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Abstract The serotonergic 2B receptor (5-HT2BR), expressed in the central nervous system 

and at the periphery, contributes to the regulation of several physiological processes such as 

cardio-vascular, pulmonary, bone and neuronal functions. Due to its multifaceted roles, 

signaling pathways and cell targets controlled by the 5-HT2BR are still the subject of intensive 

research. Here, we review how exploiting the dynamics of differentiation of the 1C11 

neuronal stem cell line allows to identify several 5-HT2BR-coupled signaling pathways and 

targets, among which the serotonin transporter, involved in the homeostasis of serotonergic 

neurons and their adaptive response to selective serotonin-reuptake inhibitors (SSRIs) like 

fluoxetine (Prozac®). In addition mesoblastic stem cell lines permit to show that along the 

osteogenic differentiation, the 5-HT2BR controls the activity of the tissue-non-specific 

alkaline phosphatase, a major enzyme for bone formation. Finally the 5-HT2BR expressed by 

pulpal stem cells takes part to natural tooth repair upon 5-HT release by injury-activated 

platelets. 
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1 Introduction 

In the central nervous system and at the periphery, the bioamine serotonin (5-

hydroxytryptamine; 5-HT) is involved in a myriad of physiological processes including sleep, 

mood, memory, cognition, appetite, as well as cardiovascular, digestive and endocrine 

functions [1, 2]. In the brain, the source of 5-HT is the raphe nuclei and, at the periphery, 5-

HT mainly originates from the intestinal enterochromaffin cells. 5-HT exerts its diverse roles 

through a constellation of serotonergic receptors. Since the 1970s, fifteen serotonergic 

receptor subtypes (5-HTR) have been evidenced and classified into seven families according 

to structural and pharmacological criteria as well as coupled signal transduction pathways (5-

HT1-7R) [3]. While the 5-HT3R is a ionotropic receptor, all other 5-HT receptors are 

metabotropic receptors coupled to G proteins (GPCR) [4]. The intensity and duration of 5-HT 

receptor signaling depends on the reuptake of 5-HT exerted by the 5-HT membrane 

transporter, the SERT (serotonin reuptake transporter), a well-known target for selective 

serotonin-reuptake inhibitors (SSRIs) antidepressants such as fluoxetine (Prozac®) and 

paroxetine. 

The 5-HT2B receptor (5-HT2BR) belongs to the 5-HT2 receptor subfamily, which also includes 

the 5-HT2AR and the 5-HT2CR. The gene encoding the 5-HT2BR was cloned from the mouse 

brain, rat stomach fundus, human liver and placenta between 1992 and 1994 [5-10]. The 

human 5-HT2BR gene is located on chromosome 2 (2q36.3-2q37.1) [11]. During embryonic 

development, the 5-HT2BR mRNA is detected in the mouse embryo as soon as day 8.5-9 post 

coitum in the heart primordia, the neural tube before its closure and in the first branchial arch 

at the origin of craniofacial derivatives such as maxilla, mandible and teeth [5, 12]. Of note, at 

this stage, the 5-HT2AR and 5-HT2CR mRNAs are also expressed at low levels [12]. As 

maternal 5-HT plays crucial trophic functions at early steps of murine development [13], this 
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specific pattern of 5-HT2BR expression just after the beginning of gastrulation indicates a key 

role of this receptor during the embryonic morphogenesis of the cardiovascular and 

craniofacial structures as well as the nervous system. This is supported by the heart and brain 

malformations observed in mouse embryos exposed to the 5-HT2Rs inverse agonist ritanserin 

and in 5-HT2BR knockout mice. Ritanserin-treated embryos exhibit an underdevelopment of 

the forebrain, hindbrain and pharyngeal arches, heart defects and closure failure of the neural 

tube. This led to the assumption that the 5-HT2BR plays a fundamental role in neural crest 

migration, cell proliferation and/or survival [12, 14]. Accordingly, depletion of 5-HT2BR in 

mice leads to death of two third of the mutant population during the gestation or at birth due 

to severe cardiac defects [15]. 

