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Abstract. We address the formation of Interface Transport Barriers using
a generic turbulent transport model, reduced to 2D, and used to investigate
interchange turbulence in magnetized plasmas. The generation of a transport
barrier at the edge-SOL plasma interface is governed by a zonation regime in
the edge region with closed field lines. It is triggered by a gap in the turbulent
spectrum between zero, the zonal flow wave vector, and the wave vector of the
spectrum maximum. This gap is controlled by the energy injection wave vector of
the interchange instability and the Rhine scale that bounds the inverse cascade.
Increasing the magnitude of the turbulence drive at given gap reinforces the
transport barrier. In the interface transport barrier regime, edge relaxation bursts
of turbulence regenerate the zonal flows that are eroded by damping processes
such as collisions. The duration of the quiescent phase between the quasi-periodic
relaxation events is then governed by the ion collision frequency. Such interface
transport barrier can play the role of a seed barrier prior to a full bifurcation to
improved confinement.

Turbulence self-organization plays a major role in transport properties within
stratified media in geophysics [1], astrophysics [2] as well as laboratory plasma dedi-
cated to magnetic fusion research [3, 4, 5] . An outstanding mechanism is the tran-
sition from a fully turbulent to the so-called zonation regime [6], where large scale
anisotropic flows, the zonal flows [7], appear to undergo condensation to a regular
pattern [8]. Such transitions have been investigated in reduced 2D models of the
Hasegawa-Mima type [9, 10]. We are interested here in such a transition in fusion
plasmas where an interchange-like instability [11, 12], akin to the Rayleigh-Bénard
instability [13, 14, 15], drives the turbulence. Of interest is the transition between two
regions with different zonal flow damping capability such as observed at the periphery
of magnetically confined plasmas between the edge region, where the magnetic sur-
faces are closed, and the SOL [14, 16] region where magnetic surfaces intersect wall
components. We report the formation of a transport barrier localized at the inter-
face, i.e. separatrix, between the edge where zonal flows are weakly damped and SOL
where the plasma wall boundary conditions govern zonal flow damping. A zonal flow
condensation is localized by the separatrix and a transport barrier develops with large
gradients extending across the separatrix in the edge and SOL regions. Such a regime
is different from that of the stair-cases [17, 18, 19] that are not localized radially and
appear to meander with time. The simplified turbulence model that is used addresses
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particle transport driven by a poloidally symmetric source localized in the edge re-
gion [16, 20]. This fixed location well within the separatrix enforces particle transport
that has been repeatedly observed experimentally to be unfavorable for developing
improved confinement scenarios in magnetically confined plasmas [5, 21]. However,
we show here that an interface transport barrier can develop depending on spectral
properties, namely the gap between the zonal flow and the wave vector of maximum
energy injection governed by the instability, possibly shifted to lower wave vector by
inverse cascade features. Large collisionality is shown to weaken the transport bar-
rier by on-setting quasi periodic relaxations and thus increase the effective transport
through the barrier region. On the overall, the interface barrier remains relatively
weak even at lowest collisionality mostly because these relaxation events have not
been observed to be completely quenched. It must therefore be regarded as a seed
mechanism playing a role in the localization and subsequent bifurcation towards a full
pedestal with significant confinement improvement [22].

The turbulent pattern generation is investigated with a 2D fluid model of
the interchange instability [11, 12], akin to several instability mechanisms driving
turbulence governed by a generic plasma cross field current, itself driven by magnetic
field inhomogeneity and consequent vertical drift current. The model is simplified to
only retain the key features required for generating the interface transport barriers. It
stands for particle and charge conservation equations in an isothermal plasma in the
cold ion limit:

∂tn+ [φ, n]−D⊥∆⊥n = S − Γ (1a)

∂tW + [φ,W ]−ν⊥∆⊥W + g∂yn = J (1b)

