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On the solid-fluid transition in a yield stress shear thinning 
physical gel 

Teodor I. Burghelea  

  Université de Nantes, Nantes Atlantique Universités, CNRS, Laboratoire de Thermocinétique de Nantes, 
UMR 6607, La Chantrerie, Rue Christian Pauc, B.P. 50609, F-44306 Nantes Cedex 3, France 

Résumé:  
Ici est présentée une étude expérimentale de la transition solide-fluide dans un gel du type “fluide a seuil” (Carbopol 940) sous 
contrainte de cisaillement. Au cours d’une augmentation graduelle de la force externe, trois régimes de déformation distincts sont 
observes: un régime élastique quasi-solide (caractérise par une dépendance contrainte-déformation linéaire), un régime de coexistence de 
phase solide et fluide (caractérise par une compétition entre destruction et reformation du gel), et un régime purement visqueux 
(caractérise par une dépendance déformation – contrainte de type puissance). La transition de comportement de solide a fluide montre 
une nette hystérésis avec des valeurs de la force externe croissante et décroissante; et la puissance correspondant a la région d’hystérésis 
s’étend linéairement avec le niveau auquel le milieu est contraint (le degré d’instationnarité de l’écoulement). A la limite asymptotique 
des petits niveaux de force, nos résultats s’accordent bien avec les précédentes études stationnaires de la transition de type seuil. Afin 
d’approfondir la transition solide-fluide, nos résultats expérimentaux sont accompagnes d’un modelé cinétique simple qui décrit 
qualitativement l’hystérésis structurelle observée dans nos expériences rhéologiques. Le modelé est clairement bien valide par rapport 
aux données d’écoulement oscillatoire. 

Abstract: 
An experimental investigation of the solid–fluid transition in a yield stress shear thinning physical gel (Carbopol 940) under shear is 
presented. Upon a gradual increase of the external forcing, three distinct deformation regimes are observed: an elastic solid-like regime 
(characterized by a linear stress–strain dependence), a solid–fluid phase coexistence regime (characterized by a competition between 
destruction and reformation of the gel), and a purely viscous regime (characterized by a power law stress-rate of strain dependence). 
The transition from solid behaviour to fluid behaviour displays a clear hysteresis upon increasing and decreasing values of the external 
forcing and the power corresponding to the hysteresis region scales linearly with the rate at which the material is being forced (the degree 
of flow unsteadiness). In the asymptotic limit of small forcing rates, our results agree well with previous steady state investigations of 
the yielding transition. To get further insight into the solid-fluid transition, our experimental findings are complemented by a simple 
kinetic model that qualitatively describes the structural hysteresis observed in our rheological experiments. The model is fairly well 
validated against oscillatory flow data. 
Keywords: yield stress, hysteresis, Carbopol 

1 Introduction 
During the past several decades, physical gels have found an increasing number of applications in both 
industry (cosmetics, food processing, pharmaceutics, etc.) and fundamental research (targeted drug delivery, 
biotechnology, etc.). More recently, injectable physical gels are used for medical implants, tissue 
regeneration, and non-invasive intervertebral disc repair [1]. From a rheological point of view, such gels are 
usually referred to as yield stress materials, that is they are able to sustain finite deformations prior to 
flowing. At the microscopic level, such materials are made of high- molecular-weight constituents (typically 
in the range of 103 ÷ 107 Da) that interact reciprocally forming complex mesoscopic structures. Although 
widely used, particularly in engineering and industrial contexts, the term yield stress has raised a strong 
controversy for over two decades; see [2] and [3]. One of the main debates triggered by the inherent 
inaccuracy of measuring arbitrarily small rates of strain relates to the very existence of a “yield stress.” 
Indeed, according to Refs. [2] and [3], the yield stress might simply be an instrumental artefact due to the 
poor sensitivity of the measuring device in a range of vanishingly small deformations. During the past 
decade, the sensitivity and measuring range of commercial rheometers have significantly improved, and such 
a misinterpretation of the yield stress seems to be ruled out. However, yield stress materials remain quite 



20ème Congrès Français de Mécanique                                                                  Besançon, 29 août au 2 septembre 2011 

