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Energetically efficient active vibration control of flexible
structures
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Résumé :

Dans cet article une stratégie de contrble appéléontrole semi-actif global " est présentée etidéd
pour le cas de structures flexibles (poutre endastiibre). Le but de cette stratégie est d'atteenids
performances d’un contréleur actif avec une consation d’énergie réduite comparable a celle néciessa
par les contréleurs semi-actifs. L'algorithme ad®dptour la loi de contréle est présenté. Le conti8IsIC
(contréle modal indépendant dans I'espace d’état)appliqué a la structure pour déterminer la forbe
contrdle optimale. Les résultats comparatifs dedponse de la poutre obtenus pour ce type de @lenét
ceux par l'algorithme proposé sont présentés. Eet,ebn remarque une atténuation des vibrations awe
consommation d’énergie réduite pour le contrbleisaetif global (régénératif).

Abstract:

In this paper, a control strategy called "Globahsieactive control" of flexible structures (cantivbeam)
is presented and validated. This strategy aimsctoewve potential performance of fully active systevith a
reduced energy supply of an amount comparableitoadhsemi-active strategies. The control approach
presented and the law is offered. Independent M8galke control (IMSC) study is performed to obthi
optimal force and comparative results of the beasponse to the previous type of control and thegsed
algorithm are presented. We actually remark theratation of the beam tip’s displacement versusaedu
energy consumption for with global semi-active oarregenerative).

Mots clefs: active control, energy, semi-active, vibrations.

Introduction

Traditionally, there were two categories of viboaticontrol defined pertaining to the nature of pofleav in
dynamic subsystems: passive and active. A thirerime¢diate category is introduced, which will belezil
regenerative. A regenerative subsystem is thelmatdg not passive, yet, on average, more eneogysfinto

it than out of it. The concept of regenerative eyt for vibration control is based on the self-ainstbility
from an energetic point of view. i.e. the energgder to generate the control force is extractenh filoe
system vibrations itself. It is far from being ewconcept. The primary focus has been on regeverat
automobile suspension systems [1]. For a regenmerdiforation control system to be applicable, itstnover
time absorb more energy from the system than ivels to it. In other words, it must exhibit pog#ipower
absorption averaged over time.

In this work, we present a regenerative control that we called "Global semi-active law" or "Endige
modal control" as it uses the energy coming frora #fystem vibrations that will be then stored in
accumulators for the generation of the control doexcording to a global semi-active algorithm. The
principle of the control strategy is that actuatbehiave as active ones as long as there is enogyyein
accumulators, and as soon as there is a shortatpe iavailable energy they switch to a semi-ackiwe.
This control law is applied to flexible structurgkich are a quite complicated type of systems.dgxample,
because of their multiple modes, they display higlésonant behaviour at or near to their natural
frequencies. It is therefore desirable to desigmuati-mode controller that can effectively suppress
vibrations at and near specific natural frequenofeisterest, but does not introduce unwanted vibna at
other natural frequencies (i.e., spill-over). Albecause of the order of these systems is higlcalcelation
guantity is a burden especially when controllingeal-time. Other desirable requirement for thetiier

of this kind of structures is employing a minimumnmber of sensor-actuator pairs using a simple desig
structure. The principal methods that can be fauantthe literature for controlling multi-mode vibiras in
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flexible structures include: positive position feadk control (PPF) [2], independent modal spacercbn
(IMSC) [3] and modified independent modal spacet@dr{MIMSC) [4] [5]. In IMSC method, the control
law is designed in the modal space for each modependently as it converts a modal matrix at
transformation matrix and makes coupled equatiomation with uncoupled equation in modal coordinate
system. The traditional problem of flexible struetwith a large number of degrees of freedom is the
reduced to a set of independent second order sysameh so control is easier. Thus, IMSC requires an
appreciable less amount of calculation quantityittiee coupled control and it also gives a largexiazh of
control techniques including non linear controls@|lif the number of controlled modes and actudtotise
same, controllability is always satisfied and tlomteol spillover will be minimized. But in spite ahese
many strong points, the number of actuators musedeal to the number of controlled modes for this
vibration control algorithm. For these reasons,liappion field of IMSC is restricted [6] [4] whilghe
Performance Index (PI) is independent of the aotulatcation. The weak point of IMSC is then thatlea
mode requires its own sensor — actuator pair. &a,eB al [7] developed a time-sharing techniquerretl to

as Modified Independent Modal Space Control (MIM3Ble to be applied when the number of actuators is
less than the controlled modes. Procedure of MINtSE@mposed of two steps. First, the system isddili
into controlled modes (which are chosen accordmgheir modal energy) and residual ones. Then, each
mode is controlled separately and actuators areatgzbto the modes with the biggest modal energg. T
main advantage of MISMC method is the reducibitifythe number of actuators, yet it requires a high
computation load imposed by the need to calculatecampare the energies in all modes of interesverty
time interval. In this work, we will use the IMSCetthod for the determination of the optimal law ttie
control algorithm will track. We will also presetite simulation results of the beam response in the
frequency and time domain.