where n is the particle density and W the vorticity, W = ∆⊥Φ. The time and
space are normalized by the inverse of the cyclotron frequency and the Larmor radius
respectively. Space is reduced to 2D transverse to the magnetic field assuming
symmetry along the magnetic field. The y coordinate is typically an angle, the
poloidal angle for magnetic confinement, the x coordinate in the radial direction that
extends from the source S, localized in the edge, to the sink Γ in the SOL. The
separatrix is defined at a given xSep radial position. Constraints due to the physics
along the magnetic field govern volumetric loss terms: the parallel divergence of the
electric current J and the particle sink Γ, the latter being specific of the SOL region.
Convective turbulent transport [Φ, f ] = ∂x(fvx) + ∂y(fvy) with electric drift velocity
vx = −∂yΦ and vy = ∂xΦ competes with weak diffusive transport with coefficient D
for the particles and ν⊥ for the vorticity. The model is similar to the Rayleigh Bénard
model [13, 14, 15], replacing the density n by the fluid thermal energy variation Θ [13]
and the g-term, which governs the plasma interchange instability, by the buoyancy
force. The electric potential is φ and W is related to the polarization charge. For
standard fluids φ is the stream function and W the vorticity [13]. A pseudo-spectral
code is used for the numerical simulations with state of the art verification by PoPe
[23]. The high accuracy of the computation of the derivatives ensures that the small
diffusive processes included in the evolution equations are not overwhelmed by spurious
numerical diffusion.

The change in field line properties at the separatrix is taken into account by
a mask function χ(x), χ(x > xSep) = 0 and χ(x ≤ xSep) = 1 such that J =
σφ(φ− χ(x) 〈φ〉y),where σφ is the normalized conductivity and 〈f〉y is the y−average
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of f , similarly Γ = (1−χ(x))σnn where σn is the particle lifetime in the SOL. The edge
and SOL difference is twofold. First the particle loss is localized in the SOL region.
This has rather little effect on the turbulence but organizes the overall stratification of
the system in the x direction. Second, the change in J modifies the evolution equation
for the zonal flow Vz = ∂x 〈φ〉y. The latter is governed by a balance between the non
linear Reynolds stress source, and the loss terms: viscous damping at small scales, sink
term 〈J〉y at large scales. The edge constraint 〈J〉y = 0 favors large scale zonal flow
structures. Conversely, in the SOL, the current loss 〈J〉y = σφ 〈φ〉y, here linearized for
simplicity, damps these zonal flow structures. These specific loss terms are discussed
in Appendix A both in terms of the underlying physics and regarding the effect on
the instabilities determined by the dispersion relation.

In the strong zonation regime, exemplified in fusion plasmas by the so-called
Dimits’ shift [24, 25], the plasma appears to remain close to marginality. The linear
analysis of the near marginal growth rate, for a prescribed and constant density
gradient length 1/Ln and for eigen functions given by Fourier modes, is then:

γm =
(ν⊥σφ)

1/2

L(K)

(
LR
Ln

k2y
k2
− 1

Sc

(
K4 + 1

))
(2a)

LR =
g

ν⊥σφ
; L(K) = (1 + 1/Sc)K

2 + 1/K2 (2b)

where K = k/k̄, k̄4 = σφ/ν⊥ and Sc = ν⊥/D is the Schmidt number. This expres-
sion yields three key aspects of the near marginal regime, the order of magnitude of
γm, (ν⊥σφ)1/2, the threshold such that LR/Ln must exceed a given function of kx
and ky, and a localization function L(K) that favors K = (1 + 1/Sc)

−1/4 as most
unstable mode. The latter effect is governed by the balance between the homogeneous
damping rates, that at small scale ≈ ν⊥k

2 due to diffusion, and that at large scale
≈ σφ/k

2 due to parallel currents. These loss terms govern dissipation for large and
small wave vectors. They prevent energy accumulation in these spectral regions irre-
spective of the direction of the energy cascade. It is to be underlined that in the SOL,
χ(x > xSep) = 0, the large scale damping also applies to the zonal flows, which is not
the case in the edge, χ(x < xSep) = 1, as prescribed for adiabatic electrons. Finally,
the drive for the interchange instability is proportional to k2y/k

2, and favors therefore
modes with smallest values of kx, excluding kx = 0 to allow for global momentum
conservation by the zonal flow radial structure.

