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PARA-HYPERKAHLER GEOMETRY OF THE DEFORMATION SPACE

OF MAXIMAL GLOBALLY HYPERBOLIC ANTI-DE SITTER

THREE-MANIFOLDS

FILIPPO MAZZOLI, ANDREA SEPPI, AND ANDREA TAMBURELLI

ABSTRACT. In this paper we study the para-hyperKéahler geometry of the deformation
space of MGHC anti-de Sitter structures on X x R, for ¥ a closed oriented surface. We
show that a neutral pseudo-Riemannian metric and three symplectic structures coexist
with an integrable complex structure and two para-complex structures, satisfying the re-
lations of para-quaternionic numbers. We show that these structures are directly related
to the geometry of MGHC manifolds, via the Mess homeomorphism, the parameteriza-
tion of Krasnov-Schlenker by the induced metric on K-surfaces, the identification with
the cotangent bundle T#7(X), and the circle action that arises from this identification.
Finally, we study the relation to the natural para-complex geometry that the space inher-
its from being a component of the PSL(2, B)-character variety, where B is the algebra of
para-complex numbers, and the symplectic geometry deriving from Goldman symplectic

form.
CONTENTS

1. Introduction
1.1. Motivation and state-of-the-art
1.2. Deformation space of MGHC AdS manifolds
1.3. Para-hyperKahler structures
1.4. Parameterizations of MGH(X)
1.5.  The circle action
1.6. The character variety
1.7. Outline of techniques and proofs
Acknowledgments
2. Preliminaries on Anti-de Sitter geometry
2.1.  Maximal surfaces
2.2. Cotangent bundle of Teichmiiller space
2.3. Mess’ parameterization
2.4. Constant curvature surfaces and circle action
2.5.  An equivalent model for MS(X)
3. The toy model: genus 1

Date: July 23, 2021.

ERIEEEIEIEIEIE lmamemesesese


http://arxiv.org/abs/2107.10363v1

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

5.

5.1.
5.2.
5.3.
5.4.

6.

6.1.
6.2.
6.3.
6.4.

FILIPPO MAZZOLI, ANDREA SEPPI, AND ANDREA TAMBURELLI

Space of linear almost-complex structures
The tangent space of T*J (R?)
A para-hyperKéhler structure on T* 7 (R?)
Liouville form on T*J (R?)
Relation with MGH(T?)
A formal Mess homeomorphism
The circle action
A one-parameter family of maps
The general case: genus > 2
The group of (Hamiltonian) symplectomorphisms and its Lie algebra
The Teichmiiller space as a symplectic quotient
The construction of MSy(X, p)
The para-hyperKahler structure of MSy(%, p)
The proof of Theorem [
The proof of Proposition [K]
Geometric interpretations
The cotangent bundle parametrization
The Mess homeomorphism
The circle action on MS(X)
Para-complex geometry of the PSL(2, B)-character variety
Symplectic reduction
The moment maps on 7*7 (R?)
Donaldson’s construction
The moment maps on 7*7 (%)
The symplectic quotient

Appendix A. Para-complex geometry

References

1. INTRODUCTION
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The main purpose of this paper is to study the geometry of the deformation space

of maximal globally hyperbolic Cauchy-compact three-dimensional Anti-de Sitter three-

manifolds.

In short, our results show that these deformation spaces are endowed with

a mapping-class group invariant para-hyperKéahler metric, and then provide geometric

interpretations to each element that constitutes the para-hyperKéhler structure.

1.1. Motivation and state-of-the-art

Since the pioneering work of Mess of 1990 [Mes07], maximal globally hyperbolic Anti-de

Sitter manifolds in dimension three have been largely studied, motivated on the one hand by
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the striking analogies with quasi-Fuchsian manifolds, and on the other by the deep relations
with Teichmiiller theory. See also, among others, [ABBT07, [BB09, [Bar15l, Bar1g|, BS20].

In particular, the deformation space of maximal globally hyperbolic Anti-de Sitter man-
ifolds, which in this paper we will denote by MGH(X), where ¥ is a closed surface of
genus > 2, is intimately related with the Teichmiiller space 7 (3). This has been first ob-
served by Mess, who provided a parametrization of MGH(X) by the product 7(X) x T (X);
other parametrizations again by 7(X) x T(3) or by T*T (X) were introduced in [KS07].
The latter relies on existence and uniqueness results for maximal surfaces, as shown in
[BBZO7, BS10]. A further understanding of the geometry of Anti-de Sitter manifolds and
their deformation space has been obtained by the study of geometric invariants such as the
convex core (|BS12| [SS18]), its width (|BS10L Sepl9]), its volume (|[BST17]), by means of
surfaces with curvature conditions (|[BBZ07, [ABBZ12, BS18| [Tam19 [CT19]), and by the
symplectic geometric approach (|[BMSI3| [BMST5| [BS19]).

Stepping back to the parallel with quasi-Fuchsian hyperbolic manifolds, recently Don-
aldson highlighted the existence of a natural hyperKdhler structure on a neighborhood of
the Fuchsian locus in the deformation space of almost-Fuchsian manifolds, seen as a neigh-
borhood of the zero section in the cotangent bundle 7%7 (X). See [Don03l [Hod05, [Tral8|
Tral9]. The purpose of this paper is to develop a similar approach for maximal globally
hyperbolic Anti-de Sitter manifolds, and to demonstrate that the natural structure that
appears in this setting is a para-hyperKdahler structure. For more details on para-Kéhler
and para-hyperKahler geometry, see [CEFG96, [GMV01, [AMT09l Vacl2]. We will see that
this structure recovers many of the geometric constructions that have been introduced be-
fore, so as to elucidate the global picture and the relations between different approaches.
We now give the fundamental definitions and state our main results.

1.2. Deformation space of MGHC AdS manifolds

We give here the standard definition of maximal globally hyperbolic Cauchy compact Anti-
de Sitter manifolds (in short, MGHC AdS). A Cauchy surface in a Lorentzian manifold
is an embedded hypersurface that intersects every inextensible causal curve exactly in one
point; a Lorentzian manifold admitting a Cauchy surface is called globally hyperbolic. 1t is
moreover mazimal if every isometric embedding in another globally hyperbolic manifold
sending a Cauchy surface to a Cauchy surface is surjective. Finally, a MGHC AdS mani-
fold is a maximal globally hyperbolic Lorentzian manifold of constant sectional curvature
—1 admitting a closed Cauchy surface. A simple example of MGHC AdS manifolds are
Fuchsian manifolds, whose metric G' can be written globally as a warped product

G = —dt* + cos®(t)h , (1.1)

for t € (—m/2,7/2) and h a hyperbolic metric on a closed manifold. In this case the Cauchy
surface t = 0 is totally geodesic.
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A classical fact in Lorentzian geometry (see |[Ger70l, BESIl BS03|) is that globally hy-
perbolic Lorentzian manifolds are diffeomorphic to ¥ x R, where ¥ is a Cauchy surface,
and any two Cauchy surfaces are diffeomorphic. In this work we will only consider three-
dimensional AdS manifolds whose Cauchy surfaces are closed. Hence from now on we will
fix a closed oriented surface ¥. We then define the deformation space of MGHC AdS
manifolds as follows:

MGH(Y) :={G|G is a MGHC AdS metric on ¥ x R}/Diffo(X x R) ,

where the group Diff5(X xR) of diffeomorphisms isotopic to the identity acts by pull-back of
G. Tt turns out that MGH(S?) is empty, MGH(T?) is a four-dimensional manifold, while
if ¥ is a surface of genus > 2, then MGH(X) has dimension 6|x(X)|. Observe moreover
that there is a natural action of the mapping class-group M CG(X) = Diff ; (X)/Diffo(X) on
MGH(X), again by pull-back. When ¥ has genus > 2, the deformation space MGH (%)
contains the Fuchsian locus F(X), namely those manifolds whose metric is of the form
(L), which is MCG(¥)-invariant and naturally identified to the Teichmiiller space 7 (X).

1.3. Para-hyperKihler structures

We now introduce the notion of para-hyperKéhler structure and state our first result.
Recall that a pseudo-Kdhler structure on a manifold M consists of a pair (g,I) where
g is a pseudo-Riemannian metric and I is an integrable almost complex structure (i.e.
I2 = —1) such that g(Iv,w) = —g(v,Iw) and the 2-form wiy(-,-) := g(-,I) is closed (hence
a symplectic form). Similarly, a para-Kdhler structure consists of an integrable almost
para-complex structure P, which means that

e P2—1;

e the P-eigenspaces of 1 and —1 have the same dimension;

e the distributions on M given by the 1 and —1 eigenspaces of P are integrable;

and P is such that g(Pv,w) = —g(v, Pw) and the 2-form wp(-,-) := g(-, P-) is closed.

Observe that a direct consequence of the existence of a para-Kéhler structure is that
g(P-,P-) = —g(-,-), hence g is necessarily of neutral signature. Moreover the condition
that dwy = 0 (resp. dwp = 0) is known to be equivalent to VI = 0 (resp. VP = 0),
for V the Levi-Civita connection of g. We finally give the definition of para-hyperKahler
structure:

Definition. A para-hyperKéhler structure on a manifold M is the data (g,I,J, K), where
(g,I) is a pseudo-Kéahler structure, (g,J) and (g,K) are para-K&hler structures, and
(I,J, K) satisfy the para-quaternionic relations.

By para-quaternionic relations we mean the identities I? = —1, J? = K2 = 1 — which
are implicitly assumed by the condition that I (resp. J, K) is a complex (resp. para-
complex) structure — and moreover IJ = —JI = K.
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We remark that, given a para-hyperKéhler structure (g,I,J,K), a complex symplectic

form is defined by:
wic = w3y + WK -
It is complex in the sense that it is a C-valued symplectic form and satisfies wiC(Iv, w) =

wE (v, Tw) = iwf (v, w). Similarly, one has two para-complex symplectic forms defined by

w? = Wy + TWK and wiBé =W — TwWy
where we denote by B = R @ 7R the algebra of para-complex numbers, i.e. 72 = 1.

Again, these are para-complex in the sense that w3 (Jv,w) = w5 (v, Jw) = Tw5(v,w) and
wi (Kv,w) = w (v, Kw) = 7w (v, w).

Only manifolds of dimension 4n can support a para-hyperKéhler structure. Our first
result is that MGH (X), whose dimension is four if 3 has genus one and 6|x(X)| otherwise,
does support a very natural one.

Theorem A. Let ¥ be a closed oriented surface of genus = 1. Then MGH(X) admits a
MCG(X)-invariant para-hyperKdihler structure (g,1,J,K). When ¥ has genus = 2, the
Fuchsian locus F(X) is totally geodesic and (g,I) restricts to (a multiple of ) the Weil-
Petersson Kdhler structure of Teichmiiller space.

The para-hyperKéhler structure of MGH(X) is extremely natural from the point of view
of AdS geometry, in the sense that all the elements that constitute the para-hyperKéahler
structure have (at least one) interpretation in terms of the geometry of MGHC AdS man-
ifolds. We now state and explain all these interpretations.

1.4. Parameterizations of MGH(X)

The first interpretation is in terms of the cotangent bundle of Teichmiiller space. There is
a natural map
F:MGH(E) > T*T (D),

which associates to a MGHC AdS manifold (¥ x R,G) the pair (J,q), where J is the
(almost-)complex structure of the first fundamental form of the unique maximal Cauchy
surface in (M, G), and ¢ is the holomorphic quadratic differential whose real part is the
second fundamental form. The map F is a (M CG(X)-equivariant) diffeomorphism if 3
has genus > 2; for genus one it is a diffeomorphism onto the complement of the zero
section. The cotangent bundle 7%7(X) is naturally a complex symplectic manifold; our
first geometric interpretation is the fact that the map F is anti-holomorphic and preserves
the complex symplectic forms up to conjugation.

Theorem B. Let ¥ be a closed oriented surface of genus > 1. Then

i _
‘F*<IT*T(E)7Q§"*T(E)) = <_I7 _iwic) )
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where Ir«7(x) denotes the complex structure of T*T(X) and Q%*T(E) its complex symplec-
tic form.