  2 

controversial and not fully understood. In spite of an increased resolution and accuracy of the modern 
rheometric equipment, measurements of the yield stress are still only partially reproducible. A detailed 
discussion of the technical issues that affect the yield stress measurements has been recently presented by 
Piau in Ref. [4].  
A first class of possible reasons for the partial reproducibility of such measurements is related to the 
experimental protocols that different research groups use. This includes both chemical aspects of the solution 
preparation (such as a careful tuning of the ionic content or the pH of the solvents used) and the details of the 
solvation/homogenization protocol. A second sensitive issue is related to the choice of different types of 
rheological protocols employed in the yield stress: flow ramps (either in a controlled stress mode or a 
controlled rate of shear mode), creep tests, oscillatory sweeps. Although we do not underestimate the 
importance of these technical considerations, we want to suggest that part of the troubles with the yield stress 
measurements are actually a result of our poor physical understanding of the solid–fluid transition associated 
with the concept of yield stress. The present paper investigates the yielding of a physical gel with a particular 
focus on the nature and mechanism of the transition between solid and fluid states when the external forcing 
is gradually increased. Whereas most of the previous investigations of the yielding phenomenon we are 
aware of ([4-8] and many others) focused on steady state rheological measurements, this report aims to 
characterize the yielding process as a function of the degree of flow steadiness. Thus, the description of a 
steady state yielding process is not the primary goal of this work and can only be obtained via extrapolation 
of our results.  

2 Experimental setup and methods  
As working fluids, we used aqueous solutions of Carbopol-940 (from Noveon) with concentrations (by 
weight) ranging between 0.1% and 0.2%. The pH of the mixyture (initially around 3) was brought to neutral 
values by the addition of about 140 parts per million of sodium hydroxide (NaOH). The final value of the pH 
was carefully monitored using a commercial pH meter. To homogenize the gelled mixture, the sample was 
stirred with a propeller mixer (at 400 rpm) for about 2 h and then allowed to rest for several more hours. 
Prior to each rheological test, the air bubbles entrapped in the gel during the stirring process were removed 
by placing the samples in a low-pressure chamber for 30 min.  
The rheological properties of the solutions were investigated using a CVOR rheometer (from Malvern 
Instruments) equipped with a Peltier system able to control the temperature with an accuracy better than 
0.1oC. 
A first major concern for the rheological measurements was the occurrence of the wall slip phenomenon at 
the contact with the measuring geometry, which has been previously observed with Carbopol gels, [4]. To 
prevent this, a home-made parallel plate geometry with cleated surfaces has been used, Fig. 1. 
The radius of the parallel plates is R = 40 mm the gap measured by the rheometer (see the details in Fig. 1) is 
d = 1 mm. The cleats have an equal height H = 600 μm and are disposed in a rectangular grid over each plate. 
Several advantages of cleated geometries over other methods of preventing the wall slip effect (such as using 
a sand blasted geometry or a vane tool) have been recently demonstrated experimentally, [9]. Among these 
advantages, the cleated geometry allows suppression of the wall slip effect even in the absence of significant 
normal forces and creates a well defined shear. 

 
Figure 1: Schematic view of the cleat geometry. A magnified cross-sectional view is presented on the right side. 
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Figure 1: Schematic view of the cleat geometry. A magnified cross sectional view is presented on the right side.

Figure 2: Schematical representation of the stress ramp. t0 is the characteristic forcing time (the averaging time per stress point) and N is the total
number of steps.

The flow between neighboring cleats is restricted and stops over a finite distance ∆ along the vertical axis (see
Fig. 1) and thus, two parallel no-slip surfaces are formed at an effective distance de = d + 2∆. Consequently, the
stress measurements should be corrected according to σ = σa

de
d , where σ is the apparent stress value provided by the

rheometer.
A second concern was related to the possible artifacts introduced by fluid evaporation during long experimental

runs. In order to prevent this, a solvent trap has been placed around the free fluid meniscus. After each experimental
run it has been carefully checked (by visual inspection) that no significant changes in the shape of the meniscus
occurred, and thus concluded that evaporation effects were either minimal or absent.

After loading the sample, we have waited about 30 minutes for the material to reach a thermal equilibrium state 2.
In order to insure the reproducibility of our measurements, prior to each experiment the sample has been pre-

sheared at a constant stress (usually the largest stress applied during the test) for 300 s. After performing the pre-shear
we have waited another 300 s for the sample to equilibrate.

