; Φ cap τ =2 = 120, 000; Φ cap τ =3 = 100, 000), respectively. The carbon tax regulations for the P3/N2 instance have the same low, medium and high taxes as for the P2/N2 instance. The carbon cap and tax regulations for the P1/N2 instance are with strict caps (Φ cap τ =1 = 90, 000; Φ cap τ =2 = 80, 000; Φ cap τ =3 = 70, 000), and with moderate caps (Φ cap τ =1 = 140, 000; Φ cap τ =2 = 120, 000; Φ cap τ =3 = 100, 000), where the tax is fixed to (φ τ =1 (ξ) = 15; φ τ =2 (ξ) = 17; φ τ =3 (ξ) = 20). The carbon-trading regulation for the P3/N2 instance in Table B5 has the same levels of carbon prices as in the P2/N2 instance, with the carbon caps fixed to Φ cap τ =1 = 140, 000, Φ cap τ =2 = 120, 000, and Φ cap τ =3 = 100, 000. 
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  , and ñ ∼ = |K| ln |J |+o+1/(2|J |) /|J |. ñ represents the number of demand zones assigned to a given DC when uniformly assigned, where o is the Euler-Mascheroni constant. Φ -1 N (•) is the normal cumulative distribution function, I N (•) is the standard normal loss function, and I -1 N (•) is its inverse function. And, γ and λ are the backordering cost and the inventory holding cost per unit per period respectively.
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  4.2.1. Neighborhood exploration strategiesWe designed four kinds of moves to search for DC location decisions and DC demand zone allocation decisions, X and Y , from the current decisions X c and Y c . Denote the set of opened DCs of the current design as J c open , the set of closed DCs of the current design as J c close , and the set of demand zones assigned to DC j as K c j . The four kinds of moves are defined as follows: (i) Exchange move (m exchange ): randomly choose two DCs in J c open , and exchange their assigned demand zones.(ii) Shift move (m shif t ): randomly open a closed DC j in J c close , and close an opened DC j in J c

  times of shift moves resulting in non-repeat opened DC combinations, then |J c open |! (|J c open |-2)!2! times of non-repeat exchange moves.
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 5 Fig. 5. The distribution network design under the carbon-trading scheme.
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Table 1 . 1

 11 Overview of the related literature on ILIP

	References	SD	SCP	Multi.P	Objective	IP	Model/Solution
	Daskin et al. (2002)	√			MC	(r, Q)	MINP/LR
	Miranda & Garrido (2004)	√			MC	(r, Q)	MINP/LR
	Park et al. (2010)	√			MC	(r, Q)	MINP/Heuristic
	Berman et al. (2012)	√			MC	(R, S)	MINP/LR
	Escalona et al. (2015)	√			MC	(r, Q)	MINP/Heuristic
	Ahmadi-Javid & Hoseinpour (2015)				MP	(r, Q)	MINP/LR
	Puga & Tancrez (2017)	√		√	MC	(r, Q)	NP/Heuristic
	Shahabi et al. (2018)	√			MC	(r, Q)	MINP/OA
	Darvish & Coelho (2018)	√		√	MC		MILP/Matheuristic
	Tapia-Ubeda et al. (2018)	√			MC	(r, Q)	MINP/GBD
	Amiri-Aref et al. (2018)	√		√	MP	(T, s, S)	MILP/CPLEX
	Guo et al. (2019)	√			MC	(r, Q)	MINP/ADE
	This Study	√	√	√	MCI/P	(T, s, S)	MILP/Heuristic

SD: Stochastic demand; SCP: Stochastic carbon price; Multi.P: Multi-period; IP: Inventory policy; MC: Minimize cost; MP: Maximize profit; MCI/P: Maximize carbon-trading income based profit; MINP: Mixed integer non-linear programming; MILP: Mixed integer linear programming; NP: Non-linear programming; LR: Lagrangian relaxation; OA: Outer approximation; GBD: Generalized Benders decomposition; ADE: Adaptive differential evolution