SOL-transport with the present model is comparable to that previously reported
when only the SOL region was addressed [16, 26]. It is characterized by avalanche
transport, hence ballistic propagation of fronts and holes [16, 27, 26], the so-
called ’blobs’ [28] routinely observed in experiments [29, 30]. Density and potential
fluctuations are large [16, 26] but the mean value weakly departs from the equilibrium
value, namely the plasma floating potential set at zero for convenience in this
isothermal case. Conversely, transport in the edge region appears to depend
significantly on the zonal flows. These generate transport barriers [5, 7], where the
transverse turbulent avalanches are damped and therefore where the remnant diffusive
transport governs a larger fraction of the particle outflux [31]. The time averaged
profiles then exhibit an enhanced gradient region, the so-called pedestal. At the
edge and SOL interface this pedestal is readily observed, as shown on fig.1-a. Three
different average density profiles are compared on fig.1-a where only the position of
the separatrix xSep is modified in the simulations, i.e. xSep = 0.6 xa (continuous line),
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xSep = 0.8 xa (dashed line) and xSep = xa, dash-dot line). Three key features are
highlighted by these results: the density e-folding length in the SOL is unchanged, the
pedestal region with large density gradient at the separatrix extends both in the edge
and SOL regions and the density profile exhibits corrugations, enhanced gradients at
other locations, that yields a staircase-like profile [17, 18]. In order to quantify the

Figure 1: (a) Density pedestal for different positions of the separatrix (see text), (b)
density gradient profiles with radial shift, (c) zoom on the pedestal region

extent of the pedestal in the two regions, we shift the profiles to the same separatrix
position and compare the density gradient profiles 1/Ln = −∂xn / n, fig.1-b. The
strong density drop observed in the pedestal leads to a marked peak in the 1/Ln
profile localized at the separatrix. The pedestal extends into both the edge and SOL
regions. Its radial width is observed to range between 5 % and 10 % of the size of
the simulation domain, of the same order of magnitude as the SOL width fig.1-c.
Regions with large zonal flows shear appear to be correlated with the corrugation of
the profiles, see fig.2-a & b. They are characterized by a stopping capability of most
of the avalanches both overdense from uphill and holes from downhill [31, 32].
The plasma evolution in the edge is characterized by a slow reorganization of the
zonal flow pattern as readily observed on the contour plot of the zonal flow shear
superimposed on the 2D plot of 1/Ln , fig.2-a. Two features are outstanding, the
evolution towards a dipolar structure of 1/Ln in the edge region and conversely
the structure of the maximum value at the separatrix that weakly evolves. When
a statistical steady state is reached, one can average the profiles over time, fig.2-b
and fig.2-d. As readily expected, one can see that the total flux Γtot = Γturb + Γdiff

is radially constant in the edge and decays in the SOL. In the edge, the turbulent
contribution Γturb exhibits well defined minima, and consequently large values of the
diffusive flux Γdiff, at locations where 1/Ln as well as the magnitude of the zonal flow
shear are large. Narrow regions with strong turbulent transport are localized in the
vicinity of the layers with zero shear of the zonal flows.

To identify the transport barriers, one defines the ratio between the y-averaged
particle fluxes Rb = Γturb/Γtot [31]. Rb varies between 0 and 1 in steady state and is a
measure of the effectiveness of the barrier in reducing turbulent transport. One readily
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Figure 2: (a) E×B shear (contour) and 1/Ln (colored) in function of time and radius,
separatrix location white vertical dashed line,(b) the time and y-averaged shear (plain)
and 1/Ln (dash-dot), (c) parameter Rb used to determine the transport barriers, (d)
total flux (plain), turbulent flux (dash-dot) and diffusive flux (dash) in the radial
direction, separatrix location red vertical dashed line.

observes on fig.2-c that Rb changes in time and space (x-direction). In space, one
recovers the dipolar structure with four transport barrier regions, the pedestal at the
separatrix that is relatively narrow, two broad barriers in the edge and finally a small
transport barrier towards the source region that is strongly linked to the boundary
conditions of the model. In time, one can observe quasi-periodic relaxation events.
These are characterized by strong turbulent transport across all the barriers. While
these events are globally quasi-periodic, the detailed time evolution is quite specific
of each event made of consecutive avalanches that do not extend throughout the
edge region. These events also exhibit a marked correlation with the large transport
bursts in the SOL region, see fig.3. In this turbulent transport regime, the pattern
of the avalanches is quite complex and driven by several mechanisms, the source, the
bouncing between the staircases [32, 33, 19], diffusive burn through the barriers and
corrugations [31], as well as the wake of previous transport events that determine
a pre-existing pattern of the electric potential [19]. As can be observed on the time
traces, the edge region exhibits a sawtooth evolution pattern, corresponding to particle
storage and subsequent relaxation by the interface transport barrier, while the SOL
region exhibits a pulse-like variation, since the SOL acts as the sink for the particles
released at each relaxation event, fig.3.