The rheological procedure was similar to that described in Putz and Burghelea (2009) and consisted of linear stress
ramps (see Fig. 2) for both increasing and decreasing values of the applied stress, σ(t) =

�N/2
k=1 need to get the rest

from Miguel.
The data averaging time per stress value, t0 ( referred to as the characteristic time of forcing, Putz and Burghelea

(2009)), has been kept constant for the entire sequence of experiments presented in this paper, t0 = 0.66 s. For each

2The temperature equilibration time has been chosen after monitoring the instantaneous temperatures of both top and bottom plate which were
specially machined to accommodate temperature probes.

4
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According to Ref. [9], the following stress correction needs to be applied to stress measurements obtained 
using the cleat geometry illustrated in Fig. 1: 

! =!m
d + 2!
d

          (1) 

where σm is the stress measured by the rheometer, d is the gap measured by the rheomemeter and Δ is the 
flow penetration length through the cleats. By calibration measurements performed on a Silicon Oil with 
known viscosity, we have found ! " 600µmwhich is consistent with values given in [9].  

Two types of rheological tests have been performed: controlled stress linear ramps and controlled stress 
oscillatory sweeps at a fixed frequency. For each sample, we conducted controlled stress experiments for 19 
different values of the total ramp time. Each constant stress rheological experiment started with an increasing 
stress ramp and ended with a decreasing stress ramp within the same range of stresses and the same stress 
step. The data averaging time per stress value, t0 (to be further referred as the characteristic time of forcing), 
has been varied between 0.2 and 2 s. For each up–down stress ramp, 1000 stress values have been explored 
ranging between 0.1 and 20 Pa. We emphasize here that a true steady state of deformation can only be 
inferred in the asymptotic limit t0 !" , unlike in previous studies concerning Carbopol gels, where a steady 
state was a priori set by deliberately choosing large values of t0 (an accurate description of such a procedure 
is presented, for example,  [7]). Alternatively, the time-dependent response of the samples was tested via 
stress-controlled oscillatory experiments at several frequencies and in the same range of stresses. 

3 Results  

3.1 The solid-fluid transition upon a increasing/decreasing stress ramp: the 
emergence of hysteresis 
In order to characterize the solid-fluid transition in a Carbopol gel under shear, systematic measurements of 
flow curves in a controlled stress forcing regime have been performed. In Fig. 2(a), we display a typical flow 
curve for both increasing and decreasing stresses. The stress has been varied linearly in time and the 
characteristic measuring time per stress value was t0 = 0.2 s. Several features of the transition can be learned 
from Fig. 2(a). First, the transition from solid states (regime S in Fig. 2(a)) to fluid states (regime F in Fig. 
2(a)) is not direct but intermediated by a third regime which can be interpreted as a coexistence regime 
between solid and fluid phases. Second, the solid-fluid transition is not reversible upon increasing/decreasing 
forcing. Indeed, it can be clearly seen in Fig. 2(a) that, upon decreasing stresses, a hysteresis of the 
deformation states emerges. Additionally, an elastic recoil effect can be observed in the form of a cusp on the 
decreasing stress branch. These experimental findings are at odds with the classical picture of yielding of a 
viscoplastic material according to which the solid-fluid transition occurs at a well-defined value of the 
applied stress (termed as the “yield stress”) and is reversible upon increasing/decreasing stresses. Hysteresis 
effects during the yielding of a Carbopol gel have been previously reported as either negligibly “small” or 
entirely absent, [8]. In the following, we quantify these effects by the power loss (per unit volume of material) 
associated to the hysteresis loop visible in Fig. 3, Ph = !

•

loop
!! d" . Here the closed curvilinear integral is 

calculated along the hysteresis loop. Quite remarkably, for the data presented in Fig. 2(a), the power loss 
corresponding to the hysteresis loop is nearly ten times larger than the power dissipated during the elastic 
solid deformation regime and, therefore, not negligible. The dependence of the hysteresis power loss Ph on 
the characteristic time of the forcing t0 is presented in Fig. 2(b). For each Carbopol concentration and each 
temperature, the hysteresis power loss scales algebraically with the characteristic forcing time, Ph ! t0"1 .  The 
experimentally found scaling of the hysteresis losses allows a comparison of our flow curves with previous 
experimental results, which revealed no apparent hysteresis and time dependence, see Refs. [4-5]. Indeed, 
one can easily note that, corresponding to large values of t0 (“slow” forcing), the hysteresis area becomes 
vanishingly small and our flow curves reduce to the steady state data published by others. Thus, we conclude 
that there exists no apparent contradiction between the flow curves we have presented and the steady state 
measurements previously reported by others. 
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Figure 2: (a) Dependence of the absolute value of the rate of shear, !
•  on the applied stress σ during a up/down stress 

