N

N
N

HAL

open science

Identification a temps continu sur structure continue
Catherine Chochol, Simon Chesne, Didier Remond

» To cite this version:

Catherine Chochol, Simon Chesne, Didier Remond.

continue. CFM 2011 - 20éme Congreés Francais de Mécanique, Aug 2011, Besancon, France.

03421436

HAL Id: hal-03421436
https://hal.science/hal-03421436v1

Submitted on 9 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Identification a temps continu sur structure


https://hal.science/hal-03421436v1
https://hal.archives-ouvertes.fr

20°™ Congrés Francais de Mécanique Besang29 aolt au 2 septembre 2011

|dentification a temps continu sur structure contirue

C. CHOCHOL, S. CHESNE, D. REMOND

Université de Lyon, CNRS
INSA-Lyon, LaMCoS UMR5259, F-69621, France
Tel : 33 (0)4 72437452 Fax:33(0)4 72 43389
catherine.chochol@insa-lyon.fr

Abstract :

The purpose of this study is to show that it issjlids to use continuous time identification metkath a
signal discretized either in space and in time domaThe partial differential equations, and padiarly
those governing continuous mechanical system betigwian be transformed into algebraic equations by
using the well known properties of orthogonal fimts. Before any identification, it is crucial talculate
data that are not directly available by the measueat. This calculation will be performed thanksato
expansion of the signals into an orthogonal ba&fger this calculation, all the data calculated aretorded
are expanded into a unique orthogonal basis. Afteés expansion step, the identification is perfaime
through a very classical Least Square process.dlidate the formalism, two different tests will degried
out: one for a bar in longitudinal motion and a sed one with a bending beam. This study showsttrat
possible to reconstruct quantities not availablegbglirect measurement and that identification ibust to
noise. The proposed methodologies and formulatansbe easily extended to other orthogonal funstion
association with partial differential transformatis.

Keywords: Continuous time identification, space domain, partl differential equation, Chebyshev,

1 Introduction

Continuous Time (CT) methods have been developedidw identification with discrete-time signalsn®

of the main applications of this method is to tfamm the dynamic equations of the system behaviiutior

an algebraic equation set, generally in order timase directly mechanical parameters such as mass,
stiffness, damping, etc. Traditionally, a discrésem of these equations is obtained by applying Zhe
transform on signals when linear assumptions aadladle. This leads to an equivalent recurrent goua
when the signals are sampled at a constant ratevhed the Zero Order Holder assumption is assumed.
Over the last few decades, alternative methods Heeen proposed and gathered under the banner of
Continuous Time Identification methods (see [1-4}). these approaches, orthogonal functions are
frequently used in an integral formulation of diffatial equations. Their main advantage is thesftam of

the integration of signals into a simpler integratiof these functions by the use of a square mé#teax
depends on the chosen orthogonal functions. Therefwe differential equations governing the betwawof

the system to be identified can be transformed agebraic equations. In [5], the authors descsibeeral
applications that have been developed since th@slfé® identifying controlled systems and MDOF syss.
From these results, extension of these approadred®e considered for any other classical behaviker
continuum mechanics. Partial differential equatioas be discretized through space domain like rdiffeal
equation through time domain. Moreover, Remondl.ef6h have dissociated expansion and identifigatio
steps leading to more attractive and improved tesldtained with Chebyshev polynomials and to psepm
more general identification methodology which cam dasily extended to above mentioned classical
behaviour in continuum mechanics. With the growinggrest on sensor networks, it is now possible to
record signals discretized in space domain. Thpgadr of this study is to show that it is possiblepply a
continuous time identification method to discrgpa«e signals and partial differential equations.

In this paper, the general formalism is presentethe second section. A conventional continuous tim
identification method is first applied to a partiifferential equation. Then, an extension of tmisthod in
space is derived. In the third section, two nunarlmzenchmarks will be studied. The CT identificatio
method and its extension are used to estimataabratween material and geometric quantities. Theth
section presents the result of numerical simulatieith noisy data in order to investigate the robess of

the proposed approach.
1
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2 Formalism

In the following, a methodology which permits tharisformation of any partial differential equatmmo an
algebraic equation is described. Firstly, a genpeaatial differential equation is presented. Setpnthe
expansion of the signal in an orthogonal basisoissitlered. Then, all the information calculatedliis
expansion step is collected in order to obtaime tand space identification tool.

