MECOM

XXXVII CONGRESO ARGENTINO

DE MECANICA COMPUTACIONAL

IFASS D ERN@GNVIEIMB RESERESIS BEN@GIAE @ AGE®
MODALIDAD VIRTUAL

Flow-induced self-sustained oscillations in
a straight channel with rigid walls and
elastic supports

Dario Alviso, Alejandro Gronskis, Federico Castro, Guillermo Artana
LFD, Facultad de Ingenieria — UBA, Argentina

Denisse Sciamarella — IFAECI-CNRS, Francia

CONICET m

FFFFFF

? FACULTAD
.‘ DE INGENIERIA

Universidad de Buenos Aires




FLOWS BETWEEN CHANNELS w/ OSCILLATING WALLS

Flows between parallel-sided channels with oscillating walls are
encountered in numerous and diverse problems such as lubrication,
peristaltic pumps, valves, pulsating diaphragms or in aerodynamic
particle focusing devices.

In physiological systems, some paradigmatic examples of this kind
of flow are found in the respiratory system of some insects, such as
ground beetle and Lethocerus uhleri or in the myoelastic-
aerodynamic mechanism responsible for voice production in
songbirds and mammals.

Flow-induced oscillations of a parallel sided channel have also been
largely discussed in the context of voice production. In this context,
the idealized vocal-fold models normally consider a symmetric
motion of both folds, except when trying to model vocal fold
unilateral paralysis, in which only one of both folds moves.
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BASIC PRINCIPLES OF VOCAL FOLD VIBRATION

The glottal airstream and the yielding duct wall (vocal folds) form a mechanical system that may demonstrate
instability under specific flow conditions. If these conditions are met, a continual transfer of energy from the
glottal airstream to the tissue will overcome frictional energy losses in the vocal folds.

Which is the main mechanism by which flow-induced oscillations are self-sustained?
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BASIC PRINCIPLES OF VOCAL FOLD VIBRATION

Non-uniform tissue modes are observed in normal vocal fold oscillation, and therefore two-mass models have
been much more studied than the one-mass counterparts. Intra-glottal flow separation is also supposed to
help in sustaining the oscillations.

TWO-MASS MODELS

OM_Z: -350 -300 -250 -200 -150 100 -50 O 50 100 150 200 250 300

1
0.8}
0.6 <)

D. Sciamarella, P. Le Quéré / European Journal of Mechanics B/Fluids 27 (2008) 4253



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

How important is the geometry of the channel? Can self-sustained oscillations be achieved in straight

channels with rigid walls?

EXPERIMENTS WITH DIFFERENT CHANNEL GEOMETRIES
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FIG. 1. Mechanical models of the vocal folds: (a) straight uniform channel,
(b) rounded vocal folds, and (c) Gaussian vocal folds.
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VI. CONCLUSION

From this study it was observed that upon collision the
flow unsteadiness due to the wall movement appears to be
only significant in the case of the straight uniform replica. In
such a case the unsteady theory of Reynolds (Sec. III E) pre-
dicts qualitatively the measurements. In the case of more
physiological vocal folds shapes, a transition between a
boundary-layer behavior towards a friction dominated be-
havior was clearly observed without significant effect of the
flow unsteadiness.

J. Acoust. Soc. Am., Vol. 114, No. 6, Pt. 1, Dec. 2003



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

How important is the geometry of the channel in the simple case of a one-mass model? Can flow-induced
oscillations be achieved and sustained in straight channels with rigid walls?

In the one-mass model, the phenomenon of flow separation from a rounded geometry or non-uniform tissue modes
are not present.

But the inclusion of glottal flow unsteadiness in the modeling equations brings a fluid-dynamic degree of freedom
into the system, which can be used to account for self-sustained oscillations in this scheme.
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BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Can flow-induced oscillations be achieved with a single one-mass model, as in a case vocal-fold paralysis?

An experimental setup is mounted with one elastically mounted mass, and the other fixed.

Cantilever beams




BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Can flow-induced oscillations be achieved with a single one-mass model, as in a case unilateral fold paralysis?
YES.
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BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Accounting for these oscillations with an analytic model.

When the wall channels are rigid and large enough, the flow can be London Mathematical Society
elegantly described in terms of an exact self-similar solution of the Navier- Lecture Note Series
Stokes equation.