In adult rodents, the 5-HT2BR is mainly expressed at the periphery in the cardiovascular and 

gastrointestinal systems, and is also detectable at lower levels in the brain, notably in the 

cerebellum, hypothalamus, hippocampus, amygdala and raphe nuclei [6, 16-18]. During the 

past 25 years, the use of pharmacological drugs and the characterization of 5-HT2BR-/- mice 

provided evidence that the 5-HT2BR is involved in the control of a wide range of 

physiological functions, including cardiac, vascular, pulmonary, bone, gastrointestinal and 

cerebral functions (for reviews see [19-21] and references therein). Deregulation of 5-HT2BR 

expression and signaling is associated with various pathological conditions such as fibrosis, 

pulmonary arterial hypertension and cancer [20, 22-25]. 

Over the last decades, the identification of the signaling pathways mobilized by the 5-HT2BR 

and the downstream effectors led to a better understanding of the pathophysiological role of 

the 5-HT2BR. The present review emphasizes the contribution of neuronal and mesodermal 

stem cell lines that endogenously express the 5-HT2BR to grasp the signaling network driven 

by the 5-HT2BR to ensure the onset of neuronal and/or bone functions and therefore 

homeostasis of bioaminergic neurons and mineralized tissues.  
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2 The 1C11 neuronal stem cell line to dissect the role of 5-HT2BRs in bioaminergic 

neurons 

2.1 5-HT2BRs are involved in the neuronal differentiation program of 1C11 stem cells 

Isolated in 1990 from murine multipotent cells, the 1C11 cell line behaves as a bipotential 

neuronal stem cell that has the intrinsic properties to differentiate upon appropriate induction 

into serotonergic (1C115-HT) and noradrenergic (1C11NE) neuronal cells at a frequency of 

around 100% in a mutually exclusive manner (Fig. 1) [26-28]. 

Upon 4 days addition of dibutyryl cyclic AMP (dbcAMP) and cyclohexane carboxylic acid 

(CCA), there is a switch from the neuroepithelial precursor 1C11 cells to the 1C115-HT cells. 

The 1C115-HT neuronal cells have developed bipolar extensions, express neuron-associated 

markers (NCAM, synaptophysin,...) and acquired a complete serotonergic phenotype, i.e. the 

capacity to synthesize, store, catabolize and transport 5-HT [26, 28]. During the course of the 

serotonergic program, 1C11 cells acquires at definite times three 5-HT receptors (5-HT2BR, 5-

HT1B/1DR and 5-HT2AR) (Fig. 1) [29], whose expression was evidenced in vivo in serotonergic 

neurons of the raphe nuclei [30-33]. Two days after the addition of the inducers, the 5-HT2BR 

(Kd 21,9 nM, 2500 receptors/cells) and 5-HT1B/1DR (Kd 0.53 nM, 1200 receptors/cell) are 

functionally expressed and their density remains constant along the differentiation [29]. At 

day 4, concomitantly with the onset of the SERT expression, a functional 5-HT2AR (Kd 0.85 

nM, 400 receptors/cell) is induced. Of note, at day 2, 1C11 cells start to synthesize and 

catabolize 5-HT. The presence of the 5-HT2BR and 5-HT1B/1DR at this stage renders 1C11 

stem cells competent to respond to 5-HT during their differentiation program. Thus, 5-HT2BR 

and/or 5-HT1B/1DR acting as autoreceptors contribute to the onset of a complete neuronal 

phenotype [28]. Treatment of differentiating 1C115-HT cells with ritanserin from day 2 reduces 

the intensity of neuronal functions measured at the end of the serotonergic program.  
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In presence of dbcAMP, CCA and DMSO, the serotonergic differentiation is blocked. 1C11 

progenitor cells then convert in 12 days into noradrenergic 1C11NE cells, which express a 

complete catecholaminergic phenotype i.e. the capacity to synthesize, store, catabolize and 

transport norepinephrine (NE) (Fig. 1) [28]. Along the noradrenergic differentiation, 1C11 

cells implement a unique α1D adrenoreceptor at day 8 (Kd 1.1 nM, 2200 receptors/cell) and 

NE transporter (NET) at day 12. Of note, blocking the α1D adrenoreceptor with an antagonist 

at day 8 avoids the onset of NET at day 12, suggesting that the α1D receptor is necessary for 

the completion of the noradrenergic phenotype. The α1D adrenoreceptor in the noradrenergic 

program seems to play a role similar to the 5-HT2BR along the serotonergic differentiation. 