Let us assume (until the end of this section) that ¥ has genus > 2. In [Mes07|, Mess
proved that MGH(Y) is parameterized by the product of two copies of the Teichmiiller
space of X, by a map

M:MGH(E) - TE)xT(X),
that essentially gives (under the isomorphism between the isometry group of AdS space and
PSL(2, R)xPSL(2,R)), the left and right components of the holonomy map of a MGHC AdS
manifold (M, G). The manifold 7 (3) x T(X) is easily a para-complex manifold, where the
para-complex structure Pz (s, 7(x) is the endomorphism of the tangent bundle for which
the integral submanifolds of the distribution of 1-eigenspaces are the slices 7 () x {*}, and
those for the (—1)-eigenspaces are the slices {#} x T(X). It has moreover a para-complex
symplectic form compatible with Pr (s, 7(x):
QT(Z)XT(E) = %(Trl*pr + W:QWP) + %(WZ*QWP - W;kap)

where Qyp is the Weil-Petersson symplectic form and 7, 7, denote the projections on the
left and right factor.

Theorem C. Let ¥ be a closed oriented surface of genus = 2. Then

M (Prs)7(2), 4275y csy) = (J503)

where Pr(s)x7(x) denotes the para-complex structure of T(X) x T (X) and Q%B’(Z)XT(E) its
para-complex symplectic form.

Combining Theorems [Bl and [C] in a particular case, we see that (1/2)wk equals on the
one hand the pull-back by M of the symplectic form 7/Qw p — 7 Quy p, and on the other
hand the pull-back by F of minus the real part of Q%*T(E) (i.e. the natural real symplectic
form of the cotangent bundle). This identity has been proved in [SS18, Theorem 1.14], by
completely different methods.

There is another parameterization of MGH(X) by the product of two copies of the
Teichmiiller space of ¥, which has been introduced in [KS07]. It is given by the map

C:MGHXE) > TE)xT(®),

which associates to (M, G) the first fundamental forms of the two Cauchy surfaces (one
future-convex, one past-convex) of constant intrinsic curvature —2. These two Cauchy
surfaces of constant curvature are unique ([BBZ11l [BS18|), and we rescale their first fun-
damental forms by a factor so as to consider them as hyperbolic metrics. We show:

Theorem D. Let 3 be a closed oriented surface of genus = 2. Then

C*(Prmy«T(2) 4% sy x 7)) = (K, wk)
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where Prs)x7(x) denotes the para-complex structure of T(X) x T(X) and Qlﬁ'}(z)x’r(z) its
para-complex symplectic form.

We remark that there are formal analogues of Theorem [Cl and Theorem [D]in genus one
(see Section 3.6 and [3.8)), but the corresponding maps M, C : MGH(T?) — T (T?) x T (T?)
do not have the same geometric interpretation (namely, the holonomy map or the constant
curvature surfaces) as in the higher genus case, which is why we restricted to genus > 2
when stating these results here.

1.5. The circle action

We now move on to studying a circle action on MGH(X). Using the diffeomorphism
F : MGH(E) — T*T (%), the circle action on T*T (%) given by € - (J,q) = (J,¢%q)
(where J is an almost-complex structure on ¥ and ¢ a holomorphic quadratic differential)
induces an action of S on MGH(X). Let us denote by Ry : MGH(X) — MGH(X) the
corresponding self-diffeomorphism. For genus > 2, this action of S' induces an action on
T(X) x T(X) by means of the map M. The so obtained S!-action on T(X) x 7(X) has
been studied in [BMS13| BMSI5| under the name of landslide flow.
It will be relevant to introduce the function

A: MGH(E) » R

which associates to a MGHC AdS manifold the area of its unique maximal Cauchy surface.
It is easy to see that A is constant on the orbits of the circle action. We show:

Theorem E. Let 3 be a closed oriented surface of genus = 1. The circle action on
MGH(X) is Hamiltonian with respect to wy, and satisfies

Rig=g Rjwr = wr Riws = e 0yt
When ¥ has genus = 2, the function A is a Hamiltonian function.

We remark that, in terms of the (para-)complex structures I, J, K, the pull-back relations
of Theorem [E] read:

R;I=1  RjJ=cos(0)J +sin()K  RyK = —sin(6)J + cos()K . (1.2)

In [BMS15|, Bonsante, Mondello and Schlenker showed that the landslide flow is Hamil-
tonian with respect to the symplectic form 7/ Quwp+mQwp. As a consequence of Theorem
and the first part of Theorem [E] we thus recover (by independent methods) their results
and include it in a more general context.

The map A : MGH(X) — R that encodes the area of the maximal Cauchy surface is
also applied in the following context. Given a para-Kéhler structure (g, P) on a manifold
M, a para-Kdhler potential is a smooth function p : M — R such that wp = (7/2)dpdpp.
We then prove:
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Theorem F. Let ¥ be a closed oriented surface of genus = 1. Then the para-Kdhler
structures (g,J) and (g, K) admit a para-Kdihler potential, which coincides up to a constant
with a Hamiltonian function for the circle action.

One could alternatively have used the map C to induce a circle action on 7(X) x T(X).
However, the obtained action is the same as when using M (i.e. the landslide flow), as
a consequence of the observation that M = Co R_; 5. By this relation, Theorem
immediately follows from Theorem [C] and Theorem [El

In fact we can define a one-parameter family of maps

Co: MGH(E) = T(X) x T(X),

simply defined by Cy = C o Ry. An immediate consequence of our previous Theorems
and [E] is the following identity:

Co (Prs)xT(%)> 491’?’(2)%7’(2)) = (cos K — sin 0J,wr — 7(cos(f)wy + sin(Awk)) . (1.3)

The maps Cy have the following interpretation purely in terms of harmonic maps and Te-
ichmiiller theory. From the theory of harmonic maps between hyperbolic surfaces ([Sam78|
Wol89, Wol91b, Wol91al [Min92|), Teichmiiller space admits a parameterization by the vec-
tor space of holomorphic quadratic differentials H°(X, IC?]) with respect to a fixed complex
structure J on X. The construction goes as follows. To a holomorphic quadratic differ-
ential ¢, we associate the hyperbolic metric h(jq) on X (unique up to isotopy) such that
the (unique) harmonic map (X,J) — (3, h) isotopic to the identity has Hopf differential
q. We now let J vary over 7 (X). Then the map

Ho:=Coo F 1 :T*T(2) - T(X) x T(X)
can be interpreted as follows:
HQ(J, q) = (h(J,,eieq), h(J,ei@q)) .

There is a completely analogous construction in genus one, by replacing hyperbolic surfaces
by flat tori. As a consequence of Equation (L3]), we obtain:

Theorem G. Let ¥ be a closed oriented surface of genus = 1. Then

We remark that the statement above is expressed purely in terms of Teichmiiller theory,
and is independent of Anti-de Sitter geometry.

1.6. The character variety

Let us now consider the character variety of the fundamental group 71(X) in the isometry
group of AdS space. We have already observed that the isometry group is isomorphic to
PSL(2,R) x PSL(2,R); using the model of Hermitian matrices ([Danl3l [Danl4]), it can be
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described as the Lie group PSL(2,B), where as usual B denotes the algebra of para-complex
numbers. Using the (para-complex) Killing form, the character variety x(m1(S), PSL(2,B))
is endowed with a para-complex symplectic form Q]gvol, which is defined by adapting the
work of Goldman ([Gol84]) to this context. It is para-complex with respect to the para-
complex structure 7 induced by multiplication by 7. It can be checked that, under the
isomorphism PSL(2,R) x PSL(2,R) =~ PSL(2,B), the para-complex structure 7 corresponds
to the para-complex structure P for which the integral distributions of the 1 and —1
eigenspaces are the horizontal and vertical slices.
Hence if we denote by

Hol : MGH(S) — x(m1(S), PSL(2, B))

the map that associates to a MGHC AdS manifold its holonomy representation, we obtain
the following corollary of Theorem

Corollary H. Let X be a closed oriented surface of genus = 2. Then
Hol*(T,4Q8,) = (J,5) .

We conclude the overview of our results by a concrete description of the para-complex
symplectic structure w%. In [Tam20], the third author introduced B-valued Fenchel-Nielsen
coordinates. Roughly speaking, these are defined as follows. Let p = (p4,p—) : m1(2) —
PSL(2,R) x PSL(2,R) be the holonomy representation of a MGHC AdS manifold. Since
both p_ and p, are Fuchsian representations, p4(«) are loxodromic elements for any non-
trivial o € 71(2). As a consequence, we can associate to « a principal axis & in AdS space,
which is the spacelike geodesic with endpoints in RP! x RP! given by the pair of attracting
and the pair of repelling fixed points of p4 («). Then the Fenchel-Nielsen coordinates of p
are (E]E’j , tw%’j ) (for v; a pants decomposition of ), where E]E’j are para-complex numbers
whose real part corresponds to the translation length and imaginary part to the bending
angle of p(v;) on the principal axis ¥;; a similar interpretation can be given for the (para-
complex) twist coordinates tw]pB’j .

These coordinates are an analogue of the complex Fenchel-Nielsen coordinates on the
space of quasi-Fuchsian manifolds, which are Darboux coordinates (|[Wol83],[Pla01],[PP0S]).
Here we show that an analogous result holds for w?, which we recall corresponds (up to a
multiplicative constant) both to the para-complex sympletic form on 7(X) x 7(X) and to
the Goldman form Q]gv ol

Theorem 1. The B-valued Fenchel-Nielsen coordinates are para-holomorphic for J, and
are Darboux coordinates with respect to the para-complex symplectic form wf]?,

In other words, we can express the symplectic form w?, which coincides up to a multi-
plicative constant with the para-complex Goldman form ngl» as

1 & ) .
B_ B,j B,j
wy =7 E dly? A diw,
J=1
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where E]E’j and tw%’j are the B-valued length and twist parameters on the curve ; in a
pants decomposition of ¥ (where n = (3/2)|x(X)| is the number of such curves).

Finally, we give a formula for the value of the symplectic form w? along two twist defor-
mations, generalizing Wolpert’s cosine formula. For this purpose, given a, 8 € m1(X) two
intersecting closed curves, the principal axes of p(a)) and p(f) admit a common orthogonal
geodesic of timelike type. Then we define the B-valued angle as the para-complex number
whose imaginary part is the signed timelike distance between the two axes, and the real
part is the angle between one principal axis and the parallel transport of the other, along
the common orthogonal geodesic.

Theorem J. Let p = (p4,p—) : m(X) — PSL(2,R) x PSL(2,R) be the holonomy of a
MGHC AdS manifold, and let o, 8 be non-trivial simple closed curves. Then

0 0 1 ~
B —, —— ] == cos( d®(a,, ,
J athE’O‘ 6tW]pB’ﬁ 4 pe;wﬁ ( (& 5p)>

where &, and B, are the principal azes of p(e) and p(B) on AdS space, and d®(&,, B,) is
their B-valued angle.

Here the cosine of a para-complex number is formally defined by the power series ex-
pansion.

1.7. Outline of techniques and proofs
We now provide an overview of the techniques that we apply in the proofs.
The “toy model”: genus one

After reviewing the necessary preliminaries on the deformation space of Anti-de Sitter
three-manifolds in Section 2] we complete in SectionBlthe proof of our results from Theorem
[Al to Theorem [G] (or their formal analogues, for Theorems [B] and [C]) in genus one. The
reason is that the methods used to prove these results in genus one also provide the
fundamental step on which the proofs in higher genus rely. Let us give a quick outline.
Denote by J(R?) the space of linear almost-complex structures on R? compatible with
the standard orientation, namely those endomorphisms J of R? such that J? = —1 and
that {v, Jv} is a positive basis. This space is naturally identified to H?, in such a way
that the natural transitive SL(2,R) action by conjugation on J(R?) corresponds to the
SL(2,R) action on the upper half-space model. We construct an explicit SL(2, R)-invariant
para-hyperKihler structure on the cotangent bundle 7% 7 (R?), which is in turn identified
to the space of pairs (J, o) where o is a symmetric bilinear form satistying o(J-,J-) = —o,
and give geometric interpretations to each object of the para-hyperKéahler structure. For
instance, the complex symplectic form wic coincides up to conjugation and a multiplicative
factor with the complex symplectic form of 7% 7(R?), and the almost-complex structure
I is compatible with its complex structure. Also, the restriction to the zero section is
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identified, up to a factor, with the area form of H2. All the theorems until Theorem
have an analogue that we prove in this context.