This derivation involves an assumption concerning a form of the flow field
that enables reducing the equations of motion to an ordinary differential
equation for the similarity function.
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BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

In the case of channel flows with oscillating walls, one of the
prominent studies is reported in Secomb (1978), using a
perturbation technique.

* This work analyzes both walls moving periodically and
symmetrically along the normal direction.

* The author finds asymptotic solutions for the part of the
longitudinal velocity that presents a dependence with x.

* The solution is valid even when an external gradient of pressure
is imposed to the channel.

* The perturbation technique was also considered by other
researchers, who analyzed flows with non-periodic squeeze
rates.

e Aninitial transient may exist in which such solutions fail, but the
regular perturbation solution provides accurate results in a
larger Reynolds number range, that extends up to Re ~ 10.

J. Fluid Mech. (1978), vol. 88, part 2, pp. 273-288 273
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Flow in a channel with pulsating walls

By T. W. SECOMB
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(Received 18 November 1977)

In this paper calculations are made of the two-dimensional flow field of an incom-
pressible viscous fluid in a long parallel-sided channel whose walls pulsate in a pre-
scribed way. The study covers all values of the unsteadiness parameter « and the
steady-streaming Reynolds number. The wall motion is, in general, assumed to be
of small amplitude and sinusoidal. Particular attention is given to the steady com-
ponent of the flow at second order in the amplitude parameter . The results for the
corresponding problem in axisymmetric geometry are given in an appendix.

Next the following problem is considered: the calculation of the wall motion which
will result, in response to prescribed unsteady pressures imposed at the ends of the
channel and outside its walls, if the walls are assumed to respond elastically to varia-
tions in transmural pressure. It is found that the system has a natural frequency of
oscillation, and that resonance will occur if this frequency is close to a multiple of the
frequency of the external pressure fluctuations. Finally the preceding work is applied
in a discussion of blood flow in the coronary arteries of large mammals.

1. Introduction

A central feature of many physiological flow problems is the distensibility of vessel
walls and the wall motion which results under pulsatile flow conditions. The usual
approach to such problems is in terms of wave propagation, with the wall displace-
ment dependent on both time and axial distance. Here, however, we consider two
model problems in which the wall position depends only on time: two-dimensional
flow in a long channel of width 2a(t) and axisymmetric flow in a long tube of radius
a(t). An important reason for studying these two problems is that the velocity field
in each depends linearly on axial distance. This simplifies the equation of motion and
makes it possible to find solutions over a wide range of flow parameters (§§ 2-5).

Under physiological conditions the wall motion of a vessel is not usually directly
determined by external factors. It is more appropriate to consider the motion as being
driven by external pressures applied to the ends of a length of vessel and outside its
walls. A model problem of this type is investigated in §6, and the results are applied
in § 7 to the flow in the coronary arteries.

Uchida & Aoki (1977) have considered the same problem (in the axisymmetric case)
but with a different choice for the function a(t). They showed that if a(t) is a particular
monotonic function of time then time can be used as a similarity variable, and a solution
can be obtained to the full nonlinear equations. The results of the present paper are
complementary to theirs.
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BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Let us analyze the dynamics of this system combining the experimental study with the analytical approach.

The channel’s half length b is much larger than its mean width a;. We assume that the channel ends are connected to
large fluid reservoirs, both at constant but different pressure. Our interest is laid upon those regions where the flow is
fully developed and is not affected by the exit/entrance conditions of the fluid.

Let us focus on the case in which one of the rigid walls experiences a periodic motion along the normal direction
expressed as:

yw = a(t)
The equations of motion of this flow are:

U + Uty + ity = — @y + V(Uxx + Uyy)
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BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Self-similar solutions, supposing that the component of the velocity normal to the wall does not depend on the
longitudinal coordinate. The subindex indicates derivation with respect to the indicated variable
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BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

One possibility is to consider asymptotic solutions. The price to pay is that the solutions may be restricted to a
limited range of the non-dimensional control parameters. The following scaling is proposed:

Depending on the case under study, the value of Uy can be associated to a mean flow velocity produced by the
gradient of pressure imposed to the channel or to the longitudinal velocity associated to the wall movement.

