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)), which naturally faces all the questions (robustness, model specification) that motivate this work and shows the merit of DS over state-of-the-art methods for this problem.

Dirichlet Sampling Algorithms

In this section we introduce Dirichlet Sampling, a strategy that aims at generalizing the Non-Parametric Thompson Sampling algorithm of Riou and Honda (2020) outside the scope of bounded distributions with a known support upper bound. For this purpose, we build an adaptive strategy in a duel-based framework, already used in sub-sampling based algorithms like SSMC (Chan, 2020).

Introduction

The K-armed stochastic bandit model is a decision-making problem in which a learner sequentially picks an action among K alternatives, called arms, and collects a random reward. In this setting, all rewards drawn from an arm are independent and identically distributed. Hence, we can formally associate each arm k ∈ {1, . . . , K} with its reward distribution ν k , with mean µ k . The objective of the learner is to adapt her strategy (A t ) t∈ [T ] in order to maximize the expected sum of rewards obtained after T selections (where T is the horizon, unknown to the learner). This is equivalent to minimizing the regret, defined as the difference between the expected total reward of an oracle strategy always selecting an arm with largest mean and that of the algorithm, which is equal to

R T = E T t=1 µ -µ At = K k=1 ∆ k E [N k (T )] .
(1)

Here, N k (T ) = T t=1 1(A t = k) denotes the number of selections of arm k after T time steps, µ = max j∈{1,...,K} µ j and ∆ k = µ -µ k is called the gap between arm k and the largest mean. To assess the performance of a bandit algorithm, one naturally studies the best guarantees achievable by a uniformly efficient algorithm, i.e with sub-linear regret on any instance of a given class of problems. This guarantee was first provided by Lai and Robbins (1985) for 1-dimensional parametric families of distributions, and then extended by [START_REF] Burnetas | Optimal adaptive policies for sequential allocation problems[END_REF] for more general families. It states that any algorithm that is uniformly efficient1 on a family of distributions F must satisfy lim inf

T →∞ R T log(T ) ≥ k:∆ k >0 ∆ k K F inf (ν k , µ ) , K F inf (ν k , µ ) = inf G∈F {KL(ν k , G) : E G (X) > µ } . (2)
A bandit algorithm is then called asymptotically optimal for a family of distributions F when its regret matches this lower bound. When F is a Single-Parameter Exponential Family (SPEF), K F inf is simply the Kullback-Leibler divergence between the distribution of mean µ k and that of mean µ in F, making for a theoretically appealing setting. The quantity K B inf , corresponding to the family F [-∞,B] of distributions supported in (-∞, B] is also often considered in the literature, see e.g (Honda andTakemura, 2010, 2015;[START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF].

Overview of existing strategies An efficient strategy faces the classical exploration/exploitation dilemma: it needs to obtain enough information from arms that have not been sampled a lot (exploration), but also to sample arms that are well-performing sufficiently often (exploitation). Many algorithms have been proposed for the multi-armed bandits problem (see Lattimore and Szepesvári (2020) for a survey), and we propose in the following a non-exhaustive list of such methods. A first category contains the deterministic index policies, built on the concept of Optimism in Face of Uncertainty, the most celebrated of which being the Upper Confidence Bound (UCB) algorithms [START_REF] Maillard | Sample mean based index policies with o (log n) regret for the multi-armed bandit problem[END_REF][START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF]. These algorithms can obtain a logarithmic regret under classical hypothesis on the distributions (e.g bounded, sub-gaussian, sub-exponential, . . . ), and the strongest guarantees have been achieved by kl-UCB [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF], DMED [START_REF] Honda | An asymptotically optimal bandit algorithm for bounded support models[END_REF], and IMED [START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards[END_REF], which share a common pattern of solving a convex optimization problem at each round. To be asymptotically optimal, these algorithms require either 1) the knowledge of a specific SPEF for each arm, or 2) a known upper bound on the support of each arm. A second general category is that of randomized bandit algorithms, which has been formulated for instance in (Kveton et al., 2019b) as General Randomized Exploration (GRE). The common feature of these methods is that, at each time step and for each arm, the algorithm draws an index from a distribution that depends on 1) the rewards observed from the arm, and 2) some knowledge on the arms distributions and chooses the arm with the largest index. Thompson Sampling (TS) (Thompson, 1933;[START_REF] Agrawal | Analysis of Thompson sampling for the multi-armed bandit problem[END_REF] belongs to this category, and a proper choice of Bayesian prior/posterior ensures optimality of TS in SPEF [START_REF] Korda | Thompson sampling for one-dimensional exponential family bandits[END_REF]. Different algorithms using Bootstrapping schemes have also been proposed (Osband and Roy, 2015;Kveton et al., 2019a,b;Wang et al., 2020;Riou and Honda, 2020): they share the idea of computing a noisy mean for empirical samples, enhanced by some exploration aid appropriately tuned to the family of distributions they consider. A last category contains the methods based on sub-sampling [START_REF] Baransi | Sub-sampling for multi-armed bandits[END_REF]; [START_REF] Chan | The multi-armed bandit problem: An efficient nonparametric solution[END_REF]; [START_REF] Baudry | Sub-sampling for efficient non-parametric bandit exploration[END_REF][START_REF] Baudry | On Limited-Memory Subsampling Strategies for Bandits[END_REF], that achieve asymptotic optimality in SPEF without knowing which family, when all arms share the same. However the proofs heavily rely on properties of the tails of SPEF so the results seem difficult to generalize outside these families.

Motivations While many algorithms achieve optimal regret for bounded distributions with the sole knowledge of the upper bound, the assumptions needed for algorithms working with unbounded distributions (e.g SPEF, sub-Gaussian, sub-exponential) generally assume a known parametric model for the tails. While such assumption entails convenient properties on the theoretical side, the practitioner may have some difficulty to determine which setting/parameters correspond to her problem. Furthermore, this uncertainty raises the question of robustness with respect to these hypotheses. Several works have considered this question: [START_REF] Hadiji | Adaptation to the range in k-armed bandits[END_REF] shows that adapting to an unknown bounded range requires a tradeoff between instance-dependent and worstcase regret, and recently [START_REF] Agrawal | Optimal best-arm identification methods for tail-risk measures[END_REF][START_REF] Ashutosh | Bandit algorithms: Letting go of logarithmic regret for statistical robustness[END_REF] proved the impossibility of an instance-dependent logarithmic regret for light-tailed distributions without explicit control on the tail parameters. The root cause for this is the lack of compactness of such families F, which allows mass to "leak" at infinity so that maximally confusing distributions with mean µ * exist arbitrarily close to ν k , meaning K F inf (ν k , µ * ) = 0. The latter work also introduces a robust variant of UCB, that trades off logarithmic regret for O (f (T ) log(T )), where f essentially tracks the possible mass leakage at infinity. These results puts into question the usual hypotheses under which bandit algorithms are designed: considering a parametric control of the tails is indeed sensitive to model mis-specification, but on the other hand the examples chosen to prove infeasability results seem a bit extreme for the practitioner. In this paper, we propose simple alternative setups allowing unspecified tail shapes Background Non-Parametric Thompson Sampling is an index strategy where the index of each arm is a random re-weighting of their observations, augmented by an exploration bonus. The weights are drawn from the Dirichlet distribution D n = Dir((1, . . . , 1)) for n data, which is the uniform distribution on the simplex P n = {w ∈ [0, 1] n : w t 1 = 1} and matches the Bayesian posterior (i.e Thompson Sampling) for multinomial arms. The exploration bonus is simply the known upper bound of the support, and avoids under-exploration of potentially "unlucky" good arm. We provide further explanations on the Dirichlet distribution and NPTS respectively in Appendix C.1 and A.3.

The simplicity of NPTS and its strong theoretical guarantees are appealing for further generalization. As we fully depart from the Bayesian approach, considering other exploration bonuses, we derive a new family of algorithms under the name of Dirichlet Sampling. We keep the two principles of re-weighting the observations using a Dirichlet distribution and the exploration aid, and explore how to apply them to more general (e.g unbounded) distributions. In particular, we allow in DS some pre-processing of the observations before re-weighting (see section 3.1 and 3.2) and motivate in Section 3.1 the use of a data-dependent bonus, that use information from several arms. The complexity introduced by such bonus in the analysis requires a change of algorithm structure, dropping the index policy for a leader vs challenger approach [START_REF] Chan | The multi-armed bandit problem: An efficient nonparametric solution[END_REF].

Round-based algorithm We define a round as a step of the algorithm at the end of which a set of (possibly several) arms are selected to be pulled. Let A r ⊂ {1, . . . , K} be the subset of the arms pulled at the beginning of a round r, we call T -round regret the quantity

R T = E T r=1 K k=1 ∆ k 1(k ∈ A r ) = K k=1 ∆ k E[N k (T )] , (3) 
where we slightly change the definition of N k (compared with 1) to N k (T ) = T r=1 1(k ∈ A r ). We consider the T -round regret for simplicity, as it is a simple upper bound of the regret after T pulls. At the beginning of each round we define a reference arm (leader), and then organize pairwise comparisons called duels between this arm and the other arms (challengers). The leader is chosen as the arm with largest sample size, r ∈ argmax k∈{1,...,K} N k (r) ,

where ties are broken first in favor of the best empirical arm, then with a random choice. A major motivation for this choice is that the leader will have a sample size that is linear in the number of rounds, as at least one arm is chosen at each round. This ensures strong statistical properties that we will exploit to design the exploration bonus of DS strategies. Randomizing the index of the leader is also unnecessary: it competes against each challenger with its empirical mean. We also dismiss all the arms k that satisfy N k (r) = N (r) with the same argument. These choices have a practical interest as they avoid the computation time of drawing the largest weight vectors. We believe this can be an alternative of independent interest to computationally intensive index policies.

Challenger's index We fix an index that is not dependent on the round, but only on the history of the challenger and the leader available at this round, that we denote respectively by X = (X 1 , . . . , X n ), Y = (Y 1 , . . . , Y N ) for simplicity of notations. We denote by µ : R N → R the function that computes the average of a set of observations. The duel can includes two steps, and the challenger wins if

1. µ(X ) ≥ µ(Y) (first compare the empirical means), or 2. µ(X , Y) ≥ µ(Y)
, where µ : R N × R N → R denotes the chosen DS index.

We summarize in Algorithm 1 the steps of Dirichlet Sampling, that we completely detail in Appendix A.2. We write it for a generic "Dirichlet Sampling index" µ that must be computed by a re-weighting of the observations augmented by an exploration bonus. As in NPTS, the weights are drawn with a Dirichlet distribution. For instance, a canonical example of Dirichlet Sampling index with a data-depend (instead of fixed) bonus

B(X , Y) is µ(X , Y) = n i=1 w i X i + w n+1 B(X , Y) , w = (w 1 , . . . , w n+1 ) ∼ D n+1 .
However, the algorithm structure in Algorithm 1 could be combined with any randomized index, which is of independent interest as we will see in Section 3. In the next section we study the theoretical properties of Dirichlet Sampling, and discuss the choice of the index µ for different families of distributions.

Algorithm 1 Generic Dirichlet Sampling Input: K arms, horizon T , Dirichlet Sampling index µ Init.: t = 1, r = 1, ∀k ∈ {1, ..., K}:

X k = {X k 1 }, N k = 1;
Draw each arm once while t < T do A = {} ; Arm(s) to pull at the end of the round = Leader((X 1 , N 1 ), . . . , (X k , N k )) ;

Choose a Leader for k ∈ {1, . . . , K} : 

N k < N do if max(µ(X k ), µ(X k , X )) ≥ µ(X ) then A = A ∪ {k}

Regret Analysis and Technical Results

In this section, we analyze the regret of DS algorithms. We first derive a general regret decomposition for any index µ that holds thanks to the duel-based structure. We then introduce several properties of Dirichlet sampling, that theoretically guide proper tuning of a DS index. We finally instantiate DS for three different problems and provide regret bounds in these settings. Starting with the regret decomposition, we exhibit general conditions to ensure guarantees that are independent on the index and the run of the bandit algorithm. Allowing a different family of distribution F k for each arm k, the first one concerns the concentration of the mean of each distribution.

Condition 1 (C1) [Concentration] For all ν k ∈ F k , there exists a good rate function I k satisfying I k (x) > 0 for x = µ k and for all x > µ k , y < µ k , and any i.i.d sequence X 1 , . . . , X n drawn from x) , and P

ν k P 1 n n i=1 X i ≥ x ≤ e -nI k (
1 n n i=1 X i ≤ y ≤ e -nI k (y) . ( 4 
)
This hypothesis is standard in the bandit literature, and is for instance satisfied by any light-tailed distributions. We refer to [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] for techniques to derive such functions.

We now provide an upper bound on the round-regret presented in Section 2 for Algorithm 1. To simplify the notations we consider that there is only one optimal arm and, without loss of generality, that ∀k > 1, µ k < µ 1 . Furthermore, for simplicity we write the following theorem for an index µ(X , µ), that only uses the mean of the leader. The same result holds for any index using statistics on the leader's history that have concentration properties similar to (C1) (e.g possibly quantiles, variance, etc) with slight adaptations of the proof. Theorem 3.1 (Generic regret decomposition of DS). Consider a bandit model ν = (ν 1 , . . . , ν K ), where all distributions in ν satisfy (C1). Then for any DS index the expected number of pulls of each arm k ∈ {2, . . . , K} is upper bounded for each ε ∈ [0, ∆ k ) by

E [N k (T )] ≤ n k (T ) + B k T,ε + C k ν,ε ,
where

n k (T ) = E T -1 r=1 1(k ∈ A r+1 , r = 1) , C k ν,ε is independent on T and, denoting X n the set of n first observations of arm 1, B k T,ε = K j=2 2 log(T )/I1(µ k +ε) n=1 sup µ∈[µj -ε,µj +ε] E Xn 1 (µ(X n ) ≤ µ) P( µ(X n , µ) ≥ µ)
.

The details of the proof of this result are to be found in Appendix B. The proof follows the general outline of [START_REF] Chan | The multi-armed bandit problem: An efficient nonparametric solution[END_REF], and makes all the components of C k ν,ε explicit. This term is related to deviations of sample means for arms k and 1 and is typically bounded by a (problem-dependent) constant under light-tail concentration (C1), so it does not depend on µ but only on the rate functions and the means of each arm. The other two terms of the RHS reflect the exploration strategy. n k (T ) is the expected number of pulls of arm k when the best arm is the leader; we interpret it as the sample size required to statistically separate both arms at horizon T . On the other hand, B k T,ε measures the capacity of the best arm to recover from a bad (small-sized) sample.

Theorem 3.1 is formulated to be as general as possible and can be regarded as a counterpart of Theorem 1 of Kveton et al. (2019b). We will later analyze instances of Dirichlet Sampling where the first-order term of the regret is driven entirely by n k (T ). We therefore introduce the following condition to control the contribution of B k T,ε to the regret. Condition 2 (C2) For any µ < µ 1 , and any

n 1 (T ) = o(log T ) it holds that n1(T ) n=1 E Xn∼ν n 1 1(µ(X n ) ≤ µ) P w∼Dn+1 ( µ(X , µ) ≥ µ) = o(log T ) .
The LHS represents the expected cost in terms of regret of underestimating the optimal arm; intuitively, it measures the expected number of losing rounds before finally winning one when starting with low rewards. This is a classic decomposition in bandit analysis, and a counterpart of (C2) holds for most index policies with provable regret guarantees, e.g Theorem 1 in Kveton et al. (2019b) (GIRO) or Lemma 4 in [START_REF] Agrawal | Analysis of Thompson sampling for the multi-armed bandit problem[END_REF]) (Bernoulli Thompson Sampling). We find it noteworthy that this regret decomposition depends only on the distribution of the best arm and its randomized Dirichlet Sampling index when it is a challenger. Corollary 3.1.1 (Conditions for controlled regret). If condition (C1) and (C2) holds for the DS index on the families of distribution (F k ) k∈{1,...,K} , the regret of the DS algorithm satisfies

R T ≤ K k=2 ∆ k n k (T ) + o(log T ) .
Up to this point this result is quite abstract, but this standardized analysis allows us to instantiate the Dirichlet Sampling algorithm on different class of problems and calibrate it in order to ensure condition (C2) holds and to make n k (T ) explicit. In particular if n k (T ) = O(log T ), we recover the logarithmic regret. In the next section, we present technical results to justify calibrations of the DS index for several kind of families.