Table 1 .2 Overview of relevant studies on sustainable and low-carbon SCN.
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	References	Stochastic Dmd	Time-declining carbon cap	CEC	CER policy Objective

Table 2

 2 Notation of sets, parameters and variables

Table 3

 3 Instance sizes.

	Instances # of sources # of potential DCs # of demand zones # of scenarios
	P1/N1	1	4	15	50
	P1/N2	1	4	15	100
	P2/N1	2	8	30	50
	P2/N2	2	8	30	100
	P3/N1	3	15	60	50
	P3/N2	3	15	60	100

Table 4

 4 Parameter values.

	Name	Parameter Values	Name	Parameter Value
	Sales price ($/kg)	ρ	[25, 30]	Transportation carbon emission (tons of CO2/kg-km)	e ij , e jk	[6e-7, 8e-7]
	Procurement cost ($/kg)	δ	[10, 15]	DC implementation carbon emission (ton)	ε j	[7,000, 8,500]
	Fixed-ordering cost ($)	η	[8, 12]	Inventory storage carbon emission (tons of CO2/kg)	ϑ	[5e-5, 8e-5]
	Backordering cost ($/kg)	γ	2	Fixed allocation cost i-j ($)	g ij	[95, 105]
	Inventory-holding cost ($/kg)	λ	0.5	Fixed allocation cost j-k ($)	l jk	[70, 80]
	Fixed DC opening cost ($)	f j	[380,000, 400,000]	Transportation distance i-j, j-k (km)	m ij , n jk	[250, 500]; [200, 1000]

Table 7

 7 Efficiency analysis of the proposed metaheuristic.

	Instances	LOS		DFS		Metaheuristic (S1)		Metaheuristic (S2)
		# of DCs	Profit	# of DCs	Profit	# of DCs	Profit	Improve (%) a	# of DCs	Profit	Improve (%) b
	P1/N1	1	821,833	3	1,027,158	2	1,817,419 54.8	2	1,811,813 43.3
		1	1,069,427	3	1,280,722	2	1,770,657 39.6	2	1,773,607 27.8
	P2/N1	3	1,963,155	5	2,098,940	4	3,473,506 43.5	4	3,475,297 39.6
		2	1,435,956	6	1,838,247	4	3,519,226 59.2	4	3,521,546 48.0
	P3/N1	3	2,981,153	7	4,139,661	6	6,385,027 53.3	6	6,389,056 35.2
		4	3,319,750	7	4,187,241	6	6,233,120 46.7	6	6,231,293 32.8
	a Improve(%)=100×(the metaheuristic (S1) objective value-the LOS solving solution value)/the metaheuristic ob-
	jective value.								
	b Improve(%)=100×(the metaheuristic (S2) objective value-the DFS solving solution value)/the metaheuristic ob-
	jective value.								

Table 8

 8 Efficiency analysis of the proposed metaheuristic.

	Instances	Exact method		metaheuristic (S1)		metaheuristic (S2)
		Profit	Gap(%) a Time	Profit	Gap(%) b Time	Profit	Gap(%) b Time
	P1/N1	1,736,837 0.00	18,579s	1,736,837 0.00	19,442s	1,736,837 0.00	17,453s
	P1/N2	1,923,989 0.00	20,469s	1,923,989 0.00	21,039s	1,923,989 0.00	18,226s
	P2/N1	3,547,020 0.82	24h limit 3,572,559 0.10	25,495s	3,571,849 0.12	23,563s
	P2/N2	3,492,283 1.48	24h limit 3,539,080 0.14	26,183s	3,543,620 0.01	24,992s
	P3/N1	6,304,556 3.71	48h limit 6,535,303 0.05	33,631s	6,530,259 0.13	32,557s
	P3/N2	6,366,483 4.26	48h limit 6,627,509 0.16	37,320s	6,637,695 0.00	35,913s

a Gap(%)=100×(Gurobi best upper bound-Gurobi best solution value)/Gurobi best solution value. b Gap(%)=100×(Gurobi best upper bound-the metaheuristic objective value)/the metaheuristic objective value.