The construction of the para-hyperKihler structure on MGH(T?) (Theorem [A]), as well
as all the other statements in genus one, follow immediately by identifying (using the
first and second fundamental form of the unique maximal surface) the deformation space
MGH(T?) with the complement of the zero section in 7*7(R?), in such a way that the
mapping class group action corresponds to the action of SL(2,Z) < SL(2,R) (Lemma[3.11l)

Setup in higher genus

Let us now move on from genus one to genus > 2. The proof of Theorem [Al and of
the geometric interpretations from Theorem [B] to Theorem [Gl rely on the following con-
struction, which is developed in Section @l Fix an area form p on . Then we consider
the space of all pairs (J,0) where (similarly to T7%7(R?) above) J is an almost-complex
structure on ¥ and o a smooth symmetric bilinear form satisfying o(J-, J-) = —o. This
infinite-dimensional space, that is denoted by 7% 7 (%), can be endowed formally with three
symplectic structures wr, wy, wk. Indeed the tangent space T,,% at every point has a para-
hyperKéahler structure induced by choosing an area-preserving linear isomorphism between
T,% and R? which induces an identification between T*J(R?) and T*7 (T,%). Since the
para-hyperKihler structure on 7*7(R?) is SL(2, R)-invariant, the induced structures on
T*J(T,%) do not depend on the chosen area-preserving linear isomorphism. Then one
can formally integrate each symplectic form over ¥, evaluated on first-order deformations
(J,0).

To make this construction more formal, 7% 7 (X)) is identified with the space of smooth
sections of the bundle

P g®) =P X TIE) oo p,

where P is the SL(2,R)-principal bundle over ¥ whose fiber over p € ¥ is the space of
linear isomorphisms between R? and T,% that pull-back the area form p on T,% to the
standard area form of R?. Hence one can introduce the formal symplectic forms

(@x)(0) (,6), (', 67)) = L ox((4,6), (7',6) p, (1.4)

for X = 1I,J, K, where wx is the symplectic form induced on the vertical space at every
point, and analogously for the formal pseudo-Riemannian metric

8o (1,6, (J',6)) = Lg«ia), 6N, (1.5)

on the infinite-dimensional space of sections. Similarly, one can define the endomorphisms
I, J and K by applying pointwise those that have been defined on 7*7(R?) under the
identification as above. (See the discussion on symplectic reduction below for more details.)
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Now, recalling that every MGHC AdS manifold contains a unique maximal Cauchy
surface, the essential point is to determine the space of solutions to the Gauss-Codazzi
equations for maximal surfaces in AdS space, as a subspace of sections (J,0). Given an
almost-complex structure J, one can build a Riemannian metric g; = p(-, J-). However, in
general this metric cannot be realised as the first fundamental form of a maximal surface
in a MGHC AdS manifold, because the area form of g; coincides with p, hence all metrics
gs have the same area, which is not the case for maximal surfaces. Instead, inspired by
a similar “change of variables” used in the construction of the hyperKahler structure on
a neighborhood of the Fuchsian locus in the space of quasi-Fuchsian manifolds ([Don03|
Hod05, [Tral9]), we define the metric h = (1 + f(|o|g,))g.s, where |o|4, is the norm of
the 2-tensor o with respect to the metric g;, and f(t) = 4/1 +t2. Then imposing the
Gauss-Codazzi equations on I = h and I = h™lo, we determine a Symp (3, p)-invariant
subspace of the space of smooth section (J,0), which we denote by /%O(E, p), whose
quotient MSy(X, p) by the action of Symp, (X, p) is identified to MGH(X) thanks to the
existence and uniqueness result for maximal surfaces, together with a standard application
of Moser’s trick. We remark that, unlike the construction in the quasi-Fuchsian setting
where the correct function to apply the change of variables is f(t) = v/1 — t2, hence only
defined for t = ||o|lg, < 1, in the AdS setting this change of variables permits to recover
all the maximal surfaces in MGHC AdS manifolds, and not only a neighborhood of the
Fuchsian locus.

A distinguished complement to the orbit

In order to induce a para-hyperKéhler structure on MSy (3, p), by restriction of the sym-
plectic forms wy, wy and wk and of the metric g, we need to construct a distribution of
subspaces of the tangent space of //\/\130(2, p) which are isomorphic at every point (J, o) to
the tangent space to the quotient MGH(X), and invariant for the action of Sympg(3, p).
The construction of such invariant distribution, which is denoted by V;,) and defined
as the space of solutions of a system of partial differential equations, constitutes the main
technical difficulty of Sectiondl The defining equations can be formulated in several equiv-
alent ways, as in the following technical statement, whose proof is done in Section by
overcoming a number of technical difficulties.

Proposition K. Given (J,0) € MSy(Z,p), and (J,6) € Ty T*T (%), the following
conditions are equivalent:

i) the pair (J,6) satisfies

divg(f_lg_ldo) = — "NV .0 J>’
dng J = —f_2<vg.0', 00>
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ii) the endomorphisms Q% = Q*(J,¢) := f~lg7 69 + J satisfy

dng(Q+JJl) = *<vg.0' | Q+>a
divg(Q™JJr) = (V0| Q7),
where J; and J, denote the almost complex structures of the components of the

Mess map M;
iii) the endomorphisms Q% satisfy

divy Q" = —f71 (V9,0 | Q"),
divyQ~ = +f (V4,0 Q).
Defining V{ ;) as the space of solutions to some (hence all) the conditions VIHV3, the

fundamental result is the following, whose proof again contains a number of technical
difficulties and is done in Section

(V2)

(V3)

Theorem L. For every pair (J,o) lying in ./\//KS/O(E,;)), the vector space V{; 4y is con-
tained inside T(J7U).A/—/r9/0(2, p), it is invariant by the action of I, J and K, and it defines a
Symp(%, p)-invariant distribution V = {V( ;4 }(0) on m(z,p). Moreover, the natural

projection T : ./\//l\S/o(E,p) — MSo(%, p) induces a linear isomorphism dm ;o) @ Vijz) —
T[J,J]MSO<E7P)'

Once these steps are achieved, the proofs of all the results from Theorem [A] to Theorem
mostly follow from their analogues that are showed in Section Bl by applying the same
computations pointwise, and recognizing the geometric interpretations in terms of the
geometry of MGHC AdS manifolds either in a similar fashion to what has been done in
the case of the torus (for instance for Theorems [B] [E] and Theorem [E]), or by recalling the
known constructions of Mess homeomorphism and constant curvature surfaces explained
in Section 2] (Theorems [C] and [D]). These proofs are provided in the first part of Section [l
The second part then contains the proofs of Theorem [[land Theorem [J, which mainly rely
on the isomorphism PSL(2,B) =~ PSL(2,R) x PSL(2,R) for the isometry group of Anti-de
Sitter space, and some geometric constructions in the PSL(2,R) model.

Relation with symplectic reduction

Although the proofs of the results stated above are essentially self-contained and completed
entirely in Sections Bl Bland [l in Section [6l we include a discussion with the aims, on the one
hand, of highlighting the relations with symplectic reduction, which is also the motivation
that led us to the definition of the distribution V[, ) as in Proposition [K] and Theorem
[} on the other hand, of explaining the additional difficulties that do not permit to apply
directly the strategy of symplectic reduction to obtain our results.

The starting point is a general theorem of Donaldson ([Don03, Theorem 9|, see Theo-
rem for the statement with minimal hypothesis that we apply in our setting). In short,



14 FILIPPO MAZZOLI, ANDREA SEPPI, AND ANDREA TAMBURELLI

it turns out that the SL(2,R)-action on 7*7(R?) is Hamiltonian with respect to any of
the three symplectic forms constituting the para-hyperKihler structure on 7* 7 (R?), with
moment maps that we denote by 71, ny and nk. Donaldson’s theorem gives a formula to
compute a corresponding map (that we call py, py and pk) for the action on 7*7 (%) of
the group Ham(3, p) of Hamiltonian symplectomorphisms of (X, p). It turns out that puy
and pk are moment maps for the action of Ham(X, p), whereas py needs to be modified
by an adding a scalar multiple of p. We denote this new map by fiy. Moreover, although
Ham(X, p) is a proper normal subgroup of Symp, (%, p), uy and pux can actually be pro-
moted to moment maps fiy and fix for the action of Sympy (X, p); fir cannot, but it still
satisfies some additional properties that make it “almost” a moment map for Symp, (%, p).
We compute explicit formulas for these three maps, and show that the kernel of iy + ifix
consists precisely of the pairs (J, o) such that o is the real part of a holomorphic quadratic
differential on (X, J). The intersection with the kernel of the third map fiy is then precisely
the space ./\f/\l:S’o(E, p). Hence one is tempted to apply the symplectic reduction in order
to induce a pseudo-Riemannian metric and three symplectic stuctures, in the quotient
fir ' (0) n i3 (0) M i (0)/ Sympy (%, p).

However, at this point the usual construction by which the quotient inherits a hyper-
Kahler structure fails because of the fact that our metric on each fiber is not positive
definite. Hence we do not have a natural Hilbert space structure on the tangent space to
the space of sections T*7(3). Concretely, this means that we cannot take the orthogonal
complement to the tangent space to the Sympg (X, p)-orbit as a distribution which is in-
variant by the actions of I, J and K and isomorphic to the tangent space to the quotient.
Nevertheless, inspired by the properties satisfied in the hyperKéhler setting, we prove the
following characterization of V), which is the main result of Section

Theorem M. For every (J,0) € /%0(2, p); Vi) is the largest subspace ofT(Jp)./\/Z:SO(E, )
that s:

o invariant under I, J and K;
e g-orthogonal to T( ;) (Sympy (%, p) - (J,0))

As said before, Theorem [M] is not applied in the proof of any of the previous results;
nevertheless, it serves as a motivation for Proposition [Kl and Theorem [J, namely the two
technical tools which play an essential role in passing from the para-hyperKahler structure
in genus one (or more precisely, on 7% 7 (R?)) to that for higher genus surfaces.
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2. PRELIMINARIES ON ANTI-DE SITTER GEOMETRY

In this preliminary section, we introduce the necessary notions concerning maximal
globally hyperbolic Cauchy compact Anti-de Sitter three-manifolds (in short, MGHC AdS
manifold) and their deformation space.

2.1. Maximal surfaces

The starting point of our construction comes from the role of maximal surfaces in MGHC
AdS manifolds. Recall that a mazimal surface in a Lorentzian three-manifold is a spacelike
surface (i.e. its first fundamental form is a Riemannian metric) whose mean curvature
vanishes identically. Then we have the following existence and uniqueness result:

Theorem 2.1 ([BBZ07,BS10]). Any MGHC AdS three-manifold admits a unique mazimal
Cauchy surface.

This result permits to obtain a parameterization of MGH(X) by means of embedding
data of maximal surfaces. Recall that the embedding data of a spacelike surface in a
Lorentzian manifold consists of the pair (h, B), where h is the first fundamental form and
B the shape operator, and these satisfy the Gauss-Codazzi equations

(GC)

K; = —1—det B,
V"B =0,

where the exterior derivative dV" B is the TS-valued 2-form
(dV"B)(X,Y) = (VAB)Y — (V}B)X ,

for X, Y tangent vector fields on ¥, V” being the Levi-Civita connection of h and Kj, its
curvature. By definition, the surface is maximal if and only if B is traceless. Conversely,
every pair (h, B) satisfying (GCl), with h a Riemannian metric and B a traceless h-self-
adjoint tensor, represents the embedding data of a maximal surface in a MGHC AdS
manifold diffeomorphic to ¥ x R, whose metric has the following explicit expression in a
tubular neighbourhood of the surface (namely for ¢ € (—¢,€)):

—dt?* + h((cos(t)1 + sin(t)B)-, (cos(t)1 + sin(t)B)-) .