ramp, Fig. 2. The inset presents a magnified view of the second flow regime, σx < σ < σ2. The vertical dotted lines 
indicated the bounds of the relevant rheological regimes. The symbols are: squares, increasing stresses; circles, 
decreasing stresses. The experiment was conducted with a 0.1% Carbopol solution at T = 298 K. The characteristic 
forcing time was t0 = 0.2 s. The labels S and F stand for the solid and fluid phases, respectively. (b) Dependence of the 
deformation power deficit on the characteristic forcing time t0 for several values of the Carbopol concentration and 
several temperatures: squares, c = 0.1%, T = 298K; circles, c = 0.1%, T = 308K; up triangles, T = 288 K; down 
triangles, c = 0.12%, T = 288 K; rhumbs, c = 0.2%, T = 288 K. The full line is a guide for the eye, Ph ~ t0

−1. 

) ,RThe i 

3.2 A toy model for the solid-fluid transition 
A detailed and direct experimental description of the Carbopol microstructure around the solid-fluid 
transition is still missing. This is mainly due to practical difficulties in visualizing the gel microstructure 
without altering it, [4]. A toy model using no explicit assumptions on the small-scale dynamics of the gel 
network under shear is presented in the following. We view the fluidization process of the gel under shear as 
a dissociation reaction, S! S + F , which can be modelled by the following kinetic equation: 

   d!
dt

= Rd (!, t,!)+ Rr (!, t,!)+"         (2) 

 where S and F denote the solid and fluid phases respectively, ! = S[ ]  is the concentration of the solid phase 
and ! =! /! 2

 is a non dimensional forcing parameter; Rd is the destruction  rate of the gel units, Rr their 
recombination rate and !  a small thermal noise term. We assume that the destruction rate Rd is proportional 
to the applied forcing and the existing amount of solid, that is  

R
d
!, t,"

•!
"

#
$ = %K1&! (3)  

The recombination rate Rr is assumed to be a smooth decreasing function of the applied stress proportional to 
both the amount of solid !  and fluid 1!! : 

R
r
!, t,"

•!
"

#
$ = Kr 1% tanh & /w( )'( )*!(1%!) (4)  

where Kr and w are constants.  
Here, we have considered that recombination of the gel network takes place via binding of single polymer 
molecules to already existing solid blobs. As a constitutive equation, we use a thixo-elastic Maxwell-type 

Rheol Acta

of this model is a daunting task because part of the
parameters involved in the model (such as the effective
temperature x, Sollich et al. 1997) are hard to asses
experimentally.

Controlled stress ramps: the flow regimes
and the emergence of hysteresis

One of the commonly used methods (and also one of
the most convenient and quick) of assessing the yield
stress of a soft material is that of controlled stress (or
controlled shear) flow ramps, Coussot (2005). In these
experiments, the external forcing (the applied stress in
our experiments) is gradually increased (either linearly
or logarithmically with time) up to a certain maximal
value. Corresponding to each value of the external forc-
ing, the rate of deformation γ̇ is averaged over finite
time intervals t0 and the yield stress of the material is
commonly assessed by the point where γ̇ exceeds the
noise level of the device and starts increasing. That
is the point where the material starts to flow. As al-
ready pointed out by numerous authors, such as Barnes
(1999), Kim et al. (2003) Piau (2007), and Uhlherr
et al. (2005), there seems to be an unsatisfactory level
of agreement (differences of the order of 20% and
sometimes larger are frequent) between yield stress
measurements conducted by different groups for the
same concentration of polymer and similar recipes of
solution preparation. Among possible reasons for these
discrepancies, we note that, in most of the previous
work, there has been little care for the rate at which the

