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Abstract :  
The purpose of this study is to show that it is possible to use continuous time identification method with a 
signal discretized either in space and in time domains. The partial differential equations, and particularly 
those governing continuous mechanical system behaviour, can be transformed into algebraic equations by 
using the well known properties of orthogonal functions. Before any identification, it is crucial to calculate 
data that are not directly available by the measurement. This calculation will be performed thanks to an 
expansion of the signals into an orthogonal basis. After this calculation, all the data calculated and recorded 
are expanded into a unique orthogonal basis. After this expansion step, the identification is performed 
through a very classical Least Square process. To validate the formalism, two different tests will be carried 
out: one for a bar in longitudinal motion and a second one with a bending beam. This study shows that it is 
possible to reconstruct quantities not available by a direct measurement and that identification is robust to 
noise. The proposed methodologies and formulations can be easily extended to other orthogonal functions in 
association with partial differential transformations. 

Keywords: Continuous time identification, space domain, partial differential equation, Chebyshev, 

1 Introduction 
Continuous Time (CT) methods have been developed to allow identification with discrete-time signals. One 
of the main applications of this method is to transform the dynamic equations of the system behaviour into 
an algebraic equation set, generally in order to estimate directly mechanical parameters such as mass, 
stiffness, damping, etc. Traditionally, a discrete form of these equations is obtained by applying the Z 
transform on signals when linear assumptions are available. This leads to an equivalent recurrent equation 
when the signals are sampled at a constant rate and when the Zero Order Holder assumption is assumed. 
Over the last few decades, alternative methods have been proposed and gathered under the banner of 
Continuous Time Identification methods (see [1–4]). In these approaches, orthogonal functions are 
frequently used in an integral formulation of differential equations. Their main advantage is the transform of 
the integration of signals into a simpler integration of these functions by the use of a square matrix that 
depends on the chosen orthogonal functions. Therefore, the differential equations governing the behaviour of 
the system to be identified can be transformed into algebraic equations. In [5], the authors describe several 
applications that have been developed since the 1990s for identifying controlled systems and MDOF systems. 
From these results, extension of these approaches can be considered for any other classical behaviour like 
continuum mechanics. Partial differential equations can be discretized through space domain like differential 
equation through time domain. Moreover, Remond et al. [6] have dissociated expansion and identification 
steps leading to more attractive and improved results obtained with Chebyshev polynomials and to propose a 
more general identification methodology which can be easily extended to above mentioned classical 
behaviour in continuum mechanics. With the growing interest on sensor networks, it is now possible to 
record signals discretized in space domain. The purpose of this study is to show that it is possible to apply a 
continuous time identification method to discrete-space signals and partial differential equations. 
In this paper, the general formalism is presented in the second section. A conventional continuous time 
identification method is first applied to a partial differential equation. Then, an extension of this method in 
space is derived. In the third section, two numerical benchmarks will be studied. The CT identification 
method and its extension are used to estimate a ratio between material and geometric quantities. The fourth 
section presents the result of numerical simulations with noisy data in order to investigate the robustness of 
the proposed approach. 
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2 Formalism 
In the following, a methodology which permits the transformation of any partial differential equation onto an 
algebraic equation is described. Firstly, a general partial differential equation is presented. Secondly, the 
expansion of the signal in an orthogonal basis is considered. Then, all the information calculated in this 
expansion step is collected in order to obtain a time and space identification tool. 

2.1 General partial differential equation 
A partial differential equation is an equation involving functions and their partial derivatives such as the 
equation of motion of a beam. A general partial differential equation involving h variables will be taken as a 
support for this section. 
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 (λ1, λ2,…, λh ) are constant parameters, (σ1,σ2,…,σh) are the order of differentiation with reference to the first 
to the hth variable, respectively. The relationship between the displacements and the forces in main structures 
such as beams can be described using such differential or partial differential equations. In order to operate 
such a partial differential equation, it is crucial to measure or calculate the partial derivatives of the function 
s. The continuous time expansion is a good solution for this application. 