See [BS20l, Lemma 6.2.2, Proposition 6.2.3]. Moreover the above correspondence is natural
by the actions of Diff (¥). Motivated by these observations, let us introduce the space of
embedding data of maximal surfaces:
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h is a Riemannian metric
MS(X) := < (h,B) | B is traceless and h-self-adjoint 3 /Diffy(X) ,
equations (GC)) are satisfied

where Diffy(X) denotes the group of diffeomorphisms isotopic to the identity.
In summary we have:

Proposition 2.2. Let 3 be a closed surface of genus g = 1. There is a MCG(X)-invariant
homeomorphism between MGH(X) and MS(X), given by the embedding data of the unique
mazximal Cauchy surface.

In the remainder of the paper, we will often implicitly identify MGH(X) with MS(X).

2.2. Cotangent bundle of Teichmiiller space

Maximal surfaces also permit to obtain a parameterization of MGH(X) by means of the
cotangent bundle of Teichmiiller space. Recall that the Teichmiiller space of the surface X
is defined as:

TYX) := {J e I(End(TX))| J* = —1, (v, J(v)) is an oriented frame}

We use the notation 7° to highlight that this is the Teichmiiller space defined in terms
of (almost-)complex structures J, to distinguish with the other incarnations of Teichmiiller
space (see Section 2.3 below).

To explain this parameterization, let us first provide several equivalent descriptions of
the Codazzi equation V"B = 0, which we summarize in the following statement:

Lemma 2.3. Let h be a Riemannian metric on X, and denote by J the almost-complex
structure induced by h. Assume a (1,1) tensor B and a (2,0) tensor o are related by
o =hB (i.e. o(,-) =h(-,B-)). Then B is h-self-adjoint and traceless if and only if o is
the real part of a quadratic differential, which can be expressed as q = o —io(-,J-). If this
holds, then the following conditions are equivalent:

i) B is h-Codazzi, i.e. V"B = 0;

i1) o is the real part of a holomorphic quadratic differential on (X, J);
i11) o is h-divergence-free;

iv) for every tangent vector field X on ¥ we have V"}XU = (Vho)(, J").

A standard reference for these equivalences is [Tro92]; see also [Hop51) [Tau04l, [KS07].

Remark 2.4. Since the condition i) in Lemma 23] only depends on J, and not on the
metric h, it follows that if conditions iii) or iv) hold for some metric h compatible with .J,
then they hold for any other metric conformal to h.
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Remark 2.5. We will repeatedly use the following fact. Suppose ¢ is a holomorphic qua-
dratic differential and B = h~!Re(q) is the corresponding traceless, h-self-adjoint, h-
Codazzi tensor. Writing ¢ = 0 — io(-,.J-) and multiplying by €%, one checks immediately
that

Re(e?q) = cos o +sinf o(-,J-) .
Hence the traceless, h-self-adjoint, h-Codazzi tensor h Re(ewq) corresponding to ¢ is
precisely (cos(0)1 —sin(0).J)B.

Based on Lemma 23] Krasnov and Schlenker established the following result:

Theorem 2.6 (|[KS07, Lemma 3.6, Theorem 3.8|). Let ¥ be a closed oriented surface of
genus = 2. Given a complex structure J on 3 and a holomorphic quadratic differential q

on (X, J), there exists a unique Riemannian metric h compatible with J such that the pair
(h, B = h™to) satisfies (GQ), where o = Re(q).

Again, the map that associates to a pair (h, B) satisfying the Gauss-Codazzi equations
the pair (J,q), where J is the complex structure of h and o = hB = Re(q), is natural with
respect to the action of Diff (X).

We remark that Theorem is proved in [KSO7] for a closed surface of genus > 2.
However, the case of genus one holds true, and can be proved directly, provided o # 0.

Proposition 2.7. Given a complex structure J on T? and a non-zero holomorphic qua-
dratic differential g on (T2,.J), there exists a unique Riemannian metric h compatible with

J such that the pair (h, B = h~'0) satisfies (GC), where o = Re(q).

Proof. It turns out that, given any MGHC AdS manifold diffeomorphic to T2 x R, the
(unique) maximal Cauchy surface is intrinsically flat, and the MGHC metric can be written
(now globally) from the maximal surface as

(1 + sin(2t))dz? + (1 — sin(2t))dy? — dt* | (2.1)
where:

o t € (—m/4,m/4) represents the timelike distance from the maximal surface;
e z,y are global flat coordinates for the first fundamental form h = dx? + dy? of the
universal cover of the maximal surface.

See Section 5 of [BS20], and in particular Lemma 5.2.4, after a simple change of coordinates
(translate the vertical coordinate by 7/4, and then perform a change of variables on z,y).
Moreover, since the second fundamental form of the maximal surface {t = 0} equals one
half the derivative at ¢ = 0 of the metric on the level sets of ¢, we find that o is expressed
as dz? — dy?, hence (in the complex coordinate z = = + iy) ¢ = dz? is the holomorphic
quadratic differential whose real part equals o, as in Lemma 2.3]

Inspired by these observations, let us now reconstruct a MGHC AdS manifold from a
pair (J,0) on the torus. Let us realize the complex structure J as that induced by a flat



18 FILIPPO MAZZOLI, ANDREA SEPPI, AND ANDREA TAMBURELLI

metric on T2, obtained as the quotient of the complex plane by a lattice A. In other
words, we find a biholomorphism between (72,J) and C/A endowed with the complex
structure induced by the standard complex structure of C. We stress that for the moment
we do not assume any normalization on the lattice A, which is therefore determined up to
automorphisms of C.

Let us call 2,y (where z = z+1iy) the flat coordinates on C, which induce flat coordinates
on the quotient C/A. Then the holomorphic quadratic differential ¢ has the expression cdz?,
for ¢ # 0 a complex number. Multiplying the coordinate z by a square root of 1/c, we can
also assume that ¢ = dz2. This has the effect of rescaling and rotating the lattice A, thus
obtaining a new lattice A’ inducing the same .J on T?. Hence the expression (Z.1]) gives a
MGHC AdS metric on (C/A") x (—m/4,7/4), for which {¢t = 0} is a maximal surface whose
corresponding complex structure is J and quadratic differential is q. ]

Recalling that the cotangent bundle of Teichmiiller space is identified with the bundle
of holomorphic quadratic differentials, as consequence of Theorem (for higher genus)
and the above discussion (for genus one), one obtains:

Theorem 2.8. Let X be a closed oriented surface of genus = 2. The map sending a pair
(h, B) to the pair (J,q), where J is the complex structure induced by h and Re(q) = hB,
induces a MCG(X)-invariant homeomorphism

F: MGH(E) = MS(E) - T*T (%) .
If ¥ = T2, the same map gives a MCG(T?)-invariant homeomorphism between MGH (T?)
and the complement of the zero section in T*T(T?).

2.3. Mess’ parameterization

Let us now focus on genus > 2 and move on to another parameterization of MS(X), which
has been essentially introduced by Mess. For this purpose, let us introduce the hyperbolic
model of Teichmiiller space, namely:

T9(%) := {h|h is a hyperbolic metric on %} /Diffy (%) .

The “hyperbolic” Teichmiiller space is M CG(X)-invariantly homeomorphic to 7¢(X)
by the uniformization theorem. Also, the holonomy representation provides a MCG(X)-
invariant homeomorphism to the space of Fuchsian representations, which we denote by:

T(2) := {p: 7 (X) — Isom(H?) discrete and faithful representations}/Isom(H?) ,
where Isom(H?) acts by conjugation ([Gol80]). Now, given a pair (h, B) satisfying (GC),
one can construct two hyperbolic metrics by the formula

(h,B) + (h; := h((1 — JB)-,(1 — JB)-),h, :== h((L + JB)-, (1 + JB)-)) . (2.2)

(Here h; and h, stand for “left” and “right”, and in fact these metrics can be interpreted
as the pull-backs via the so-called left and right Gauss maps, see [KS07, §3], [BS20, §6],
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[Bar18, §6].) It can be proved (see for instance the indicated references) that the metrics hy
and h, are hyperbolic and that, interpreting the isometry group of Anti-de Sitter space as
PSL(2,R) x PSL(2,R), the map (2.2]) gives the left and right components of the holonomy
map
hol : m1(¥) — PSL(2,R) x PSL(2,R)
of the AdS MGHC manifold determined by the embedding data (h, B) of the maximal
Cauchy surface, under the isomorphism between 79(X) and 7 (%).
In summary, we state the following theorem:

Theorem 2.9 ([Mes07],[KS07, Theorem 3.17|,|[BS20, Theorem 5.5.4]). Let ¥ be a closed
oriented surface of genus = 2. The map sending a pair (h,B) to the pair of hyperbolic
metrics (hy, hy) in (22) induces a M CG(X)-invariant homeomorphism
MY MS(Z) - T(Z) x TI(D) .
Under the natural homeomorphism TY () = T%P(X), such map coincides with the map
M MGH(Z) - T (Z) x T (D) .

sending a MGHC AdS manifold to the conjugacy class of its holonomy representation.

It will be useful for future computations to express this map in the conformal model of

Teichmiiller space. This follows easily by observing that the complex structure of a metric
of the form h(A-, A-) equals the A-conjugate of the complex structure of h.

Lemma 2.10. Let 3 be a closed oriented surface of genus = 2. The MCG(X)-invariant
homeomorphism
MEMSE) > TU(E)x T(E) .
1s induced by the map
(h,B) = (J;:= (1 —JB)"'J(1 - JB),J, :== (1 + JB)"'J(1 + JB)) ,
where J is the complex structure defined by the metric h.

The map M has also an interpretation in terms of harmonic maps. Indeed, it turns
out that the identity map id : (£,J) — (X, h;) is harmonic and its Hopf differential is
the holomorphic quadratic differential iqg, where Re(q) = hB. Indeed, from the expression
([22), we see that

h; = (1 —det(B)) h — 2h(-, JB-)

where we used that JB is h-self-adjoint and traceless, hence by the Cayley-Hamilton
theorem (JB)? = —det(JB)1 = —det(B)1. Hence the (2,0)-part of h; with respect to
the complex structure J is the quadratic differential iq, where 0 = Re(q) = hB (Remark
[2.5). Moreover it is holomorphic by Lemma 23] This implies that id : (X,J) — (3, h)
is harmonic, since it is a diffeomorphism and its Hopf differential is holomorphic (see
[Sam78, §9]). Analogously id: (X,J) — (X, h,) is harmonic and has Hopf differential —igq.
We summarize this in the following lemma.
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Lemma 2.11. Let X be a closed oriented surface of genus = 2. Then
MO o FU(J,q) = (h(ziq) hs—ia))

where h(J,q) denotes the unique hyperbolic metric on ¥ such that id : (3,J) — (3, h(;4))
is harmonic.

2.4. Constant curvature surfaces and circle action

Another parameterization of MS(X) by the product of two copies of Teichmiiller space is
constructed as follows. Given a maximal surface in a MGHC AdS manifold of genus > 2, a
standard computation shows that the two surfaces at distance 7/4 from the maximal surface
have intrinsic curvature —2 (see [CT19|, [BS20, Theorem 7.1.4|). Hence, multiplying the
first fundamental forms of these surfaces by a factor 2, so that they become of intrinsic
curvature —1, one finds two hyperbolic metrics on 3, which are expressed by:

(h,B) > (h— 1= h{((1 — B), (1 — B)),hy i= h((1 + By, (1 + B))) . (23)
By arguments similar to those leading to Theorem [2.9] one can prove that this produces

again a natural homeomorphism, namely:

Theorem 2.12 ([KS07, Theorem 3.21]). Let X be a closed oriented surface of genus = 2.
The map sending a pair (h, B) to the pair of hyperbolic metrics (h—,hy) in [23) induces
a MCG(X)-invariant homeomorphism

C": MS(Z) - T(Z) x TI(X) .
The hyperbolic metrics (h—,h) are obtained as the first fundamental forms of the w/4-

equidistant surfaces from the maximal surface, after rescaling by a suitable constant.

As in Lemma 210 we can express this map in terms of the conformal model of Teich-
miiller space.

Lemma 2.13. Let ¥ be a closed oriented surface of genus g = 2. The MCG(X)-invariant
homeomorphism
C-MSX)->TUE)xT(Y) .
1s induced by the map
(h,B) = (J;:= (1 —B)"'J(1 - B),J, :== (1L + B)"'J(1 + B)) ,

where J is the complex structure defined by the metric h.

