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3D simulations of yield-stress and shear-induced particle 
diffusion models  

M. NIKA, E. HACHEM, R. VALETTE 

MINES ParisTech, CEMEF, UMR CNRS 7635, BP 207, 06904 Sophia Antipolis (France) 

Résumé : 

On présente une méthode générale de simulation directe 3D par éléments finis d'écoulements de fluides 

présentant de fortes non-linéarités de comportement tels que fluides à seuil, ou suspensions à ségrégation 

induite par écoulement. Cette méthode utilise une technique d'adaptation de maillage a posteriori, qui 

permet d'obtenir une précision de calcul élevée pour un nombre limité de degrés de liberté du problème 

discrétisé. Différents exemples d'application seront proposés.  

Abstract: 

A general 3D finite elements method for fluid flows is presented. It focuses on the resolution of highly 

nonlinear flow models such as yield stress fluids and flow-induced segregation suspensions models. The 

method is based on an a posteriori mesh adaptation procedure that allows obtaining a high precision for 

controlled computational cost in terms of number of degrees of freedom of the discretized problem. Several 

application examples will be presented.  

Mots clefs : finite elements method, yield stress fluids, flow induced segregation models, mesh 

adaptation 

1 Introduction  
The current work has been motivated by the study of paste extrusion. Very often, it is found that paste 

materials (which are basically made of a mixture of solid fillers dispersed at moderate to high volume 

fraction within a lubricant fluid) behave as yield-stress fluids when considering their apparent stationary flow 

curves. Recently, models of flow-induced segregation of solid fillers have been proposed [1, 2] to predict 

transient effects and non-homogeneous volume fraction effects observed in pastes and dense suspensions 

flows. The goal of this paper is to show the impact of such effects (apparent yield-stress and flow-induced 

segregation) in 3D paste extrusion flows. To reach this objective at reasonable computational cost, specific 

numerical techniques were used. In the following, flow model equations and numerical techniques are 

presented. Finally an application example is shown. 

2 The physical model 

2.1 Flow equations 
The flow of concentrated suspensions takes place at low Reynolds number (Re << 1). The conservation 

equations for steady, incompressible flow are 

0=⋅∇ u
v

                                                                (1) 

       0=⋅∇+∇− τp                                                         (2) 

Considering a generalised Newtonian fluid the stress tensor is expressed as follows  

γητ &2=                                                               (3) 

withγ& the strain rate tensor defined as 
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First the viscosity function η  can be assigned as a function of strain rate in case of the Bingham [3] or 

Herschel-Bulkley [4] model. For example, using its Bercovier-Engleman [5] regularisation form, the 

Bingham viscosity is expressed as 

( ) 2/122 εγ
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ηη
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                                         (5) 

where η is the viscosity, yτ the yield stress γ&  the second invariant of the strain rate tensor and ε  a 

regularisation parameter. 

An alternative is to consider a viscosity function obeying the Krieger-Dougherty [6] relationship 
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where φ is the filler volume fraction, η is the viscosity of the lubricant fluid, φmax is the maximum packing 

fraction in the suspension and q a parameter usually equal to 2.  

2.2 Diffusive-flux model  
Phillips et al. [2] modelled the shear-induced particle migration due to the gradients in volume fraction and 

shear rate. The diffusion equation for the particle volume fraction φ defined in equation (6) can be written as 
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It is assumed that the density of the particles and the lubricant are equal and gravity and buoyant effects are 

neglected. The diffusion equation is solved with appropriate boundary conditions along the die surfaces, 

where it is assumed that the fluid does not slip (u = 0). Obviously, no particles flow through the surfaces 
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At flow entrance at initial time, particle concentration was assumed to be uniform, i.e. φ = φ0.   

3 Solution procedure 

The Finite Element Method (FEM) was employed to solve numerically the governing equations with 

boundary and initial conditions. For both models (yield-stress models or shear-induced diffusion models) the 

velocity-pressure problem was solved using a P1+/P1 based mixed finite elements developed within a fully 

parallel SPMD (single program, multiple data) strategy [7-10]. The generalized diffusion equation (7) was 

solved using a modified version of the RFB (residual-free bubble) technique [11] applied to a P1 

approximation. 

A continuation method on the parameter ε  was used to solve the non-linear Stokes problem (5) and a semi-

implicit Euler scheme was used to solve the split time dependant problem (7). At each continuation or time 

step, an anisotropic mesh adaptation procedure was used [12, 13]. It consists in building a number of node-

controlled target metric field based on the Hessian of the shear-rate field. 

4 Example of computation 

The simulation of a 3-D Bingham flow with a yield stress of τy = 3 10
5
 Pa and viscosity η = 3 10

4
 Pa.s 

flowing at maximum speed of 1.4 mm/s within half a slit die of 30 mm gap is shown figure 1. The 

regularisation parameter was 10
-4

 times the apparent strain rate, obtained using 16 continuation steps. 

Number of nodes is approximatively 28 800, which can be considered as low with respect to the obtained 

precision. Indeed, one can observe that mesh adaptation allows obtaining a rather good description of 
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unyielded zones (defined as the zones for which the stress field magnitude is lower than τy). This result was 

obtained in ~2 h using a 16 Amd Opteron 6134 processors cluster equipped with an Infiniband DDR 20 Gb/s 

network. 

 (a)  (b) 

 (c)  (d) 

 

FIG. 1 – 3-D simulation results (symmetry plane is on the left face). (a) Unyielded zones (in black) produced 

by a Bingham fluid inside a rectangular die. (b) Norm of the velocity field. (c) Pressure field. (d) Adapted 

mesh. It can be noticed that the undeformed zones in the die occupy most of the region and the flow is 

mostly a plug. 

5 Conclusion 

The FEM has been employed to solve non-linear and/or time-dependent flows of yield-stress and shear-

induced particle diffusion models, allowing a high precision for controlled computational cost in terms of 

number of degrees of freedom of the discretized problem. Several application examples will be presented 

during the conference. In particular, a comparison of flow fields between yield-stress fluids and flow-

induced segregation fluids exhibiting similar stationary flow curves will be presented. 
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