Technical tools: boundary crossing probability of a DS index

In this section, we highlight some key properties of a sum of random variables re-weighted by a Dirichlet weight vector that help us suggest a sound tuning of the bonus B(X , Y) for different kind of families. We then detail such tuning.

Boundary crossing probability (BCP)

We consider a set of n + 1 observation points X = (X 1 , . . . , X n+1 ) ⊂ R n+1 . (Intuitively, n points are samples from a challenger arm, and one point corresponds to the added bonus). Then, for any µ ∈ R, we introduce the following "Boundary Crossing Probability" (BCP) term, conditional on X

[BCP] := P w∼Dn+1 n+1 i=1 w i X i ≥ µ ,
where we recall that D n+1 is the Dirichlet distribution with parameter (1, . . . , 1) of size n+1, i.e the uniform distribution on the (n + 1)-simplex. We emphasize that here X is considered fixed, and the only source of randomness comes from the weights w. When all observations are distinct this expression has a closed form, which is unfortunately untractable in the proof, as discussed in Appendix C.2. This quantity is of much interest as both the growth of n k (T ) and (C2) can be derived from respectively upper and lower bounds for the BCP. Lemma 14 and Lemma 15 in (Riou and Honda, 2020) provide such bounds, resorting to classical concentration results and properties of the Dirichlet distribution that we recall in Appendix C.1 and C.2, and complete with additional technical results. The lower bounds suggest non-trivial tuning of the bonus. We first exhibit a necessary condition when the bonus is not allowed to depend on the set of observations X . Lemma 3.2 (Necessary condition with a data-independent bonus). Consider a fixed bonus B(X , µ) = B(µ), and a distribution F (with CDF also denoted F ). If Condition (C2) holds then

B(µ) > µ + 1 1 -F (µ) E F [(µ -X) + ] .
This result is obtained using a "worst-case" scenario when all observations are below the threshold µ. Hence, it does not cover all possible trajectories, yet it suggests to investigate the properties of bonuses with a similar form. Since the right-hand side of the inequality requires a knowledge on the arms distributions that we would like to avoid, we use an empirical estimator for the expectation. This suggests to introduce some parameter ρ and data-dependent bonuses of the form

B(X , µ, ρ) = µ + ρ × 1 n n i=1 (µ -X i ) + . (5) 
We interpret ρ as the leverage of the empirical excess gap 1 n n i=1 (µ -X i ) + w.r.t the threshold µ. We then tune ρ assuming an hypothesis on some upper quantile of the arm distribution, which is much less constraining than assuming knowledge of the shape of the entire tail. In all DS algorithms we propose (see next section), we use Equation 5 as the basis for defining the appropriate bonus. Finally, we provide in Lemma 3.3 a novel lower bound on the BCP that reveals that in the general case of unbounded distributions, without further processing of the data, DS cannot achieve a logarithmic regret when the maximum of the data tends to +∞ at some rate g(n). Lemma 3.3 (Lower bound for the BCP). Consider a set X = (X 1 , . . . , X n+1 ) ∈ R n+1 , and assume that X = max i∈{1,...,n+1}

X i ≥ g(n) for some function g. Denoting ∆+ n = 1 n n+1 i=1,Xi<X (µ -X i ) + the empirical positive gap, it holds that

P w∼Dn+1 n+1 i=1 w i X i ≥ µ ≥ exp -n ∆+ n g(n) -µ .
In particular, we see in this expression that g(n) may hinder the exponential rate in n. In the next section we discuss three examples of DS algorithms and their theoretical guarantees.

Theoretical guarantees for Dirichlet Sampling algorithms

Building on the results from previous the section, we now instantiate the DS algorithms for three bandit problems. We first prove that optimal guarantees can be derived for DS with bounded distributions under a non-standard definition of the problem (i.e unknown upper bound but alternative assumptions), motivated by practical considerations. Then, we consider a natural extension to unbounded distributions using a simple truncation mechanism, ensuring logarithmic regret under assumptions on some quantile of the distributions. Finally we consider a simple DS algorithm, securing slightly larger-than-logarithmic regret for the entire family of light-tailed distributions. In the following we denote by B(X , µ, ρ) the bonus defined in Equation 5 for a set X , a mean µ and some parameter ρ. For simplicity we will keep a generic µ in our exposition, while its value is in practice the empirical mean of the leading arm. We detail each algorithm and their components in Appendix A.2 and the proofs of the three theorems in Appendix D. In all cases, the proof consists in showing that (C1) and (C2) hold for each proposed algorithms in the settings they tackle and deriving an expression for n k (T ).

Optimality for bounded distributions Let F [b,B] be the set of distributions supported in [b, B], and consider a bandit ν = (ν 1 , . . . , ν

K ) with ν k ∼ F [b k ,B k ] for some B k ∈ R.
If we assume that B k is known (case 1), then simply defining B k as the exploration bonus ensures an asymptotically optimal regret, with a direct adaptation of the proof of NPTS (Riou and Honda, 2020). However, the precise knowledge of the upper bound for each arm is sometimes inaccessible to the practitioner (e.g if the environment is new, or if no expert is available to provide an estimate of the bound). We propose an alternative setting, with the family F γ,p

B = {∃B : ν ∈ F [b,B] , P ν ([B -γ, B]) ≥ p} ⊂ F [b,B]
. B k is unknown but we assume it is detectable in the sense that we will observe a sample from its neighborhood [B k -γ, B k ] with a reasonable probability of at least p, with known γ, p (case 2). In this case we propose the following bonus, allowing to obtain theoretical results in this setting, B(X , µ) := max{X +γ, B(X , µ, ρ)} , where X = max{x : x ∈ X }.

(6)

Theorem 3.4 (Optimality of BDS). If ∀k ∈ {2, . . . , K} , ν k ∼ F γ,ρ B , choosing the exploration bonus of Equation 6 with ρ ≥ -1/ log(1 -p) ensures that

E[N k (T )] ≤ log(T ) K Bρ,γ inf (ν k , µ 1 ) + O(1) , where B ρ,γ = max (B + γ, µ 1 + ρE ν k [(µ 1 -µ k ) + ])).
This setting is a first example of the interest of data-dependent bonuses. It makes sense in practice by avoiding for instance distributions with a small mass arbitrarily far from the rest of their support, which may not be likely in a real-world application. We now consider the unbounded case.

Unbounded distributions: truncating the upper tail Let consider the family F [b,+∞] for some unknown b ∈ R. A natural way to extend algorithms designed for F [b,B] (where B < +∞) is to truncate the upper tail of the distributions. We propose a simple way to do this, by considering (as a parameter of the algorithm) a quantile 1 -α, denoted by q 1-α (ν) for a distribution ν, and a truncation operator T α that (1) do not change a distribution below its 1 -α quantile, and (2) "summarizes" its upper tail by its expectation, known as Conditional Value at Risk (CVaR). Formally, we obtain

T α (ν)(A) = ν(A) for any A ⊂ [b, q 1-α (ν)] and T α (ν) ({x}) = α1(x = C α (ν)) for any x > q 1-α (ν), with C α (ν) = E[X|X > q 1-α (ν)].
We then propose Quantile Dirichlet Sampling (QDS), that computes the index of a challenger (say arm k, with observations X k ) during a duel as follow: (1) apply T α to the empirical distribution, (2) compute the bonus B(X k , µ, ρ), and (3) re-sample the truncated empirical distribution with weights drawn according to Dir(1, . . . , 1, n α ) where parameter n α is for the weight used with the empirical CVaR, and is simply the number of observations used to compute it (to avoid a bias in the re-sampled mean). We can obtain theoretical guarantees with this method by considering the subset of distributions

F α [b,+∞) = {ν ∈ F [b,+∞) : ∀µ > E ν (X), K F [b,+∞) inf (ν, µ) ≥ K M k inf (T α (ν), µ)} ,
where

M q k = max{q 1-α (ν k ), µ 1 + ρE ν k [(µ 1 -X) +
]}, and the second K inf is taken on the family F [b,M q k ] (using previously introduced notations). Although technical, this condition essentially states that the bandit problem taken on the complete family F [b,+∞) is no harder than an alternative bandit problem considering the truncated distributions and a bounded family, with an upper bound depending on the 1 -α quantile and the leverage ρ of the exploration bonus. Theorem 3.5 (Logarithmic Regret of QDS). Consider a bandit model ν = (ν 1 , . . . , ν K ) satisfying ∀k, ν k ∈ F α [b,+∞) for some b > -∞ (lower-bounded support) and a known α > 0. Then, for any ε 0 > 0 small enough QDS with any parameters α < α and ρ ≥ (1 + α )/α 2 satisfies

E[N k (T )] ≤ log T K M C k inf (T α (ν k ), µ 1 ) -ε 0 + O(1) , with M C k = max{C α (ν k ), µ 1 + ρE ν [(µ 1 -X) + ],
and T α is the truncation operator we defined. This result is of particular interest as it captures the continuum between bounded and light-tailed distributions. In our opinion, it sheds new light on the interpretation of infeasability results of e.g [START_REF] Ashutosh | Bandit algorithms: Letting go of logarithmic regret for statistical robustness[END_REF]: logarithmic regret can be achieved without specifying the tail with precise parameters, but a simple quantile condition is required to avoid pathological distributions that makes little sense in practice (e.g very small mass at a very large value). We further discuss this condition in Appendix E and provide examples of families for which it holds (exponential, Gaussian). Remark 3.6. The restriction to the semi-bounded case b > -∞ is due to our proof technique, based on a discretization of the support of the truncated distribution (see Appendix D). Note that the actual value of b is not known by the algorithm. This is intuitive since K

F -∞,B inf = K F b,B inf
for all b, B ∈ R, as proved in Theorem 2 of [START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards[END_REF]. Different theoretical tools could allow to prove a logarithmic regret for QDS in the doubly unbounded case, possibly with a symmetric treatment of the two tails. We leave this extension for future work.

One may wonder whether the couple quantile condition/truncation is necessary to achieve theoretical results as well as good practical performance. Our last algorithm investigates this issue.

Robust regret for light-tailed distributions We call Robust Dirichlet Sampling (RDS) the algorithm with bonus B(X , µ, ρ n ), where the leverage ρ n is a function of the sample size n = |X |. We prove that while being very simple, RDS achieves a robust sub-linear regret bound when each arm comes from any unknown light-tailed distribution, that we define as the family

F = {ν ∈ F (-∞,+∞) : ∃λ ν > 0, ∀λ ∈ [-λ ν , λ ν ], E ν [exp(λX)] < +∞} .
Theorem 3.7 (Robust regret bound for RDS). Let ν = (ν 1 , . . . , ν K ) a bandit model satisfying ν k ∈ F for all k. Consider any increasing sequence (ρ n ) n∈N with ρ n → +∞, ρ n = o(n). Then, for T large enough the expected number of pull of any sub-optimal arm k in RDS is upper bounded by

E[N k (T )] ≤ n η,ε0 k (T ) + O(1) ,
where for any η ∈ (0, 1], ε 0 > 0, n η,ε0 k (T ) is the sequence satisfying

n η,ε0 k (T ) = log T η(∆ k -ε 0 ) (M k,n η,ε 0 k (T ) -µ) , with M k,n = max F -1 k exp - 1 n 2 (log n) 2 , ρ n .
In particular, if

ρ n = O(log n) then E[N k (T )] = O(log(T ) log log(T )) for any light-tailed distribu- tion ν k ∈ F .
The sequence M k,n is a large probability upper bound of the maximum of n observations from F k , that we discuss in Appendix D. For light-tailed distributions, it holds that M k,n = O(log n) (using Jensen inequality as in the proof of Theorem 2.5 in [START_REF] Boucheron | Concentration inequalities : a non asymptotic theory of independence[END_REF]). Hence, choosing ρ n = O(log n) we can further obtain the simpler upper bound in O(log(T ) log log(T )). This slightly larger-than-logarithmic rate is a consequence of Lemma 3.3. In our opinion this is a small cost compared to the adaptive power of RDS. We call the algorithm robust because these theoretical guarantees are obtained on the broad class of light-tailed distributions, without any additional assumption. We recommend the leverage function ρ n = O( log(1+n)), which corresponds to the growth rate of the maximum of sub-Gaussian samples and is empirically validated (see Appendix F). We emphasize that RDS thus avoids all hyperparameter tuning, a desirable feature for the practitioner with little information on the problem she faces. Furthermore, in the next section we show that this algorithm performs very well in practice despite its non-logarithmic asymptotic guarantees.

Application in a crop-farming environment

We consider a practical decision-making problem using the DSSAT2 simulator [START_REF] Hoogenboom | The dssat crop modeling ecosystem[END_REF]. Harnessing more than 30 years of expert knowledge, this simulator is calibrated on historical field data (soil measurements, genetics, planting date...) and generates realistic crop yields. Such simulations are used to explore crop management policies in silico before implementing them in the real world, where their actual effect may take months or years to manifest themselves. More specifically, we model the problem of selecting a planting date for maize grains among 7 possible options, all else being equal, as a 7-armed bandit. The resulting distributions incorporate historical variability as well as exogenous randomness coming from a stochastic meteorologic model. We illustrate this in Figure 1 with the histogram of four of these distributions, computed on 10 6 samples. They are typically right-skewed, multimodal and exhibit a peak at zero corresponding to years of poor harvest, hence they hardly fit to a convenient parametric model (e.g SPEF/sub-Gaussian. . . ). Benchmarks A natural choice for the learner would be to use algorithms adapted for bounded distributions with known support. Indeed, one could argue that crop yields are fundamentally bounded by a very large value, that can be provided with some expert knowledge. However this method may have limits when the upper bound cannot be estimated accurately (few data, new environment, . . . ), as a conservative bound can have a cost on the regret. For this reason, we believe that the novel Dirichlet Sampling algorithms we introduce in Section 3.2 are a good alternative choice for this problem. In particular, the three algorithms we propose in this paper are relevant in this setting: BDS keeps the bounded-support hypothesis but introduces the possible uncertainty on the bound, while the light-tailed hypothesis of RDS and the quantile condition of QDS look reasonable. In Figure 2 we compare DS algorithms to empirical IMED [START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards[END_REF] and NPTS (Riou and Honda, 2020), with two upper bounds: 1) the "exact" upper bound is provided looking at the maximum of all historical data collected (left figure), and 2) the algorithms use a conservative estimate with a value 1.5 times larger than the previous one (right figure). To avoid cluttering, we only report the performance of IMED and NPTS as they were the most competitive baselines on this problem, but report figures with other competitors (e.g UCB1, Bernoulli TS, SDA) in Appendix F.