material is being forced, and many experimental papers
simply disregarded this detail and give no indication on
how quickly the material is deformed. Only recently,
Tiu and coworkers have shown that, around the yield-
ing transition, the shape of the flow curves depends sig-
nificantly on the rate at which the stresses are increased
(1/t0) (Tiu et al. 2006), but a systematic investigation of
this effect is, to our best knowledge, still missing. Alter-
natively, the yield stress value can be assessed by using
an appropriate fit model, such as the Herschel-Bulkley
model. This approach poses practical problems as well.
Due to the strongly nonlinear nature of the fit model,
the results are very sensitive to the choice of the fitting
domain. We have checked (data not shown here) that,
for a Carbopol® solution, uncertainties in the fit domain
as small as several percents of the entire fit range may
result in errors (for the yield stress) as large as 20%.
In order to better understand the possible sources of
irreproducibility in assessing the yield stress, we have
conducted systematic measurements of flow curves in a
controlled stress forcing regime. In Fig. 3a, we display
a typical flow curve for both increasing and decreasing
stresses. The stress has been varied linearly in time
and the characteristic measuring time per stress value
was t0 = 0.2 s. Several distinct deformation regimes are
visible in Fig. 3a:

1. Corresponding to low stress values, σ < σ1

(Fig. 3a), the rate of material deformation is ap-
proximately constant (within the inherent noise
level of small strain measurements) with the stress.

Fig. 3 Controlled stress flow curves: a Dependence of the ab-
solute value of the rate of shear, |γ̇ | on the applied stress, σ .
The inset presents a magnified view of the second flow regime,
σx < σ < σ2. b Dependence of the strain, γ on the applied stress,
σ . The full line is a linear fit, γ ≈ 0.022σ . The vertical dotted
lines indicated the bounds of the relevant rheological regimes.

The symbols are: squares, increasing stresses; circles, decreasing
stresses. The experiment was conducted with a 0.1% Carbopol
solution at t = 25 deg. The characteristic forcing time was t0 =
0.2 s. The labels S and F stand for the solid and fluid phases,
respectively

Rheol Acta

decreasing stress branch of the flow curves is related
to an elastic recoil effect), the emergence of hysteresis
might be of a different physical nature. We suggest here
a possible explanation of this effect based on the multi-
ple minima energy landscape previously discussed and
illustrated schematically in Fig. 2. Systems character-
ized by a multiple-metastable-states energy landscape
are known to undergo hysteretic first-order transitions,
Lifshitz and Landau (1984). When an external forcing is
applied, either one or the other minimum has lower free
energy, and is thus selected as a thermodynamically
stable solution. If the external forcing is varied slowly
within the intermediate flow regime σ1 < σ < σ2, the
system may transit in between neighboring metastable
states exploring the entire energy landscape. However,
if the forcing is varied rapidly (t0 is small) within this
regime, then the system may get stuck in a metastable
state, as in a supercooled liquid below the melting
temperature. If the external forcing is increased even
further, σ > σ2, each metastable state becomes unsta-
ble and the system chooses the viscous (yielded) state
that now becomes energetically favorable. Obviously,
within this scenario, upon a decrease of the external
forcing, memory effects will be present, the system will
never recover the same sequence of intermediate de-
formation states, and the hysteresis behavior observed
in Fig. 3 emerges. Although quite appealing, for now,
the analogy above should only be regarded as a formal
and partial analogy. The main difficulty here is that a
physical gel under shear is actually a nonequilibrium

Fig. 11 Dependence of the deformation power deficit on the
characteristic forcing time t0 for several values of the Carbopol®
concentration and several temperatures: squares, c = 0.1%, T =
298K; circles, c = 0.1%, T = 308K; up triangles, T = 288K; down
triangles, c = 0.12%, T = 288K; rhumbs, c = 0.2%, T = 288K.
The full line is a guide for the eye, Ph ∝ t−1

0

Table 1 Values of the scaling exponent α for several values of
the Carbopol® concentration and temperatures

c (%) T (◦ K) α

0.1 288 0.98 ± 0.02
0.1 298 1.1 ± 0.026
0.1 308 1.17 ± 0.04
0.12 288 1.05 ± 0.025
0.2 288 0.98 ± 0.04

system, and thus, it is not clear how a free energy
functional should be written and interpreted. We now
turn our attention to a more systematic study of the de-
formation energy losses associated with the hysteresis.
In Fig. 10, we display three controlled stress flow curves
measured for different values of the characteristic time
t0, increasing from the top to the bottom. The deficit of
the deformation power (the area of the hysteresis re-
gion) decreases with increasing values of t0, suggesting
that the irreversibility in the flow curves is diminished
for slow external forcing, Fig. 10a–c. In order to get a
systematic understanding of this effect, we have mea-
sured the area of the hysteresis in controlled stress flow
curves for 20 distinct values of t0 ranging from 0.2 to
2.1 s. In Fig. 11, we present the results of such measure-
ments obtained for several Carbopol® concentrations
and several values of the temperature. For each of the
data sets presented in Fig. 11, the hysteresis area scales
as t−α