From Theorem 28] we see that MS(X) is endowed with a circle action, which acts on a
pair (J, q), where J is a complex structure and ¢ a holomorphic quadratic differential, by

multiplying the holomorphic quadratic differential by €. By Remark 7 this S* action
on MS(X) has the following expression in terms of the pairs (h, B),

¢ . (h,B) = (h, ((cos §)1 — (sinf).J)B) ,
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and it can be checked directly that the new pair obtained in this way still gives the embed-
ding data of a maximal surface in a MGHC AdS manifold. Denoting by Ry : MS(X) —
MS(X) the St action, it follows immediately from (Z.2) and (Z3) that:

MV =C"oR . (2.4)

Observe moreover that R, has the effect of switching the left and right components under
the maps C" and M".
By conjugating the circle action by the map M" (or CY), one gets an induced circle action

on TY(X) x TY(X), which has been defined in [BMSI3] as the landslide flow. Motivated
by this construction, we will consider the map

C)=C"oRy: MS(E) - THE) x T(X) .

Clearly Cg = (CY and CEF/Q = M. Let us introduce Hy = Cg o F~!, which is the
composed map from T*7T(X) — T(X) x T(X) used in Theorem [Gl Then we immediately
obtain:

Lemma 2.14. Let X be a closed oriented surface of genus = 2. Then

Ho(J,q) = (h(J,—ewq)7h(J,€i9lI)) )

where h(J,q) denotes the unique hyperbolic metric on ¥ such that id: (3,J) — (3, h(;4))
s harmonic.

2.5. An equivalent model for MS(X)

We introduce here a fundamental “change of variables”, which permits us to adopt a simpler
model to study MS(X). The basic idea is to replace the metric A (which is the first
fundamental form of the maximal surface) by a suitable conformal metric g, so that the
area of g is independent of the point of MS(X). By a standard argument in symplectic
geometry, we will be allowed to assume that the the area form of ¢ is a fixed symplectic
form p on X.

To make this concrete, let us introduce the function f(¢) = 4/1 + t2, which we will always
apply to t = HO’H;, for g a Riemannian metric conformal to h. Recall that in general, if o is
a symmetric (2,0) tensor on X, HO’H; denotes the squared norm of the operator A = g~ 'o,
namely one half the trace of AT A, where AT is the g-adjoint operator of A. When o is the
real part of a quadratic differential, A is g-self-adjoint and traceless by Lemma 23] hence
o2 = — det A.

Let X be a closed orientable surface of genus > 2. We now introduce the following space:
g is a Riemannian metric on ¥

MSy(E) := { (g,0) | o is the real part of a g-quadratic differential } /Diffo(%)
(h = (1+ £(lo],)) 9. B = h~1a) satisty (GT)
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The map sending (g, o) to (h, B), where h = (1+f(||o||,)) g and B = h~'o tautologically
induces a M CG(X)-equivariant map from MSy(2) to MS(X). By [KS07], the principal
curvatures of a maximal Cauchy surface of genus > 2 in a MGHC AdS manifold are strictly
less than one in absolute value, which implies that det B € (—1,0]. (On the other hand, if
¥ = T2, then det B = —1 since the maximal surface is flat.) Hence the following lemma

shows that the map induced by
1+ det B
(h, B) — (%h hB)

is an inverse, and MS(X) and MS((X) are homeomorphic, under the assumption that 3
has genus > 2.

Lemma 2.15. Given a metric g and a (2,0)-tensor o on X, let h = (1 + f(|[o]|,)) g and
B=h"'o. Then

o]l 2
detB= 19 4nd  14detB=-— > (2.5)
(1 + F(lelly))? L+ f(llell,)
Proof. The first identity comes from observing that ||o|7 = —det B as remarked above,

and that if b = eg then |o|} = e*QUHUHE. The second identity is an easy algebraic
manipulation using the definition of f. O

An immediate consequence is the following:
Lemma 2.16. Let (g,0) € MSo(X). Then the area of g equals —mx(X).

Proof. Let h = (1+ f(||o[|,)) g as usual. Using (2.H)), the area forms of g and h satisfy the
identity:
1 1+ detB

A, =
L+ f(lelly) 2
Since the pair (h, B) satisfy (GC)) by hypothesis, 1 + det B = — K}, hence
1
f dA, = —f KpdAp = —mx (%)
b 2 s

by Gauss-Bonnet. O

dA, dA;, .

From now on, we will fix an area form p of total area —mx(X). Given an almost-complex
structure J on X, we define the Riemannian metric

gJ(" ) = IO(" J) :
Clearly dA,, = p. We introduce the space MSy(X, p) of pairs (J, o) such that (g, 0) sat-
isfy the conditions in the definition of MSy (%), namely the pair (b = (1+f(lloll,,)) 97, B =
h~'o) satisfy (GC)), and we quotient by the action of Sympg (3, p) (i.e. the identity com-
ponent in the group of diffeomorphisms of ¥ that preserve p).
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It remains to show that the map (J,0) — (h, B) induces a homeomorphism between
MSEy(2, p) and MS(X). This follows from standard arguments relying on the Moser trick,
and we only give a sketch here, see for instance [Hod05, §3.2.3] for more details. Moser’s
stability theorem asserts that given a smooth family w; of cohomologous symplectic forms
on a closed manifold, there exists a family of diffeomorphisms ¢; such that ¢;w; = wg. On
a surface X, given two area forms p and p’ of the same total area, one can apply Moser’s
theorem to the family p; = (1—t)p+tp’ and deduce that there exists ¢ € Diffy(2) such that
¢*p' = p. This implies that any (g, o) as in the definition of MS(X) has a representative in
its Diff o (2)-orbit whose area form is p, i.e. a representative of the form (g, o). Moreover, if
¢ is a family of diffeomorphisms such that g = id and 1] p = p, by applying again Moser’s
theorem to the family p; = 1] p; one can deform 1, to a family of symplectomorphisms ¢,
such that ¢y = id and ¢; = 1. This shows that Diffo(X) n Symp(X, p) = Sympy (X, p).
In conclusion, we have:

Proposition 2.17. Let ¥ be a closed oriented surface of genus = 2. The map
(J.0) = (b= (1 + f(lloll,)) g5, B = h""0)
induces a MCG(X)-invariant homeomorphism between MSy(2, p) and MS(X).

3. THE TOY MODEL: GENUS 1

The purpose of this section is to provide a para-hyperKé&hler structure on the cotangent
bundle of the space J (R?) of linear complex structures on R?. Interpreting the complement
of the zero section in 7* 7 (R?) as the space MGH(T?), we will deduce the case ¥ = T2
in all the results stated in the introduction.

3.1. Space of linear almost-complex structures

We begin by defining the space J(R?). In this section, p denotes the standard volume
form p = dz A dy on R2.

Definition 3.1. We denote by 7 (R?) the set of endomorphisms J of R? such that J? = —1,
and satisfying p(v, Jv) > 0 for some (and consequently for every) non-zero vector v € R2,

In other words, J(R?) is the collection of all (linear) complex structures on R? that are
compatible with its standard orientation. It turns out that J(R?) is a two-dimensional
manifold.

It is simple to see that, given any J € J(R?), the tensor g; := p(-,J-) is a positive
definite scalar product on R?, with respect to which .J is an orthogonal transformation.
By differentiating the identity J? = —1, we see that the tangent space of J(R?) can be
described as

T;J(R?) = {J € End(R?) | JJ + JJ = 0}.
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Equivalently, 777 (R?) is the space of endomorphisms J that are traceless and g-self-ad-
joint. The tangent space T7J (R?) is endowed with a natural (almost) complex structure,

given by Z(J) := —J.J.
We will represent the cotangent space of J(R?) as follows:

TiJT(R?) = {0 € S3(R?) | J*0 = o(J-, J-) = —0},

where S3(R?) stands for the space of symmetric bilinear forms of R%. An equivalent way to
describe the cotangent space at J is as the set of bilinear forms on R? that can be written
as 0 = Re ¢, where ¢ is a symmetric C-valued bilinear form that is complex-linear with
respect to J. In other words, ¢ satisfies ¢(J-, ) = ¢(-,J-) = i¢(-,-). When this is the case,
then ¢ can be expressed as follows:

p=0—io(-J). (3.1)

Observe also that o belongs to 7% 7 (R?) if and only if g;la belongs to ;7 (R?) (here gjla
represents the gy-self-adjoint operator associated to o, that is, o(-,-) = gs((g;'0)-,) =
g7+ (g;la)-)). The natural pairing between the tangent and the cotangent space is the
following:

. 1 . 1 1
lo|J);= §trgJ(0(-,J-)) = §tr(ngaJ). (3.2)
We also define the following positive definite scalar products:
1 .. 1 ..
(o,0") ) := §tr(gjlagjla/), (I = §tr(JJ/)

for every J,J' € T;J(R?) and 0,0’ € T5J(R?). It is immediate to check that the almost
complex structure Z preserves both scalar products. We also denote ||o||5 = (o, o). If ¢
is a quadratic differential whose real part is equal to o, we set ||¢|; := ||o]| ;.

3.2. The tangent space of T*7(R?)
We now provide a characterization of the tangent space to T* 7 (R?).

Lemma 3.2. Let (J,0) € T*J(R?). Then (J,5) € End(R?)x S5(R?) belongs to T(; . T*J (R?)
if and only if

Je Ty T(R?), 60€ TET(R?) and try, 6 = —2(o | JJ)y,
where 6g denotes the gj-traceless part of &.

Proof. We first compute

gs = pl ) = =p( J2T) = =gy (-, JJ) . (3.3)
Then, because o is gj-traceless, we have

0= (trg, 0) = —tr(g;" gs95'0) +tr(g;"0)
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hence
) — .
try, & = —tr(JJgJ a) = 2o | IS .
This concludes the proof. O

The group SL(2,R) naturally acts on J(R?) by conjugation and, more generally on its
tangent and cotangent space as follows:

(J,J) e TT(R?), A-(J,J):=(AJA™, AJA™Y)
(J,0) e T*T(R?), A-(J,0):=(AJA™L (A™1)*0)

for any A € SL(2,R). The action of SL(2,R) induces a faithful action of PSL(2,R) =
SL(2,R)/{+1}.

Lemma 3.3. For every A € SL(2,R) and J € J(R?), we have:
(A-a|A-Dag={a| ),
(A-T,A-Jyag =10,
(A 0,A-0")ay={o,0"),,
where J, J' € T;J(R?) and 0,0" € TJ(R?).
Proof. The proof is immediate, once one checks that g,Z}IA—l(A_l)*J =A(g;'0)A™L. O

By differentiating the SL(2,R)-action on 7% (R?), we obtain a linear isomorphism
from T(J,J)T*j(IR@) to TA_(J,O-)T*j(R2). By a little abuse of notation, we still denote this
isomorphism by A. It is explicitly given by:

(ja U) € T(J,U)T*j(Rz)’ A- (Ja U) = (AJA_l’ (A_l)*o-) :
We remark that, using Lemma[3.3] one could verify by hands that the conditions of Lemma
are preserved by this expression.

It is also useful to provide a natural linear isomorphism between the tangent space of
iy 0)j(R2) and the product of two copies of 777 (R?).

Proposition 3.4. The map
Vo)t T T TR — (T;T(R?))?
(J,0) — (J,9;"60)
is a linear isomorphism, with inverse

Euey: (TITR))? — Ty T*T(R?)
(LK) — (Jgs(K)=La [T )y g1)-

Moreover, ¥ ;) commutes with the SL(2,R) actions, meaning that
(A7 A) © \II(J,U) = \I/A-(J,O') oA.
Proof. The proof follows immediately from Lemma and Lemma [3.3] O
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3.3. A para-hyperKihler structure on T*7(R?)