Table 9

 9 Numerical results of uncertain carbon prices.

	Carbon price	# of DCs	DC implementation Carbon emissions	Transportation Carbon emissions	Inventory storage Carbon emissions	Total emissions	Carbon-trading income	SCN Profit
	Fixed	4	34,000	37,867	29,616	101,483	1,145,933 3,597,434
	Low-volatile	4	34,000	38,247	29,834	102,081	1,138,523 3,607,233
	Medium-volatile	4	34,000	38,537	29,920	102,457	1,129,634 3,580,246
	High-volatile	4	34,000	39,102	30,026	103,128	1,119,682 3,575,731

Table 10

 10 Supply chain inventory control decisions.

Table 11

 11 Correlation values between SCN costs.

		Inventory storage	Transportation	DC opening	Backordering
		emission cost	emission cost	cost	cost
	Inventory storage emission cost	1			
	Transportation emission cost	0.598363	1		
	DC opening cost	0.675180	-0.601082	1	
	Backordering cost	-0.716562	-0.524051	-0.792894	1

Table 12

 12 Numerical results of different emission regulations. No regulation, CCR: Carbon cap restriction, CTX: Carbon tax, CC&TX: Carbon cap and tax, CT: Carbon-trading

	Emission regulations	# of DCs	DC implementation carbon emissions	Transportation carbon emissions	Inventory storage carbon emissions	Total emissions	Carbon-trading income	SCN Profit
	NR	5	42,500	40,953	38,544	121,997	0	4,267,774
	CCR (Strict)	4	34,000	36,028	26,227	96,256	0	2,885,681
	CCR (Moderate)	5	42,500	41,141	38,309	121,950	0	4,192,115
	CTX (Low)	5	42,500	40,504	38,412	121,416	0	3,104,574
	CTX (Medium)	5	42,500	39,056	38,266	119,822	0	2,442,662
	CTX (High)	4	34,000	32,475	38,045	104,520	0	1,896,184
	CC&TX (Strict)	4	34,000	36,028	26,212	96,241	0	849,980
	CC&TX (Moderate)	4	34,000	32,386	37,765	104,151	0	1,870,350
	CT (Low price)	4	34,000	32,740	38,728	105,469	1,128,068 4,134,666
	CT (Medium price)	4	34,000	28,025	37,905	99,930	1,686,646 4,065,178
	CT (High price)	4	34,000	21,697	36,986	92,683	2,343,441 4,040,970
	NR:							

Table B1

 B1 Results from two different sequential-solving modes.the P1/N2 instance, and Φ cap τ =1 = 85, 000, Φ cap τ =2 = 65, 000, and Φ cap τ =3 = 45, 000 for the P3/N2 instance. Numerical results of volatile carbon prices for the P1/N2 instance.

				P1/N1		P2/N1			P3/N1
	SCN cost (%)			Location-	Demand-	Location-	Demand-	Location-	Demand-
				oriented	fulfilled	oriented	fulfill		oriented	fulfill
	Fixed DC opening cost	24.0	33.4	28.6	35.2		28.7	37.0
	Fixed-ordering and procurement cost	27.8	27.0	22.0	24.1		21.3	22.5
	Transportation cost		29.4	21.7	27.6	20.5		28.3	21.3
	Inventory-holding cost		2.2	2.2	2.6	2.7		2.5	2.1
	Backordering cost		2.4	1.2	3.7	2.1		3.8	2.3
	DC Implementation CEC	5.2	7.3	6.2	7.7		6.2	8.1
	Transportation CEC		5.6	4.2	5.3	3.9		5.4	4.1
	Inventory storage CEC		3.4	3.4	4.0	4.2		3.9	3.3
	Table B2							
	Carbon price	# of DCs	DC implementation Carbon emissions	Transportation Carbon emissions	Inventory storage Carbon emissions	Total emissions	Carbon-trading income	SCN Profit
	Fixed	3	25,500	19,105		15,612		60,217	568,744	1,917,863
	Low-volatile	3	25,500	19,375		15,825		60,700	556,347	1,924,245
	Medium-volatile	3	25,500	19,528		16,185		61,213	541,376	1,901,635
	High-volatile	3	25,500	19,923		16,903		62,326	528,783	1,889,705

Table B3

 B3 Numerical results of volatile carbon prices for the P3/N2 instance.