The generation of a pedestal, associated in this model to a corrugation structure in
the edge region, is observed for values of the control parameters that are close to those
yielding marginal interchange instability. However turbulent transport and zonation
clearly indicate that non-linear features govern the evolution. The interplay between
zonal and turbulent modes can be addressed in the modulational instability framework
[34] with three mode coupling [7], φz(κ, 0), φs(0, ky), φt(κ,−ky), respectively the zonal
flow (Z), a streamer (S) and a turbulent mode (t) [20]. In terms of wave vectors in
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Figure 3: (a) 1/Ln evolution in time and radial direction, separatrix localized at
r = 120ρi, with different SOL and edge transport patterns, time trace of 1/Ln at
given radial positions in the edge (b), and SOL (c).

the x and y directions, both the zonal flow and the streamer are strongly asymmetric
while the turbulent mode is more symmetric. Removing the interchange instability by
setting g = 0, we can address analytically the dispersion relation in two limit cases (1)
Z-flow generation with growth rate γ1, given a finite amplitude of the streamer mode
Φs as reference equilibrium and two coupled perturbation modes φz, φt, conversely,
(2) a finite zonal saturation with mode amplitude Φz and two growing perturbation
modes with amplitude φs, φt and growth rate γ2. The dispersion relations for cases
(1) and (2) are:

(γ1 + γz)(γ1 + γt) = Vtk
2
yκ

2|Φs|2 (3a)

(γ2 + γt)(γ2 + γs) = −Vtk2yκ2|Φz|2 (3b)

where γz = ν⊥κ
2, γs = ν⊥k

2
y + σφ/k

2
y and γt = ν⊥k

2 + σφ/k
2, k2 = κ2 + k2y. The cou-

pling term is Vt =
(
k2y − κ2

)
/k2. A symmetric necessary condition for positive growth

rates of these two particular cases of Kelvin-Helmholtz instability [20] is obtained: in
case (1) Eq.(3a) k2y > κ2, and in case (2) Eq.(3b) k2y < κ2.

Considering the turbulence spectrum in ky, we split the mode domain in three
regions: the zonal flow (Z) ky = 0, the Big (B) |ky| < |κ| and Small (S) turbulent
structures |ky| > |κ|. Region S is the source of zonal flows while region B acts as a
sink and energy loss via the large scale damping term proportional to σφ. Provided
κ 6= 0, the viscosity term is a generic version of damping at large scales that includes
ion collisions, and that actually controls the linear damping of zonal flows [35]. The
existence of the B-mode region is essential for the transition from a turbulent regime to
the zonation regime characterized by the development of a non homogeneous spectrum,
|ky| < |kx| ≈ κ. Furthermore, the shearing capability of the kx = κ zonal flow is small
for the B-modes since |ky| < |κ|. For g 6= 0, the energy injection in the spectrum
is governed by the interchange instability at ky ≈ k̄ and the inverse cascade [36]
is controlled by the Rhine scale LR, eq.(2). The development of the B-mode gap
between the turbulence modes and zonal flows is thus constrained by κ ≈ κR � 1,
where κR = min(k̄, 1/LR).

The spectrum of the electric potential in simulations in the zonation regime, fig.4-
a, is characterized by a gap between S and Z modes, hence with weak B-mode
turbulence. The S-region then transfers energy via non linear coupling towards the
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Figure 4: (a) Electric potential spectrum, turbulent regime labeled ”no gap” and
zonation regime with interface transport barrier labeled ”with gap”. (b) density
gradient profile: zonation regime, plain line, labeled ”with gap”), and turbulent
regime, dashed line labeled ”no gap”, the separatrix is indicated by the vertical dashed
line at ρ = r/a = 1.