0 . Values of the scaling exponent α for each of the
data sets are presented in Table 1. The experimentally
found scaling of the hysteresis losses, Ph ∝ 1/t0, allows
a comparison of our flow curves with previous experi-
mental results, which revealed no apparent hysteresis
and time dependence, see Barry and Meyer (1979a),
Coussot et al. (2009), and Piau (2007). Indeed, one can
easily note that, corresponding to large values of t0,
the hysteresis area becomes vanishingly small and our
flow curves reduce to the steady state data published by
others. Thus, we conclude that there exists no apparent
contradiction between the flow curves we have pre-
sented and the steady state measurements previously
reported by others.

A simple model for the structural hysteresis

Although the structural heterogeneity and the charac-
teristic space scales of a Carbopol® gel are quite clearly
probed by the diffusion experiments by Oppong et al.
(2006) and Oppong and de Bruyn (2007), a detailed ex-
perimental description of the Carbopol microstructure
is still missing. This is mainly due to practical difficulties
in visualizing the microstructure without altering it,
Piau (2007). We present in the following a minimalistic
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model previously employed by Quemada [10]: 
                            ! d"

dt
= G
"#

+ G
"
d$

•

dt
         (5) 

where the viscosity is given by a regularized Herschel-Bulkley model, ! = K " + #
•!

"
#
$

m%1

+$ 2 / " + #
•!

"
#
$

. Here K 

is the consistency, m the power law index, σ2 the yield stress and ε a small regularization parameter. The 
choice of this constitutive equation is motivated by the presence of elastic effects in the intermediate 
deformation regime (see the cusp in the decreasing stress branch in Fig. 2(a) and the corresponding 
discussion). It is easy to note that, in the limit ! !1 , Eq. 5 reduces to Hooke’s law, G = σ γ, and in the limit 
! ! 0 , it reduces to a regularized Herschel-Bulkley model. A comparison of the prediction of the toy-model 
presented above with the rheological measurements is presented in Fig. 3. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Linear (in time) stress ramp vs. model prediction: symbols, experiment; full lines, the prediction of the toy 
model. The squares/circles refer to increasing/decreasing stresses. 

 
In spite of its simplicity, the toy-model is able to describe the two important features of the solid-fluid 
transition: the existence of an intermediate deformation regime and the irreversibility of the deformation 
states (the emergence of the hysteresis).  
 
 

3.3 Validation of the toy model via oscillatory sweeps  
In order to probe the time-dependent response of the material and the ability of our simplified model to 
capture for each of the three deformation regimes visible in Fig. 2(a), we now turn our attention to oscillatory 
flow measurements where a harmonic forcing σ = σ0 sin(2π f t) and the strain response γ = γ (t) is monitored. 
We focus here on the validation of both small-amplitude oscillatory shear and large-amplitude oscillatory 
shear measurements. In Fig. 4a, we display the response of the material corresponding to a stress amplitude 
σ0 close to the onset of the viscous regime, Fig. 2(a). The response of the material is clearly nonlinear, and 

 

 
Figure 4: (a) Strain time series. (b) Lissajoux figure. The symbols are the experimental data and the full lines represent 
the prediction of the model using the same parameter values as in Figs. 3(a) and 4. The stress amplitude is σ0 = 8 Pa, 
and the forcing frequency is f = 0, 01 Hz. The data refer to a c = 0.1% Carbopol solution at room temperature. 