	Carbon price	# of DCs	DC implementation Carbon emissions	Transportation Carbon emissions	Inventory storage Carbon emissions	Total emissions	Carbon-trading income	SCN Profit
	Fixed	6	51,000	73,422	57,898	182,320	2,295,132 6,542,357
	Low-volatile	6	51,000	75,298	58,207	184,505	2,273,408 6,673,940
	Medium-volatile	6	51,000	76,805	60,291	188,096	2,258,406 6,539,028
	High-volatile	6	51,000	78,130	61,689	190,819	2,239,470 6,275,933

Table B4

 B4 Numerical results of different emission regulations for the P1/N2 instance. No regulation, CCR: Carbon cap restriction, CTX: Carbon tax, CC&TX: Carbon cap and tax, CT: Carbon-trading

	Emission regulations	# of DCs	DC implementation carbon emissions	Transportation carbon emissions	Inventory storage carbon emissions	Total emissions	Carbon-trading income	SCN Profit
	NR	4	34,000	23,269	21,767	79,036	0	2,051,413
	CCR (Strict)	2	17,000	17,272	13,024	47,296	0	847,814
	CCR (moderate)	4	34,000	23,269	21,767	79,036	0	2,051,413
	CTX (Low)	3	25,500	19,070	21,033	65,604	0	1,385,764
	CTX (Medium)	3	25,500	19,070	21,033	65,604	0	1,057,743
	CTX (High)	3	25,500	16,460	20,642	62,602	0	740,857
	CC&TX (Strict)	2	17,000	17,272	13,024	47,296	0	69,733
	CC&TX (Moderate)	3	25,500	19,070	21,033	65,604	0	1,057,743
	CT (Low price)	3	25,500	13,935	21,006	60,442	582,570	1,949,921
	CT (Medium price)	3	25,500	11,738	20,465	57,703	855,813	1,896,178
	CT (High price)	3	25,500	8,661	19,808	53,969	1,181,092 1,864,287
	NR:							

Table B5

 B5 Numerical results of different emission regulations for the P3/N2 instance. No regulation, CCR: Carbon cap restriction, CTX: Carbon tax, CC&TX: Carbon cap and tax, CT: Carbon-trading

	Emission regulations	# of DCs	DC implementation carbon emissions	Transportation carbon emissions	Inventory storage carbon emissions	Total emissions	Carbon-trading income	SCN Profit
	NR	8	68,000	64,268	71,655	203,924	0	9,164,920
	CCR (Strict)	6	51,000	51,178	64,320	166,498	0	6,793,148
	CCR (Moderate)	8	68,000	64,109	71,741	203,850	0	9,159,876
	CTX (Low)	8	68,000	63,540	71,909	203,450	0	6,930,917
	CTX (Medium)	8	68,000	64,025	71,878	203,904	0	5,965,422
	CTX (High)	7	59,500	61,347	70,988	191,835	0	5,000,511
	CC&TX (Strict)	6	51,000	51,178	64,320	166,498	0	4,061,409
	CC&TX (Moderate)	8	68,000	64,136	71,312	203,499	0	5,978,683
	CT (Low price)	7	59,500	59,566	72,923	191,990	2,150,980 9,015,225
	CT (Medium price)	7	59,500	54,052	71,835	185,388	3,120,816 8,850,908
	CT (High price)	7	59,500	43,760	70,599	173,859	4,283,024 8,737,626
	NR:							

√ √ √ √ MCI/P Dmd: Demand; CP: Carbon price; CEC: Carbon emission costs; FO: Facility operation; IS: Inventory storage; Trans.: Transportation; CER: Carbon emission regulation; MC: Minimize cost; ME: Minimize emission; MCTR: Maximize carbon-trading revenue; MP: Maximize profit; MLF: Minimize landfilling flows; MCI/P: Maximize carbon-trading income based profitThis paper follows the above stream of research and also investigates the sustainable and low-