2.2 Expansion of the signal 
First, each discretized signal can be expanded in an orthogonal basis, reducing considerably the amount of 
data needed for the calculation. In order to calculate this expansion following a unique direction χi, we can 
first fix all the variables χj except the variable χi. This expansion can be written by the following equation: 
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where <Si>M are expansion constants,{ϕ(χi)} M is the regressor and the (χj) variables are fixed except for j=i. 
For a given variable χi, we can describe the signal as an expansion of M orthogonal functions ϕ. Equation 
(2.2) can be rewritten for n different positions of the variable χi=( χi1, χi2,..., χin), in order to calculate the 
constants <Si> : 
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The final notation in (2.3) will be used in the following as a convention. 

2.3 Calculation of the partial derivatives 
A second advantage is that using this expansion it is easy to estimate the derivative of the signal, as the 

orthogonal functions ϕ and their derivatives are known. Then, the vector <Si>M estimated with (2.3) is the 
only information needed to perform this calculation: 
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with <Si>M the constants given by the expansion process, [D] the derivative matrix related to the 
orthogonal functions.  

2.4 Multi-directional identification tool 
The two previous steps show that the only data needed for the estimation of the partial derivatives of a 

function is the function itself at different “locations” in the considered h directions: [χ1=(χ11, …, χ1n), …, 
χh=(χh1, …, χhn)]. In order to reduce equation (2.1) onto an algebraic equation, an expansion in a single 
direction (and a single orthogonal basis) can be performed. Let consider one direction noted χC for this 
reduction. All the partial derivatives calculated with equation (2.4) can be considered as input data. 
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Furthermore, the iteration of the section 2.3 allows the calculation of a given partial derivative at different 
locations. All the data needed can be rearranged as follow: 
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This calculated input data is directly expanded into an orthogonal basis of variable χC: 
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The σi partial derivatives of s were calculated in step 2.3. The equation (2.1) can be transformed into the 
following algebraic equation: 

    
1 2

2
, , ,

1 1
... 0

h

h
C C CM M M

S S Sσ σ σ
λλ

λ λ+ + + =    (2.7) 

From this algebraic equation we can deduce the (h-1) constants (λ2/λ1, …, λh/λ1).  

 
FIG.  1 : Summary of the multi-directional identification tool 

3 Test cases 
The structure studied in this paper is a cantilever beam clamped at one edge (x=0) and free at the other 
boundary (x=L). The first case is concerned with longitudinal motion u of this beam which can be described 
with an analytic solution. For the second test, the transverse displacement v corresponding to the flexural 
motion of the beam is calculated at different positions noted xi and at different time tj, with a Finite Element 
model. Such models are based on a discretization of the beam which gives directly and precisely 
displacements v at nodes of the discrete geometry.  

3.1 Partial differential equations 
The two different examples studied in this paper involve different levels of differentiation and non dispersive 
and dispersive waves. Therefore these two beams are good examples in order to estimate the ability of this 
method to estimate partial derivatives and to solve parameter identification problems. 

The classical partial differential equation of a bar in longitudinal motion without any external excitation 
involves the partial derivatives of the displacement u. Similarly the Euler-Bernouilli equation, defining the 
behaviour of a bending beam without external excitation, can be expressed as the sum of the partial 
derivatives of the displacement v. 
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where ρ is the density, E the Young Modulus of the material, S the cross-section area and I the flexural 
inertia of the beam. 

3.2 Application of the multi-directional identification  methodology 
In order to apply the methodology presented before to these two test cases, we will choose the directions: 
χ1=t, the time and χ2=x the position along the beam. 

3.2.1 Estimation of time derivatives 
Firstly, the expansion along the time is expressed as in (2.3). As this step is common to both examples, 
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this expression will be derived only with the longitudinal displacement u.  