Throughout the paper, f will denote the function f(¢) := +/1+¢2 for t € R which we
introduced already in Section Unless otherwise stated, we will denote by (-,-», (- | -)
the scalar products (-,-); on T;J(R?) and T%J(R?) (it will be clear from the context
which one of these we will refer to) and the pairing (- | ->; between T 7 (R?) and its dual.
Similaxly [} = |-/

Definition 3.5. Let us define the symmetric bi-linear form g on 7(; »T*J (R2):
1

B0 (0 (78) = F(lol) o'y = s o (3.4)
and the endomorphisms I,J, K of T(; ,T*J (R?):
Lo, ) = (=, =60(-.J) = <o | ) gs) (35)
Jon(:8) = (o 0700, Floant 3+ SEL g ) (s
K1 (3:6) = (=510 79700, ~Floant.dr) - 5800) )

where f(t) = /1 + 2.
For future reference, we also record the expressions of the forms:
wr =g L), wy=g(,J), wk=g(K).
These are given by:

(@) (o) ((4,6), (J',6") = = (o)<, T ') + m&o,ffé(v I, (3.8)
(@3) (0 ((,6), (J',6")) = (6t | J) = (60 | I, (3.9)
(WK)(1,0)((J.6), (J',6")) = {5 | JJ) = (60 | JT'). (3.10)

Theorem 3.6. The quadruple (g,1,J,K) is an SL(2, R)-invariant para-hyperKdhler struc-
ture on T*J (R?).

Proof. Observe that, through the linear isomorphism of Lemma [B.2] the endomorphisms
I,J,K can be represented as:

EH o o) (LK) = (=JJ, JK),
EoyI o) K) = (flel)T K, f(lol)d),
(Bt Kuo) (LK) = (=f (o) IK, f(llo])J]).
From here, it is clear that the following relations are satisfied:

I’=-1, J=K?’=1, K-=1J.
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We will see in Lemma [B.8 that the 2-forms wy and wk are respectively the real and
imaginary part of the complex symplectic form w® on T*7(R?), which is defined as the
differential of —AC. Hence the forms wy and wk are obviously exact. We will show
in Corollary that wr is closed, as well. One can now apply a general argument to
conclude that that I,J, K are integrable, see Lemma in Appendix [Al However, we
will also deduce this directly using some of the interpretations of I,J, K that we show
below. More concretely, integrability of I is proved in Corollary B.I0 integrability of J
and K follows from the pull-back results of Corollary and Corollary 319l This shows
that the quadruple (g,I,J,K) defines a para-hyperKihler structure on 7%7(R?). The
SL(2,R)-invariance is checked in each expression by applying Lemma 3.3 O

Remark 3.7. Let us observe that I preserves the tangent space to the O-section of 77 (R?),
since I(;0)(/,0) = (—JJ,0). We will denote by G and €2 the restrictions of g and wr to
the 0-section of T*7 (R?), which is identified to 7 (R?). In particular, for every J € J(R?)

Gj(j, J/) = <J, jl>J Qj(j, J/) = —<j, Jj/>J,

where J,J' € T7J (R?). Hence (G, ) is a Kihler structure on 7 (R2).

Now, it turns out that J(R?) is diffeomorphic to the hyperbolic plane H?. To see this,
one can define a map from J(R?) to the upper half-space model of H? by declaring that
the standard linear complex structure

0 -1

=1 0)
is mapped to i € H2. Observe that SO(2) < SL(2,R) stabilizes both Jy (for the SL(2,R)-
action on J(R?) introduced in Section B.2]) and 4 (for the classical action in the upper half-
plane model). Since both actions are transitive, one can uniquely extend this assignment
to an SL(2,R)-equivariant diffeomorphism. It is not hard to check that this is a Kéhler
isometry, that is, the metric G corresponds to the hyperbolic metric of H?, the complex
structure Z to the standard complex structure of H?, and therefore the symplectic form €
to the area form of H2. See [Tral8, Lemma 4.3.2], [Tral9, §3.1] or [Hod05, §2.2.2] for more
details.

3.4. Liouville form on T*7(R?)

Recall that the Liouville form of any manifold M is the 1-form A on T*M defined by
A(p,a) (V) = a(myv), for a € Ty M. If M is a complex manifold, one has an induced complex
structure I on T*M, and ) is the real part of the complex-valued 1-form A€ = X\ —iX oL
The term Aol can also be written as a(m(Z(v))), where Z is the complex structure of M,
since 7 is holomorphic. In our setting, we therefore have the following expression for the
(complex-valued) Liouville form on T*7 (R?):

Aoy (J,6) = <o | Ty +ida | JT)..
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We define the complex-valued cotangent symplectic structure of T*J(R?) by setting
wC = —dA® .

In this section we show the following;:

Lemma 3.8. The C-valued symplectic form w® on T*J(R?) equals wy + iwk .

In other words, we have to show that w® has the following expression:
WE((J,6),(J',6")) = (64 | yg = <o | J)g) +i (4 | Ty =60 | JI")g).
Before providing the proof, we give a useful lemma.
Lemma 3.9. For every J,J' € T;J (R?) we have
JJ =, =T, T .
Moreover, we have:
i) J? = —(det )1 = HJH?,]I Jor every J e T77(R?);
i) tr(JJ'J") = 0 for every J,J', J" € T;J(R?).
Proof. Let us first observe that
JJJ =—JJJ =JJJ.
Therefore, .JJ' commutes with .J. It is simple to check that M € End(R?) commutes with
J if and only if M belongs to Span(1, J), hence
JJ =T, I —(JJ, T .
By Cayley-Hamilton theorem,
0=J%— (trJ)J + (det J) 1 = J? + (det J) 1.
Therefore, we have 2||J||2J — tr(J?) = —2det J. For the last assertion, we apply the first
part of the statement:
tr(JJ'J") = (J, 0 te(J") = (T, " g e ().

This expression vanishes because J" and J.J” are both traceless, being elements of T; 7 (R?).
O

Proof of Lemma[3.8. The set T*J(R?) can be considered as a submanifold of the vector
space End(R?) x Sy(R?). In particular, any tangent vector (J,5) € 11,0 T*T (R?) can
be extended to a vector field, that we continue to denote with abuse by (J, g), on a
neighborhood of (J,¢) in End(R?) x S5(R?), with values in End(R?) x S3(R?). Moreover,
we can require that the component J depends only on the variable J € End(R?). In
all the following computations, we will denote by D the standard flat connection on the
vector space End(R?) x S5(R?), and we consider (- | -) as a pairing defined for elements
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of the entire vector spaces End(R?) and Sy(IR?), where the extension is given by the same

expression (3.2)).

If A := Re AC, then we have:
dA((J,6),(J',6")) = (J,6)(A(J',6")) = (J',6")A(J,6)) = A([(J,6), (J',6")])
= (J,6)(o | J)) = (J',6") (o | Jyg) = <o [ [1,0 D)

Observe that J(g;) = —gs(-, JJ-). Then
(F.6)(a | ) = 3. 8)(1x(g5"00")

1 . . . B )
= 5(—tr(gJ1J(gJ)ngaJ/) + tr(ngaJ’) + tr(gjlaDjJ'))

1 . | : .
- itr(JJgjlaJ') + §tr(g;ldoJ') +{o | D;J";
= (60 | J"+{o | DjJ",.

In the last step we applied point 7i) of Lemma[3.9] Replacing this relation in the expression
for d\ we obtain

dA ((j’é-)’(j,’é-/)) = <d0 | j/>J *<O-6 | J>J Jr<U | DJJ/ - Dj/j* [J’ jl]>J
= (G0 | J")g = <& | D

The same type of argument applies to the imaginary part of AC. More concretely, setting
p:=ImAC, we arrive at the expression:

dpu((J,6),(J',6")) =G0 | JJ")g = <64 | g +<o | Dj(J ') = D (JJ) = J[J. D) -

It remains to check that the last term vanishes. But this term equals (o | JJ' — J'J).
Using Lemma 39 JJ' — J'J is proportional to J, hence this scalar product vanishes
because (o | J) = (1/2)tr(g;'cJ) = 0. O

Corollary 3.10. The almost-complex structure I equals the almost-complex structure in-
duced by T on T*J(R?). In particular, 1 is an integrable almost-complex structure.

Proof. We have showed in Lemma 3.8 that wy and wk are the real and imaginary parts of
the complex symplectic form w® of T* 7 (R?). Denote by I the almost complex structure
of T*J(R?). Since J(R?) is a complex manifold, w® is a complex symplectic form, which
means WC(.,i.) = iw®(-,-). Taking the imaginary parts in this equality we find wy =

A

wk (-, I:). But from the definitions of wy and wk, we see that
wy =g(,J") = g KI') = wk (- I) .

Since wy and wk are nondegenerate, this implies I=1 O
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3.5. Relation with MGH(T?)

Theorem 2.8 furnishes a diffeomorphism F : MGH (T?) — T*T*(T?) between the deforma-
tion space of MGHC anti-de Sitter manifolds diffeomorphic to 72 x R and the complement
of the zero section of the cotangent space T#T*(T?) to the Teichmiiller space of the torus.
The latter can be identified with 7% 7 (R?), as we show in the following lemma.

Lemma 3.11. There is a homeomorphism between J(R?) and T(T?), which is equivariant
with respect to the actions of SL(2,Z) =~ MCG(T?).

Proof. The map from J(R?) to T(T?) is defined by considering a linear almost-complex
structure J as a (constant) tensor on R?, which therefore induces an almost-complex struc-
ture on the torus 72 =~ R2?/Z2. The map is a bijection because every element in 7°(7?),
namely an isotopy class of almost-complex structures on 72, can be represented as the
conformal structure induced by Jy on R?/A, for A =~ Z? a (marked) lattice. One can
moreover assume (up to homothety of A) that R%/A has area 1, and such representation
is unique up to conjugation in SO(2). Conjugating Jy by the unique element of SL(2,R)
that maps A to Z? (as marked lattices), one finds the unique J € J(R?) that is mapped
to the given class in 7¢(7?). Identifying MCG(T?) with SL(2,Z), the homeomorphism is
clearly equivariant. O

Remark 3.12. We observe that the symplectic form €2 introduced in Remark B.7] coincides
with 4 p, where Qyp denotes the Weil-Petersson symplectic form on the space J(R?) =
T¢(T?) through the identification described in Lemma [BIT] (see also Lemma ET).

Hence we immediately obtain the proof of Theorem [Alin genus one.

Theorem [A] (genus one). The deformation space MGH(T?) admits a MCG(T?)-invariant
para-hyperKdhler structure (g,I1,J,K).

Proof. By Proposition and Theorem 2.8 MGH(T?) is identified to the complement of
the zero section in T*7(T?), which is in turn naturally identified to the complement of
the zero section in 7% 7 (R?) by Lemma B.I1l Hence the existence of the para-hyperKihler
structure follows immediately from Proposition Since all the identifications are equi-
variant with respect to the action of MCG(T?) =~ SL(2,Z), and the para-hyperKihler
structure of T*J(R?) is PSL(2,R)-invariant by Proposition B.6 it follows that the ob-
tained para-hyperKihler structure on MGH(T?) is mapping-class group invariant. O

More concretely, we can see the induced map from T*7 (R?) to T*T(T?) as the map
sending the pair (J,0), for o a symmetric bilinear form on R? satisfying o(J-,J-) = —0,
to the pair ([J], ¢) where [J] is the isotopy class as in the proof of Lemma BTl and ¢ is
the holomorphic quadratic differential whose real part is o as in Equation (3.)).

Remark 3.13. We remark that the complex-linear quadratic differential ¢ is holomorphic
with respect to .J simply because, identifying (72, .J) with a biholomorphism to the quotient
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of R? by a lattice A as in the proof of Lemma B.I1] the lift of ¢ to R? is constant. As
a matter of fact, every holomorphic quadratic differential on (T2, J) lifts to a constant
holomorphic quadratic differential, namely of the form adz? for a € C, on R? =~ C.

Remark 3.14. It will be useful to interpret the map from J(R?) to T%(T?) in terms of
Beltrami differentials. Let us consider a smooth path J; € J(R?), and denote J;—o = J.
As usual, we consider these as almost-complex structures on 72 = R2/Z2. Then the
Beltrami differential of the identity map id: (T2, J) — (T2, J;) coincides with

ve= (1 - JJ)" Y1+ JJ).