Tuning For BDS we choose the parameters ρ = 4, γ = 3500, corresponding to p ≈ 20% in the hypothesis of Theorem 3.4, which is conservative in our example. For QDS, we set ρ = 4 to be able to compare with BDS and a quantile 95%. Finally for RDS, we choose ρ n = log (1+n), which enters into the theoretical framework of Theorem 3.7.

Results

Our results show that Dirichlet Sampling algorithms achieve similar or slightly lower regret to their competitors when the latter are allowed to use the "exact" upper bound, and compare favorably when they use a conservative estimate (1.5 times larger, right), see Figure 2. In particular, RDS is the overall winner in both experiments. We think this demonstrates the merits of trading-off logarithmic regret (albeit only by a factor O (log log T )) for finite-time adaptation to the tail behaviour via the leverage ρ n . As a side remark, note that our round-based implementation is more efficient than NPTS as it does not draw random weights for the leader, which is the most costly operation at each round. The code to reproduce the experiments is available in this github repository. Other experiments To further illustrate the properties of DS algorithms, we perform additional experiments on synthetic examples. Due to space limits, we present our results in Appendix F. First, we test the sensitivity of DS w.r.t its hyperparameters, and check that their impact on the performance of the algorithms is moderate. Then, we show the merits of RDS in case of model misspecification, following the robustness experiments of [START_REF] Ashutosh | Bandit algorithms: Letting go of logarithmic regret for statistical robustness[END_REF]. Finally, we consider the case of Gaussian mixtures, a common tool to model nonparametric distributions via kernel density estimation, and show that they fit the scope of DS but not that of usual bandit algorithms.

Conclusion

In this paper, we introduced a new framework for randomized exploration in stochastic bandits based on resampling of the reward history and a data-dependent bonus, which generalizes an optimal Thompson Sampling strategy for bounded distributions to light-tailed families. We proposed three instances of such Dirichlet Sampling (DS) algorithms, corresponding to different modeling assumptions. In our opinion, these new algorithms are appealing for the practitioner because 1) our theoretical results show strong guarantees under different settings, 2) DS algorithms are simple to implement despite the technically challenging analysis and achieve strong practical performances, and 3) they provide alternative robust ways to tackle unbounded distributions in bandit problems.

Interesting future directions include extending the DS framework to heavy tail distributions, and tightening the analysis of Boundary Crossing Probabilities of Section 3.1 to design sharper bonuses for general families of distributions motivated by real use-cases. Moreover, we believe the duel-based structure associated with the generic regret decomposition of Theorem 3.1 opens up new perspectives to design exploration strategies in bandits. In particular, they allow to analyze policies using the history of two arms in the computation of a single index. 

A Supplementary Material

In this section we introduce different elements to help the understanding of the Dirichlet Sampling algorithms. We first detail the notations used in the main text and in the proofs. Then, we provide a detailed version of Algorithm 1 and recall the three DS indexes presented in Section 3.2. Finally, we briefly recall the Non Parametric Thompson Sampling of Riou and Honda (2020), to help readers that are not familiar with this algorithm.

A.1 Notations

In this section, we provide to the reader an index of all the notations used in Sections 1-4, and in the detailed proofs in Appendix B-D.

Multi-Arm Bandits and families of distributions

• ν = (ν 1 , .
. . , ν K ) denotes a K-armed bandits where an k ∈ {1, . . . , K} is associated with a reward distribution ν k ∈ F k , for some family of distributions F k . • For any family of distributions F, any ν ∈ F and any µ ∈ R we denote

K F inf (ν, µ) = inf ν ∈F ,ν =ν {KL(ν, ν ) : E ν (X) > µ} .
This quantity allows to define asymptotic optimality for bandit algorithms in Equation 2. • SPEF: Single-Parameter Exponential Family. The family of distributions P Θ is a SPEF on the parameter set Θ ⊂ R if there exists a function Ψ : Θ → R and f : R → R such that any distribution from P Θ admits a density g θ (x) = g(x, θ) = e θx-ψ(θ) f (x) , for some parameter θ ∈ Θ. Hence, each distribution in a specified SPEF is fully characterized by its parameter θ ∈ Θ. 

ν ∈ F [b,B] , µ ∈ R K B inf (ν, µ) := K F [b,B] inf
(ν, µ) , which holds for any b as detailed for instance in [START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards[END_REF].

• F γ,p [b,B] = {ν ∈ F [b,B] : P ν ([B -γ, B]
) ≥ p} is a set of bounded distributions with an additional condition on a neighborhood of their upper bound. Considering this set allows to build strategies with logarithmic regret for bounded distributions with an unknown upper bound.

• We denote the set of light-tailed distributions in R

F = {ν ∈ F (-∞,+∞) : ∃λ ν > 0, ∀λ ∈ [-λ ν , λ ν ], E ν [exp(λX)] < +∞} . • We denote q β : F (-∞,+∞) → R the operator that returns the quantile β ∈ [0, 1] of any distribution ν ∈ F (-∞,+∞) , q β (ν) = inf{x ∈ R : F ν (x) > β} , where F ν denotes the cdf of a distribution ν. • We denote C α : F (-∞,+∞) → R the operator that returns the Conditional Value-at-Risk (CVaR) at level α ∈ [0, 1] of any distribution ν ∈ F (-∞,+∞) , C α (ν) = inf x∈R x + 1 α E ν (X -x) + . Moreover if the cdf of ν is continuous, then C α = E ν [X|X ≥ q 1-α (ν)]. • Considering a base family F ⊂ F [b,+∞) and parameters α ∈ (0, 1), ρ > 0, we consider the subset of F F α [b,+∞) = {ν ∈ F : ∀µ > E ν (X), K F inf (ν, µ) ≥ K M q k inf (T α (ν), µ)} , where M q k = max{q 1-α (ν), µ + ρE ν [(µ -X) + ], and 
T α : F → F [-∞,q1-α(ν k )] is the truncation operator satisfying T α (ν)(A) = ν(A) for any A ⊂ [b, q 1-α (ν)] and T α (ν) ({x}) = α1(x = C α (ν)) for any x > q 1-α (ν).

Dirichlet Sampling Algorithms

• DS := Dirichlet Sampling, and we call "DS index" the index µ computed in DS algorithms using a re-weighting scheme (with a Dirichlet distributions) and an exploration bonus. 

R T = K k=1,∆ k >0 ∆ k E[N k (T )] ,
where

∆ k = max i∈{1,...,K} µ i -µ k and N k (T ) = T r=1 1(k ∈ A r )
is the number of selection of an arm k after T rounds. • Duel: a pairwise comparisons between two arms at the end of which one arm is selected as the winner. • Leader: A reference arm r chosen at the beginning of each round r as r ∈ argmax k∈{1,...,K} N k (r) .

We denote L r = argmax • Duel in DS algorithms: we denote X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y N ) two sets of real observations. 1. µ : R N → R denotes the application computing the mean of a set:

µ(X ) = 1 n n i=1 X i , and µ(Y) = 1 N N i=1 Y i .
2. µ : R N × R N → R denotes an application that returns the "DS index" µ(X , Y). If X denotes the observations from a challenger in a DS algorithm, and Y the one of the current leader, then the challengers wins the duel if max(µ(X ), µ(X , Y)) ≥ µ(Y). Otherwise, the leader wins the duel.

• We denote Dir(P ) the Dirichlet distribution with parameter P ∈ N N . When P = 1 n = (1, . . . , 1) (vector of size n, all values equal to 1) we write this distribution D n . Furthermore, D n is the uniform distribution on the probabilistic simplex of size n, 

P n = {w ∈ [0, 1] n : n i=1 w i = 1} . • We denote B : X ∈ R N × Y ∈ R N → B(X , 
B(X , µ, ρ) = µ + ρ × 1 n n i=1 (µ -X i ) + ,
where n = |X |, X = (X 1 , . . . , X n ) and ρ > 0 is a given parameter and for any x ∈ R, x + = max(x, 0).

Technical Notations for the proof of Theorem 3.1

• Optimal arm = arm 1 without loss of generality

• X k n = (X k 1 , X k 2 , . . . , X k n )
denotes the first n observations collected from arm k. We assume that for each arm an unknown infinite reward stream X k is available and that the j-th reward in X k is the j-th reward collected from this arm (independently on when it is observed). For arm 1 we simply use the notations X and X n .

• a r = r/4 , b r = a r /K : in all rounds after a r the leader has at least b r observations, which is linear in r.

• D r = {∃u ∈ [a r , r] : u = 1}: under this event arm 1 has been leader at least once after the round a r .

• We call the event B r k = { r = 1, r+1 = k} a leadership takeover by arm k.

• C r = { r = 1, 1 /
∈ A r+1 } represents a duel lost at round r by arm 1 against a sub-optimal leader. We also denote L r = r u=ar 1(C u ).

• H r,n j = N 1 (r) = n, µ X j Nj (r) -µ j ≤ ε, 1 / ∈ A r+1 for some ε > 0.
A.2 Detailed algorithms Algorithm 2 Generic Dirichlet Sampling Bandit Algorithm Input: K arms, horizon T , DS index µ Init.: t = 1, r = 1, ∀k ∈ {1, ..., K}: 

X k = {}, N k = 1, S k = 0 while t < T do A = {} ; Set of
if µ k ≥ µ then A = A ∪ {k} ; First duel with empirical mean else Draw DS index µ(X k , X ) if µ(X k , X ) ≥ µ then A = A ∪ {k} ;
Second duel with the Dirichlet Sampling index // Collect reward and update quantities 

if |A| = 0 then A = { } ; If no winning challenger is pulled Shuffle A for k ∈ A do if t < T then Collect X k,N k , update history X k = X k ∪ {X k,N k } N k = N k + 1, S k = S k + X k,N k , µ k = S k /N k , t = t + 1 r = r + 1
(X , Y) BDS F [b,B] , known B B BDS F γ,p [b,B] , known γ, p max{ X + γ, B(X , µ, ρ)} RDS F B(X , µ, ρ n ) with ρ n → +∞ QDS F α [b,+∞) B(X , µ, ρ)
In this section we provide the detailed implementation of each algorithm presented in this paper.

Before that, we first recall the families on which each algorithm achieves regret guarantees and their corresponding bonuses. We denote X the maximum of a set X .

For QDS, the family F α [b,+∞) relies on an unknown base family F ⊂ F [b,+∞) for some b > -∞. We detail in Theorems 3.4, 3.7 and 3.5 the conditions on the tuning of ρ for each algorithm to ensure a controlled regret. These three results rely on the same general analysis of a Dirichlet Sampling Algorithm with any index µ. Before instantiating each algorithm we first provide a detailed version of this algorithm in Algorithm 2, to complete the short version we provided in Section 2 with Algorithm 1, We now provide the detailed computation of the DS index for the three algorithms we introduced in Section 3.2: Bounded Dirichlet Sampling (BDS), Robust Dirichlet Sampling (RDS) and Quantile Dirichlet Sampling (QDS).

Bounded Dirichlet Sampling index We first introduce in Algorithm 3 the index of BDS. The set of parameters is dependent of the choice of hypothesis (B1) or (B2) in Theorem 3.4. As hypothesis (B1) corresponds to the same index as Non Parametric Thompson Sampling (that we describe in further details in Appendix A.3) we only report the bonus under case (B2).

Algorithm 3 Bounded Dirichlet Sampling Index Input: Two sets of data X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y N ), parameters γ, ρ

Set µ = 1 N N i=1 Y 1 Set B(X , µ) = max max n i=1 X i + γ, µ + ρ n n i=1 (µ -X i ) + Draw w = (w 1 , . . . , w n+1 ) ∼ D n+1 return n i=1 w i X i + w n+1 B(X , µ)
We recall that if γ and p are known in (B2) then the theoretical tuning of ρ we provide in Theorem 3.4 is ρ ≥ -1/ log(1 -p).

Robust Dirichlet Sampling index We now report in Algorithm 4 the index of RDS, which only depends on the choice of an increasing sequence ρ n satisfying ρ n → +∞ and

ρ n = o( √ n). Algorithm 4 Robust Dirichlet Sampling Index Input: Two sets of data X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y N ), (ρ n ) n∈N Set µ = 1 N N i=1 Y 1 Set B(X , µ) = µ + ρ n × 1 n n i=1 (µ -X i ) + Draw w = (w 1 , . . . , w n+1 ) ∼ D n+1 return n i=1 w i X i + w n+1 B(X , µ)
RDS is the simplest instance of Dirichlet Sampling we propose, and achieves robust regret guarantees for light-tailed distributions. We also propose QDS for unbounded distribution, that achieves logarithmic regret guarantees under a mild quantile condition.

Quantile Dirichlet Sampling index We finally present in Algorithm 5 the index of QDS, depending this time on the choice of a quantile q α and a parameter ρ. If the regret guarantees require quite complicated notations for a proper formalism, the index is actually quite simple to implement: the bonus is similar to BDS and RDS, and the re-weighting step only require to compute the α quantile of the data, the corresponding CVaR (mean of the observations larger than this quantile) and to draw a Dirichlet weight with a slightly different parameter. Furthermore, the computation time of these steps can be optimized in practice (keeping in memory the sorted data, quantile and CVaR).

Algorithm 5 Quantile Adaptive Dirichlet Sampling Index Input: Two sets of data

X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y N ), quantile α , ρ Sort X to have X 1 ≤ X 2 ≤ • • • ≤ X n Set µ = 1 N N i=1 Y 1 Set B(X , µ) = µ + ρ n n i=1 (µ -X i ) + Set quantile index n α = n(1 -α ) /n Set C α = 1 n-n α +1 n-n α +1 i=1 X n α +i Draw w = (w 1 , . . . , w n α +1 ) ∼ Dir((1, . . . , 1, n α , 1)) ;
Only ones except for w n α return

n α -1 i=1 w i X i + w n α C α + w n α +1 B(X , µ)

A.3 Non-Parametric Thompson Sampling

In this section we briefly introduce the Non Parametric Thompson Sampling Algorithm, introduced in Riou and Honda (2020), for readers that are not familiar with it. NPTS is an index policy, that we detail in Algorithm 6. To keep consistent notations, we write it using the notations of this paper. 

w ∼ D N k +1 Set µ k = N k i=1 w i X i + w N k +1 B Pull arm A t = argmax k∈{1,...,K} µ k , observe X N k +1 Update X k = X k ∪ {X n k +1 }, N k = N k + 1
We recall that this algorithm is asymptotically optimal when arms belong to F [b,B] for a known B.

B Proof of Theorem 3.1

We first recall the statement of result we want to prove. Theorem 3.1 (Generic regret decomposition of DS). Consider a bandit model ν = (ν 1 , . . . , ν K ), where all distributions in ν satisfy (C1). Then for any DS index the expected number of pulls of each arm k ∈ {2, . . . , K} is upper bounded for each ε ∈ [0, ∆ k ) by

E [N k (T )] ≤ n k (T ) + B k T,ε + C k ν,ε ,
where

n k (T ) = E T -1 r=1 1(k ∈ A r+1 , r = 1) , C k ν,ε is independent on T and, denoting X n the set of n first observations of arm 1, B k T,ε = K j=2 2 log(T )/I1(µ k +ε) n=1 sup µ∈[µj -ε,µj +ε] E Xn 1 (µ(X n ) ≤ µ) P( µ(X n , µ) ≥ µ)
.

In this section we study the regret of a general DS algorithm, for any index function µ. We exploit the duel structure of the algorithm in order to exhibit the the two crucial terms that depend on the DS index and have to be controlled in Theorem 3.1. Before starting the analysis we recall the first condition that we assume on the arms distributions, which ensures the concentration of the means.