     { } [ ]( ) ( )tn M n M x fixed
u t U tφ

×
=     (3.2) 

where ϕ is a function of an orthogonal basis of dimension M, and <Ut> constants for a given position xi and 
for different time t. For the bending motion, this expression can be extended by replacing u by v, <Ut> by 
<Vt> . Using (2.4) and (3.2) the acceleration at a considered position x for different time t can be estimated 
by: 
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with <Ut> constants calculated with (3.2), [D] the matrix of derivation and [ϕ] the values of the M orthogonal 
functions at time locations t=(t1, …, tn). This first step permits the calculation of the acceleration of u and v at 
different time t and can be repeated at different location x. 

3.2.2 Estimation of space derivative 
The M coefficients for the expansion in space are given by: 

     { } [ ]( ) ( )xq M q M t fixed
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×
=     (3.4) 

ϕ are functions of an orthogonal basis of dimension M, and Ux constants for a given time t and different 
locations x. Using (2.4) and (3.4), we are able to express the second derivative of u in space. For the beam in 
bending motion, the main change is the following: instead of estimating the second partial derivative, the 
fourth partial derivative in space is needed in order to estimate (3.1). 
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where <Ux> are constants calculated in (3.4), [D] the matrix of derivation and [ϕ] the values of the M 
orthogonal functions at x=(x1., …. , xq).  

3.2.3 Expansion in a single direction 
In order to reduce these partial differential equations (3.1) to algebraic equation, it is necessary to express 
both partial derivatives in the same direction. For this case study, the space direction will be selected: χC = x. 

If the expansion in time is chosen, the information of only one sensor is used for the identification. With an 
expansion in space, the information of multiple sensors is averaged by a least square method, as explained in 
the following section. Using (3.3), we can calculate for all xi and at a given time t=tj the acceleration. Then it 
is possible to calculate for all x the acceleration on the orthogonal basis as follow. 
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with 2,t xUσ =  the coefficients of the acceleration at time tj expanded along x. For the calculation of the 
acceleration in bending motion, the previous expression is reused replacing only u by v, 2,t xUσ =  by 2,t xVσ = . 

3.3 Results of the continuous identification process 
Previous derivations show a priori the potential of this method: firstly it is easy to calculate the derivatives of 
a discretized signal; secondly a partial differential equation can be reduced to an algebraic equation. An 
example of application of these two advantages will be discussed in the following sections. 

3.3.1 Partial differential equation reduction  
Then, using (3.1), (3.5) and (3.6) , we can calculate E

ρ  in a Least Square sense. Similarly, using(3.1), (3.5) 

and (3.6) , we can estimate S
EI

ρ  by using Least Square algorithm, leading to next formula.  
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4 SIMULATIONS  
For the calculations, a Finite Element model is used as a reference offering estimation of displacement in a 
discrete manner. Two beams, with cross-section of 1.2 10-4m² and flexural inertia of 9 10-11 m4, density of 
3900 kg/m3 and Young Modulus of 300 109 N/m² are studied. Each beam is respectively 0.2m, and 0.4m 
long. A discretization with 100 elements has been used for the calculation. Additive and multiplicative noise 
are mixed to the signals with a signal to noise ratio of 26 dB. The performances of proposed method are 
evaluated by a Monte Carlo simulation with 1000 realizations. For this investigation, the response of the two 
beams at different wavelengths is studied.  

4.1 Simulation parameters 
Before any identification, it is necessary to determine the optimal numbers of orthogonal functions M, of 
sensors q located along x dimension and time samples m. Equations (3.1) make the classical assumption that 
the time and space responses are completely uncoupled. Therefore, the frequency responses in time and 
space are strongly related to each other. High frequency response presents small time period and small 
wavelengths. For this exploratory research, we will chose the same number of samples and sensors, leading 
to m=q. The m samples will be concentrated into two periods of the signal. 