Indeed v; coincides with L™! o A, where L and A are the complex linear and complex
anti-linear parts of d(id) : (I'T2,J) — (T.T?J;), respectively. Hence v; is constant over
T2, which means that it is a harmonic Beltrami differential (i.e. of the form ¢! for g¢
the flat metric and v a holomorphic quadratic differential, see Remark B.13 above). A
simple computation shows that the derivative of vy at ¢ = 0, which represents an element
of TT*(T?), is again harmonic and has the expression

1.
v=gJJ (3.11)

We are now ready to conclude the proof of Theorem [B] in genus one. Considering
MGH(T?) as the complement of the zero section in T*7(R?), the map F : MGH(T?) —
T*T(T?) given by Theorem 2.8 is nothing but the restriction of the map that we used
in Lemma .10l which we still denote as F : T*J(R?) — T*T(T?) by a little abuse of

notation.

Theorem [Bl (genus one). We have
i

where Lp«1 2y denotes the complex structure of T*T(T?) and Q%T(Tg) its complex sym-
plectic form.

Before the proof, we recall that (in any genus) the cotangent bundle of 7¢(X) has a
natural complex symplectic form Qg*’r(z) defined as _d)‘g*’r(zy where )‘g*’r(z) is the
Liouville form. Given a point ([J],¢) € T*T*(X), the pairing between holomorphic qua-
dratic differentials and tangent vectors expressed as classes of Beltrami differentials [©] is

the following:
@ = L peov (3.12)

where
1

(¢ o) (v,0) := - (6(r(v), w) — $(¥(w),v)) (3.13)
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(see e. g. [BMSI15, Section 2.1|). The complex Liouville form is then simply expressed as:

(AFsre) (1.0 ([7],0) = (& | D)1

We now prove Theorem [Blin the torus case.

Proof of Theorem B, genus g = 1. Let (J;); be a smooth path in J(R?), with Ji—og = J.
If 7 : T*T¢(T?) — T(T?) is the projection, Equation (B.II)) in Remark B.I4 shows:

. 1.
dmo dF (g (J,6) = 50T =i

Recall that F(J,0) = ([J],¢), where ¢ = o —io(-,J-) is the holomorphic quadratic
differential whose real part is o. Let now g be the bilinear form p(-, J-), and let {e1,es =
Jei} be a gj-orthonormal basis of R?. Since all the quantities that we consider lift to
constant tensors on R?, we can get rid of the integral over 72 =~ R?/Z? in Equation (312,
and we find:

: 1, .
(& | D)) = 55 (B((er), e2) = dli(e2) 1)
= iz (O‘(jJ€1,€2) *’L'U(jJel,JBQ) - O'(jJBQ,el) + ig(jje2’Jel))
- 4% (0(Jez, e2) +io(JJer,e1) + o(Jer,er) +io(JJes, e2))

= % <tr<g;10j) + itr(g;lajj»
21— | 1))

—5 )\(ELU)(J,O').

Therefore we have shown

(F*Nfwrir2)) (10) (S, 6) = — A (:0)-

Taking differentials , we obtain

C ) . i_¢
F Qg r2y = —§(w3 —lwK) = —50T -
To show that F pulls-back the almost-complex structure of 7%7 (T?) to —I, one can argue
exactly as in the proof of Corollary B.I0l observing that Q%T(TQ) is a complex symplectic
form with respect to the complex structure of 7%7 (T?), while w}c is a complex symplectic
form with respect to the (almost)-complex structure —I. 0
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3.6. A formal Mess homeomorphism

In this section we interpret the para-complex structure J and the para-complex sympletic
form w¥ as the pull-back of natural structures on T(7?) x T(T?) via a map

M T*T(R?) — T(T?) x T(T?) ,

which is formally defined essentially as the Mess homeomorphism (Section 2.3]), although
in the genus one case this map does not have the same geometric significance from the
Anti-de Sitter viewpoint as for the higher genus case. Nevertheless, this “toy model” is
essential for the higher genus case, since the map M studied here will then induce Mess
homeomorphism for genus > 2.

Inspired by Section B given a pair (J,0) € T*J(R?), we define h = h(J,0) the
Riemannian metric

hi= (Lt F(lo]))gs = (1 i1+ uo||2) 0,

where we recall that g; = p(-,J-) and ||-|| = ||| ;. We also set B := h™lo. Exactly as in
Lemma 2,15 we have the identities
det B = —% and  l4detB— ——2 (3.14)
1+ £dlel)) L+ f(lel)

The second identity shows that 1 F JB is invertible for every (J, o) € T*J(R?). Indeed,
det(1 F JB) = 1 + det B, since JB is traceless. We can thus define

M:T*J(R?) — J(R?) x J(R?)
M(J,0) = (1 —JB)'J(1L - JB),(1+JB)"'J(1 +JB)) .

Remark 3.15. We remark that this is formally the analogue of the expression of Mess home-
omorphism in terms of almost-complex structures, given in Lemma 2.0l In particular, the
left and right components of M are the linear complex structures associated to the metrics
h((1 F JB)-, (1 F JB)-) on R?. As a reminder of this fact, we will often denote them by
J; and J,., respectively, to be consistent with the notation that will be used in Section [,
where the higher genus case is discussed.

Now, the space J(R?) x J(R?) is naturally endowed with the almost para-complex
structure P coming from its product structure. This is defined at any (J,J') € J(R?) x
J (R2) as follows:

P(J,J) = (J,—J").
Moreover, denoting by Qp the Weil-Petersson symplectic form of 7 (R?) (see also Remark
B.12), and by m, m, : J(R?) x J(R?) — J(R?) the projections to the left and right factor,
J(R?) x J(R?) has two symplectic forms given by m}Quwp + 7Qwp. Together, they are



34 FILIPPO MAZZOLI, ANDREA SEPPI, AND ANDREA TAMBURELLI
combined into a para-complex symplectic form

1 T
OF .= 5(7TZ*QWP+7T:QWP) + 5(7Tl*QWP*7T:QWP) :

It is easily checked that QP is para-complex with respect to P in the sense that QF (P-,-) =
0°(, ) = 1%, )

Theorem [C] (baby version). We have
M*(P,4Q%) = (J,u) -

where P denotes the para-complex structure of J(R?) x J(R?) and QF its para-complex
symplectic form.

Proof. Since B and JB are traceless and detJJ = 1, we have B? = (JB)? = —det B 1.
We will make use of this relation all along the current proof. A simple consequence is the
following;:

(1F¥JB) = (1+JB). (3.15)

1+ detB
Applying this relation, we can develop the left and right complex structures J; and J,. (the
left and right components of M, respectively) as follows:

Ji, =0 FJB)'J1FIB)
1
=———(1+JB)JAFJB
1+ det B( +JB)J(1F JB)
1
=————(J+JBJFJ*B-JBJ*’B
1+ det B( - + )
1
_ det B + 2 B
1+detB 1+detB
In these relations and the ones that will follow the upper sign in + or F always refers to

J; and the lower sign to J,.. From the second identity in (3.14)), we get:

1—detB
=1 - = 3.16
1+ detB +f 1+detB ur (3.16)
where f = f(||o]|). Combining these relations with the development above, we obtain:
Jy=fJ+g;t0, Jy=fJ—g;'0. (3.17)

We are interested in computing the first order variation of these expressions along a direc-
tion (J,0) € T( ;) T*J(X). First we compute the derivative of the function f = f(|lo|):

- ( 14 ||au2>
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= gtr( J(g;la)/)

1

= gy rlos (=599, 0 + 9;76))

As already observed in relation ([B.3]), the first order variation of g; with respect to J is
equal to —gs (-, J J -). Therefore Lemma part i) implies that the trace of the product
g;lagjlgjgjla vanishes. Moreover, in the term tr(g;lagjld) there is no contribution
from the trace part of 4. In conclusion, we deduce that f' = @ For convenience, we

also set

1 .
—g;'60 % J.

Q* =Q*(J,6) = 7

Then we have

1
= +fQ* + 2trg,a]1+gJ ngJa—i-fJ
= +fQ* $<J\Jj>]lijjg;10+@t] (Lemma 3.2l and eq. (3.3)))
+ ; (o | g7'00)
=ifQ*i<U|J>J+fJ (Lemma [3.9)

=+fQ +(o Q")

where (-,-y = (-;-yy and (- | -) = (- | -);. Then the differential of the map M can be
expressed as follows:

AM(j0) (J,6) = (o | QYT+ FQT (o | Q)T — fQ7).

Let us now determine the pull-back of the forms 7€) + 7Q by the map M, where Q
was defined in Remark 371 To emphasize the dependence on (J,0), we will now write
J; = (mo M)(J,0) and J, = (m, 0 M)(J,0). Given (J,&) and (J’,&’) two tangent vectors
at (J,0), we also set Qf = Q*(J,6) and Rt = Q*(J', "), to simplify the notation. Then,
making use of the fact that tr(Q*) = tr(R*) = 0 and of Lemma B.9] we deduce that

(1,0 0 MY*Q((J,6), (J',6")) = =(d(m1, 0 M) (J,6), Jip - d(m 0 M) ('),
= (o | Q5T £ FQH)(fT £ g5 o) (o | RE) T £ f R))
= Lo @) g7 0RE + (o | B QR o)+
—~ f—st (QTJRY)

—f (lg5'0. Q") Jg5 0. R) — g5, Ri><Qi, Jgz'o)) +
- f3<Qi7 JRi>
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Now, because Q*, R € T, 7 (R?), assuming o # 0, we can write
1
+ —1 +\ -1 —1 + —1
Qi = m (<gJ g, Q7> gJ o+ <JgJ g, Q7> Jg] U) I

and similarly for R, so that the term

{g7'0,Q X gy 0, R*) — (g5 0. R XQ™, Jg7 ' o) (3.18)
coincides with —||o||*(QF, JR*) by direct computation. Note that when ¢ = 0, the ex-

pression (3.I8) vanishes. In any case, recalling that Q* = Qi(j,é) and Rt = Qi(j’, '),
we can thus conclude that
(10 0 MY*QU(J,0), (J',6")) = = Q" JR)(~ o] + 1)
f
— L u(Q" JRY) (f> =1+ |lall)
= [ TTg + ?<00,06(', J)s F (6o | JI )y =60 | TT).)
= (wr £ wk)((J,6), (J',6")) .
Therefore we have
M*(mfQ+ 7 Q) = 2w, M*(mfQ — 7)) = 2wk.
By what observed in Remark 312} this proves that M*(4Q8) = w¥.
One can then check directly that dM;,) oJ =P odM; 4, using that Q*oJ(J,5) =

+Q*(J,5). However, the fact that M*P = J also follows immediately by the same
trick as in Corollary BI0 Indeed, since QF is para-complex with respect to P, if we denote

J = M*P, then w']}]B is para-complex with respect to J, which means that wk () = wr(-, J).
But since the same holds for J, we deduce that J=1J. ]

As an immediate consequence, we obtain:

Corollary 3.16. The 2-forms wr and wg on T*J(R?) are closed, and J is an integrable
almost para-complex structure.

3.7. The circle action

Let us now study the behavior of a natural circle action on T*7(R?) with respect to the
para-hyperKéhler structure (g,I,J,K). Recall that a cotangent vector o € T57 (R?) can
be seen as the real part of a complex-valued, J-complex linear symmetric form ¢. By
Remark 25 multiplication by e on complex bi-linear forms induces a circle action on
T*J (R?) given by
e . (J,0) = (J,cos(8)o + sin(@)o (-, J-)) .