1 Modal control of flexible structures

Control techniques of flexible structures aim tduee the system vibrations by the automatic maatific

of its structural response. The design of the adletr(most widely composed of piezoelectric aatusiiand
sensors known fatheir excellent electromechanical capacities, feeqy response characteristics, light weight
and low power consumption) is very crucial from g@ndpoint of performance criterion.

First, we start by modeling our structure for whitéving an accurate model is necessary to ensere th
design of the appropriate controller.

1.1 Finite element formulation

For most structural systems under practical loagittie vibration response is mainly due to therdmution
of certain modes, usually lower order modes whihthe most energetic. We will adopt the method of
mode superposition to get an approximate reducaer-anodel system with uncoupled equations of motion
in the modal coordinate. First, equations of motoa derived based on Euler-Bernoulli theory. Tihaef
element consists of two nodes with two degree eédom each. The eigenvalue problem is then solvdd a
the modal vectors with degrees of freedom in the state space are usagectuple the equation of motion
which will be written in the following expression:

[Mlg + [CTg+ [Klq= [Wlu+p €Y)

with:

[M]: structural mass matrix,

[C]: structural damping matri{€] = a[M] + B[K] with « andp are Rayleigh mass and stiffness material
loss factors),

[K]: structural stiffness matrix,

g, q,q: nodal displacement, velocity and acceleratiortorsg

[W]: actuators location’s vector,

u: control force vector,

p : perturbations vector.

[M] and[K] are obtained from the kinetic and potential erergif the beam including the contribution of
the piezoelectric patches and sensors.
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1.2 Modal decomposition
In modal space, the study is reduced/tmodeg N < n), where the nodal displacement is approximated by:

N
=) ¢ 1 =[@1{1) @
werer = {ry,r,,.....ry}T are the modal coordin;eltbi, is the 1" eigenvector andd is the reduced modal
matrix. The equation of motion (1) becomes:
[MylG + [Cy]1 G+ [Kylq= @T[W]u+o"p (3)
with [My] = ®T[M]®, [Cy] = ®T[C]® and [Ky] = ®T[K]D.
Multiplying equation (3) byMy] ™%, we get the following decoupled form:
G + diag(2§;w))q + diag(wf)q = [Llu + [N]p Q)

Ci

wherew; and¢; are the natural eigenfrequency and damping (dtie- ) of the "mode respectively,

2m;w;
anddiag(2§w,) = [My]7'[Cy], diag(w?) = [My] 7 [Ky], [L] = [My]7*@T[W] and[N] = [My] @7,
In state space, we introduce the state vettwuch a = {g ¢ }7, equation (3) is then written as:

X =[AX} + [Blu+[B*]p )

4] = [—Svlz _zéiwi]' [B] = [2] 571 = [1(\)/]

where[A] is the state matrix|B] id the control matrix anfB*] is the perturbations matrix ards the
identity matrix

with

1.3 Optimal Independent Modal Space Control

The optimal law that we will use in this paper iganed by the minimization of a cost criterifu) of the
form:

Ne
J@ =) Jiw ©)
i=1

with N, is the number of the controlled modes ;ggrﬁd), is the modal cost criterion function written as
follows:

tr
Jiw) =] (XTQX + uTRu)dt 7
to
whereQ is the positive definite or semi-positive definiteight matrix andr is the positive factor that
weights the importance of minimizing the vibratisith respect to the control forces. The controcéar
depends on all the controlled modes which will lesure-coupling equation (4). The main advantafe
ISMC method is to avoid re-coupling the system d&iying the optimal control force having the followi
expression [7]:
Uopt = GX=- [Gl GZ] {q q}t (8)
G, andG, are the gain matrices giving 6y = diag(g,;) ands, = diag(g,;), where:

i = —WE +w; /Wi2+%, g2i=\/—2wi2+%+2wi /Wi2+%

This is the optimal law we will track during the topization problem in the energetic modal control
presented in the following section.
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2 Energetic modal control

2.1 Set of equations

The objective of this control law is to be ablesfectively control the vibrations of a dynamic ®m with a
less amount of power consumption. The controlldr ave performances similar to those of an actime
with the advantage of being energetically indepanhdBefore presenting the control algorithm, some
conditions must be pointed out first:

— Being energetically independent implies that ountaa device must possess storage devices
(accumulators), in which energy obtained from theations of the system is stocked. This energy
can be increased by using piezoelectric materiadsvk for their capacity of converting mechanical
strain into electric power (direct effect of pielssricity) and harvesting capacities.
We shall notice (t), t € [to:tf], the stored energy, al§ = E(t,), the initial available energy.
The storage being physically limited, lower and explimits forE(t) are needed. This is described
as follows: Epin < E(t) < Ejax-

— This condition automatically results in another stomint which is the need of the actuators to be
able to store energy even when the accumulatoréuliraVe will assume, for the following that
actuators can be temporarily disconnected fronr thetumulator and work as conventional semi
active actuators. This aforementioned constraintosadescribed by a Boolean functlo(such that
b(t) = 1 when the accumulators and actuators are conneatteztwiseb(t) = 0).