Condition 1 (C1): concentration of the means For all k, there exists a good rate function I k satisfying for all x ≥ µ k , y ≤ µ k , and any i.i.d sequence X 1 , . . . , X n drawn from x) , and P

ν k P 1 n n i=1 X i ≥ x ≤ e -nI k (
1 n n i=1 X i ≤ y ≤ e -nI k (y) .
This is actually the only result we need to prove Theorem 3.1, we do not need to introduce the DS indexes for this result. We will carefully detail each term of the Theorem, in particular the constant C k ν,ε whose components are all explicit.

B.1 Regret decomposition

Thanks to the duel structure of DS, the fact that an arm is pulled or not depends of its status as a leader or a challenger. If an arm is a challenger, it can be pulled only if it wins its duel against the leader. For this reason, a natural first regret decomposition consists in considering the cases when 1) the optimal arm is the leader and some sub-optimal arms are pulled, and 2) the optimal arm is not the leader. Thanks to the definition of the round-regret R T in Equation 3, and denoting arm 1 as the unique optimal arm (without loss of generality), we upper bound R T by controlling the expectation of the number of pulls of each sub-optimal arm k ∈ {2, . . . , K}. Using that all arms are pulled during the first round we obtain

E[N k (T )] = 1 + E T -1 r=1 1(k ∈ A r+1 ) = 1 + T -1 r=1 E [1(k ∈ A r+1 , r = 1) + 1(k ∈ A r+1 , r = 1)] ≤ 1 + E T -1 r=1 1(k ∈ A r+1 , r = 1) n k (T ) + E T -1 r=1 1( r = 1) E k T .
We already extracted the term n k (T ) of Theorem 3.1 at this step, and introduced a term E k T that contains both B k T,ε and C k ν,ε . In the rest of this proof we work on the term E k T .

B.2 Upper bound on E k T

The following part of the proof is inspired by the proof of the SSMC algorithm in [START_REF] Chan | The multi-armed bandit problem: An efficient nonparametric solution[END_REF]. Furthermore, we will see that we can further decompose E k T into several events that we will handle using condition (C1), showing the interest of the algorithm' structure in rounds and duels. After that, we will finally exhibit the term that requires the condition (C2).

Before that, we start by analyzing two alternatives that can cause the event { (r) = 1}, namely 1) arm 1 has already been leader and has lost the leadership at some point (leadership takeover), or 2) arm 1 has never been leader. To formalize these alternatives we define the sequence a r = r/4 and the event D r = {∃u ∈ [a r , r] : u = 1} .

D r is true: arm 1 has already been leader after round a r

We first justify the choice of a r : starting after a number of rounds that is linear in r ensures a number of observations for the leader during the whole segment [a r , r] that is also linear in r, that is for all

s ∈ [a r , r], N s (s) ≥ a r /K := b r .
Under D r we study the probability of a leadership takeover by a sub-optimal arm between a r and r. Such takeover can happen only if 1) a sub-optimal arm obtain the same number of samples as arm 1, and 2) its sample average is larger than the one of arm 1 at the round when it happens. We denote X k n the history available for arm k after it has been sampled n times, and drop the exponent for arm 1.

We formalize the leadership takeover with the following events,

{ r = 1} ∩ D r ⊂ ∪ r-1 u=ar { u = 1, u+1 = 1} ⊂ ∪ r-1 u=ar ∪ K k=2 { u = 1, k ∈ A u+1 , N k (u + 1) = N 1 (u + 1), µ(X k N k (u+1) ) ≥ µ(X N1(u+1) )} ⊂ ∪ r-1 u=ar ∪ K k=2 {N k (u + 1) = N 1 (u + 1), µ(X k N k (u+1) ) ≥ µ(X N1(u+1) )} =⊂ ∪ r u=ar+1 ∪ K k=2 {N k (u) = N 1 (u), µ(X k N k (u) ) ≥ µ(X N1(u) )} := ∪ r u=ar+1 ∪ K k=2 B u k .
Starting the sum on the rounds at some round r 0 , we first develop and express the sum of these terms as

E T -1 r=r0 t u=ar+1 1(B u k ) = E T -1 r=r0 t u=ar+1 1(N k (u) = N 1 (u), µ(X k N k (u) ) ≥ µ(X N1(u) )) ≤ E   T -1 r=r0 r u=ar+1 u n= u/K 1(N k (u) = N 1 (u) = n, µ(X k n ) ≥ µ(X n ))   ≤ E   T -1 r=r0 r u=ar+1 u n= u/K 1(µ(X k n ) ≥ µ(X n ))   .
We now define

x k = µ1+µ k 2 . If µ(X k n ) ≥ µ(X n )
, then either the arm 1 had "under-performed" or arm k has "over-performed", which means that µ(X

k n ) ≥ x k or µ(X n ) ≤ x k , which gives E T -1 r=r0 t u=ar+1 1(B u k ) ≤ E   T -1 r=r0 t u=at+1 u n= u/K 1(µ(X k n ) ≥ x k ∪ µ(X n ) ≤ x k )   ≤ T -1 r=r0 t u=at+1 u n= u/K P(µ(X k n ) ≥ x k ) + P(µ(X n ) ≤ x k ) ≤ T -1 r=r0 r 2 P(µ(X k br ) ≥ x k ) + P(µ(X br ) ≤ x k ) ≤ T -1 r=r0 r 2 e -brI1(x k ) + e -brI k (x k ) = O(1) ,
where the two last lines come from the condition (C1), which is the existence of a good rate function for each arm's distribution. Thanks to the structure of the algorithm this condition is enough to upper bound the cost of leadership takeover by sub-optimal arms by constants in the regret. This convergent series is the first component of the term C k ν,ε in Theorem 3.1. We now consider the case when arm 1 has never been leader.

Upper bound when D r is not true

The idea in this part is to leverage the fact that if the optimal arm is not leader between r/4 and r, then it has necessarily lost a lot of duels. We introduce the count of the number of duels lost by arm 1,

L r = r u=ar 1(C u ) , with C u = {∃k = 1, u = k, 1 /
∈ A u+1 } representing the event that at round u arm 1 is challenger and has lost its duel. We then consider the upper bound

P( r = 1 ∩ Dr ) ≤ P(L r ≥ r/4) . ( 7 
)
This result is a direct adaptation from (Chan, 2020) (Equation 7.12), we then use of the Markov inequality to obtain

P(L r ≥ r/4) ≤ E(L r ) r/4 = 4 r r u=ar P(C u ) . ( 8 
)
We then remove the double sum on u and t by simply counting the number of occurrences of each term,

T -1 r=r0 P(L r ≥ r/4) ≤ E T -1 r=r0 4 r r u=ar 1(C u ) ≤ E   T -1 r=r0 T -1 u=ar 0 4 r 1(C u )1(u ∈ [a r , r])   ≤ E   T -1 u=ar 0 1(C u ) T -1 r=r0 4 r 1(u ∈ [a r , r])   .
From this step we can control independently the sum in r,

T -1 r=r0 4 r 1(u ∈ [a r , r]) T -1 r=r0 4 1(u ≤ r) r 1(a r ≤ u) ≤ 4 u T -1 r=r0 1(a r ≤ u) ≤ 4 u T -1 r=r0 1( r/4 ≤ u) ≤ 4 u T -1 r=r0 1(r/4 ≤ u + 1) ≤ 4 u × 4(u + 1) ≤ 32 .
With this result we obtain that

T -1 r=r0 P(L r ≥ r/4) ≤ 32 T -1 r=ar 0 P(C r ) .
We then decompose as the union of all the terms corresponding to each possible sub-optimal leader,

C r = ∪ K j=2 { r = j, 1 / ∈ A r+1 } := ∪ K j=2 C r j .
We can now fix any sub-optimal leader j and work on the term C r j . We recall that arm 1 has two chances to win the duel: first with its empirical mean, and then with a random index. We first handle the case when the sub-optimal leader could be "over-performing", by writing for any ε > 0

C r j ⊂ µ X j Nj (r) -µ j ≥ ε, r = j ∪ µ X j Nj (r) -µ j ≤ ε, r = j, µ X N1(r) ≤ µ X j Nj (r) , µ X N1(r) , X j Nj (r) ≤ µ X j Nj (r)
.

We then upper bound the left-hand term using again the concentration of the leader, and obtain

T -1 r=1 P µ X j Nj (r) -µ j ≥ ε, r = k = T -1 r=1 nj = r/K P µ X j Nj (r) -µ j ≥ ε, N j (r) = n j = O(1).
For the simplicity of notations we keep the notation C r j to define the right-hand term. We then continue the analysis of C r j by considering the number of samples of arm 1, and in particular if N 1 (r) ≥ n 1 (T ) or not, for some new function n 1 (T ). Considering that arm 1 has a first chance with its empirical mean, and that under C r k the leader's mean is controlled we can fix n 1 (T ) in order to ensure that for any n ≥ n 1 (T ): P(µ (X n ) ≤ µ j + ε) ≤ 1/T 2 . Thanks to condition (C1) this is the case for n 1 (T ) = 2/I 1 (µ j + ε) log T . We now define the event

H r,n j = N 1 (r) = n, µ X j Nj (r) -µ j ≤ ε, µ (X n ) ≤ µ X j Nj (r) , µ X n , X j Nj (r) ≤ µ X j Nj (r)
, and use it to define a new upper bound on C r j ,

T -1

r=ar 0 P C r j ≤ T -1 r=ar 0 T -1 n=1 P H r,n j ≤ T -1 r=ar 0 T -1 n=n1(T ) P (N 1 (r) = n, µ(X n ) ≤ µ j + ε) + T -1 r=ar 0 n1(T ) n=1 P H r,n j ≤ 1 + T -1 r=ar 0 n1(T ) n=1 P H r,n j .
We then use as in Riou and Honda (2020) that

T -1 r=ar 0 1(H r,n j ) = T -1 m=1 1   T -1 r=ar 0 1(H r,n j ) ≥ m   ,
and define as τ n 1 , . . . , τ n m the m first rounds for which H r,n j hold. If 1

T -1 r=ar 0 1(H r,n j ) ≥ m is true then H τj ,n j
holds for any i ≤ m and all these τ i are finite, which means that

1   T -1 r=ar 0 1(H r,n j ) ≥ m   ≤ m i=1 1 H τ n i ,n j
. So, we denote the term that is left to upper bound as

D j T,ε = n1(T ) n=1 T -1 m=1 E m i=1 1 H τ n i ,n j = n1(T ) n=1 T -1 m=1 E Xn m i=1 P µ X n , X k Nj (τ n i ) ≤ µ X k Nj (τ n i ) X n 1 H τ n i ,n j .
In the next steps we remove the dependency of the index in X k Nj (τ n i ) , knowing that the index only depends of its mean and that the mean is located in a small range around µ j . At this step, we notice that we could have replaced this control of the mean by locating the empirical distribution of k in any space "around" its true distribution, assuming a concentration similar as (C1) for the corresponding event. However, to simplify the notations we assume that the index µ only depends on the history of k through its mean, and we further upper bound B k T,ε by simply taking the maximum value of the expectation for any possible value of µ X k Nj (τ n i ) ,

D j T,ε ≤ n1(T ) n=1 T -1 m=1 sup µ∈[µj -ε,µj +ε] E Xn [P ( µ (X n , µ) ≤ µ) m 1 (µ (X n ) ≤ µ)] ≤ n1(T ) n=1 sup µ∈[µj -ε,µj +ε] E Xn P ( µ (X n , µ) ≤ µ) P ( µ (X n , µ) ≥ µ) 1 (µ (X n ) ≤ µ) .
which concludes the proof if we define B k T,ε = K j=2 D j T,ε in Theorem 3.1.

C Technical results on the Dirichlet distribution

In this section we provide the proofs of the technical results in Section 3.1, along with other results that we use in the proofs of Appendix D but did not introduced in the main paper due to space limitations. Before proving the upper and lower bounds on the Boundary Crossing Probability, we present some basic properties of the Dirichlet distribution for readers that are not familiar with this distribution.

C.1 Basic properties of the Dirichlet distribution

We consider the Dirichlet distribution Dir(α) for some parameter α = (α 1 , . . . , α n ). Let w = (w 1 , . . . , w n ) be a random variable drawn from the distribution Dir(α). We first recall that w takes its values in the probability simplex

P n = {p ∈ [0, 1] n : n i=1 p i = 1}.
The distribution admits the following density,

f (w 1 , . . . , w n ) = Γ( n i=1 α i ) n i=1 Γ(α i ) n i=1 w αi-1 i ,
where Γ denotes the Gamma function. In this paper we only consider integer values for the coefficient (α i ) i∈N , and for any m ∈ N Γ(m) = (m -1)!. Denoting N = n i=1 α i , we obtain the more convenient form

f (w 1 , . . . , w n ) = (N -1)! n i=1 (α i -1)! n i=1 w αi-1 i .
This distribution has a lot of convenient properties. First, interpreting α i /N has the frequency of an item in a set of observations drawn from a finite collection (empirical distribution), and w a random re-weighting of these observation providing a "noisy" empirical distribution, the Dirichlet distribution ensures that the noisy frequency of each item is unbiased with respect to the observed frequency, with a variance that is inversely proportional to the total number of items collected. For any i ∈ [1, n],

E[w i ] = α i N , and 
V(w i ) = α i (N -α i ) N 2 (N + 1) ,
and the marginal density of each component of w is actually a distribution Beta(α i , N -α i ). This explains the use of the Dirichlet distribution to generalize the Beta-Bernoulli Thompson Sampling.

In this paper we also use two main properties of the Dirichlet distribution, both using the relation between the Dirichlet distribution and the Exponential distribution. Let R 1 , . . . , R n be n i.i.d random variables drawn from exponential distributions with respective parameters α i , R i ∼ E(α i ). Then the vector w = (w 1 , . . . , w n ) with w i = Ri n j=1 Rj follows a Dirichlet distribution Dir(α). The second property is a consequence of the first one, and is that the components of a random variable drawn from a Dirichlet distribution and can be aggregated, providing another Dirichlet distribution: if w ∼ Dir(α), then w = (w 1 , . . . , w i + w j , . . . , w n ) ∼ Dir((α 1 , . . . , α i + α j , . . . , α n )) (putting the sum in the i -th slot and removing the j-th slot without changing the other indices). In particular, we will make use of this property in the proofs of Theorem 3.4 and 3.5. Indeed, we will discretize the data, i.e grouping observations from continuous distributions into bins of the same size and studying the properties of the resulting distribution.

C.2 Boundary Crossing Probability for Dirichlet re-weighting

We recall the definition of the Boundary Crossing Probability, given in Section 3.1. In this section we prove Lemma 3.2 and 3.3, that we restate below, along with other technical results including some from Riou and Honda (2020).

Boundary crossing probability (BCP)

We consider a set of n + 1 observation points X = (X 1 , . . . , X n+1 ) ⊂ R n+1 . (Intuitively, n points are samples from a challenger arm, and one point corresponds to the added bonus). Then, for any µ ∈ R, we introduce the following "Boundary Crossing Probability" (BCP) term, conditional on X

[BCP] := P w∼Dn+1 n+1 i=1 w i X i ≥ µ .
When all observations are distinct from each other this BCP has a closed formula, which has been derived for instance in [START_REF] Cho | The volume of simplices clipped by a half space[END_REF] as

P w∼Dn+1 n+1 i=1 w i X i ≥ µ = n+1 i=1 (X i -µ) n + n+1 j=1,j =i (X i -X j ) . ( 9 
)
This expression is obtained by computing the volume of the half-space of the simplex defined by the hyperplane n+1 i=1 w i X i ≥ µ. Unfortunately, this formula is not very informative: for sorted data the terms are alternatively positive and negative, and can take large values (compensating each other). This makes the exact formula hardly tractable even for numerical simulations. We also add that the closed formula does not exist for a Dirichlet distribution with some parameters larger than 1, as it would require a closed formula for the incomplete beta function.