2.1 General partial differential equation

A partial differential equation is an equation itwing functions and their partial derivatives suhthe
equation of motion of a beam. A general partidiedéntial equation involving variables will be taken as a
support for this section.

0’ o, oy

6 0”s 0™'s
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(A, Xo,..., An ) are constant parameters;,6.,...,0n) are the order of differentiation with referenodhe first

to theh™ variable, respectively. The relationship betwdendisplacements and the forces in main structures
such as beams can be described using such diffdrenpartial differential equations. In orderdperate

such a partial differential equation, it is crudimimeasure or calculate the partial derivativetheffunction

s. The continuous time expansion is a good solutothis application.

2.2 Expansion of the signal

First, each discretized signal can be expandeadh iarthogonal basis, reducing considerably the amofin
data needed for the calculation. In order to cakeuthis expansion following a unique directignwe can
first fix all the variableg; except the variablg. This expansion can be written by the followingi@tpn:

SOty iy )2 2. S (0 6 )=( 9, {06 ), @2)

where <@ are expansion constani(¥)}w is the regressor and thg)(variables are fixed except for j=i.
For a given variablg;, we can describe the signal as an expansion oftbgonal functionsy. Equation
(2.2) can be rewritten fan different positions of the variablge=( ¥, Xi.---, xin), in order to calculate the
constants <S :

s(Xi1) alx) - alk)
The final notation in (2.3) will be used in theltaling as a convention.

Xj= fixed (23)

2.3 Calculation of the partial derivatives

A second advantage is that using this expansigmetsy to estimate the derivative of the signalthe
orthogonal functiong and their derivatives are known. Then, the vee®ry estimated with (2.3) is the
only information needed to perform this calculation

{a)(, } =(S), [0 [#00)]

with <S>, the constants given by the expansion process,tiie] derivative matrix related to the
orthogonal functions.

(2.4)

Xi#x fixed

2.4 Multi-directional identification tool

The two previous steps show that the only data ewbddr the estimation of the partial derivativesaof
function is the function itself at different “lo¢ahs” in the considerett directions: {1=(x11, ---, X1r)s ---»
=0t ---» Xnn)]. INn order to reduce equation (2.1) onto an algebequation, an expansion in a single
direction (and a single orthogonal basis) can dfopeed. Let consider one direction notgg for this
reduction. All the partial derivatives calculatedthwequation (2.4) can be considered as input data.

2
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Furthermore, the iteration of the section 2.3 afidive calculation of a given partial derivativeddferent

locations. All the data needed can be rearrangéallas/:
T

07s | 0%s 0%'s
{W(XC)} —{W()(a) W(ch)} (2.5)
n n Xi#Xc fixed
This calculated input data is directly expanded am orthogonal basis of variahie

{%:asi()(c)}n =<Sai,c>M [(D(Xc)]Mxn (2.6)

The o; partial derivatives 0§ were calculated in step 2.3. The equation (2.h) & transformed into the
following algebraic equation:

<S‘71’C>M +%< gz'C>M +'"+%< §h":>|\/| =0 (2.7)

From this algebraic equation we can deducdhlkE) constantsi(/A, ..., AnAy).

Measured signal Expansion in an orthogonal basis Calculation of the partial derivatives Expansion along a single direction C
Variable y1 ge]
: sl =
ox™ |
L —{{(s.c)(5.0)]
7 v

N~

Variable y, o 3%s | Algebraic equation
D et e ]

g (ha/ Moo hn/ M)
FIG. 1:Summary of the multi-directional identdtion tool

3 Test cases

The structure studied in this paper is a cantildyemm clamped at one edge (x=0) and free at ther oth
boundary (x=L). The first case is concerned withgitudinal motionu of this beam which can be described
with an analytic solution. For the second test, thasverse displacementcorresponding to the flexural
motion of the beam is calculated at different posg noted xand at different timg,twith a Finite Element
model. Such models are based on a discretizationhef beam which gives directly and precisely
displacements v at nodes of the discrete geometry.

3.1 Partial differential equations

The two different examples studied in this papegoive different levels of differentiation and noispkrsive
and dispersive waves. Therefore these two beamgoard examples in order to estimate the abilityhis
method to estimate partial derivatives and to spammeter identification problems.