Up ~ [ e5) Uy ~ bo

The height of the channel can be expressed as:

a(t) = aOH(A:wJ)



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

This scaling allows rewriting the Navier-Stokes equations in terms of the non-dimensional variables:

b A Uy - - * —
(o o+ (202 (0" — )L = won=lamdn =0 w =0
Uo 0 H at n=1 v"'=H,
* vb * Uy - ® p—
—0F+ oaz)( CC52+13;7) at =0 v =0.
0
Re = %%

To find a self-similar solution:

u (C,n,t") =up(n,t*) +uj(n,t*)¢




Inviscid solution

The inviscid flow assumption is obtained when I% ~ 0.
The solution of the problem is assumed to be self-similar and
to satisfy Condition 3. In our case, this determines that:

v(n,t) =na
u(x,t) = U (1) — gx

(b(xan:t) - (bo(n,f) +¢)l(t)x+¢)2(r)xz

where
da
Po(n) = ¢c(t) = 0

Ua
d)l(,) =—-U

a
l da )
P2y = 5(> =2(2)7)

U(t) and @.(t) depend on conditions at the channel ends, but not on x.

Viscous solution

Let us now consider the case %—%’ << 1, and neglect all the
terms that are affected by this coefficient. Let us also recall
that ¢, and ¢, are functions of time only. The solution of the
problem is assumed to be self-similar and to satisfy Condition
2. The solution can be expressed as :

u(x:n:t) = UO(TLI) ‘Hil(n:f)x

¢(xanzt) = ¢0(ntt) + ¢ (t)x+¢2(t)x2

Incorporating the boundary conditions of the problem, we
have:

v(n,1) =a(3n*—2n°)

uy(n,1) =6(a/a)(—n*+n)

Po(,1) = 66V (17— 1) +9c(1)

a a4 % i D
d)z(t):6v6?—18a—2(n —-21°+n*)



DISCUSSION

b

The dynamics of the mass is governed by:  y+27yy — wg) =g+ Fur(t) —— Fur(t)= | ¢(t)dx
Jp

= In the experiments, we detected that the movement of the mass in the y-direction is accompanied by a small
rotation. The linear term ®(7)contributes to explaining the slight rotation observed in the experiments.

*= The quadratic term ®,(¢) with this hypothesis prevails when a(t) attains a minimum value, indicating that the
forcing and trend of the mass to rotate relatively diminishes as the gap is narrowing.

* With the viscous approach, obtaining the value of ®(r) requires determining the point at which the flow is fully
developed. This amounts to finding an entrance length that corresponds to the position at which the boundary

layers of both walls merge.

= A correct estimation of this entry length is not a simple task as it varies with time. The boundary layer of the lower
mass must be calculated considering a pulsating flow. For the upper one, the situation complexifies as the wall is

moving.



DISCUSSION

In flow-induced vibrations, self-sustained oscillation is assured when the energy supplied to the mass by the flow during
a cycle of period T compensates the dissipation in the same time interval. This requires that:

7
/ Fae,-(,)(ldf >0
0

= |n the inviscid approach and considering a sinusoidal law for the wall motion, the only term that can contribute to
the flow-induced oscillation is the one corresponding to ¢.(z) (all the others give no net energy along a cycle). The
value of ¢.(r) can be easily calculated if we neglect the non steady terms outside the channel.

=  With the viscous analysis, there are contributions of ®; and ®, to the flow-induced oscillation. The viscous case
solution has however some restrictions. It is suitable to analyze mass motions in which:

* This condition is satisfied for instance when: a(t) = ag(1 + Asin(wt)). This law agrees quite well with the recorded
mass motion of our experiments.



CONCLUSIONS

» We presents for the first time an experimental and analytical study of a long parallel-sided channel with one wall
pulsating periodically.

» We observe that the oscillations induced by the flow of the mass that limits one side of the channel occurs at a
frequency close to the natural frequency of the system. The gap varies following a sinusoidal wall of motion.

» The mean velocity in the channel attains a relatively high value compared to the horizontal squeeze flow produced
by the oscillating mass.

» The analytical study assumes a self-similar behavior of the flow inside the channel. This study allows us to analyze
the nature of flow-induced oscillation in the context of both, inviscid and viscous flow.

» The inviscid approach is not restricted to cases of simple periodic wall motion: it also enables incorporating arbitrary
periodic laws. Here, we find that the flow-induced movement can be explained only in terms of flow states that
depend on the exit and entrance conditions.

» In the viscous approach, the solution obtained is restricted to sinusoidal wall motions, the oscillation does not rely
only on the exit and entrance conditions since the energy dissipation are compensated by pressure forces that
depend on the non steady viscous terms.