The 1C11 neuronal stem cell line is thus a helpful paradigm to investigate the signaling and 

roles of bioaminergic receptors within an integrated serotonergic or noradrenergic context.  

 

2.2 The onset of serotonergic functions mainly depends on post-transcriptional 

controls 

In the 1C11 cell system, the transcriptional and translational control mechanisms that 

orchestrate the time-scheduled and effective implementation of neuronal functions during 

both serotonergic and noradrenergic programs remain elusive. In vivo, the differentiation of 

central 5-HT neurons depends on the transcription factors Nkx2-2, Lmx1b, Pet1 and Mash1 

[34]. Strikingly, in the 1C11 cell line, the mRNAs encoding serotonergic and noradrenergic 

functions, such as neurotransmitter synthesis enzymes (tyrosine hydroxylase (TH), tryptophan 

hydroxylase (TPH)), receptors (5-HTRs, α1DR), transporters (SERT, NET), are expressed at 

the stem cell stage, but are dormant, and their levels do not vary along both differentiation 

programs. This indicates that post-transcriptional mechanisms are at work when 1C11 cells 

convert into either serotonergic or noradrenergic cells.  
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Concerning the SERT mRNA, variations of the poly(A) tail length at the 3'-end occur from 

day 1 of the serotonergic program. It increases and reaches its maximal length on day 3 

corresponding to the beginning of the SERT translation [33]. The length of the poly(A) tail 

then decreases at day 4. As blocking the 5-HT2BR by ritanserin reduces the intensity of 

serotonergic functions at day 4, whether 5-HT2BRs control the polyadenylation step of the 

SERT mRNA is an attractive hypothesis that deserves further investigations. 

In 2010 we provided evidence, using fluoxetine, that a microRNA (miR-16) governs the onset 

of serotonergic functions. We identified miR-16 as a negative regulator of SERT translation 

through miR-16 interaction with the 3' untranslated region (3'UTR) of SERT mRNA [35]. 

Higher levels of miR-16 were detected in 1C11NE cells as compared to 1C115-HT cells. Such a 

disequilibrium in miR-16 levels had also been found in vivo in the noradrenergic neurons of 

the locus coeruleus vs. the serotonergic neurons of the raphe nuclei. In noradrenergic neurons, 

this high level of miR-16 prevents SERT expression as neutralization of miR-16 in 1C11NE 

cells unlocks SERT translation and renders noradrenergic neurons competent to bind SSRI 

antidepressants. More surprisingly, miR-16 reduction in 1C11NE cells also unlocks other 

serotonergic functions. In addition to SERT, the noradrenergic cells become capable to 

synthetize and catabolize 5-HT and express 5-HT2BRs. As no binding site for miR-16 was 

found in the 3'UTR of 5-HT2BR mRNA, the molecular mechanisms by which miR-16 controls 

the onset of these serotonergic-specific functions are still unknown. In vivo, the injection of 

fluoxetine in mouse raphe provokes a rise in miR-16 levels in serotonergic neurons, thereby 

leading to a reduction of SERT expression [35], as observed in Prozac®-treated patients [36]. 

This SSRI antidepressant also induces the release of the neurotrophic factor S100β by 

serotonergic neurons, which mediates the action of fluoxetine on noradrenergic neurons [35]. 

S100β downregulates miR-16 in the locus coeruleus, which in turn, unlocks the expression of 

SERT as well as those of TPH and 5-HT2BR. Noradrenergic neurons of the locus coeruleus 
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thus become a new source of 5-HT in the brain. The key role of miR-16 in the antidepressant 

action of fluoxetine was reinforced by studies performed in rodent models of depression. 

Increase of miR-16 in raphe or decrease of miR-16 in locus coeruleus improves depressive 

states similarly as fluoxetine [35, 37, 38]. Interestingly, 5-HT2BR knockout mice display 

depressive-like behaviors and refractoriness to SSRI treatments [18, 39], indicating that 5-

HT2BR signaling contributes to antidepressant effects. Whether 5-HT2BRs implemented in 

noradrenergic neurons after fluoxetine/Prozac® treatment pilot the onset of 5-HT synthesis in 

the locus coeruleus at the origin of a new central source of 5-HT remains to be investigated. 