The classical partial differential equation of a balongitudinal motion without any external exatibn
involves the partial derivatives of the displacemenSimilarly the Euler-Bernouilli equation, definirige
behaviour of a bending beam without external eKoita can be expressed as the sum of the partial
derivatives of the displacement

0%u 0%u £2v E“v
S—=ES— : =-E
P PR T ox” (3.1)

wherep is the densityE the Young Modulus of the materi&,the cross-section area ahthe flexural
inertia of the beam.

3.2 Application of the multi-directional identification methodology

In order to apply the methodology presented beforthese two test cases, we will choose the domssti
y1=t, the time ang,=x the position along the beam.

3.2.1 Estimation of time derivatives
Firstly, the expansion along the time is expressedn (2.3). As this step is common to both exasjple
3



20°™ Congrés Francais de Mécanique Besang29 aolt au 2 septembre 2011

this expression will be derived only with the lagiinal displacement.

{U(t)}n :<Ut>M [ﬂt)]an x fixed (3-2)

where¢ is a function of an orthogonal basis of dimendibrand <> constants for a given positionand
for different timet. For the bending motion, this expression can lengled by replacing by v, <U> by
<V¢> . Using (2.4) and (3.2) the acceleration at asi®red positiorx for different timet can be estimated

by:

(Z80) =, (0L [e0)..,

with <U> constants calculated with (3.2), [D] the matrixderivation and¢] the values of th& orthogonal
functions at time locations t=(t..., t,). This first step permits the calculation of the deion ofu andv at
different timet and can be repeated at different locakon

(3.3)

x fixed

3.2.2 Estimation of space derivative
TheM coefficients for the expansion in space are glwen

{u}, =(U),, [A9)]..,

¢ are functions of an orthogonal basis of dimendibnand U, constants for a given timeand different
locationsx. Using (2.4) and (3.4), we are able to expresséend derivative af in space. For the beam in
bending motion, the main change is the followimgstéad of estimating the second partial derivative,
fourth partial derivative in space is needed ireottd estimate (3.1).

62 2 64 4
(57 0] 20Ot [F0] Ottt e

where <U> are constants calculated in (3.4), [D] the matixderivation and {] the values of theM
orthogonal functions at x=(x .... , %).

(3.4)

t fixed

3.2.3 Expansion in a single direction
In order to reduce these partial differential eourest (3.1) to algebraic equation, it is necessargxXpress
both partial derivatives in the same direction. #ig case study, the space direction will be setegc = x

If the expansion in time is chosen, the informatiéronly one sensor is used for the identificatidfith an
expansion in space, the information of multiplessea is averaged by a least square method, asreegbia
the following section. Using (3.3), we can calcelfdr all x and at a given time t=the acceleration. Then it
is possible to calculate for all x the acceleratiarthe orthogonal basis as follow.

{ - (x)} =(U o)l

with (Uq:2'x> the coefficients of the acceleration at timetpanded along x. For the calculation of the
acceleration in bending motion, the previous exgicesis reused replacing only u by(u, _,,) by (V,_,,) .

(3.6)

3.3 Results of the continuous identification process

Previous derivations show a priori the potentialhid method: firstly it is easy to calculate theridatives of
a discretized signal; secondly a partial differ@ngquation can be reduced to an algebraic equafion
example of application of these two advantagesheiltliscussed in the following sections.

3.3.1 Partial differential equation reduction
Then, using (3.1), (3.5) and (3.6) , we can cateu% in a Least Square sense. Similarly, using(3.1%)(3

and (3.6) , we can estimaf’%l by using Least Square algorithm, leading to nexntila.
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4 SIMULATIONS

For the calculations, a Finite Element model isduse a reference offering estimation of displacdnrea
discrete manner. Two beams, with cross-sectiondfL0’m?2 and flexural inertia of 9 10 m®, density of
3900 kg/ni and Young Modulus of 300 10N/m? are studied. Each beam is respectively Ozmd, 0.4m
long. A discretization with 100 elements has beseduor the calculation. Additive and multiplicainoise
are mixed to the signals with a signal to noiseraf 26 dB. The performances of proposed methed ar
evaluated by a Monte Carlo simulation with 100dizesions. For this investigation, the respons¢heftwo
beams at different wavelengths is studied.

4.1 Simulation parameters

Before any identification, it is necessary to deliee the optimal numbers of orthogonal functidns of
sensorg] located along dimension and time samples Equations (3.1) make the classical assumption tha
the time and space responses are completely urembupherefore, the frequency responses in time and
space are strongly related to each other. Highueeqy response presents small time period and small
wavelengths. For this exploratory research, we etithse the same number of samples and sensorsgead
to m=q. Them samples will be concentrated into two periodshefgignal.

