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Flows between parallel-sided channels with oscillating walls are 
encountered in numerous and diverse problems such as lubrication, 
peristaltic pumps, valves, pulsating diaphragms or in aerodynamic 
particle focusing devices. 

In physiological systems, some paradigmatic examples of this kind 
of flow are found in the respiratory system of some insects, such as 
ground beetle and Lethocerus uhleri or in the myoelastic-
aerodynamic mechanism responsible for voice production in 
songbirds and mammals.

Flow-induced oscillations of a parallel sided channel have also been 
largely discussed in the context of voice production. In this context, 
the idealized vocal-fold models normally consider a symmetric 
motion of both folds, except when trying to model vocal fold 
unilateral paralysis, in which only one of both folds moves. 

FLOWS BETWEEN CHANNELS w/ OSCILLATING WALLS



BASIC PRINCIPLES OF VOCAL FOLD VIBRATION

The glottal airstream and the yielding duct wall (vocal folds) form a mechanical system that may demonstrate 
instability under specific flow conditions. If these conditions are met, a continual transfer of energy from the 
glottal airstream to the tissue will overcome frictional energy losses in the vocal folds.

Which is the main mechanism by which flow-induced oscillations are self-sustained? 

ONE-MASS MODELS TWO-MASS MODELS



BASIC PRINCIPLES OF VOCAL FOLD VIBRATION

Non-uniform tissue modes are observed in normal vocal fold oscillation, and therefore two-mass models have 
been much more studied than the one-mass counterparts. Intra-glottal flow separation is also supposed to 
help in sustaining the oscillations. 

TWO-MASS MODELS



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

How important is the geometry of the channel?  Can self-sustained oscillations be achieved in straight 
channels with rigid walls? 

EXPERIMENTS WITH DIFFERENT CHANNEL GEOMETRIES



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

How important is the geometry of the channel in the simple case of a one-mass model?  Can flow-induced 
oscillations be achieved and sustained in straight channels with rigid walls? 

In the one-mass model, the phenomenon of flow separation from a rounded geometry or non-uniform tissue modes 
are not present. 

But the inclusion of glottal flow unsteadiness in the modeling equations brings a fluid-dynamic degree of freedom 
into the system, which can be used to account for self-sustained oscillations in this scheme. 



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Can flow-induced oscillations be achieved with a single one-mass model, as in a case vocal-fold paralysis? 

An experimental setup is mounted with one elastically mounted mass, and the other fixed. 



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Can flow-induced oscillations be achieved with a single one-mass model, as in a case unilateral fold paralysis? 
YES. 



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Accounting for these oscillations with an analytic model. 

When the wall channels are rigid and large enough, the flow can be 
elegantly described in terms of an exact self-similar solution of the Navier-
Stokes equation. 

This derivation involves an assumption concerning a form of the flow field 
that enables reducing the equations of motion to an ordinary differential 
equation for the similarity function. 

Assumption: 

The vertical component of the 
velocity vy does not depend on the 
horizontal coordinate x. 

Incompressibility leads to a linear 
dependence of the horizontal 
velocity component vx with x.



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

In the case of channel flows with oscillating walls, one of the 
prominent studies is reported in Secomb (1978), using a 
perturbation technique. 

• This work analyzes both walls moving periodically and 
symmetrically along the normal direction. 

• The author finds asymptotic solutions for the part of the 
longitudinal velocity that presents a dependence with x. 

• The solution is valid even when an external gradient of pressure 
is imposed to the channel. 

• The perturbation technique was also considered by other 
researchers, who analyzed flows with non-periodic squeeze 
rates. 

• An initial transient may exist in which such solutions fail, but the 
regular perturbation solution provides accurate results in a 
larger Reynolds number range, that extends up to Re ∼ 10.



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Let us analyze the dynamics of this system combining the experimental study with the analytical approach. 