In order to calculate the optimal expansion, the number and positions of samples and sensors will be chosen 
as the Gaussian points of Chebyshev functions, which ensure the convergence for any continuous function 
that satisfies a Dini-Lipschitz condition [9]. The size of the orthogonal basis will be chosen as M=16 in 
regard to the low frequency response of the structure. As results, we study the ratio between the estimated 
parameter via the CT identification method (respectively ρ/E and the axial force for the longitudinal bar, and 
ρS/EI and the bending moment for the bending beam) and the theoretical parameter values. 

4.2 Estimation of the material/ geometric quantities ratio 
The error obtained with and without noise for a bar in longitudinal motion and a bending beam is represented 
in FIG.  2. Even if the size of the orthogonal basis is arbitrarily chosen and fixed (M=16), the expansion is 
sufficiently well calculated to obtain accurate results. Without noise, the ratio between the calculated and 
theoretical parameter is equal to one. The evaluated and theoretical parameters are strictly equal at different 
wavelengths. For the simulation with noise, the wavelength in other words the excitation frequency becomes 
a crucial tuning parameter for an optimal identification. For the bar in longitudinal motion, the identification 
results of the two tested beams (0.2 and 0.4m long) are similar in regard to the wavelength. Indeed, for each 
beam, the best identification results are obtained for k=1.  
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FIG.  2 : estimated over theoretical parameter, with and without noise, for a beam 0.2 and 0.4m long, and for a bar in longitudinal 

motion and a beam in bending motion 

For the beam in bending motion, the identification begins to be accurate for k>1. The best results are 
obtained for k=1.5. The ratio for all the realizations are concentrated around 1, expect for a few singular 
points. In order to calculate the parameter as accurate as possible, it will be interesting to estimate the mean 
value with a large number of realizations, eliminating the realizations which appear erroneous. The results of 
this calculation are presented in TABLE 1.  
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 Theoretical Mean value Mean value without the erroneous realizations 
Longitudinal motion 

E
ρ (s²/m²) (k=1) 

L= 0.2m : 1.3 10-8 
L=0.4m : 1.3 10-8 

L= 0.2m : 1.2662 10-8 
L=0.4m : 1.2668 10-8 

L= 0.2m : 1.2982 10-8 (99.8%) 
L=0.4m : 1.2963 10-8 (99.7%) 

Bending motion 
S

EI
ρ (s²/m4) (k=1.5) 

L= 0.2m : 2.0222 10-2 
L=0.4m : 2.0222 10-2 

L= 0.2m : 2.22 10-2 
L=0.4m : 2.4 10-2 

L= 0.2m : 1.73 10-2 (85.6%) 
L=0.4m : 1.72 10-2 (86.5%) 

TABLE 1 : theoretical and estimated parameter with SNR=26dB  

These results show that the identified parameter can be estimated accurately with noise, for the bar in 
longitudinal motion (error less than 1%) and a bending beam (error less than 14%). The difference between 
these two examples could be explained -in the case of the bending beam- by the estimation of the fourth 
derivative, which enhances the noise effect and the dispersive waves, of exponential form, which are hard to 
describe with the Chebyshev functions. 

5 Conclusion 
This paper considers a single challenge: the ability to calculate accurately geometric and material 

parameters. The proposed identification method is based on a classical Continuous Time identification 
theory and uses the partial differential equation of motion of continuous structures. The approximated 
derivation operator has been detailed both in the time and the space domains. The proposed process is clearly 
segmented into a signal expansion step and an identification step performed through a classical Least Square 
method. The main advantage of such a method is the high integration capability in structures, for various 
applications as self checking or Structural Health Monitoring. 

Improvements of the proposed method can be investigated with the determination of a precise basis size 
and also as Garnier has proposed in [10]. As the least square method suffers from bias, it is possible to 
introduce instrumental variable method in order to improve identification step. 

This exploratory research offers perspectives as a tool for identification on continuous structures towards 
the main direction of monitoring such structures in the framework of sensor networks. 
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