 

2.3 Identification of 5-HT2BR couplings along the 1C11 serotonergic differentiation  

With the help of the 1C11 cell line, we evidenced that at day 2 of the serotonergic program, 

the 5-HT2BR recruits the phospholipase A2 (PLA2)-arachidonic acid (AA) pathway [40] and 

the phospholipase C (PLC)- inositol-1,4,5-trisphosphate (IP3) pathway through the Gq 

proteins [27]. This latter coupling is lost at day 4 when 1C115-HT cells reach their terminal 

stage of differentiation [40]. The 5-HT2BR also directly mobilizes the constitutive NO (cNOS) 

and the inductible NO (iNOS) synthases via the PDZ motif of its C-terminal extremity [41]. 

Interestingly, a special feature of the 5-HT2BR among others 5-HT2 receptors is to exhibit an 

intrinsic activity towards the couplings to PLC-IP3 [27], nitric oxide (NO) [41], PLA2-AA 

[40] and p21ras [42], which gives the receptor a major autocrine role during the serotonergic 

differentiation program. As described previously, the 5-HT1B/1DR via Gi proteins is negatively 

coupled to adenylate cyclase. At day 4, the 5-HT2AR is coupled to the PLC-IP3 and PLA2-AA 

cascades [29, 40]. We further demonstrated the occurrence of crosstalks between the three 5-

HT receptor subtypes in 1C115-HT cells. The 5-HT2BR exerts an inhibitory effect on the 5-

HT1B/D-mediated Gi coupling, which is relieved upon concomitant stimulation of 5-HT2AR 

[40].  
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Through their couplings, all the three 5-HT autoreceptors play a essential role in modulating 

the intensities of 5-HT associated functions i.e. 5-HT synthesis, storage, catabolism and 

transport. 

 

2.4 The 5-HT2BR acts as a 5-HT biosensor that adjusts 5-HT levels by controlling 

SERT functionality 

In vivo, plasmatic 5-HT concentration is tightly controlled to be maintained below 2 nM. 

When 1C11 cells are differentiated along the serotonergic pathway in a media containing high 

level of 5-HT (0.5-1 µM), all 5-HT functions i.e. synthesis, storage and transport are reduced 

compared to 1C11 cells differentiated in presence of low level of 5-HT (< 1 nM) [28]. This 

reveals a negative feedback loop exerted by 5-HT that tones down the intensity of 

neurotransmitter-associated functions. This negative feedback loop notably relies on the 5-

HT2BR that was shown to behave as a biosensor of external 5-HT concentration and to control 

5-HT levels by acting on 5-HT transport (SERT) and 5-HT catabolism. 

As previously mentioned, the 5-HT transporter (SERT) is responsible for the reuptake of 5-

HT across the plasma membrane and ensures a fine-tuned control of extracellular 5-HT 

concentrations. Deregulation of this precise control has been associated to diverse psychiatric 

diseases such as depression, anxiety and obsessive-compulsive disorders, characterized 

notably by reduced extracellular 5-HT levels in the brain. SSRI antidepressants used in clinics 

to combat depressive states block SERT function leading to a rise of central concentration of 

5-HT. On the opposite, the serotonin syndrome relates to an excess of 5-HT in the central 

nervous system that may occur after therapeutic drug use causing adverse effects such as 

tremor, diarrhea, delirium, neuromuscular rigidity [43]. Exploiting the properties of the 1C11 

neuronal stem cell, we firstly evidenced that the 5-HT2BR governs SERT functionality (i.e. 5-

HT transport and antidepressant recognition) through phosphorylation-type post-translational 
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modifications (Fig. 2) [33]. At low 5-HT concentration (1-2 nM, as in in vivo conditions), the 

intrinsic 5-HT2BR coupling to NO production governs SERT phosphorylation to basal level in 

1C115-HT neuronal cells. All the SERT molecules are functional allowing a maximal 5-HT 

uptake and the binding of SSRI antidepressants. In excess of 5-HT, the agonist-dependent 5-

HT2BR-IP3/PKC coupling promotes additional phosphorylation of SERT, which reduces 5-

HT transport efficacy. This critical role of the 5-HT2BR on SERT function was also evidenced 

in primary serotonergic neurons derived from the raphe. Another consequence of 5-HT2BR-

mediated hyperphosphorylation of neosynthesized SERT is the impairment of antidepressant 

recognition in 1C115-HT cells. In addition to SERT, the 5-HT2BR via PKC signaling 

phosphorylates the energy source of the SERT, the Na/K ATPase electrogenic pump. This 

leads to a decrease of the Na/K ATPase pump activity that also contributes to the reduction of 

5-HT transport. In serotonergic neurons, the autoreceptor 5-HT2BR is thus a crucial regulator 

of 5-HT transport and sensitivity of SERT to antidepressants. As the Na/K ATPase may 

influence other transporters, it is likely that the 5-HT2BR could contribute to the regulation of 

other yet to be identified neuronal and non-neuronal functions. 