Rheol Acta

Fig. 14 a Strain time series.
b Lissajoux figure. The
symbols are the experimental
data and the full lines
represent the prediction of
the model using the same
parameter values as in
Fig. 13. The stress amplitude
is σ0 = 8 Pa, and the forcing
frequency is f = 0, 01 Hz.
The data refer to a c = 0.1%
Carbopol® solution

when the direction of the forcing is reversed, the ma-
terial deformation is only partially recovered. Setting
in the model the same parameter values used for the
validation of controlled stress flow curves, (Fig. 13),
one can describe very well the nonlinear oscillatory
response illustrated in Fig. 14a. An implicit plot of the
material response γ with respect to the time-dependent
forcing σ defines a Lissajoux figure and provides a com-
plex characterization of the time-dependent material
response for a given forcing amplitude σ0 and frequency
f . A comparison between an experimentally measured
Lissajoux figure and the one predicted by our model is
illustrated in Fig. 14b. A complete description of the
complex time-dependent response of the material is
provided by the so-called Pipkin space (Pipkin 1972),
which is obtained by associating to each pair ( f, σ0)

the corresponding Lissajoux figure. The Pipkin space
contains the entire information on the time-dependent
deformation regimes of a complex material, and it is,
in this respect, equivalent to a “fingerprint” of the
material (Ewoldt et al. 2007, 2006).

In Fig. 15, we present a partial reconstruction of
the Pipkin space of a 0.1% Carbopol® solution. Corre-
sponding to the elastic solid deformation regime (the
first raw of insets in Fig. 15, from the bottom), the
Lissajoux figures predicted by our model reproduces
the experimentally measured ones quite well. This fact
is not surprising as, in this case, the constitutive equa-
tion Eq. 5 reduces to Hooke’s law with an elastic mod-
ulus obtained from a linear fit of the data presented in
Fig. 3b (in the solid deformation regime). More inter-
esting is that a good level of agreement between model
predictions and data is preserved when the stresses are
increased corresponding to the intermediate deforma-
tion regime (the second and third rows of insets in
Fig. 15). Indeed, corresponding to this regime, the ordi-
nary differential equations Eqs. 2 and 5 are nonlinearly
coupled and, thus, a good agreement between model
predictions and experimental data was not granted for

stress amplitudes corresponding to the viscous flow
regime (the top row of insets in Fig. 15). We believe
this is due to the fact that we have neglected in the
momentum equation (Eq. 5) the inertial effects related
to the rotation of the rheometer shaft. Indeed, looking
closely at Fig. 3a, one can notice that, in a purely
viscous regime, the rates of strain are fairly large (up to
80 s−1), and thus, the inertial effects become significant.
In Fig. 16, we display the comparison between the
experimentally measured power spectra of the mate-
rial response and the spectra predicted by the model
corresponding to each deformation regime and at fixed
forcing frequency, f = 1Hz . Each spectrum is normal-
ized by the power corresponding to the fundamental
harmonic. For low amplitudes of the forcing (the elastic
solid regime), both the measured and the numerical
spectra display a single harmonic corresponding to the

Fig. 15 The Pipkin space of a 0.1% Carbopol® solution. Cor-
responding to each Lissajoux figure, the symbols represent the
experimental data and the full lines are the prediction of the
model using the same parameter values as in Fig. 13

Rheol Acta

steady state !SS1 is stable, whereas !SS2 is unstable,
and their separation is insured by the small parameter δ

(see the inset in Fig. 12a). A typical dependence of the
phase parameter ! on the reduced forcing parameter,
#, is illustrated in Fig. 12b. For intermediate values
of the forcing parameter, the decreasing stress branch
of the solid concentration lags behind the increasing
branch, and a hysteresis is clearly visible in Fig. 12b. It is
interesting to note a qualitative similarity between the
dependence ! = !(#) and the stress dependence of
the dynamic modulus, G′ = G′(σ ), presented in Fig. 6.
This justifies once more the use of the dynamic modulus
in indirectly assessing the dynamics of the solid fraction,
!. As a constitutive equation, we use a thixo-elastic
Maxwell-type model previously employed by Quemada
(1998a, b, 1999):