Hence, both upper and lower bounds for the BCP have to be studied independently of this formula. We start with upper bounds.

Upper bound on the BCP The first result we introduce is a variant of Lemma 15 of Riou and Honda (2020).

Lemma C.1 (Upper bound on the BCP). Consider a set X = (X 1 , . . . , X n+1 ) and a target value µ ∈ R, and denote X = max n+1 i=1 X i and ν X the empirical distribution associated to X . The BCP satisfies

P w∼Dn+1 n+1 i=1 w i X i ≥ µ ≤ e -max λ∈[0,1) n+1 i=1 log 1-λ X i -µ X -µ ≤ e -(n+1)K X inf (ν X ,µ) ,
When distributions have support upper-bounded by B, replacing X by B makes the K inf functional data-independent.

Proof. This result is a variant of Lemma 15 of Riou and Honda ( 2020), hence we rewrite the beginning of their proof, which consists in using the Chernoff method to upper bound the BCP and writing the Dirichlet weight with exponential variables. For any λ ∈ [0, 1), denoting X = max n+1 i=1 X i it holds that

[BCP] ≤ P R1,...,Rn∼E(1) n+1 i=1 R i X i -µ X -µ ≥ 0 ≤ P R1,...,Rn∼E(1) P exp λ n+1 i=1 R i X i -µ X -µ ≥ 1 ≤ n+1 i=1 E Ri exp λR i X i -µ X -µ ,
which is so far exactly the Chernoff method, up to the rescaling by X -µ. For λ < 1, each MGF is defined and has an explicit formula, so

[BCP] ≤ n+1 i=1 1 1 -λ Xi-µ X -µ = exp - n+1 i=1 log 1 -λ X i -µ X -µ .
We obtain the first inequality of the lemma by choosing the maximum over all possible values of λ, and the second inequality is direct when writing the dual problem associated with K X inf ( ν n+1 , µ) (see e.g Honda andTakemura (2010, 2015)).

Lower bounds on the BCP We now consider the anti-concentration of the BCP, that suggests a sound tuning of the bonus in DS algorithms. Under this perspective, we first provide a necessary condition of the bonus in DS to ensure sufficient exploration. Lemma C.2 (Necessary condition with a data-independent bonus). Consider a fixed bonus B(X , µ) = B(µ), and a distribution F (with CDF also denoted F ). If Condition (C2) holds then

B(µ) > µ + 1 1 -F (µ) E F [(µ -X) + ] .
Proof. When all the observations are below the threshold equation 9 provides

P w∼Dn n i=1 w i X i + w n+1 B(µ) ≥ µ = n i=1 B -µ B -X i ,
so plugging this term in (C2) gives the expression

E n i=1 B -X i B -µ 1(X i ≤ µ) = E X1∼F B -X 1 B -µ 1(X 1 ≤ µ) n .
Condition (C2) can hold only if the expectation is smaller than 1, which is equivalent to

(B -µ)(1 -F (µ)) ≥ E [(µ -X) + ]
, which gives the result.

Remark C.3. The proof also work if we do not consider the events {X i ≤ µ} but instead {X i ≤ y} for any y ∈ R. We use this property in the proof of Theorem 3.4 for instance. If we directly consider the quantile q 1-α of F we can define

B(µ, α) = µ + 1 α E F [(µ -X)1(X ≤ q 1-α )] .
Another alternative hypothesis could be that there exist some α > 0, B α satisfying

E F [(µ 1 -X)1(X ≤ q 1-α )] ≤ B α , that would then provide a condition B(µ, α) ≥ µ + B α α .
Lemma C.4 (Lower bound for the BCP). Consider a set X = (X 1 , . . . , X n+1 ) ∈ R n+1 , and assume that X = max i∈{1,...,n+1}

X i ≥ g(n) for some function g. Denoting ∆+ n = 1 n n+1 i=1,Xi<X (µ -X i ) + the empirical positive gap, it holds that P w∼Dn+1 n+1 i=1 w i X i ≥ µ ≥ exp -n ∆+ n g(n) -µ .
Proof. We obtain this lower bound by truncating all the observations that are larger than the threshold except the maximum of X , allowing to use Equation 9. Combining this property with log(1 + x) ≤ x we obtain

P w∼Dn+1 n+1 i=1 w i X i ≥ µ ≥ P w∼Dn+1 n i=1 w i min(X i , µ) + w n+1 X ≥ µ = ( X -µ) n n i=1 ( X -min(X i , µ)) = exp - n i=1 log X -min(X i , µ) X -µ = exp - n i=1 log 1 + µ -min(X i , µ) X -µ ≥ exp - n i=1 µ -min(X i , µ) X -µ = exp - n i=1 (µ -X i ) + X -µ ,
which yields the result.

We finally provide another lower bound on the BCP that is used to derive Lemma 14 in (Riou and Honda, 2020). Lemma C.5 (Second Lower Bound for the BCP). Consider observations X = (X 1 , . . . , X n ), a parameter α = (α 1 , . . . , α n ) ⊂ N n , and µ ∈ R. We add a value B to the dataset, and denote α = (α 1 , . . . , α n , 1). We also denote X = max {max n i=1 X i , B}, and N = n i=1 α i . Then, for any vector w ∈ P n+1 satisfying n i=1 w i X i + w n+1 B ≥ µ it holds that

P w∼Dir( α) n i=1 w i X i + w n+1 B ≥ µ ≥ N ! n i=1 α i ! n i=1 (w i ) αi α i M w * n+1 w * i M
,

where i M is the index satisfying X i M = X (setting i M = n + 1 if X = B).
Proof. We use the density of the Dirichlet distribution defined in Appendix C.1, and consider the set S = {w ∈ P n+1 : n i=1 w i X i + w n+1 B ≥ µ}, which is the set defined in the BCP. Then, considering any allocation w ∈ S, we define the subset S 2 = {w ∈ P n+1 : ∀i = i M , w i ∈ [0, w i ]}. The inclusion S 2 ⊂ S is direct : transferring weights to the maximum can only increase the value of the weighted sum. Hence, P(w ∈ S 2 ) is a lower bound of P(w ∈ S). We then obtain

P w∼Dir(α) n+1 i=1 w i X i ≥ µ ≥ P(w ∈ S 2 ) ≥ N ! n i=1 (α i -1)! w 1 0 • • • w n+1 0 n i=1 w αi-1 i n+1 i=1,i =i M dw i = N ! n i=1,i =i M α i ! n i=1 (w i ) αi w * n+1 w * i M = N ! n i=1 α i ! n i=1 (w i ) αi α i M w * n+1 w * i M ,
which concludes the proof.

A direct corollary of this result is to choose the weights w that maximize the lower bound, which gives as in Lemma C.1 an expression with K X inf . Corollary C.5.1. Take the notations of Lemma C.5 and Consider ν X ,α the multinomial distribution with atoms X = (X 1 , . . . , X n ) and probabilities p α = α1 N , . . . , αn N . It holds that

P w∼Dir( α) n i=1 w i X i + w n+1 B ≥ µ ≥ N ! n i=1 α i ! exp -N K X inf (ν X ,α , µ) + H(ν n,α , µ) . 
Proof. Consider two multinomial distributions ν 1 , ν 2 with same support and respective probabilities p = (p 1 , . . . , p n ) and q = (q 1 , . . . , q n ) the Kullback-Leibler divergence is simply

KL(ν 1 , ν 2 ) = n i=1 p i log(p i /q i ) := - n i=1 p i log(q i ) -H(ν 1 ) .
We first write the result of Lemma C.5 with p = p α and q = w , and choose w = inf KL(p α , w ) = K X inf (p α , µ) (with a slight abuse of notation, denoting the distributions by their probabilities). Furthermore, we simplify the constants using that

α i M w n+1 w i M ≥ w n+1 w i M ≥ 1 ,
with equality only if i M = n + 1. Indeed, the optimal allocation will necessarily put more weights on largest values, so w i M ≥ w n+1 .

D Regret bounds of Section 3.2

In this section we provide the complete proof of Theorems 3.4, 3.7 and 3.5, presented in Section 3.2. For each of these results we follow the same path: starting from Theorem 3.1, which holds in each case, we then detail the terms n k (T ). This first part exhibits the first-order terms of the regret bound. Then, we prove that condition (C2) holds (anti-concentration of the BCP, avoiding under-exploration of the best arm). We justify in the proofs the hypothesis we consider and the theoretical tuning of the parameters of the algorithms. In all cases, we justify that (C1) holds under the settings we consider.

We recall the terms we have to study, from Theorem 3.1.

First-order term ∀k ∈ {1, . . . , K}, :

n k (T ) = E T -1 r=1 1(k ∈ A r+1 , r = 1) .
Condition (C2) For any µ < µ 1 , and any n 1 (T ) = o(log T ) it holds that

n1(T ) n=1 E Xn∼ν n 1 1(µ(X n ) ≤ µ) P w∼Dn+1 ( µ(X n , µ) ≥ µ) = o(log(T )) .
The proofs of the three theorems share common elements, so before instantiating the proof for each algorithm we further work on these two terms under general assumptions.

D.1 General proof sketches

In this section we derive the parts of the proofs of condition (C2) and (C3) that are shared by all three instances of DS.

Further characterization of n k (T )

In this section we consider an arm k ∈ {2, . . . , K}, of distribution ν k .

Lemma D.1. Assume that ν k satisfies (C1), and denote X k n = (X k 1 , . . . , X k n ) a set of n random variables drawn from ν k . Assume that for any n ∈ N there exists a subset

B k,n ⊂ R n satisfying 1. X k n ⊂ B k,n ⇒ P µ(X k n , µ) ≥ µ ≤ exp (-f k (n, B k,n , µ))
, for a DS index µ, a fixed threshold µ ∈ R and a fixed strictly increasing function f k .

2.

T -1

n=1 P X k n / ∈ B k,n ≤ C B k for some constant C B k .
If these two conditions hold, then it holds that

n k (T ) = m k (T ) + O(1) , where m k (T ) is the sequence satisfying f k (n k (T ), B k,n , µ 1 + ε) = log T .
Proof. We first split the sequence (1 (k ∈ A r+1 , r = 1)) r=1,...,T -1 in a pre-convergence phase, the size of which we control, and a post-convergence phase, for which arm k has been pulled enough times so we can use concentration (C1) to hold. To this end, we define a function m k (T ) without specifying it for the moment and write

E T -1 r=1 1(k ∈ A r+1 , r = 1) ≤ E T -1 r=1 1(k ∈ A r+1 , r = 1, N k (r) < m k (T )) + E T -1 r=1 1(k ∈ A r+1 , r = 1, N k (r) ≥ m k (T )) ≤m k (T ) + E T -1 r=1 1(k ∈ A r+1 , r = 1, N k (r) ≥ m k (T )) ,
where we used that for any n, the event {k ∈ A r+1 , N k (r) = n} can happen at most once. The next step is to further split the second term by defining a "good event" of large probability under which (k ∈ A r+1 ) has a low probability. As we aim at keeping some level of generality in this section, we simply define this event as

G r k = X k N k (r) ∈ B k,N k (r) ∩ µ(X N1(r) ) ≤ µ 1 -ε 1 ,
where ε 1 > 0, and use the same notations as in Appendix B for the other terms.

We further define the event

W r k = {k ∈ A r+1 , r = 1, N k (r) ≥ m k (T )} .
Then, it holds that

n k (T ) ≤ m k (T ) + E T -1 r=1 1(W r k , G r k ) + T -1 r=1 1(W r k , Ḡr k ) .
We use the first assumption in the lemma to upper bound the left-hand term as

E T -1 r=1 1(W r k , G r k ) = E   T -1 r=1 T -1 n=m k (T ) 1 (k ∈ A r+1 , r = 1, N k (r) = n, G r k )   ≤ E   T -1 r=1 T -1 n=m k (T ) 1 µ X k N k (r) , X N1(r) ≥ µ(X N1(r) ), N k (r) = n, W r k , G r k   ≤ E   T -1 r=1 T -1 n=m k (T ) P µ X k N k (r) , X N1(r) ≥ µ(X N1(r) ) X k N k (r) , X N1(r) 1(N k (r) = n, W r k , G r k )   ≤E   T -1 r=1 T -1 n=m k (T ) exp -f n, B k,n , µ(X N1(r) ) 1(k ∈ A r+1 , r = 1, N k (r) = n, G r k )   ≤E   T -1 r=1 T -1 n=m k (T ) exp (-f (n, B k,n , µ 1 -ε 1 )) 1(k ∈ A r+1 , N k (r) = n)   ,
where the last two lines come directly from Assumption 1 in the lemma ans using the second term of G r k involving arm 1. We complete this step of the proof by further using the monotonicity of f in n,

E T -1 r=1 1(W r k , G r k ) ≤e -f (m k (T ),B k,m k (T ) ,µ1-ε1) E   T -1 r=1 T -1 n=m k (T ) 1(k ∈ A r+1 , N k (r) = n)   ≤ e -f (m k (T ),B k,m k (T ) ,µ1-ε1) E   T -1 n=m k (T ) 1   ≤ T exp -f (m k (T ), B k,m k (T ) , µ 1 -ε 1 ) .
We handle the right-hand term before discussing this result, and directly write the union bound

Ḡr k ⊂ X k N k (r) / ∈ B k,N k (r) ∪ µ(X N1(r) ) > µ 1 -ε 1 , that leads to E T -1 r=1 1(W r k , Ḡr k ) = E T -1 r=1 1(k ∈ A r+1 , r = 1, N k (r) ≥ m k (T ), Ḡr k ) ≤ E T -1 r=1 1( r = 1, µ(X N1(r) ) > µ 1 -ε 1 ) A1 + E T -1 r=1 1(k ∈ A r+1 , N k (r) ≥ m k (T ), X k N k (r) / ∈ B k,N k (r) ) A2 ,
where the two terms A 1 and A 2 depend respectively only of arm k and arm 1. The first term can be handled thanks to condition (C1) on arm 1, and using that the leader has necessarily a linear number of samples,

A 1 ≤ T -1 r=1 E [1(N 1 (r) ≥ r/K , μr 1 ≥ µ 1 + ε 1 )] ≤ T -1 r=1 r n= r/K P(µ(X N1(r) ) ≥ µ 1 -ε 1 ) ≤ T -1 r=1 r n= r/K e -nI1(µ1-ε1) ≤ T -1 r=1 re -r/K I1(µ1-ε1)
= O(1) .

We now upper bound A 2 , using again that

T -1 r=1 1(k ∈ A r+1 , N k (r) = n) ≤ 1 for any n ∈ N, A 2 ≤ T -1 r=1 T -1 n=m k (T ) E 1(k ∈ A r+1 , N k (r) = n, X k N k (r) / ∈ B k,N k (r) ) ≤ T -1 n=m k (T ) P X k n / ∈ B k,n .
Combining these results, we obtain a bound on n k (T ) for arm k as

n k (T ) ≤ m k (T ) + T e -f (m k (T ),B k,m k (T ) ,µ1-ε1) + T -1 n=m k (T ) P X k n / ∈ B k + O(1) .
We see that if B k,n is designed to make the series convergent, and m k (T ) is chosen as the sequence satisfying f (m k (T ), B k,m k (T ) , µ 1 -ε 1 ) = log T , then we finally obtain

n k (T ) ≤ m k (T ) + O(1) .
Thanks to this result, when we will adapt the proof for each algorithm we will be able to combine Lemma D.1 with Lemma C.1 to directly look for a proper choice of the set B k,n .