The 1C11 cell system has also been instrumental to identify a functional coupling between the 

5-HT2BR and the NADPH oxidase/TACE/TNFα that contributes to the control of 5-HT 

catabolism [44, 45]. By contrast to its PLC/IP3 and PLA2/AA couplings, the capacity of 5-

HT2BR to recruit NADPH oxidase and produce reactive oxygen species (ROS) is restricted to 

fully differentiated serotonergic 1C115-HT neuronal cells, suggesting that this bioaminergic 

receptor contributes to the maintenance of the redox equilibrium in mature serotonergic 

neurons only. This neurospecificity may relate to regulatory processes controlling partner 

assembly in lipid rafts during neuronal differentiation. Upon agonist stimulation of the 5-

HT2BR, NADPH oxidase-dependent ROS act as second message signals and govern the 

activation of the metalloproteinase TACE (TNFα converting enzyme, ADAM17). Activated 
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TACE ensures the shedding of soluble TNFα, which, in turn, increases the degradation of 5-

HT into 5-HIAA in 1C115-HT cells [44, 45]. The link between the 5-HT2BR and the NADPH 

oxidase-TACE-TNFα pathway indicates that the 5-HT2BR autoreceptors may play an 

important role in the fine-tuning of 5-HT-associated metabolism.  

 

2.5 5-HT2BR signaling is modulated by the cellular prion protein in serotonergic 1C11 

cells 

As 5-HT2BRs exert a critical role as 5-HT biosensor and regulator of the intensities of 5-HT-

associated functions, any modulators of 5-HT2BR signaling will influence external 5-HT 

levels. To date, β-arrestin 2 was shown to be a negative regulator of 5-HT2BR-mediated 

signaling by promoting its agonist-dependent internalization in LMTK-transfected cells [46]. 

In cardiac fibroblasts, it has been reported that the 5-HT2BRs interacts with angiotensin 

receptor AT1 to form heterodimeric complexes that impact cytokine release [47]. In 2005, we 

evidenced functional interactions between the cellular prion protein (PrPC) and 5-HT 

receptors (Fig. 3) [48]. PrPC, the normal isoform of the pathogenic scrapie prion protein 

(PrPSc) at the route of prion diseases, is a ubiquitous glycosylphosphatidylinositol (GPI)-

anchored glycoprotein that exerts at the plasma membrane a role of receptor/co-receptor and 

is involved in signaling events [49]. Over the last decades, several signaling targets controlled 

by PrPC have been identified such as PI3 kinase, PKC, NADPH oxydase, TACE, MAP 

kinases ERK1/2 [50]. A feature of the PrPC-dependent neuronal response lies with the 

successful implementation of the signaling platform PrPC/caveolin/Fyn kinase in cholesterol- 

and glycosphingolipid-rich lipid rafts of neurites [49]. Of note, bioaminergic receptors are 

also associated with such membrane microdomains. We demonstrated that in 1C115-HT cells, 

the antibody-mediated-stimulation of PrPC combined with the agonist-dependent stimulation 

of 5-HT receptors abolishes the 5-HT2AR-PLC coupling, reduces the intensity of the 5-
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HT1B/1DR negative coupling to adenylate cyclase, improves the efficacy of the 5-HT2BR-PLA2 

coupling and slightly restores the agonist-dependent 5-HT2BR/PLC/IP3 coupling that is 

normally lost at day 4 of the serotonergic differentiation (Fig. 3) [48]. In these conditions, the 

5-HT2AR is no longer able to counterbalance the negative regulation of 5-HT2BR on 5-