Z-flows, which tends to store the energy and quench turbulent transport dominated by
the S-modes. The Z-mode decays gradually due to viscous damping while the Interface
Transport Barrier gradient builds-up until a new relaxation event is triggered. The
onset of the latter is mostly governed by the zonal flow weakening. However, at lowest
collisionality, when the relaxation frequency is small enough that large gradient build-
up, the gradient increase can combine to the zonal flow decay and drive the onset of
a burst of turbulent transport. The burst of S-mode turbulence leads to the gradient
relaxation as well as Z-flows regeneration. Conversely, when the gap between the S
and Z spectral regions is reduced, hence increasing the B-mode amplitude, the B-
mode turbulent activity is less affected by Z-flow shearing and the Z-mode energy is
transferred back to the turbulent modes, both the B and S modes according to the
mechanism yielding the Kelvin-Helmholtz dispersion relation Eq.(3b). In that regime,
the relaxation events cannot be isolated from the steady state transport activity and
the pedestal is smeared-out, fig.4-b. The fluctuations spectra that characterize these
two regimes present a strong similarity with the experimental observation achieved
during the claimed L-H transition on the stellarator H-1 [37].
The dynamics of this transition between pedestal (High confinement) and no-pedestal
(Low-confinement) behavior, is captured by the following 0-D predator-prey model [7].
The model couples the gradients ∇n and the Z, S and B modes. The gradient ∇n is
governed by a balance between the source P and transport, both turbulent T = B+S
and collisional T ∗. The growth rates for S and B modes are γs and γb respectively
and exhibit a threshold in the gradient, ∇n∗. Non-linear saturation of these modes
are used, proportional to αs and αb. The control parameter of the Z-flow generation
by S is β. The B-modes act as a saturation term on this energy exchange via the 1/T
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dependence. The Z-flow sink is proportional to the viscosity ν.

∂t∇n
∇n

=
P

∇n
− (T + T ∗) ; T = B + S (4a)

∂tZ

Z
= β

S

T
− ν (4b)

∂tS

S
= γs(∇n−∇n∗)(1− αsS)− βZ

T
(4c)

∂tB

B
= γb(∇n−∇n∗)(1− αbB) (4d)

This system is similar to predator-prey models introduced to describe plasma turbulent
transport with reduced models [31, 38, 39]. One difference however is that the
predating of turbulence by zonal flow shearing takes a form that is reminiscent of a κ-ε
model [40, 41]. The field ε that acts as a predator of the turbulence energy, typically
the S-modes is then defined as ε = β(S/T )Z. The energy transfer mechanism towards
the energy sink is therefore governed by the zonal flows with a particular efficiency
that depends on the ratio S/T , namely the transfer is inhibited whenever B & S.
When changing variable Z to ε, one finds the standard local evolution of the κ-ε
model assuming that B stands for κ.

∂tS = γs(∇n−∇n∗)(1− αsS)S − ε (5a)

∂tε = γεε−
ε2

S

(
1− S

T

)
(5b)

The growth rate for ε is a complicated expression, essentially determined by the fre-
quency β and the growth rate of B as well as an inhibiting effect due to the specific
linear zonal flow damping proportional to ν. The saturation term in the ε model is
reminiscent of that used in neutral fluid turbulence [40], but with an efficiency that
depends on the ratio B/T so that for B ' T this non-linear saturation is effective
while it is impeded when B decreases with respect to S. In the latter case, a case
with a gap since B � S, the stabilizing role of ε is enhanced. The limit cycles of the
Z-T interplay in simulations and the 0-D model are compared in the Z − T plane,
fig.5-a. Z and T are readily determined by eq.(4) for the 0-D model. For the sim-
ulation output of interchange turbulence, we define Zi = FT (Vz) and T 2

i = FT (R)
as the 2D Fourier mode energy FT of the zonal flow velocity Vz and Reynolds stress
R respectively. The different positions of the cycles in the Z-T plane are determined
by the control parameters: blue trace for a reference case. Increasing the curvature
term g leads to the yellow trace, while decreasing σφ leads to the green trace, fig.5-b.
Increasing g in the simulation leads to an increase of both turbulence and zonal flow
energies, the latter more strongly, so that of Zi/Ti increases. A comparable behavior is
obtained by increasing γs and γb, namely the growth rate of the interchange instability
-governed by g- fig.5-b. Decreasing σ governs a decrease of both k̄ and 1/LR so that
the spectrum maximum shifts towards the low ky values, reducing the Z-S gap. The
turbulence amplitude is then increased as well as the ratio between B and S modes.
Consistently, this behavior is recovered in the 0-D model by reducing αs and αb, the
non-linear turbulence saturation, as well as the critical gradient ∇n∗.