B k,n {X ∈ R n : d(ν X , ν k ) ≤ ε} ,
The objective is to use the continuity of the K B inf function in its first argument with respect to the Levy distance (see e.g Honda and Takemura ( 2010)). From now on we denote (in this section) distributions by their cdf: let F k,n be the empirical distribution associated with the set X k n and F k,n be the biased empirical distribution to which the bonus of the BDS algorithm has been added. We first prove that F k,n belongs to the Levy ball with high probability, using the relation between the Levy distance and the supremum norm

d(F k,n , F k ) ≤ ||F k,n -F k || ∞ .
We use the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see e.g Massart ( 1990)), that states that

P (||F k,n -F k || ∞ ≥ ε) ≤ 2e -2n ε 2 .
Hence, the convergence of

+∞ n=1 P (d(F k,n , F k ) ≥ ε) is direct. Now considering the event ||F k,n - F k || ∞ ≥ ε,
we prove that the biased distribution F k,n (adding the bonus in the set of observations) is also close to F k in the sense of the supremum norm. First, the triangular inequality provides

|| F k,n -F k || ∞ ≤ ||F k,n -F k || ∞ + || F k,n -F k,n || ∞ .
We upper bound the second term with

| F k,n (x) -F k,n (x)| ≤ max k n + 1 - k n , k n + 1 - k n ≤ max k n(n + 1) , n -k n(n + 1) ≤ 1 n + 1 , so if ||F k,n -F k || ∞ ≤ ε, then || F k,n -F k || ∞ ≤ ε +(n + 1) -1
, and finally

||F k,n -F k || ∞ ≤ ε ⇒ d( F k,n , F k ) ≤ ε + 1 n + 1 .
Hence, if we combine these results we obtain that for n large enough F k,n is also in a Levy ball around F k , of size ε slightly larger than ε, with large probability. Now that the event B k,n is defined and we derived its properties, we can find the function f in Lemma D.1 in the case of BDS. We denote X n+1 the bonus of BDS and use Lemma C.1 to obtain

P w∼Dn+1 n i=1 w i X i + w n+1 B BDS (X , µ) ≥ µ ≤ e -(n+1)K B BDS (X ,µ) inf ( F k,n ,µ) ,
Furthermore, under the event B k,n and the fact that the mean of the leader is concentrated around its true mean the bonus of the BDS index is upper bounded by B ρ,γ + ε , for some ε > 0. We use the continuity of K B inf with respect to 1) the first argument in terms of the Levy distance, 2) the second argument (e.g w.r.t the euclidian norm), 3) the upper bound: for any ε 0 > 0, we can calibrate the ε in the Levy ball to obtain

P w∼Dn n+1 i=1 w i X i ≥ µ ≤ e -(n+1)(K Bρ,γ inf (ν k ,µ1)-ε0) ,
hence we conclude this part by setting exactly m k (T ) = log(T )

K Bρ,γ inf (ν k ,µ1)-ε0
.

Condition (C2)

We now study the quantity

E n = E Xn∼ν n 1 1(µ(X n )) ≤ µ) P ( µ(X n , µ) ≥ µ)
when µ < µ 1 . We first use Lemma 3.3 to obtain the lower bound on the BCP

P w∼Dn+1 ( µ(X n , µ) ≥ µ) ≥ e -n ρ ,
with ρ the parameter chosen in the component of the bonus that follows Equation 5Using this results and (C1), we obtain a first bound

E n ≤ e -n(I(µ)-1/ρ) ,
which is sufficient to obtain (C3) if I 1 (µ) ≥ 1/ρ. We then consider the case when it is not sufficient, and now use the hypothesis P([B -γ, B]) ≥ p and the second component of the bonus, Xn + γ := max X i + γ to obtain

E n ≤E Xn 1(µ(X n ) ≤ µ)(1( Xn ≤ B -γ) + 1( Xn ≥ B -γ)) P ( µ(X n , µ) ≥ µ) ≤ (1 -p) n e n ρ
En,1

+ E Xn 1(µ(X n ) ≤ µ)1( Xn + γ ≥ B) P ( µ(X n , µ) ≥ µ) En,2
.

The two terms correspond to the two possible expressions for the bonus. The term E n,1 gives the sufficient condition for the tuning of ρ in Theorem 3.4 with

ρ > -1 log(1 -p) ⇒ +∞ n=1 E n,1 = O(1) .
In the second term, the exploration bonus is larger than B, so we can use the same proof scheme as in Riou and Honda (2020), which is also the case (B1) we consider here. First, we discretize the interval [0, B] in equally sized bins of size η, and consider the truncated variables X i = η X i /η . η is chosen small enough to ensure that µ 1 -η > µ, i.e the truncated distribution still has a mean larger than µ. An upper bound of E n,2 is obtained by replacing the variables X i by X i . We associate a set of observations ( X 1 , . . . , X n ) with the vector β n of size S = B/η which counts the number of observations falling in each bin. The number of possible values for β n is upper bounded by n S , and we use Lemma D.2 to obtain

P(β) P w∼Dir( β) w t β ≥ µ ≤ exp -n KL(β/n, p 1 ) -K X +γ inf (β/n, µ) ≤ exp -n KL(β/n, p 1 ) -K B inf (β/n, µ) ≤ exp -n K B inf (β/n, µ 1 -η) -K B inf (β/n, µ) ,
As µ < µ 1 -η, there exists some δ > 0 satisfying ∀β :

β t X < µ, K B inf (β/n, µ 1 -η) - K B
inf (β/n, µ) > δ. So finally, denoting C the set of the possible count vectors β, it holds that

E n,2 ≤ β∈C e -n[K B inf (β/n,µ1-η)-K B inf (β/n,µ)] ≤ n S e -nδ ,
The two components of the bonus ensures that condition (C2) is satisfied for the distribution that satisfies hypothesis of Theorem 3.4. This completes the proof of the theorem.

Finally, the definition of the Levy distance ensures that d (ν Xn , ν k ) ≤ ε ⇒≤ d (T (ν Xn ), T (ν k )) ≤ ε.

Hence, we can use the continuity of K M k inf in all arguments (including M Xn , see e.g [START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards[END_REF]) and obtain that for any ε 0 we can calibrate ε, ε 1 , ε 2 in order to obtain

P ( µ(X n , µ) ≥ µ) ≤ exp -(n + 1) K M C k inf (T (ν), µ) -ε 0 ,
which gives the first order term of Theorem 3.5 choosing m k (T ) =

log T K M k inf (T (ν k ),µ)-ε0
in Lemma D.1.

Condition (C2)

In this section we use the assumption that rewards are semi-bounded with a range [b, +∞]. Then, we can find a value y and a discretization step η such that truncating the values X i to min(X i , y), and truncating each X i < y to X i = η Xi η preserves the order of µ < µ 1 . Note that this value y does not have to be known by the algorithm and is purely an artifact for the proof. This discretization is similar to the proof of Theorem 3.4 in Appendix D.2. We denote S the number of items created by the discretization, and β ∈ N S some vector of counts.

However, contrarily to the proof of BDS we directly try to use Lemma D.2 and consider for any β ∈ N S : ||β|| 1 = n the quantity

K β = KL(β/n, ν 1 ) -K m β inf (β/n, µ k ) ,
where ν 1 denote the discretized/truncated version of ν 1 and m β denotes the largest item with a non-zero coefficient in β, which is itself β with an additional value associated with the bonus. We recall that QDS summarizes the information larger than the empirical (1 -α)-quantile by their mean (i.e the CVaR α of the empirical distribution). The truncation in y does not change that, and will simply makes this quantity smaller which will itself makes the BCP smaller (although not so much with well chosen η, y). We use the result from Honda and Takemura (2010) (proof of Theorem 7) stating that for any β

K m β inf (β/n, µ k ) ≤ ∆n M β -µ ,
As we know that M β is at least larger than the exploration bonus, we furthermore have

K m β inf (β/n, µ k ) ≤ ∆n ρ ∆+ n ≤ 1/ρ .
This means that for any ξ > 0 it holds that K B ≥ ξ on all the sub-space of empirical distributions satisfying KL(β/n, ν 1 ) ≥ (1 + ξ)/ρ.

We now use Pinsker inequality to link the KL divergence with the total variation δ, in the sub-space where KL(β/n, ν 1 )

≤ (1 + ξ)/ρ, δ(β/n, ν 1 ) ≤ 1 + ξ 2ρ .
If this quantity is small, we can control the probability of each measurable event. In particular, we want the quantile used by the algorithm to be strictly larger than the (1-α)-quantile of the assumption of Theorem 3.5. If the parameter of the condition of the theorem is α, and we run the algorithm with a parameter α < α, then we know that if we properly tune ρ we will have F k,n (q 1-α (F k )) < 1 -α. This means that the true quantile q 1-α (ν k ) is present in the set X n and is not truncated by the algorithm. In particular, if ρ ≥ 1+α α 2 this is satisfied, and finally

+∞ n=1 (P (µ(X n ) ≥ µ k + ε) +P µ(X + n ) ≥ ∆ + k + ε ≤ +∞ n=1 exp(-nI k (µ k + ε)) + exp(-nI + k (∆ + k + ε)) ≤ 1 1 -e -I k (µ k +ε) + 1 1 -e -I + k (∆ + k +ε)
.

We now consider the event with the quadratic sum. To handle this, we consider the Wasserstein metric W 2 between the empirical distribution of X and the true distribution ν k . First we recall the definition of this metric considering two distributions ν and ν of real random variables

L p (ν, ν ) = inf R×R |x -y| p ξ(dx, dy) : ξ ∈ H(ν, ν ) ,
where H(ν, ν ) is the set of all probability measures on R × R with marginals ν and ν . Then, the Wasserstein metric W p (ν, ν ) is defined as W p (ν, ν ) = L p (ν, ν ) 1/p for p > 1. Two reasons motivate the use of this metric in our case: 1) concentration inequalities exist for L p for light-tailed distribution, and 2) the moments of order p are continuous with respect to the Wasserstein metric W p (see Theorem 6.9 in Villani ( 2008)). These two properties make W p a good substitute for the Levy metric we used for bounded distributions. Here we choose W 2 as we want to control moments of order 2, and obtain with the parameters of our problem the following concentration inequality from Fournier and Guillin (2015) (Theorem 2). Denoting νk,n the empirical distribution of X n , there exist some constants c, C satisfying for any x ≤ 1

P (L 2 (ν k,n , ν k ) ≥ x) ≤ C exp(-cnx 2 ) + exp(-c(nx) 1 3 ) . (10) 
The coefficient 1/3 comes from choosing ε as (1 -ε)/2 = 1/3 in the statement of the Theorem (which is different from the ε in this proof). We see that this inequality is dominated by the second term. Hence, starting from our target, for any ε > 0, there exists

ε 1 > 0 satisfying W 2 (ν k,n , ν k ) ≤ ε 1 ⇒ σ(X , µ) ≤ σ k,µ + ε.
Furthermore, the series of term P(W 2 (ν k,n , ν k ) ≥ ε 1 ) converges thanks to Equation 10, which concludes the part of the proof corresponding to this term. Now that the events about sample means are handled, we investigate possible values for the sequence m n and M n that would allow B k,n to happen with high probability. The maximum Xn of a set of n i.i.d random variables X n = (X 1 , . . . , X n ) has an explicit distribution, which is (in terms of the cdf

F k of ν k ) for any x ∈ R, P Xn∼ν n k ( Xn ≤ x) = F k (x) n .
We first look at the term M n , we calibrate it to ensure that P(

Xn ≤ M n ) ≥ 1 - 1 n log(n) 2 , so that M n = F -1 k 1 - 1 n(log n) 2 1 n ≤ F -1 k exp - 1 n 2 (log n) 2 .
This way, P(

Xn ≤ M n ) ≥ 1 - 1 n log(n) 2 converges.
Then we consider m n , and this time we want P( Xn ≤ m n ) ≤ 1 n log(n) 2 to ensure the same convergence guarantees. We obtain

m n = F -1 k 1 n(log n) 2 1 n = F -1 k exp - log n + 2 log log n n .
Combining all these results, we obtain

T -1 n=1 P Xn∼ν n k (X n / ∈ B k,n ) = O(1) .
follows from the existence of exponential moments i.e ν k ∈ F . A tighter analysis is possible, indeed for any q > 0 and η ∈ (0, 1) there exists C q,η > 0 such that ∀x ≤ η, -log(1 -x) ≤ x + C q,η |x| 1+q (C 1,η = 1 1-η ), relaxing the requirement to a mere control of the moment of order 1 + q in the topology of W 1+q (for which concentration results are similar to the one we provide, for the families we consider). Furthermore, it would relax the condition relating m n and M n to M n = o(m 1+q n ).

Condition (C2)

We use the left-hand term of Lemma 3.3 and obtain a lower bound of the BCP in e -n ρn . Combining this result with condition (C1) we obtain E n ≤ e -n(I1(µ)-1/ρn) , and for n large enough ρ n > 1/I 1 (µ), which is sufficient to obtain the convergence of +∞ n=1 E n . If we choose a sequence (ρ n ) that is strictly increasing and of first term ρ 1 , we see that if I 1 (µ) > ρ 1 then the term E n is exponentially decreasing from the start.

E Examples of distributions fitting the family of QDS

We first show a given distribution ν can always be fitted in F α [b,+∞) at the cost of a higher exploration bonus ρ, thus satisfying the quantile condition of Theorem 3.5. Lemma E.1. Let F ⊂ F [b,+∞) a base family of distributions with continuous cdf and α ∈ (0, 1). For all ν ∈ F and µ

> E ν [X], there exists ρ > 0, M = M(ρ) such that K M inf (T α (ν) , µ) ≤ K F inf (ν, µ).
Proof. Let M = max CVaR α (ν), µ + ρE ν (µ -X) + . By construction, the support of T α (ν) is upper bounded by M and µ < M, therefore it follows from Theorem 8 in Honda and Takemura (2010

) that K M inf (T α (ν), µ) = max λ∈[0, 1 M-µ ] E Tα(ν) [log (1 -λ(X -µ))]. It follows from the concavity of log that, for λ ∈ [0, 1 M-µ ], E Tα(ν) [log (1 -λ(X -µ))] ≤ -E Tα(ν) [λ(X -µ)] = λ µ -E Tα(ν) [X] = λ µ -E ν X1 X≤q1-α(ν) -E Tα(ν) X1 X>q1-α(ν) = λ µ -E ν X1 X≤q1-α(ν) -αC α (ν) = λ µ -E ν X1 X≤q1-α(ν) -αE ν [X|X > q 1-α (ν)] = λ µ -E ν X1 X≤q1-α(ν) -E ν X1 X>q1-α(ν) = λ (µ -E ν [X]) ,
by definition of C 1-α (ν) and the conditional expectation. Since µ > E ν [X], the maximum of the RHS in λ is attained at the rightmost point, which yields

K M inf (T α (ν), µ) ≤ µ -E ν [X] M -µ .
For ρ > 0 large enough, we have M = µ + ρE ν [(µ -X) + ] which further simplifies as

K M inf (T α (ν), µ) ≤ µ -E ν [X] ρE ν (µ -X) + .
Therefore for ρ large enough, in particular ρ ≥

µ-Eν [X] Eν [(µ-X) + ]K F inf (ν,µ) , we have K M inf (T α (ν), µ) ≤ K F inf (ν, µ) .
The bound on ρ given in the above lemma can be rather loose because of the crude concave inequality we use. It also comes at the price of increasing ρ, which may hurt the performances of QDS due to overexploration. We now show that this quantile condition can be calculated almost in closed-form and is naturally satisfied by some classical families of distributions.