HT1B/1DR functions. The activation of PrPC only disturbs receptor-couplings mobilizing G 

proteins. The 5-HT2BR-NO coupling through the PDZ motif is not affected by PrPC 

stimulation. Further, the impact of PrPC on 5-HTR functionality is restricted to fully 

differentiated neurons, as at day 2 of the serotonergic program of 1C11 cells, PrPC activation 

does not modify 5-HT2BR and 5-HT1B/1DR couplings. Therefore, it is unlikely that the 

modulation of cross-talks results from a direct interaction of PrPC with 5-HTRs. Supporting 

this idea is the absence of any effect of PrPC stimulation on the binding affinity of agonists 

and antagonists for 5-HT receptors. Rather, PrPC action on 5-HTR signaling depends on PrPC 

coupling to caveolin in 1C115-HT cells as the immunosequestration of caveolin abrogates the 

modulatory effect of PrPC on 5-HTRs. By mobilizing caveolin, PrPC could change the 

dynamic of interaction between signaling partners in rafts and modify the stoechiometry of G 

proteins recruted in response to 5-HTR activation. PrPC thus emerges as a physiological 

modulator of serotonergic functions, possibly acting as a receptor activity-modifying protein 

(RAMP) that interferes with the 5-HT autoreceptors-coupled signaling pathways. 

It is widely recognized that the interaction of PrPC with pathogenic prions PrPSc and its 

conversion into PrPSc is at the origin of prion diseases [50-52]. For ten years, PrPC is also 

known as a high affinity receptor for Aβ oligomers found in the Alzheimer's disease that 

relays, at least in part, Aβ toxicity [53-57]. More recently, PrPC was shown to interact with the 

pathological α synuclein involved in Parkinson's disease [58]. The role of PrPC in the 

modulation of 5-HT receptor-mediated signalings thus raises the question of whether the 

corruption of PrPC by PrPSc, Aβ or α synuclein would be at the root of deregulation of 5-HT 
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receptor signaling pathways that could lead to a loss of homeostasis in serotonergic neurons 

and contribute to neurodegeneration. There are already evidences that prion infection alters 5-

HT functions [59]. 

 

3 Role of the 5-HT2B receptor in mineralized tissues 

3.1 The 5-HT2BR controls TNAP activity during osteogenic differentiation of the C1 

mesodermic stem cells 

The C1 tripotential mesoblastic cell line is endowed with the ability to recapitulate in vitro the 

spatio-temporal features of osteogenic, chondrogenic or adipogenic differentiations, under 

defined culture conditions [60]. The growth of C1 cells in three-dimensional nodules, 

mimicking the in vivo mesodermal condensation required for bone development and repair, is 

compulsory for cells to engage into osteogenic or chondrogenic programs. C1 aggregates, 

upon addition of β-glycerophosphate and ascorbate, start to produce an abundant extracellular 

matrix of type 1 collagen. The mineralization of this matrix initiates at day 7 by the deposition 

of hydroxyapatite crystals on collagen fibrils. At the end of the osteogenic differentiation (day 

12), mature C1 osteocyte-like cells are embedded in a calcified matrix and stop to divide [61]. 

A functional 5-HT2BR is induced at day 5 of the C1 osteogenic differentiation prior starting 

mineralization (Fig. 4) [62, 63]. From its implementation to the end stage of the osteogenic 

program, 5-HT2BRs are coupled to NOS/NO and PLA2/AA signaling pathways. Concerning 

AA metabolism, cyclooxygenase (COX) ensures the conversion of AA into prostaglandin 

PGE2 from day 5 to day 10. During the late phase of mineralization process, i.e. when 

osteoblasts are converted into osteocyte-like cells, COX activity is quenched by yet 

unidentified molecular mechanisms. From day 10 to day 12, AA are then metabolized by 

lipoxygenase leading to leukotriene (LTB4) synthesis. Both NO, PGE2 and LTB4 as intra- 

and/or inter-cellular second messagers, are well-known protagonists of bone homeostasis [64-
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66]. They ensure either bone-forming and/or bone-resorbing effects. The major role of the 5-

HT2BR and its downstream signalings in matrix mineralization was evidenced by a 25-40% 

reduction of Ca2+ incorporation within the bone matrix using ritanserin, an agonist inverse of 

5-HT2Rs, or upon inhibition of NOS and COX. The involvement of the 5-HT2BR in 

osteogenesis is also supported in vivo by the skeleton damages observed in 5-HT2BR knock-

out mice. Indeed, female 5-HT2BR-/- mice exhibit reduced bone mineral density with age, 

likely due to failure of osteoblast recruitment and/or proliferation [67].  