The occurrence of an interface localized where some mechanisms at play in the
vorticity evolution change rapidly is shown to drive a transport barrier in some param-
eter regimes. This barrier is pinned at the interface and extends across the interface.
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Figure 5: Limit cycles: (a) 2D simulation,(b) 0D model

In fusion plasmas a possible drive for such a behavior is the change in zonal flows
damping across the separatrix between open and closed field lines. Similar changes
could also take place across the separatrix of MHD modes. Although this mecha-
nism seems ubiquitous in driving weak transport barriers whenever an interface ex-
ists, it does not exhibit all the key features that govern H-mode transport barriers. It
could however, be a mechanism for weak transport barrier formation at the separa-
trix in X-point divertor configurations as well as at the last closed magnetic surfaces
in limiter configurations. This would be a seed mechanism localizing the H-mode
transport barrier when other mechanisms reinforce the transition to large transport
barriers. Conversely, in simulations with a different implementation, or different res-
olution, between two simulation domains, and in particular at the separatrix, it can
also lead to spuriously large interface barriers. Finally in conjunction with MHD is-
land mode structure it could be a seed mechanism explaining the correlation, although
non-systematic, between radial localization of Internal Transport Barrier and rational
safety factors [42, 43]. Rapid variation of the zonal flow damping rate is also found
to be a key mechanism of barrier formation when neoclassical dependencies are ac-
counted for [44]. It can also play a role in the barrier behavior reported in [45] as
well as in a 3D global simulation with realistic divertor configuration [46]. Recent
results with penalized boundary conditions [47, 48] and gyrokinetic turbulence are
characterized by a transport barrier at the interface between the magnetic surfaces
with penalized conditions and that without [48, 49]. One also finds in gyrokinetic sim-
ulations that collisionless regimes with strong zonation yield stiff corrugation patterns
such that turbulent transport quenching can drive a divergence of the profiles in these
flux driven simulations [50].
We show here that the generic mechanism generating such an interface transport bar-
rier is the ability to open a gap between the turbulent mode with largest amplitude and
the zonal flows. When such a gap occurs the intermediate modes are depleted by zonal
flow shearing and energy tends to condensate on the zonal flows, hence sustaining the
transport barrier. However, when the gap is reduced, the intermediate modes provide
a mechanism for depleting the zonal flows, thus reducing the turbulence quenching
capability. This mechanism is similar to that observed experimentally on the stellara-
tor H-1 [37]. One also finds that such a transport barrier is prone to cyclic relaxation
events governed by the erosion of the zonal flows, in particular by collisions. Low
collisionality would then govern a lowered frequency of the turbulent bursts and the
possibility to develop enhanced gradients at the interface. The physics that control
the gap are governed by the mode of the energy injection into the spectrum combined
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to inverse cascade effects that tend to shift the spectrum maximum towards the low
mode numbers. It can be shown that stepping to finite ion temperature inhibits the
inverse cascade. Furthermore, higher edge plasma temperatures increase the parallel

conductivity σφ and should therefore drive the most unstable mode k
4

= σφ/ν⊥ to
higher values. Finally, the increase of the ion temperature will reduce the zonal flow
collisional damping rate. This discussion indicates that although the role of the plasma
temperature in the edge, and more specifically the ion temperature and therefore of
the energy flux on the ion heat channel, is not addressed in the model, it appears to
be a means to control the spectral gap between the zonal flows and the wave vector
of the spectrum maximum. Experimental evidence would then support a mechanism
that controls the spectral gap and drives the onset of seed transport barriers localized
at the interface where rapid variation in space of zonal flow damping takes place.
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Appendix A. Specific sink terms and the dispersion relation

The model (1) is a simplification of the model used in [36, 16, 14] to investigate SOL
turbulence driven by the interchange instability [11, 12]. Via an integration along
the field lines it depends on the electron particle flux as determined by the sheath
conditions Γn = ncs exp(Λ − φ) where cs is the sound velocity and n exp(Λ − φ) the
electron density variation in the adiabatic limit for parallel momentum balance. In
the isothermal case used here Λ is related to the floating potential. We consider here
that Λ is a constant so that it can be set to zero when changing the reference electric
potential. The current loss J through the plasma sheath is then determined by the
ion current, the so called ion saturation current encs, and the electron current eΓn
so that j = encs(1 − exp(Λ − φ)). The adiabatic electron response in the parallel
direction drives a highly non-linear dependence that is of interest when addressing a
precise description of these losses [14] but that can be linearized to capture the key
features of the instabilities, therefore Γn ≈ cs(n− n0φ) and j ≈ en0csφ.
In the edge, following the Hasegawa-Wakatani seminal model [51] the current is
proportional to the electron particle flux so that Γn = (σTe/e