E.1 Exponential

Let F = (ν θ ) θ∈R * + with density p θ (x) = θe -θx 1 x≥0 . We summarize in the below lemma a number of explicit formulas for the K inf operators and quantiles of ν θ . Lemma E.2 (Some statistics of exponential distributions). Let 0 < φ < θ and α ∈ (0, 1).

(i) E θ [X] = 1 θ . (ii) q 1-α (ν θ ) = -log α θ . (iii) E θ [X|X ≥ q 1-α (ν θ )] = 1 θ + q 1-α (ν θ ). (iv) E θ 1 φ -X + = 1 φ -1 θ 1 -e -θ/φ . (v) K F inf (ν θ , 1 φ ) = φ θ -log φ θ -1. Proof. (i)-(iv) result from straightforward integral calculations. (v) is a direct consequence of F being a SPEF, which implies K F inf (ν θ , 1 φ ) = KL(ν θ , ν φ )
, which has the stated closed-form for exponential distributions.

Using these formulas, we numerically compute K M(ρ) inf as a function of ρ by solving the convex dual problem (see [START_REF] Honda | An asymptotically optimal bandit algorithm for bounded support models[END_REF]) and compare it to K F inf . Conversely, for a fixed exploration bonus ρ, we compute the K inf of the truncated distribution T α (ν θ ) for a range of α. As per intuition, smaller values of α, corresponding to smaller truncations of the support, help satisfy the K inf condition. Results are reported in Figure 3. 

3: Comparison of K M(ρ,α) inf (T α (ν θ ), 1 φ ) and K F inf (ν θ , 1 φ ) for the exponential distribution E(θ) with θ = 1 2 , φ = 1 3 . Left: α = 5%. Right: ρ = 8.
Admissible regions for ρ and α are shaded in green.

E.2 Gaussian

Let σ > 0 and F σ = (ν θ ) θ∈R with density p θ

(x) = 1 √ 2πσ e -(x-θ) 2 2σ 2
. We recall some useful statistics of the SPEF of fixed variance Gaussian distributions.

Lemma E.3 (Some statistics of fixed variance Gaussian distributions). Let θ < φ and α ∈ (0, 1). We denote Φ(x) = 1 √ 2π

x -∞ e -y 2 2 dy the standard Gaussian cdf.

(

i) E θ [X] = θ. (ii) q 1-α (ν θ ) = θ + σΦ -1 (1 -α). (iii) E θ [X|X ≥ q 1-α (ν θ )] = θ + σ α √ 2π e -Φ -1 (1-α) 2 . (iv) E θ (φ -X) + = (φ -θ) Φ φ-θ σ + σ √ 2π e -(φ-θ) 2 2σ 2 . (v) K Fσ inf (ν θ , φ) = (φ-θ) 2 2σ 2 .
The proof is similar to that of the previous lemma; in particular (v) uses the fact that F σ forms a SPEF. Results are reported in Figure 4. The lighter right tail of Gaussian distributions, compared to that of exponential distributions, results in much less stringent conditions on α and ρ; in other words, Gaussian distributions are "easier" to summarize with the truncation and conditional Value-at-Risk operator. 

F Additional Experiments

We present in this section various experimental results for the DS algorithms. First, we expand on the empirical analysis of the DSSAT bandit problem introduced in Section 4 and compare various competitor algorithms. In particular, we show that each of the three settings we introduced, namely bounded with unknown but detectable upper bound (BDS), unbounded with a quantile condition (QDS) and robust (RDS), are eligible assumptions for simulated grain yields, providing new modeling tools for the practitioner.

Going further, we detail another setting for which QDS and RDS apply but that is outside the scope of SPEF algorithms: the Gaussian mixtures distributions. This may be of practical relevance as Gaussian mixtures can be used to estimate arbitrary densities.

We also test the sensitivity of the DS algorithms to their exploration bonus. For BDS, we consider a toy bandit problem with uniform arms and provide heuristics to tune the hyperparameter ρ that complete the theoretical recommendations. For RDS, we follow the experimental setting of the robust UCB for light-tailed distributions presented in [START_REF] Ashutosh | Bandit algorithms: Letting go of logarithmic regret for statistical robustness[END_REF] and show the superiority of the Dirichlet Sampling approach for different bonus functions ρ n .

Finally, we note that a by-product of our analysis of Boundary Crossing Probabilities provides an asymptotic result on the empirical K inf operator, at the root of the regret analysis of Dirichlet Sampling. We illustrate it on a few classical families of distributions. it enjoys none of the theoretical guarantees of the previous algorithms and is shown for empirical comparison only. Note that although it has been analyzed under strong parametric assumptions, the algorithm itself is non-parametric, and in particular is agnostic to the choice of the upper bound.

We run the three instances of DS algorithms, which we believe capture three aspects of the DSSAT problem that are of practical interest: the boundedness without the need to know the bound a priori (BDS), the robustness in face of unknown distributions (RDS) or the assumption that the conditional Value-at-Risk at some defined level α is a meaningful summary of tail statistics (QDS). All three compares similarly with the other optimal algorithms using the exact upper bound, RDS being the overall winner, and significantly outperform their conservative counterparts.

Results are reported in Figure 6 and Table 3. As expected, UCB1 and binarized TS perform poorly on the DSSAT problem, hinting that this particular bandit instance is not easy and requires more sophisticated methods. RB-SDA achieves good performances but exhibits larger dispersion than other methods (95% quantile is 0.99 × 10 6 , standard deviation is 0.26 × 10 6 ), meaning that some runs in the Monte Carlo simulations suffer high regret; we interpret this as evidence that RB-SDA operates outside its theoretical scope here and is therefore not backed by strong regret guarantees. The DS algorithms achieve similar or even slightly better regret than empirical IMED and NPTS using the prior knowledge of the true upper bound. However the latter two suffer from using the conservative upper bound in place of the true bound. Note that contrary to RB-SDA, empirical IMED and NPTS remain theoretically sound in both the prior knowledge and conservative case, but the larger bound drives the exploration-exploitation balance towards more exploration than is optimal. Finally, the tuning of the ρ bonus in the DS algorithms is done using plausible heuristics (see Appendix F.4) and have not been optimized to suit this particular problem.

F.3 Gaussian Mixture

Many real-world situations (loss profile of a portfolio of financial assets, crop yields, statistics of heterogeneous populations...) exhibit multimodal distributions. The Gaussian mixture model is perhaps the simplest example of such distributions and is ubiquitous in many areas of machine learning and engineering (speech recognition, clustering...), in particular as a nonparametric model for kernel density estimation. Still, to the best of our knowledge, it escapes the scope of current optimal bandit methods as it is neither bounded nor SPEF. Thanks to the different sets of assumptions in which they operate, both RDS and QDS are eligible algorithms to tackle the problem of sequential decision-making in a Gaussian mixture environment, at the cost of slightly larger-than-logarithmic regret and slightly lower K inf rate respectively.

We consider two arms distributed as a 50%-50% independent mixture of N (-0.3, 0.5 2 ) and N (1.3, 0.5 2 ) and a 10%-80%-10% independent mixture of N (-1.5, 0.5 2 ), N (0.6, 0.5 2 ) and N (2.5, 0.5 2 ). Note that both mixtures have total variance equal to 0.5 2 . Due to the lack of theoretically grounded benchmark, we run three SPEF algorithms (kl-UCB, IMED and Thompson Sampling) assuming the arms belong to the SPEF of Gaussian distributions with fixed variance 0.5 2 . This is an example of model misspecification.

We run RDS with ρ n = log(1+n), which matches the asymptotic growth rate of the maximum of i.i.d Gaussian samples, and QDS with α = 5%, ρ = 4; we recall that Appendix E shows empirical evidence that the quantile condition required by QDS holds for a large variety of α and ρ in the case of Gaussian tails. Note that the use of QDS in this context is technically out of scope of Theorem 3.5 since Gaussian mixtures are not lower bounded; we believe however that this is an artifact of our proof technique that could lifted with a finer analysis.

Results are reported in Figure 7. Both RDS and QDS outperform other existing methods; in particular, among the misspecified SPEF algorithms, only IMED exhibit comparable regret growth. As this bandit problem is complicated (small optimality gap, non-SPEF distributions), all algorithms have a relatively large variance.

We reproduce the setting of their experiment, namely two Gaussian arms N (1, 1) and N (2, 3), and compare several variants of both R-UCB-LT and RDS against a misspecified UCB1 (the misspecification takes the form of an overly optimistic 1-sub-Gaussian assumption, while the second arm is only √ 3-sub-Gaussian). Both R-UCB-LT and RDS rely on a slowly growing exploration bonus, denoted respectively by f and ρ; we run both algorithms with f and ρ equal to log 2 , log and √ log.

Results are reported in Figure 9. As expected, the misspecified UCB1 exhibits much faster regret growth than the robust algorithms. However, RDS seems to outperform R-UCB-LT, the best average regret being achieved by RDS with ρ n = log(1+n) and ρ n = log(1+n). Furthermore, the regret to RDS appears to be somewhat monotonic (slightly increasing) with respect to the hyperparameter ρ, and the best results are achieved by the one matching the asymptotic growth rate of the maximum of a i.i.d Gaussian samples, as recommended by Theorem 3.7. On the other hand, the best version of R-UCB-LT is obtained with f ≈ log (for which we do not find a theoretical intuition) and the performance gap is significant when other bonuses are considered. We also tested R-UCB-LT with powers of log log with similar results; we do not report these curves for the readability of the figures.

In light of these results, RDS seems less sensitive to its parameter choice than R-UCB-LT, which is another sort of robustness guarantee. 

F.6 Asymptotic behavior of empirical K inf

A critical part of the regret analysis of DS algorithms relies on the control of the BCP by the empirical K Xn inf operator, which we recall is calculated over distributions bounded by Xn = max i∈{1,...,n} X i for a given set of observations X = (X 1 , . . . , X n ). However, the regret lower bound [START_REF] Burnetas | Optimal adaptive policies for sequential allocation problems[END_REF] involves K F inf , calculated over distributions belonging to a base family F. The analysis of NPTS (Riou and Honda, 2020) considers only distributions with bounded support, for which both operators can be made arbitrarily close in the relevant topology. We show that it is essentially the only favorable case and provide empirical evidence on the limit behavior of K Xn inf for standard unbounded distributions.

Combining intuitions from Lemma 3.3 and Lemma C.1 we obtain the following control of the empirical K Xn inf .

Lemma F.1 (Asymptotic behaviour of K X inf ). Consider a set X n = (X 1 , . . . , X n ) ∈ R n and a target value µ ∈ R, and denote Xn = max i∈{1,...,n} X i and ν Xn the empirical distribution associated to X n . Assume that Xn ≥ g(n). Then,

K Xn inf (ν Xn , µ) = O 1 g(n)
.

In particular, if the distribution of X i is unbounded, g(n) -----→ n→+∞ +∞ and K Xn inf (ν Xn , µ) -----→ n→+∞ 0.

This shows that the K inf operator is not continuous w.r.t the family over which it is defined in the sense that the following assertions are mutually exclusive:

(i) F contains an unbounded distribution ν and K F inf (ν, µ) > 0, (ii) K Xn inf ( ν n , µ) -----→ n→+∞ K F inf (ν, µ).

A direct consequence of this is that it makes impossible a direct generalization of NPTS to unbounded distributions while preserving logarithmic regret, forcing us to either let go of logarithmic guarantees (RDS) or assume a quantile condition and use a truncation operator to recover the continuity between the empirical K Xn inf and K F inf (QDS).

Lemma F.1 only provides a control of K Xn inf by 1 g(n) , not an symptotic equivalent; we believe however this control to be quite tight. To sharpen our intuition, we compute K Xn inf for various sample sizes n on classical SPEF (exponential and Gaussian with fixed variance, Bernoulli), using the dual formulation of [START_REF] Honda | An asymptotically optimal bandit algorithm for bounded support models[END_REF]. For the unbounded SPEF (Figure 10), we see the empirical K Xn inf decreases away from K F inf with n; by contrast, the Bernoulli distribution (Figure 11) shows no significant deviation from K F inf .

Furthermore, we empirically validate the relation between K Xn inf and the growth rate g of the maximum of n i.i.d samples. Indeed, we have g(n) ≈ log n for exponential distributions and g(n) ≈ √ log n for Gaussian distributions, we therefore expect log K Xn inf (ν Xn , µ) ≈ -log log n and log K Xn inf ( ν n , µ) ≈ -1 2 log log n respectively. Figure 12 shows the outcome of the least squares regression of log K Xn inf (ν Xn , µ) on log log n, which recovers approximately the expected slopes. Again, the case of the Bernoulli SPEF shows no significant dependency on n as g(n) ≈ 1. Exp (slope: -0.92) Gauss (slope: -0.57) Bernoulli (slope: -0.00)

Figure 12: Linear fit (dashed) of log K Xn inf ( ν n , µ) (solid) on log log n and resulting slopes. Dotted lines correspond to log K F inf (ν, µ) for the corresponding SPEF F. X-axis: log log n, Y-axis: log K inf .
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Figure 1 :

 1 Figure1: Distribution of simulated dry grain yield (kg/ha) for four out of seven different planting dates. Reported on the x-axis are the distribution minimum, mean and maximum values. The optimal arm is the third one (mean 3630 kg/ha).

Figure 2 :

 2 Figure 2: Average regret on 5000 simulations and horizon T = 10 4 . Dashed lines correspond to 5%-95% regret quantiles. Empirical IMED and NPTS are run with exact upper bounds around 1.5 × 10 4 kg/ha (left) and the conservative upper bound 1.5 × 10 4 kg/ha (right).
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  • F [b,B] denotes the set of all distributions supported on [b, B], where b and B can respectively take values -∞ and +∞. With a slight abuse of notations, we denote for any

•

  Bounded Dirichlet Sampling (BDS): the DS algorithm proposed for families of distributions from F [b,B] with known B and F [b,B] γ,ρ for known (γ, ρ). • Robust Dirichlet Sampling (RDS): a DS algorithm proposed for the general family of light-tailed distributions F . • Quantile Dirichlet Sampling (QDS): a DS algorithm proposed for families of distributions F α [b,+∞) associated with some base family F ⊂ F [b,+∞] . • Round: a step of the algorithm indexed by some r ∈ N and at the end of which a set of arms A r ⊂ {1, . . . , K} is selected. • T-Round regret: Consider a bandit ν = (ν 1 , . . . , ν K ) with arms' means (µ 1 , . . . , µ K ) and an horizon of T rounds,

  k∈{1,...,K} N k (r) the set of possible candidates for leadership. If |L r | > 1 the algorithm chooses uniformly at random an arm r ∈ argmax k∈L r µ r k , where µ r k is the empirical mean of arm k at round r.