We further demonstrated that 5-HT2BRs control bone mineralization by governing the activity 

of the GPI-anchored tissue-non-specific alkaline phosphatase (TNAP), a key player in bone 

formation (Fig. 4) [63]. As the 5-HT2BR, TNAP is translated at day 5 of the C1 osteogenic 

program. Of note, both 5-HT2BR and TNAP mRNAs are expressed as early as mesoblastic 

stem stage and their amounts remain unchanged throughout the 12 days of the differentiation. 

The signal events that switch on the translation of 5-HT2BR and TNAP mRNAs in this 

specific timeframe are yet unknown. At day 5, TNAP is under an inactive form. This enzyme 

is activated from the start of mineral deposition on day 7 until the end-stage of the C1 

osteogenic program by phosphatidylinositol-specific phospholipase C (PIPLC)-dependent 

post-translational mechanisms governed by the 5-HT2BR/PLA2/eicosanoids signaling. In 

agreement, primary calvarial osteoblasts derived from 5-HT2BR-/- mice display defects in 

TNAP activity [63, 67]. Under physiological conditions, the 5-HT2BR thus exerts a key role in 

mineralization processes. As PGE2 and LTB4 levels are altered in several bone diseases such 

as osteoporosis or rheumatoid arthritis [66], further investigations are needed to delineate 

whether deregulation of 5-HT2BR signaling pathways would contribute to the development of 

these pathological situations. 
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3.2 Pulpal stem cell lines to reveal the critical role of serotonergic (5-HT2B,7R) and 

dopaminergic (D1,3R) autoreceptors in platelet-mediated tooth repair 

During mouse embryogenesis, 5-HT exerts a critical role in craniofacial and tooth 

development, notably through the regulation of neural crest cell proliferation and migration 

from rhombomeres 1 and 2 [68]. An implication of the 5-HT2BR on dental tissues was 

considered because of its expression in day-9 mouse embryos in the neuroepithelium and the 

mesenchyme of the first branchial arch which is at the origin of craniofacial bones and tooth 

buds [12]. Of note, 5-HT2BR-/- mice display structural alterations of teeth characterized by 

enhanced enamel porosities, thinner crystallites and disorganized rod structures [69, 70]. 

Fifteen years ago, clonal pulpal stem cell lines, such as the A4 and H8 cell lines, were derived 

from the first molar tooth germs of day 18 mouse embryos [71]. At the precursor state, A4 

and H8 cells expressed odontogenic markers such as dentin matrix protein (DMP1), dentin 

sialoprotein (DSP), type 1 collagen and the LIM-domain homeobox transcription factors Lhx6 

and LhX7 which are present in the first branchial arch. In vitro, A4 cells are able to engage 

into odonto/osteogenic, chondrogenic and adipogenic differentiation and thus correspond to a 

multipotent mesoblastic stem cell. H8 cells whose potential of differentiation is limited to the 

odontogenic program, behaves as a monopotent precursor [72]. In vivo, both A4 and H8 

pulpal stem cells favor an efficient tooth repair after implantation in injured mouse incisor or 

rat molar [72, 73]. 

Remarkably, although A4 and H8 cells are progenitors at different stages of commitment 

along the odontogenic lineage, both pulpal stem cells exhibit a dual 

serotonergic/dopaminergic phenotype (Fig. 5) [74]. A4 and H8 cells have the capacity to 

synthesize, catabolize, store and transport 5-HT and dopamine (DA). Further, they exhibit the 

same pattern of serotonergic and dopaminergic receptors at the plasma membrane. A4 and H8 

cells expressed three serotonergic receptors, the 5-HT2BR as well as the 5-HT1DR and 5-
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HT7R, and two dopaminergic receptors, the D1 and D3 subtypes. In pulpal stem cells, the 5-

HT2BR recruits the PLC/IP3, PLA2/AA as well as the NOS/NO pathways. The four other 

bioaminergic receptors (5-HT1D,7Rs, D1,3Rs) are functionally coupled to adenylate 

cyclase/AMPc signaling, two positively (5-HT7R, D1R) and two negatively (5-HT1DR, D3R). 