180,629 188,662 201,337 301,307 328,507 387,359 384,957 418,138 446,967 Shipped quantity 168,202 198,790 227,897 333,585 371,582 384,497 436,553 465,647 492,390 Backordering quantity 31,919 41,257 67,533 106,306 133,870 157,569 164,859 207,751 261,878

When the sample of scenarios is generated by the Monte Carlo method, and all scenarios ξ ∈ Ω N are equiprobable, then the occurrence probability of each scenario is p(ξ) = 1/N .

Results

Calibration of algorithm

In this section, the computational results of different problem instances are presented to evaluate the performance of the proposed algorithm. First, we evaluate how much the integrated decisionmaking of the metaheuristic outperforms the sequential decision-making procedures of the first phase. Then, we solve instances using both Gurobi 8.0 optimizer's branch & bound algorithm and the proposed metaheuristic and compare their running time and the solutions to assess the efficiency of the metaheuristic. All tests are conducted on an Intel Core i7 processor with 16 GB of RAM in a Windows operating system, and the metaheuristic is coded with Python 3.6.4, and Gurobi 8.0 is used as the MIP solver with MIPGap equal to 0.0001.

Different sizes of instances under nonstationary demand have been solved by the proposed algorithms to evaluate the metaheuristic as well as the two sequential-solving procedures of the first phase. For each instance, two random generations of parameters are tested. The number of opened DCs obtained by each solution method and the solution improvement of the metaheuristic over two sequential solving methods are presented in Table 7. As we expected, the LOS procedure opens fewer DCs, whereas the DFS procedure opens more DCs than the solution obtained by the metaheuristic. And, the results show that the DFS procedure in the first phase outperforms the LOS procedure in terms of profit. Additionally, the results indicate the metaheuristic can improve the solution obtained by merely using sequential-solving more often. For example, the metaheuristic (S1) improves on average 49% of the solution obtained by the LOS procedure, and the metaheuristic (S2) improves on average 38% of the solution obtained by the DFS procedure. Additionally, to gain insights on how different decisions the two procedures make, the average ratio of SCN costs to the total SCN cost obtained by both in different network sizes are shown in Table B1 of Appendix B.

The computational results of each instance under nonstationary demand using the Gurobi optimizer and the metaheuristic are provided in Table 8. The optimization gap obtained by the Gurobi optimizer is reported in terms of the valid lower bound LB (i.e., Gurobi best solution value) and 

while True do 5:

Choose a method to generate neighborhood solution randomly 6:

if Method #1 = True then 7:

Generate X new , following neighborhood search and exploration strategies (i.e.,S1, S2), then Algorithm 2 8: Optimize MIP (Eq. (5.1)-Eq. ( 28)) with exact method to intensify X best for time limit

25:

Return the final solution: the optimal solution X * or the updated X best

Appendix B. Complementary results

The average ratio of SCN costs to the total SCN cost solved by two sequential procedures under nonstationary demand are illustrated in Table B1, which show the perspective of the two sequentialsolving procedures on decision-making. For all instances, the LOS procedure tends to reduce the total DC opening cost and the total DC implementation CEC, but the total transportation and the total backordering costs are higher than the ones from the DFS procedure. Contrarily, the DFS procedure tends to reduce the total transportation cost and the total backordering cost, whereas it enlarges the total DC opening cost and the total DC implementation CEC.

The numerical results of the impact of volatile carbon prices on SCN decisions and carbon emissions for the P1/N2 and the P3/N2 instances under the nonstationary demand are presented in Table B2 and Table B3. The volatility of carbon prices in the P1/N2 and the P3/N2 instances are the same as in the P2/N2 instance, with the carbon caps fixed to Φ cap τ =1 = 45, 000, Φ cap τ =2 = 35, 000, and Φ cap τ =3 = 25, 000 for