  Y) a generic exploration bonus for a duel involving the set X (challenger) and the set Y leader. With a slight abuse of notation we use B(X , µ(Y)) when it only uses the mean of the leader, and consider in the paper the bonus

Algorithm 6

 6 Non Parametric Thompson Sampling (Riou and Honda, 2020) Input: Horizon T , K arms, known upper bound B Init.: ∀k ∈ {1, ..., K}: X k = {}, N k = 0 for t ∈ {1, . . . , T } do for k ∈ {1, . . . , K} do Sample
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 4 Figure 4: Comparison of K M(ρ,α) inf (T α (ν θ ), φ) and K F inf (ν θ , φ) for the Gaussian distribution N (θ, σ 2 ) with θ = 0, σ = 1, φ = 1. Left: α = 5%. Right: ρ = 1. Admissible regions for ρ and α are shaded in green.
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 5 Figure5: Distribution of simulated dry grain yield (kg/ha) for seven different planting dates over 10 6 samples. Reported on the x-axis are the distribution minimum, mean and maximum values. The optimal arm is the third one (mean 3630 kg/ha).
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 6 Figure6: Average regret on 5000 simulations and horizon T = 10 4 . Dashed lines correspond to 5%-95% regret quantiles. UCB1, Binarized Thompson Sampling, Empirical IMED and NPTS are run with exact upper bounds around 1.5 × 10 4 kg/ha (left) and the conservative upper bound 1.5 × 10 4 kg/ha (right). BDS: ρ = 4. RDS: ρ n = log(1+n). QDS: ρ = 4, α = 5%.
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 9 Figure 9: Left: Gaussian arms N (1, 1) and N (2, 3) (5 × 10 4 samples each). Right: average regret (in log scale) on 5000 simulations and horizon T = 5 × 10 4 . UCB1 is run assuming a 1-sub-Gaussian instance.

  Figure 10: K F inf (ν, µ * ) w.r.t the corresponding SPEF and empirical K Xn inf ( ν n , µ) for sample size n = 10 2 , 10 3 , 10 4 , and µ * = 3, averaged over 1000 simulations (fitted density are shown in the background). Left: Gaussian ν = N (2, 1). Right: exponential ν = E( 1 2 ).
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Table 1 :

 1 Summary of settings and bonuses AlgorithmKind of family B

Table 3 :

 3 Regret on DSSAT bandit at T = 10 4 , over N = 5000 independent simulations. Scale = 10 6 .

		Algorithm	5% quantile Mean (± standard deviation) 95% quantile
		UCB1	1.56	1.74 ± 0.11	1.92	
		UCB1 (conservative)	2.00	2.13 ± 0.08	2.26	
		TS Binarization	0.72	1.36 ± 0.46	2.20	
	TS Binarization (conservative)	0.94	1.70 ± 0.50	2.57	
		Empirical IMED	0.23	0.38 ± 0.13	0.58	
	Empirical IMED (conservative)	0.29	0.42 ± 0.10	0.60	
		NPTS	0.30	0.46 ± 0.14	0.69	
		NPTS (conservative)	0.39	0.55 ± 0.13	0.77	
		RB-SDA	0.20	0.42 ± 0.26	0.99	
		BDS	0.31	0.47 ± 0.13	0.68	
		RDS	0.22	0.38 ± 0.16	0.63	
		QDS	0.25	0.41 ± 0.14	0.64	
		UCB1		UCB1		
	2M	TS (binarization)		TS (binarization)		
		empirical IMED NPTS	2M	empirical IMED NPTS		
		RB-SDA		RB-SDA		
		BDS		BDS		
	1M	RDS QDS	1M	RDS QDS		
	0		0			
	0	5K	10K	0	5K	10K

That is, for each bandit on F, for each arm k with ∆ k > 0, then E[N k (T )] = o(T α ) for all α ∈ (0, 1].
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Condition (C2)

In this section we take the result of Corollary C.5.1 and use it to derive a ratio between the likelihood of an empirical distribution and its BCP in the case of multinomial distributions. This result will be useful in the proofs of Theorem 3.4 and 3.5 where we use an adaptive discretization in order to work with multinomial distributions. Lemma D.2 (Balance between the likelihood and the BCP for multinomial distribution). Consider observations X = (X 1 , . . . , X n , B) and denote X = max X ≥ µ ∈ R. Now consider a multinomial distribution ν n supported on (X 1 , . . . , X n ) and of probability p n ∈ P n .

We fix some N ∈ N and denote by β N ∈ N N a random vector denoting the counts of each item X 1 , . . . , X n when drawing N observations from ν n . Then for any vector β = (β 1 , . . . , β n ) satisfying n i=1 β i = N and β t X ≤ µ for some µ ∈ R, it holds that

Proof. Lemma 2.1.6 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] provides that for a multinomial distribution it holds that

where H denotes the entropy. Then, Corollary C.5.1 directly provides the result as all the constant terms are equal, and the entropy term can be simplified.

D.2 Proof of Theorem 3.4: regret bound for BDS

We recall that two hypothesis are considered for BDS: (B1) distributions are bounded and the upper bound of the support is known, and (B2) the upper bound is not known but for each distribution ν k it holds that P ν k ([B -γ, B]) ≥ p for some known γ, p. We know restate the Theorem. Theorem 3.4 (Optimality of BDS). If ∀k ∈ {2, . . . , K} , ν k ∼ F γ,ρ B , choosing the exploration bonus of Equation 6 with ρ ≥ -1/ log(1 -p) ensures that

Proof. We denote X = max X∈X X and for X = (X 1 , . . . , X n ),

where parameter γ directly comes from the hypothesis on the distributions, and we justify below the tuning of parameter ρ as a function of p. First of all, the bounded support hypothesis ensures condition (C1) thanks to Hoeffding inequality, with a rate function

. We can now focus on the expression of n k (T ) and on proving condition (C2).

First-order term

We use Lemma D.1. To define the large-probability event B k,n , we consider the Levy distance

where ν F and ν G are two distributions of respective cdf F and G.

In this section, we fix some ε > 0 (different than the one from Th. 3.1 but we avoid an index for simplicity) and consider B k,n as a Levy ball of size ε around the true distribution: D.3 Proof of Theorem 3.5: logarithmic regret of QDS for semi-bounded supports Theorem 3.5 (Logarithmic Regret of QDS). Consider a bandit model ν = (ν 1 , . . . , ν K ) satisfying ∀k, ν k ∈ F α [b,+∞) for some b > -∞ (lower-bounded support) and a known α > 0. Then, for any ε 0 > 0 small enough QDS with any parameters α < α and ρ ≥ (1 + α )/α 2 satisfies

and T α is the truncation operator we defined.

Proof. We start by simply stating that conditions (C1) hold, for the same reason as for RDS because we consider again light-tailed distributions. The rest of the proof is similar to the proof of Theorem 3.4 for BDS.

Upper bounding n k (T )

We again want to use Lemma D.1, and formulate a high-probability event on the observations. First, we can build a Levy ball around the true distribution to control the value of the quantile thanks to DKW inequality. Secondly, we use as in RDS that the variable (µ -X) + for X ∼ ν k is light-tailed and hence admits a good rate function I + k thanks to Cramér's theorem.

and defining the application C α as the Conditional Value at risk for a level

We consider

) and first refer the reader to the proofs of Theorem 3.4 and 3.7, respectively for the terms corresponding to the Levy distance and the concentration of the bonus (relying as we recall on the DKW inequality and a good rate function for the data-dependent bonus), for empirical distribution we simply take the mean of all data larger than the empirical quantile q 1-α (ν X ). However, as in the proof of Theorem 3.7 we will be able to handle this thanks to the concentration of Wasserstein metrics for light-tailed distribution, using that (Lemma 2 from Bhat and L.A. ( 2019)) for two distributions ν and ν it holds that

Then we can again use Theorem 2 from [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] to obtain a concentration inequality on this term. With all these results, it holds that

so the observations are in B k,n with large probability, hence we can now consider the BCP under X n ∈ B k,n . The difference compared with previous section is that this time the BCP is considered for the truncated distribution T (ν Xn ). However, this is not a problem as the upper bound of lemma C.1 still holds. Thanks to the aggregation properties of the Dirichlet distribution (see Appendix C.1 for more details), the BCP with parameter (1, . . . , 1, n α ) (of size n -n α ) is the same as the BCP with parameters (1, . . . , 1) (of size n) with n α copies of the last term. Hence, the QDS index satisfies

, that is independent of the run of the bandit algorithm. 

Then, for T large enough the expected number of pull of any sub-optimal arm k in RDS is upper bounded by

where for any η ∈ (0, 1],

In particular, if

Proof. We recall that the bonus function of RDS is B(X , ρ n , µ) = µ + ρn n n i=1 (µ -X i ) + , as defined in equation 5, for a sequence (ρ n ) n∈N satisfying ρ n → +∞ and ρ n = o(n). We show that with this simple bonus conditions (C2) hold for all light-tailed distributions.

Preliminary: concentration of the means We recall the definition of the family of light-tailed distributions,

Then, Cramér's theorem (see e.g Theorem 2.2.3 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]) ensures the condition (C1) for this family, with a good rate function that is defined with the Fenchel-Legendre transform of each distribution, itself finite thanks to the existence of the MGF of the distributions in a neighborhood of 0.

Concentration of the DS index

We again try to find a proper set B k,n for observations X n = (X 1 , . . . , X n ) that would allow to use Lemma D.1. In this setting, we show that we only need to control the sample X n through its mean, the "positive gap" used in the bonus, and a range on its maximum value. Hence, we fix some ε > 0 and consider

where X + is the set

, X denotes as in other sections the maximum of the set X and (m n ) n∈N , (M n ) n∈N are two fixed sequences.

We start with the two conditions {µ(X ) ≤ µ k + ε} and {µ(X + ) ≤ ∆ + k + ε} (sharing the same ε for convenience). We already proved that condition (C1) holds as ν k is light-tailed, thanks to Cramér's theorem, but this is true also for the distribution of a random variable (µ -X) + for X ∼ ν k , as the transformed distribution is still light-tailed. Hence, thanks to Cramér's theorem there exists also a rate function

and then

We now use the first part of Lemma C.1 and the fact that for any η ∈ [0, 1) and x ∈ (-∞, η],

2 . Denoting M Xn = max Xn , B(X n , ρ n , µ) , X n+1 = B(X n , ρ n , µ) and using the representation of Dirichlet samples as normalized exponential variables, Chernoff inequality provide

. We recall that we consider this upper bound under the event X n ∈ B k,n , which ensures that 1) Xn ∈ [m n , M n ] with the sequences we defined, 2) ∆n ≥ µ -µ k + ε, 3) the bonus is upper bounded by µ + ρ n × (∆ + k + ε), and 4) the quadratic deviation satisfies σn (µ) ≤ σ k,µ + ε. For any ε 0 > 0, if we further assume that M n = o(m 2 n ), for any n large enough these results finally provide

where

) is satisfied for light-tailed distributions, as they generally have at most a poly-logarithmic growth of the maximum (e.g log(n) for exponential tails, √ log n for gaussian tails, . . . ) and so M n and m n are actually of the same order of magnitude. We then recover all the terms of Theorem 3.7 by matching the exponent of the upper bound with -log T .

To conclude this part, the light-tailed hypothesis allows to provide an asymptotic upper bound on the expected number of pulls of each sub-optimal arm for the RDS index. Then, the choice of m k (T ) in Lemma D.1 can be m k (T ) = O(log(T )M log(T ) ) if M n is a power of log. The algorithm then achieves asymptotically a robust sub-linear instance dependent regret.

Remark D.3. The concentration bound we use on the Dirichlet weighted average requires the control of the second empirical decentred moment σ2 n (µ) since we use

2 . This control

F.1 Summary of competitor algorithms

We first present in Table 2 details on the algorithms we study in this section, with the hypothesis they make on the distributions of the arms and the knowledge they require. This is a non-exhaustive list, and for a more detailed (but still non-exhaustive) list we refer the reader to Section 1. Except for UCB1 and Binarized TS (which are classical benchmarks), we choose the other competitors because they target asymptotic optimality in the families of distributions they consider. σ-sub-Gaussian (not optimal) σ Binarized TS Agrawal and Goyal ( 2012)

IMED

Honda and Takemura ( 2015)

Empirical IMED Honda and Takemura ( 2015) 

F.2 DSSAT bandit

In this section, we present additional competitors (see Table 2) on the DSSAT bandit problem, a 7-armed stochastic bandit where each arm corresponds to a simulated dry grain yield for a given planting date (see Figure 5).

Assuming yield distributions are bounded, one can use classical algorithms such as UCB1 [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF] or Thompson Sampling with Beta prior using the binarization trick introduced in [START_REF] Agrawal | Analysis of Thompson sampling for the multi-armed bandit problem[END_REF]. These algorithms enjoy logarithmic regret without the optimal rate of [START_REF] Burnetas | Optimal adaptive policies for sequential allocation problems[END_REF].

Other bounded algorithms include empirical IMED [START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards[END_REF] and NPTS (Riou and Honda, 2020). The former is based on the calculation of K inf indices inspired by the Burnetas-Katehakis lower bound. We distinguish IMED, which relies on a SPEF assumption to explicitly compute the K inf and therefore falls short of the scope of DSSAT, from empirical IMED, which solves the convex optimization problems defined by the K inf of the empirical distribution of each arm and requires boundedness.

Such bounded algorithms require the explicit knowledge of an upper bound on the support of the arms distributions. To represent the fact that a tight bound is sometimes unknown to the practitioner (uncertain environment, possibility of yet unobserved black swan events...) we run two variants of the above algorithms, one with the exact maximum yield across all simulated data, which we believe is a strong prior information, and one with the same bound inflated by 50%, which we deem a conservative estimate.

Finally, RB-SDA [START_REF] Baudry | Sub-sampling for efficient non-parametric bandit exploration[END_REF]) is a recent sub-sampling algorithm based on a similar roundbased structure as our DS algorithms. Its optimality is only established under tail conditions satisfied by some SPEF; in particular, despite its appealing regret growth on this specific instance of DSSAT, 

F.4 BDS parameters sensitivity

We study the sensitivity of BDS to its parameter ρ. Theorem 3.4 suggests to scale the exploration bonus B ρ,γ as ρ = -1/ log(1 -p), which is a proxy of an upper bound of 1/ (1 -F (µ 1 )) in Lemma 3.2. We believe this bonus to be rather conservative when p is small and the distributions considered exhibit little skewness; as an example, if a distribution is such that at most 25% of its mass is located to the right of the optimal mean reward µ * , ρ ≈ 4 should be a suitable tuning.

To investigate this, we consider a toy bandit instance with two arms following uniform distributions on [0, 1] and [0.2, 0.9] respectively (note that the upper bound is different for each arm yet the distribution of mass near their respective bounds is the same, thus fitting the setting of BDS). These distributions are shown in Figure 8, and in particular their means are 0.5 and 0.55 respectively. For γ = 0.1, we compute the expected regret of BDS obtained with the theoretical tuning ρ = -1/ log(1 -p) 9.5, and compare it with other choices of ρ. Figure 8 shows that only the most extreme tuning ρ = 50 exhibits significant, albeit still sublinear, regret. Small deviations from the theoretical tuning yields similar regret, the heuristic ρ = 4 discussed above being slightly better, which tends to confirm our belief that the analysis of Theorem 3.4 can be sharpened. Note that the exploration incentive given by ρ is necessary since smaller values (e.g ρ = 0.1) tends to accumulate more regret. The study of statistically robust bandit algorithms is fairly recent, and as such is yet to have wellestablished benchmarks. [START_REF] Ashutosh | Bandit algorithms: Letting go of logarithmic regret for statistical robustness[END_REF] introduce R-UCB-LT, an adaptation of the standard sub-Gaussian UCB to enforce robustness w.r.t light-tailed distributions (as defined in Appendix A.1).