Hypersurfaces of constant Gauss-Kronecker curvature with Li-normalization in affine space - Archive ouverte HAL
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2022

Hypersurfaces of constant Gauss-Kronecker curvature with Li-normalization in affine space

Résumé

For convex hypersurfaces in the affine space $\mathbb{A}^{n+1}$ ($n\geq2$), A.-M.\ Li introduced the notion of $\alpha$-normal field as a generalization of the affine normal field. By studying a Monge-Amp\`ere equation with gradient blowup boundary condition, we show that regular domains in $\mathbb{A}^{n+1}$, defined with respect to a proper convex cone and satisfying some regularity assumption if $n\geq3$, are foliated by complete convex hypersurfaces with constant Gauss-Kronecker curvature relative to the Li-normalization. When $n=2$, a key feature is that no regularity assumption is required, and the result extends our recent work about the $\alpha=1$ case.
Fichier principal
Vignette du fichier
2111.04532.pdf (388.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03421127 , version 1 (09-11-2021)

Identifiants

Citer

Xin Nie, Andrea Seppi. Hypersurfaces of constant Gauss-Kronecker curvature with Li-normalization in affine space. Calculus of Variations and Partial Differential Equations, 2022, 62 (4), ⟨10.1007/s00526-022-02329-x⟩. ⟨hal-03421127⟩
27 Consultations
40 Téléchargements

Altmetric

Partager

More