Such a specific repertoire of 5-HT/DA receptors renders odontogenic stem cells capable to 

respond to 5-HT and DA in an autocrine and/or paracrine manner. How 5-HT/DA receptors 

signaling pathways interplay physiologically to ensure pulpal stem cell homeostasis and/or 

the balance between proliferation/differentiation remains to be investigated. 

In tooth, the dental pulp is a highly vascularized tissue [75]. Of note, peripheral systemic 5-

HT and DA are predominately stored in dense granules of blood platelets [76]. We 

demonstrated in vivo that in pathological situations, such as tooth injury, expression of the 

special 5-HT/DA receptor register allows odontogenic stem cells to be mobilized by 

circulating 5-HT and DA released by lesion-activated platelets for tooth repair (Fig. 5) [74]. 

In wild-type rats, a natural reparative dentin is formed at the exposure site 1 month after pulp 

lesion of the first maxillary molar. In the opposite, in Fawn-hooded and reserpine-treated rats, 

two rat models exhibiting a deficit of bioamine storage in platelets, reparative dentin 

formation is impaired. Thus, upon tooth injury, platelet-released 5-HT/DA represent essential 

"damage" signals for the recruitment of pulpal stem cells expressing 5-HT/DA receptors for 

tooth repair. The role of 5-HT2B,7Rs and D1,3Rs in dentin repair is further supported by the 

impairment of tooth reparative processes observed in wild-type rats after addition of selective 

antagonists for each receptor in the damaged molar pulp. Many questions remain related to 

the signaling pathways and downstream targets controlled by 5-HT2B,7Rs and D1,3Rs to 

orchestrate the mobilization/proliferation/differentiation of odontogenic stem cells for dental 

repair. 
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4 Conclusion 

This review focuses on clonal neuronal and mesoblastic stem cell lines with homogeneous 

differentiation properties allowing the identification of several signaling pathways and key 

effectors governed by the 5-HT2BR for the fine-tuned coordination of cell homeostasis and 

differentiation. These lineage progenitors used as test tubes also led to build 

pathophysiological scenarii implicating the 5-HT2BR and provided some clues as to the events 

involved in disease-associated states such as depression, ectopic mineralization or tooth 

repair. Indeed, the 1C11 neuronal stem cell line was notably useful to reveal the key role of 

miR-16 as a relay of fluoxetine action both on raphe serotonergic neurons and noradrenergic 

neurons of the locus coeruleus. Fluoxetine, through miR-16-dependent unlocking of 

serotonergic functions (5-HT synthesis, 5-HT2BR) in the locus coeruleus can activate a new 

source of 5-HT in the brain, a breakthrough in understanding the mode of action of SSRIs. In 

the dental field, although many challenges remain, highlighting the crucial role of the 

dialogue between pulp injury-dependent release of 5-HT/DA from platelets and 5-

HTRs/DARs-expressing odontogenic stem cells for tooth repair could pave the road for novel 

therapeutic strategies.  
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Figures Legends 

 

Fig. 1 The inducible 1C11 neuronal stem cells have the capacity to differentiate into 

serotonergic (1C115-HT) or noradrenergic (1C11NE) neuronal cells in a mutually exclusive 

manner. 

 

Fig. 2 By sensing external 5-HT levels the 5-HT2BR controls SERT functionality in 1C115-HT 

neuronal cells through the phosphorylation of SERT and of its energy source, the Na/K 

ATPase. 

 

Fig. 3 PrPC modulates 5-HT2A,2B,1B/D receptors signaling couplings in 1C115-HT neuronal cells. 

In 1C11 serotonergic cells at day 4, co-stimulation of PrPC with antibodies and 5-HTR with 

specific agonists impacts on G-dependent 5-HTR-couplings (see text for details). 

 

Fig. 4 The coupling of 5-HT2BR to the PLA2/eicosanoids/PIPLC pathway controls TNAP 

activity during osteogenic differentiation of the C1 mesodermic stem cells. 

 

Fig. 5 5-HT and DA co-released by activated platelets upon tooth injury are "damage" signals 

that mobilize pulpal stem cells expressing 5-HT2B,1D,7/D1,3 receptors for tooth repair. 

 

 