In order to calculate the optimal expansion, thelber and positions of samples and sensors wilhiosen
as the Gaussian points of Chebyshev functions, whitsure the convergence for any continuous fumctio
that satisfies a Dini-Lipschitz condition [9]. Tisize of the orthogonal basis will be chosenV&sl6 in
regard to the low frequency response of the stractiys results, we study the ratio between themeséd
parameter via the CT identification method (respebt p/E and the axial force for the longitudinal bargan
pS/El and the bending moment for the bending beawthlze theoretical parameter values.

4.2 Estimation of the material/ geometric quantities rdio

The error obtained with and without noise for aibdongitudinal motion and a bending beam is repngéed
in FIG. 2. Even if the size of the orthogonal basiarbitrarily chosen and fixed (M=16), the exgian is
sufficiently well calculated to obtain accurateules Without noise, the ratio between the cal@datnd
theoretical parameter is equal to one. The evaduatel theoretical parameters are strictly equdlfirent
wavelengths. For the simulation with noise, the eangth in other words the excitation frequencyobees
a crucial tuning parameter for an optimal idendfion. For the bar in longitudinal motion, the itBeation
results of the two tested beams (0.2 and 0.4m largsimilar in regard to the wavelength. Indeedgghach
beam, the best identification results are obtafoe&=1.

Longitudinal motion Bending motion

L=0.2m (noiseless)

=
5]
s

L=0.4m (noiseless)
+  L=0.2m (SNR=26dB)
+  L=0.4m (SNR=26dB)
target

.
o\a

=
ON

.
1S

=

O_

H
5
(P S/EDegiimated’ P S/Eneoretcal

(P'Sestimatea’ P'Shneoretical

i
S)

R s 4
4

L
1 1.5

wawelength wavelengtl

FIG. 2 : estimated over theoretical parameteh aitd without noise, for a beam 0.2 and 0.4m lang, for a bar in longitudinal
motion and a beam in bending motion

For the beam in bending motion, the identificatloegins to be accurate for k>1. The best results are
obtained for k=1.5. The ratio for all the realipas are concentrated around 1, expect for a fegukin
points. In order to calculate the parameter asratewas possible, it will be interesting to estentite mean
value with a large number of realizations, elimimgthe realizations which appear erroneous. Thelt® of

this calculation are presented in TABLE 1.
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Theoretical Mean value Mean value without the meaus realizations
Longitudinal motion| | _ 9oy .1318 | L=0.2m: 1.2662 18 L= 0.2m : 1.2982 16 (99.8%)
% (s¥m?) (k=1) L=0.4m: 1.3 16 L=0.4m : 1.2668 18 L=0.4m : 1.2963 18 (99.7%)
Bending motion | | _5om:2022218 | L=0.2m:2.2218 L=0.2m : 1.73 18 (85.6%)
P%I (s?nf) (k=1.5) | L=0.4m:2.0222 18 L=0.4m: 2.4 1G L=0.4m : 1.72 16 (86.5%)

TABLE 1 : theoretical and estimated parameter \8iNR=26dB

These results show that the identified parameter lea estimated accurately with noise, for the Imar i
longitudinal motion (error less than 1%) and a legdbeam (error less than 14%). The difference betw
these two examples could be explained -in the oéske bending beam- by the estimation of the fourt
derivative, which enhances the noise effect andlibgersive waves, of exponential form, which aaedho
describe with the Chebyshev functions.

5 Conclusion

This paper considers a single challenge: the wbilit calculate accurately geometric and material
parameters. The proposed identification methodaisedd on a classical Continuous Time identification
theory and uses the partial differential equatiénnmmtion of continuous structures. The approximated
derivation operator has been detailed both inithe &nd the space domains. The proposed procelesarty
segmented into a signal expansion step and anfidatibn step performed through a classical Lé&xgtare
method. The main advantage of such a method ifitite integration capability in structures, for \ars
applications as self checking or Structural Helltmitoring.

Improvements of the proposed method can be inagstigwith the determination of a precise basis size
and also as Garnier has proposed in [10]. As thst lsquare method suffers from bias, it is posdible
introduce instrumental variable method in ordeimtprove identification step.

This exploratory research offers perspectives tohfor identification on continuous structuresverds
the main direction of monitoring such structuregh@ framework of sensor networks.
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