The channel’s half length b is much larger than its mean width a0.  We assume that the channel ends are connected to 
large fluid reservoirs, both at constant but different pressure. Our interest is laid upon those regions where the flow is 
fully developed and is not affected by the exit/entrance conditions of the fluid. 

Let us focus on the case in which one of the rigid walls experiences a periodic motion along the normal direction 
expressed as:

The equations of motion of this flow are:



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

Self-similar solutions, supposing that the component of the velocity normal to the wall does not depend on the 
longitudinal coordinate. The subindex indicates derivation with respect to the indicated variable

Substitution into the Navier-Stokes equation of these expressions yields 
an equation which translates into one of three possible conditions. 

Condition 1 Condition 2 Condition 3

No restriction on 



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

One possibility is to consider asymptotic solutions. The price to pay is that the solutions may be restricted to a 
limited range of the non-dimensional control parameters. The following scaling is proposed: 

with

Depending on the case under study, the value of U0 can be associated to a mean flow velocity produced by the 
gradient of pressure imposed to the channel or to the longitudinal velocity associated to the wall movement.

The height of the channel can be expressed as:



BASIC PRINCIPLES OF FLOW-INDUCED SELF-SUSTAINED OSCILLATIONS

This scaling allows rewriting the Navier-Stokes equations in terms of the non-dimensional variables: 

To find a self-similar solution: 



Inviscid solution Viscous solution



DISCUSSION

The dynamics of the mass is governed by:

§ In the experiments, we detected that the movement of the mass in the y-direction is accompanied by a small 
rotation. The linear term           contributes to explaining the slight rotation observed in the experiments.

§ The quadratic term           with this hypothesis prevails when         attains a minimum value, indicating that the 
forcing and trend of the mass to rotate relatively diminishes as the gap is narrowing.

§ With the viscous approach, obtaining the value of           requires determining the point at which the flow is fully 
developed. This amounts to finding an entrance length that corresponds to the position at which the boundary 
layers of both walls merge. 

§ A correct estimation of this entry length is not a simple task as it varies with time. The boundary layer of the lower 
mass must be calculated considering a pulsating flow. For the upper one, the situation complexifies as the wall is 
moving.



§ In the inviscid approach and considering a sinusoidal law for the wall motion, the only term that can contribute to 
the flow-induced oscillation is the one corresponding to          (all the others give no net energy along a cycle). The 
value of          can be easily calculated if we neglect the non steady terms outside the channel. 

§ With the viscous analysis, there are contributions of       and       to the flow-induced oscillation. The viscous case 
solution has however some restrictions. It is suitable to analyze mass motions in which:

§ This condition is satisfied for instance when:                                       . This law agrees quite well with the recorded 
mass motion of our experiments. 

In flow-induced vibrations, self-sustained oscillation is assured when the energy supplied to the mass by the flow during 
a cycle of period T compensates the dissipation in the same time interval. This requires that: 

DISCUSSION



Ø We presents for the first time an experimental and analytical study of a long parallel-sided channel with one wall 
pulsating periodically. 

Ø We observe that the oscillations induced by the flow  of the mass that limits one side of the channel occurs at a 
frequency close to the natural frequency of the system. The gap varies following a sinusoidal wall of motion. 

Ø The mean velocity in the channel attains a relatively high value compared to the horizontal squeeze flow produced 
by the oscillating mass.

Ø The analytical study assumes a self-similar behavior of the flow inside the channel. This study allows us to analyze 
the nature of flow-induced oscillation in the context of both, inviscid and viscous flow. 

Ø The inviscid approach is not restricted to cases of simple periodic wall motion: it also enables incorporating arbitrary 
periodic laws.  Here, we find that the flow-induced movement can be explained  only in terms of flow states that 
depend on the exit and entrance conditions.

Ø In the viscous approach, the solution obtained is restricted to sinusoidal wall motions, the oscillation does not rely 
only on the exit and entrance conditions since the energy dissipation are compensated by pressure forces that 
depend on the non steady viscous terms. 

CONCLUSIONS