2)∇‖(n/n0 − φ) where
σ is the electric conductivity. The characteristic loss terms in both (1a) and (1b)
are then of the form C(n − φ) where C ∝ k2‖. The dependence in the parallel wave
vector k‖ stems from the fact that the current j is proportional to the parallel gradient
of the electron plasma pressure and of the electric potential and that the divergence
of these fluxes determine the local loss terms due to the parallel dynamics, hence a
dependence in k2‖. Two important remarks must then be made. First, for the flux

surface average, the y-average in the 2D case of model (1), one has k‖ = 0 so that
these loss terms vanish. Second, in the asymptotic limit C → +∞, hence when the
collisional friction in the electron mechanical balance become negligible, one recovers
the adiabatic limit for the fluctuations n = φ. The edge loss terms introduced in the
Hasegawa-Wakatani model are thus suitable for fluctuations but cannot be extended
to include the complete field as considered in the global framework of our model (1).
This point is of particular importance for the density field since the parallel loss term
in the sheath is proportional to n = 〈n〉+ ñ (1a) while n−〈n〉 is implicitly considered
in the Hasegawa-Wakatani term C(n− φ). The same difference holds for the electric
potential φ.
Let us now address the dispersion relation determined by the linearized particle and
charge balance equations in Fourier space for the Fourier mode of the density n̂ and
of the potential φ̂ with wave vector kx in the x-direction and ky in the y-direction and
k2 = k2x + k2y.

∂tn̂+
iky
Ln

φ̂+D⊥k
2n̂ = −Gnn̂−Gφφ̂ (A.1a)

∂tφ̂−
ikyg

k2
n̂+ ν⊥k

2φ̂ = −Jn
k2
n̂− Jφ

k2
φ̂ (A.1b)

In this expression the density gradient length 1/Ln = −∂xn/n is chosen to be constant

and is a measure of the departure from equilibrium. Here, Gnn̂+Gφφ̂ is the linearized

and Fourier transformed expression of Γ and (−Jn/k2)n̂+(−Jφ/k2)φ̂ is the linearized
and Fourier transformed expression of J divided by −k2. The growth rate γ for the
non-trivial solution of the coupled set of linear equations (A.1) is determined by the
vanishing determinant condition, which then yields a generic second order equation in
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γ of the form:

γ2 + 2Aγ +AnAφ −BnBφ = 0 (A.2a)

with A = (An + Aφ)/2 and An, Aφ are the damping rates for the density and
electric potential respectively and where Bn and Bφ are the coupling terms between
the two equations: An = D⊥k

2 + Gn, Aφ = ν⊥k
2 + Jφ/k

2, Bn = iky/Ln + Gφ,
Bφ = −ikyg/k2 + Jn/k

2. The coefficients An and Aφ are damping rates standing
for the competing diffusive transport that inhibits the convective transport, Gn that
stands for parallel particle loss, and Jφ that is a parallel current that will tend to
compensate the cross field current due to the vertical drifts and taken into account via
the contribution proportional to g. The coupling terms are complex coefficients such
that the two imaginary parts are the key terms that drive the interchange instability
while the two real parts are the coefficient that drive the drift wave instability. A
general case will therefore couple these two linear instability mechanisms. On general
grounds, such a competition is of course quite interesting, however at the cost of
making the study of the non-linear stage of the flux-driven system more difficult to
analyze.
We have decided to only retain the interchange instability by setting Gφ = 0 and
Jn = 0. As discussed above, the latter assumption regarding the linearized loss terms
Jn = 0 appears to hold in the SOL where the ion current if of the same order as the
electron current. Furthermore, in the edge the parallel particle transport is restricted
to the fluctuating par of n. Conversely, setting Gφ = 0 has little justification but that
of simplifying the problem at hand. Changing notations to σφ = Jφ and σn = Gn
allows one to recover (1). In the edge, taken into account by the mask function χ(x),
both σn and σφ vanish for k‖ = 0 so that the loss terms are only governed by the
fluctuations. We enforce this property for the current losses since this effect plays a
strong role in the regulation of the zonal flows (ky = 0). For the particle losses in the
edge, we simplify the problem by ignoring this loss term and σn is set to zero in the
edge by the mask function. The loss terms simplified in this way provide a setting of
the system with minimum difference between the edge and SOL conditions, therefore
a simplified interface where in fact a single key mechanism changes, and such that the
analysis is not too involved by retaining a single primary linear instability.
One then finds BnBφ = (g/Ln)k2y/k

2, hence BnBφ ∈ R+ so that the two roots for the
growth rate are real and an instability threshold, one positive root, is obtained when
BnBφ ≥ AnAφ, namely when the interchange instability drive (g/Ln)k2y/k

2 is larger
than the damping processes (D⊥k

2 + σn)(ν⊥k
2 + σφ/k

2).