!
dσ

dt
= G

ση
+ G

σ

dγ̇

dt
, (5)

where the viscosity is given by a regularized Herschel-
Bulkley model, η = K (ε + | γ̇

dt |)m−1 + σ2

ε+| dγ̇
dt | . Here, G

is the static elastic modulus, K the consistency, m the
power law index, and ε is the regularization parameter
(typically of the order of 10−12). A detailed discussion
of several regularization techniques is presented in
Frigaard and Nouar (2005). The choice of this consti-
tutive equation is motivated by the presence of elastic
effects in the intermediate deformation regime (see the
cusp in the decreasing stress branch in Fig. 3 and the
corresponding discussion). It is easy to note that, in
the limit ! → 1, Eq. 5 reduces to Hooke’s law, G =
σγ , and in the limit ! → 0, it reduces to a regularized
Herschel-Bulkley model. As our rheometer operates in
a controlled stress mode, we prescribe the stress σ (t),
which decouples the system of differential equations
Eqs. 2 and 5. We use Mathematica® to solve these
equations numerically. The constitutive equation Eq. 2
can be solved using standard implicit adaptive time step
algorithms provided by Mathematica®. The strain γ is
recovered using a straightforward adaptive numerical
integration of the rate of strain γ̇ . Equation 5 reduces to
a purely algebraic problem, and the rate of strain γ̇ can
be calculated using Mathematica’s root-finding module.
Some care had to be taken to avoid loss of conver-
gence due to the almost singular term in the Herschel-
Bulkley model. We choose to use a small regularization
parameter ε = 10−12 in combination with Brent’s root
bracketing algorithm. The strain γ is recovered us-
ing straightforward adaptive numerical integration. In
Fig. 13, we present the comparison between measured
flow curves (for both increasing and decreasing values
of the applied stress) and the prediction of the model

Fig. 13 Linear (in time) stress ramp vs model prediction: sym-
bols, experiment; full lines, model prediction. The squares/circles
refer to increasing/decreasing stresses

above. The stress has been increased linearly with time.
The parameter G has been obtained from a linear fit
σ = Gγ of the increasing stress branch of measured
flow curve in the solid deformation regime (σ < σ1),
Fig. 3b, and the parameters K, m have been obtained
from a Herschel-Bulkley fit of the flow curves in the
viscous deformation regime (σ > σ2). The rest of the
parameters involved in the model, Kd, Kr, w, have been
carefully adjusted until a satisfactory level of agreement
has been obtained between the measured flow curves
and the numerical solution of Eqs. 1 and 5.

Validation of the model against oscillatory flow data

The model discussed above involves a large number
of parameters, which is quite common for thixotropic
models (Mujumdar et al. 2002). Due to the rather large
number of parameters involved, a systematic validation
of the model presented above is needed. In order to
probe the time-dependent response of the material and
the ability of our simplified model to capture for each of
the three deformation regimes visible in Figs. 3 and 13,
we now turn our attention to oscillatory flow mea-
surements where a harmonic forcing σ = σ0sin(2π f t)
and the strain response γ = γ (t) is monitored. We
focus here on the validation of both small-amplitude
oscillatory shear and large-amplitude oscillatory shear
measurements. In Fig. 14a, we display the response
of the material corresponding to a stress amplitude
σ0 close to the onset of the viscous regime, Fig. 3.
The response of the material is clearly nonlinear, and
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when the direction of the forcing is reversed, the material deformation is only partially recovered. Setting in 
the model the same parameter values used for the validation of controlled stress flow curves, (Fig. 3), one 
can describe very well the nonlinear oscillatory response illustrated in Fig. 4a. An implicit plot of the 
material response γ with respect to the time-dependent forcing σ defines a Lissajoux figure and provides a 
complex characterization of the time-dependent material response for a given forcing amplitude σ0 and 
frequency f. A comparison between an experimentally measured Lissajoux figure and the one predicted by 
our model is illustrated in Fig. 4b. 

4 Conclusions  
We have focused on the solid–fluid transition in a physical gel, an aqueous solution of Carbopol. Sys- 
tematic measurements of controlled stress flow curves performed at both increasing and decreasing stresses 
revealed three deformation regimes: solid (corresponding to low values of the applied stress), fluid 
(corresponding to the largest values of the applied stress) and an intermediate regime characterized by a 
coexistence between solid and liquid behavior, Fig. 2(a). Associated with the phase coexistence deformation 
regime, a hysteresis of the deformation states is observed. The power deficit associated with the hysteresis 
effect scales algebraically with the characteristic forcing time, t0. A simple model able to describe each of the 
experimentally observed deformation regimes and the hysteresis of the deformation states is presented. The 
model is validated against oscillatory measurements without any additional parametric adjustment. 
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