Actuators we will use for the control are piezogiemnes. So, the control force corresponds to the
voltage applied at the actuator’'s electrodes. Tingsipal limitations of the piezoelectric actuator
result in a threshold voltagg, ., not to exceedu < up,ax)-

Now, our minimization problem can be defined:
(P): minimizing J(u) with constraints:
X =AX+Bu
Emin = E(t) < Emax
U < Upgx Whenb(t) =0
E(to) = Eo
The control force to apply to the actuators is prtpnal to the electric voltage. So, by analogyhwthe

. 2 . .

electric power® = F = WC;’V ), the power needed to generate the optimal cofttroe can be written as a
function of the square of the force, whares the radial frequency, , is the piezoelectric capacitance and
V is the control voltage [8]. The actuators powelichhis equal to power delivered from the accumutato

can be written as follows:

E=b.uly=b uy’" GX 9
HamiltonianH resulting from (P) is the following:
H=X"QX+ u"Ru+ A" (AX + Bu— X)
+T(E-bu" GX) —y1(E — Emin) + ¥2(E — Emay)

- .81 (u + umax) + 52 (u - umax) (10)

with 4,y;, 8; andr’ are Lagrange multipliers. Physically, the tdfmepresents the power management of the
accumulators that will decide either to switch ¢éong-active law (if there is a shortage of the siceeergy)

or not. It is then possible, with Euler-Lagrangei&pns and corresponding edge conditions, to olateget

of equalities and inequalities governing the oation problem (P):

(A= —QX— ATA—ThG™u (11*%)
! u= —RYBTA-ThGX) (117%)

E=bu’ GX (117*)
lf =Y2— "N (1=

At instantt, the values of; andy,, relative to the stored energy level, providehkie ofl" int, and also
the value of” int + dt, with " as we said earlier, related to the accumulatoorire and outcome power
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flow. The energetic control law is based on thesdrination of the value df function of the state vector

and the value of the energy available in the actatou From equation§l1***) and(11****) , the energy
management term have the following expression:

r—E+ RT'A"BG X

~ b2GT XTR-1GX

(12)

2.2 Algorithm of the control strategy

It is possible now to synthesize the conditionsisagove for the generation of the energetic modatrol
algorithm which is primarily based on the levelremaining energy. First, the optimal control foeqeplied

to the actuators is calculated (section 1.3). Tletording to the available energy in the accurowat
(through the value of the power management t@iBection 2.1)), optimal force is applied (if the stored
energy is sufficient and accumulators keep stoclingrgy) or semi-active one (shortage of energy) by
dissipating the energy.

Perturbations
{force, displacements ...

I Structure variables |

Vibrations
(deformations, accelerations, velocities ...
k

| (Actuators PzT) |

Optimal control force ugy,

¥
I (Accumulators) |

Available stored energy E(t)

Power
management
term I’

E(t) not in limits Emin < E(t) < Epax

h 4 . W
Semi-active Control | ISMC control
{accumulator off) | {accumulator on)

FIG. 1 — Energetic modal control flowchart.

3 Simulations and discussions

In this section, we present some results of thdiagijpn of the control law we proposed to a cavr
beam subjected to harmonic excitations at the stippwo collocated piezoelectric actuators are leohd
near the clamped end and sensors are locatedheefree end where the vibrations are the most itapor
(as shown in figure.2).

voltage amplifier Charge amplifier
PZT actuators
sensors
beam perturbations
Controller I
—_ I

FIG. 2 — Schematic of active vibration control cfraart beam.

The frequency response of the beam for the firsetinodes shows actually the good performancesrof o
control strategy which are similar to those of tipgimal law (ISMC). We as well present the resaftthe
time response of the beam tip displacement (fiGyre.
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? Displacement variation for mode1, passive

Magnitude (dB)

Phase (deg)

10 o " ] 02 04 06 08 1 12 14 16 18 2
Frequency {radisec) s

' 10’

(a) Frequency response (b) Time response of the beam tip’s displacgmen
FIG. 3 — Frequency (a) and time (b) response ot#mtilever beam to the 2 types of control (optianad
global semi-active) compared to the uncontrollespomse.

In order to clearly evince the good performancesusfcontrol law, we present the RMS (Root Meanasg
values of the displacement (Table.1).

RMS Passive Global semi-active Optimal

Displacement (m) 0.7310e 0.7211¢ 0.7099¢

Table. 1 — RMS values of the beam tip displacerfarthe different types of control.

Conclusion

In this paper, an energetic modal control algorithes developed and presented. It consists on atsngt
between a semi-active law and an optimal one basddte level of the available energy in accumutattir
was applied to a cantilever beam and results shevwgbod performance of the law versus reduced gnerg
consumption. In further work, we plan to implemeigzoelectric patches to extract vibrations enengg
convert it to useful energy in order to supply analators and so enhance the performances and ¢éngyen
needs.
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