γ = A
(
− 1 +

√
1 +

BnBφ −AnAφ
A2

)
(A.2b)

Near marginality, when BnBφ − AnAφ � A and BnBφ ≥ AnAφ, the expansion of
(A.2b) then yields:

γ ≈ BnBφ −AnAφ
2A

(A.2c)

One can then readily step to (2) computed for edge conditions by setting σn = 0.
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Appendix B. Dispersion relation for three wave coupling

The complete calculation of the modulational instability including interchange leads
to a relatively complicated dispersion equation [20]. For the sake of simplicity we
analyze here some of the key properties obtained by setting g = 0 in (1b).

∂tW + [φ,W ] +AφW = 0 (B.1)

Here AφW stands for the linear damping part of the vorticity equation, thus according
to (1b) AφW = −ν⊥∆⊥W − J . We are interested in the Fourier mode analysis in
the 2D space transverse to the unit vector z (in the third dimension). The quadratic
nonlinear term the yields generically a convolution operator. Restricting the number
of modes to three coupled wave vectors, k1, k2, k3 such that k1 = k2 + k3 and with
amplitude φ̂1, φ̂2, φ̂3. Assuming the amplitude φ̂3 to be fixed we then obtain the
following set of coupled equation for the mode amplitudes φ̂1 and φ̂2.

∂tφ̂1 −
k23 − k22
k21

(
z ·
(
k2 × k3

))
φ̂2φ̂3 +Aφ(k1)φ̂1 = 0 (B.2a)

∂tφ̂2 −
k23 − k21
k22

(
z ·
(
k3 × k1

))
φ̂1φ̂

∗
3 +Aφ(k2)φ̂2 = 0 (B.2b)

This general system (B.2) can first be simplified with the particular choice k1 = kt =
(κ, ky), k2 = ks = (0, ky), k3 = kz = (κ, 0) and replacing the subscripts 1 by t for a
turbulent mode, 2 by s a streamer and 3 by z for the zonal flow. One further defines
k2 = κ2+k2y that replaces k21. In this case one finds how a particular zonal flow pattern
with finite amplitude can destabilize a turbulent mode and a streamer pattern. One
then obtains:

∂tφ̂t −
k2y − κ2

k2
κkyφ̂sφ̂z + γtφ̂t = 0 (B.3a)

∂tφ̂s + κkyφ̂tφ̂
∗
z + γsφ̂s = 0 (B.3b)

where γt = Aφ(kt) and γs = Aφ(kts). The determinant of the system (B.3) then
yields (3b). The two roots of the latter are given by:(

γ2 + γ2
γt + γs

2

)2
=
(γt + γs

2

)2
− γtγs − Vtk2yκ2|φ̂z|2 (B.3c)

where Vt = (k2y − κ2)/k2. The condition for instability is that γtγs + Vtk
2
yκ

2|φ̂z|2 ≤ 0
and a necessary condition is therefore that Vt < 0, hence k2y < κ2. Alternatively, the
general system (B.2) can be simplified with the particular choice k1 = kt = (κ, ky),
k2 = kz = (κ, 0), k3 = ks = (0, ky) and replacing the subscripts 1 by t, 2 by z and 3
by s with a complex conjugate to account for the minus sign. In this case one finds
how a particular streamer pattern with finite amplitude can destabilize a turbulent
mode and a zonal flow pattern. One then obtains:

∂tφ̂t −
k2y − κ2

k2
kyκφ̂zφ̂s + γtφ̂t = 0 (B.4a)

∂tφ̂z − κkyφ̂zφ̂∗s + γzφ̂z = 0 (B.4b)
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where γz = Aφ(kz). The determinant of the system (B.4) then yields (3a). The two
roots of the latter are given by:(

γ1 + γ1
γt + γz

2

)2
=
(γt + γz

2

)2
− γtγz + Vtk

2
yκ

2|φ̂s|2 (B.4c)

The condition for instability is that −γtγz+Vtk
2
yκ

2|φ̂z|2 ≥ 0 and a necessary condition
is therefore that Vt > 0, hence k2y > κ2.
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