We will denote by Ry : T*J(R?) — T*J(R?) the action of e Observe that clearly Ry
preserves the zero section, hence it induces a circle action on MGH (T?), which is identified
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to the complement of the zero section in 7% (R?) as in the proof of the genus one version
of Theorem [Al in Section

Theorem [El (genus one). The circle action on T*J(R?) is Hamiltonian with respect to
wi, generated by the function H(J,o) = f(|o|) and satisfies

Rig =g Rjwr = wr RiwE = e 9uE |
Proof. The infinitesimal generator of the circle action is

Vy(J,o) — d%(J, cos(t)o + sin@)o(1)| = (0.0(.7)

We now compute
LVGWI(j? J) = *WI((J.’ é-)’ (0’ O-(" J))) = —g((j, d-)’ I(O’ O-(" J)))

= g((j, d)’ (O’ U(" JQ))) = —g((j, d)’ (O’ U))
L ooy =
~ (e (el

which proves the first statement. This immediately implies that Rjwy = wy, by Cartan’s

<da 0> = dH(J,U)(j’é-) )

magic formula.
We now compute R;’jw(c. Let us first find an expression for the differential of Ry. By
definition, we have

(dRy) (s, (J, cos(8)) = (J, cos(0)6 + sin(0)5 (-, J-) + sin(0)a (-, J)) . (3.19)
By Lemma 3.2, we can write
o =00—<o|J])sgs
so that
G- T) = 60 T) + (o | Jhp . (3.20)
Moreover, by Lemma [3.9, we have
g5t0d ={gyto, )l — (Jgyta, Jysd
which implies that
O'(',J'):<O"J>Jgj—<0"JJ>Jp. (3.21)
Combining (3:20) and (B.2I) with (BI9]), we obtain that the differential of Ry can be
expressed as follows
(dRg)(1.0)(J,6) = (J, cos(0)6 + sin(0)éo (-, J-) + sin(0)(o | T)g.s) -
Hence,
(REWE)(J,6), (J',6")) = (cos(0)dh + sin(0)dhJ | Jy — {cos(0)dg + sin(0)do] | J')
+i((cos(0) bt + sin(0)ohJ | JJ) — {cos(0)do + sin(0)do | JJ')
= cos(0) (&0 | ) = (G0 | ) +sin(0)((54 | JJ) = (G0 | TS
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+i(cos(8) ({5 | JJ) — <60 | JJ')) —sin(6)((5 | J) — (60 | I"))
— (cos(B)wy + sin(B)wi) + i(cos(O)wk — sin(6)wy)
— 0 ((],6), (', 5)) .
Let us finally check that Ry preserves the metric g. We denote by
(r9) (o) (J, &) = cos(8)6 + sin(0)do (-, J-) + sin(0)(c | Jygs

the second component of the differential of Ry at the point (J,0). Moreover, we remark
that o] s = || cos(0)o +sin(0)o (-, J-)|.s, in other words the circle action preserves the scalar
product on T%J (R?). We can now compute

(Rzg)(J,a)((ja U)? (j/7 OJ)) = gRg(J,a)((j7 (TG)(J,U)(‘L U))? (j/7 (TG)(J,U)(jla OJ)))
= Floll)¢T, Iy — m@sw)do + sin(0)60 (-, J-), cos(0)&h + sin(0) o (-, J-) >

.. 1
= flo| )T, Ty s = =00, 60)s
(lell.r)<, 7 f(IIJHJ)< 0,00,
= g(J,o)((Ja d)v (le OJ)) :
This concludes the proof. ]

We then immediately obtain the relations of (2)) for the pull-back of I,J, K, which we
re-write here for completeness.

RI=1 R3J = cos(0)J + sin(0)K R;K = —sin(0)J + cos(6)K . (3.22)

We now turn to the proof of the genus one case of Theorem [E] concerning a para-Kéhler
potential for g. We recall that a smooth function f is a para-Kéhler potential for a para-
Kihler structure (g, P) if wp = (7/2)dpdpf. We will make use of the following identity,
whose proof is similar to the Kahler case and is given in Appendix [Al Lemma [A.4]

270pop f = d(df o P) (3.23)

Theorem [F] (genus one). The function —4H is a para-Kdihler potential for the para-Kdhler
structures (g,J) and (g, K) on T*J (R?).

Proof. From the previous result we have:

. . d . .
Ly, (wy +iwk) = —Rj (w3 + iwk) = —Riwf = —iwt = —iwy + wk
do o—0 0 0=0
which implies
Ly,wy =wkg and Ly,wk = —wg .

Therefore,

270305(—H) = —d(dH 0 J) = —d(wy,wi(J-)) = —d(1y,wk) = —Ly,wk = wJ
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and similarly,
270k Ok (—H) = —d(dH o K) = —d(1y,wi(K")) = d(ty,ws) = Ly,ws = WK ,
which shows that (—4H) is a para-Kéhler potential for g with respect to J and K. O

3.8. A one-parameter family of maps
Using the circle action, we can define for every § € S the map
Co = CoRy:T*J(R?) — J(R?) x J(R?) .

Remark 3.17. Using Remark 2.5 we observe that for § = —m/2 the map C = C_,/, has
the expression

C(J,0):=((1-B)'J(1-DB),(1+B)"'J(1+ B))
and is therefore a formal analogue of the parameterization
C:MGH(E)->TE)xT((),

of the deformation space MGH(X) by means of the induced metric on the surfaces of
constant curvature —2.

Remark 3.18. Exactly as in Lemma 214} identifying J(R?) with 7¢(7?) (Lemma B.1IT]),
we obtain a map

T*J(R?) — T(T?) x TY(T?)
which can be interpreted as the map

Ho(J, Q) = (h(J,—equ)vh(Lei@q)) ’

where h(J, q) denotes the unique complex structure on 72 such that the identity is harmonic
with respect to the flat metric g; on T? =~ R2/Z? on the source and to h(.J, q) on the target.

Now, using the genus one versions of Theorem [Cland Theorem [E] (see also ([3.22])), which
have been proved above in this section, and the identity Cy = M o R(;Jr%, which follows
from (2.4]), we see that

Cp (73,4Q]B) = (—sin(0)J + cos(9)K, wy — 7(cos(§)wy + sin(f)wk)) -

As an immediate consequence, we have the following “baby versions” of Theorems [Dl and

Theorem [DI (baby version). We have
C*(P,40°) = (K, wg) ,

where P denotes the para-complex structure of J(R?) x J(R?) and QO its para-complex
symplectic form.
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Theorem [G] (baby version). We have

Im Hj (20%) = —Re(ier%j(RQ)) .
where QB is the para-complex symplectic form of J(R?) x J(R?).

As a consequence, we obtain, among other things, a direct proof of the integrability of
K, thus completing Theorem

Corollary 3.19. The 2-forms wy and w3y on T*J(R?) are closed, and K is an integrable
almost para-complex structure.

4. THE GENERAL CASE: GENUS > 2

In the next two sections we give a proof of Theorem [Al in the general case of closed
surfaces of genus > 2. In this section, we realize the deformation space of MGHC anti-de
Sitter structures MGH(X) as the quotient by Sympg(3, p) (the group of symplectomor-
phisms of (X, p) isotopic to the identity, see Section [25]) of a set /%O(E, p) sitting inside
an infinite dimensional space T*7(X) that is formally endowed with a para-hyperKéhler
structure (g,I,J,K). We then give a distribution inside T7*7(X) that is preserved by I,
J, and K and maps isomorphically to the tangent space to MSy(X, p), thus deducing that
these structures descend to the quotient. To this aim, we characterize tangent vectors in
several different ways (Proposition [K]), that we prove are equivalent in Section The
proof of Theorem [Alis then completed in Section B, where we show that the induced sym-
plectic forms are non-degenerate and closed, generalizing the constructions seen for the toy
model in Section Bl

4.1. The group of (Hamiltonian) symplectomorphisms and its Lie algebra

Let us fix a symplectic form p on 3. By Cartan’s formula for every vector field V' on 3 we
have

Lyp=1wvdp+dvp) =d(vp),

since dp = 0. Therefore, the flow of V' acts by symplectomorphisms on (X, p) if and only
if the 1-form vy p is closed. Hence we can define the Lie algebra of the group Sympy (X, p)
of symplectomorphisms of (X, p) isotopic to the identity as follows:

&(Z, p) = Lie(Sympy(Z, p)) = {V € D(TT) | d(uvp) = 0} =, Z'(S),

where in the last step we are using the identification between I'(TX) and A(X) = T'(T*Y)
induced by p, and Z'(X) denotes the space of smooth closed 1-forms. A symplectomor-
phism 1 is Hamiltonian if there is an isotopy . : [0, 1] — Sympg(3, p), with 1y = id and
Y1 = 1, and a smooth family of functions H; : ¥ — R such that vy, p = dH¢, where V; is the
infinitesimal generator of the symplectomorphism ;. We denote by Ham(3, p) the group
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of Hamiltonian symplectomorphisms of (X, p). This is a normal subgroup of Symp(X, p)
and its Lie algebra is defined as

H(X, p) := Lie(Ham(, p)) = {V e T(T) | typ exact} =, B(X),

where B'(X) denote the space of smooth exact 1-forms on X.
We have the following non-degenerate pairings:

Clre: MO pisx2(5) — R

([0, 5) — feanp,
Cloe: Mgy xB(E) — R
([ol, ) — fsanp.

Since Z1(X) = kerd, the group A}(X)/Z!(X) identifies with B2(3) through the differential
map d. In particular we have
1 1
A (2)/31(2) c &3, p), BAD) =D (E)/Zl(z) < H(, p)*. (4.1)
Observe that, for every tangent vector field V' and for every 1-form «, we have
Lyap=aALyp. (4.2)

In particular, if V' is a Hamiltonian vector field, with tyyp = dH, then

{la] | dH)g = fza ANdH = szda = fz a(V)p, (4.3)
for every H € €*(3) and [a] € AY(2)/ZL(D).

4.2. The Teichmiiller space as a symplectic quotient

Before treating the case of MS(X), we recall briefly how we can recover Teichmiiller space
as an infinite dimensional symplectic quotient. Most of the computations of this section
can already be found in [Don03| and [Tral8|: we report them here for reference purposes.

We denote by P the SL(2,R)-principal bundle over (X, p) whose fibers are linear maps
F:R? > T,% that identify the area form p, with the standard area form py on R? via
pull-back. In other words, we require that F*p, = dx A dy. The SL(2,R)-action is defined
by A-(p,F) = (p,Fo A7)

Observe that any symplectomorphism ¢ of (X, p) naturally lifts to a diffeomorphism ¢
of the total space P, by setting

¢(p, F) := (¢(p),dp, o F) € P,
for every (p, F') € P. We now consider the bundle over ¥

P(J(R?)):=P X SL(2,R) J(R?) = P j(Rz)/SL(Q,R)’
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where SL(2,R) acts diagonally on the two factors. A section of P(J(R?)) — ¥ induces a
complex structure J on ¥ which is compatible with p, in the sense that p(-,J-) is positive
definite: this is defined on 7,,% by the endomorphism Fj,0.J, on_l. Recalling that SL(2,R)
acts on J(R?) by conjugation, one easily checks that this section J is well-defined, that is,
if two pairs ((p, F), Jp) and ((p, F'), J},) differ by the diagonal action of SL(2, R), then they
induce the same complex structure on 7,¥. We will often confuse sections of P(J(R?)) —
> with complex structures J.

We will denote by g; the Riemannian metric p(-, J-). By construction, the area form of
gs is equal to p for every complex structure J as above. We set

J () :=T(2, P(T(R?)).

Given J € J(X), a tangent vector J € T;7 (%) identifies with a section of the pull-back
vector bundle J*(TP(J(R?))) — X, where TVP(J(R?)) denotes the vertical subbundle
of TP(J(R?)) with respect to the projection over . In other words, J is a section of
End(T'Y) that satisfies JJ + JJ = 0. The space J(X) is formally an infinite dimensional
symplectic manifold with symplectic form Q; given by

(], J") = g L w(i10)p.

Definition 4.1. Let (X,w) be a symplectic manifold, and assume that a Lie group G acts
on (X,w) by symplectomorphisms. We say that the action is Hamiltonian if there exists a
smooth function p: X — g* satisfying the following properties:

i) wis Ad*-equivariant, i.e. for every g € G and p € X we have:

pgp = Ad*(9)(p) = pp o Ad(g™") € g%

ii) given & € g, we denote by Vg the vector field of X generating the action of the 1-
parameter subgroup generated by &, i.e. Ve(p) := % exp(t) - pli=o. Moreover, we
set 4¢ to be the function p — pp(§) € R on X. Then, for every £ € g we have:

dpt = wew = w(Vg, ).
A map p satisfying the properties above is called a moment map for the action of G on

(X, w).

In the following, we denote by K; € €%(X) the Gaussian curvature of the metric
95 = p(,J°).

Theorem 4.2 (|[Don03|, [Tral8|). Set ¢ := Aizg((zz)p)' Then the function

p: JE) —  HE&p)"
J o 2(Kj—o)p

is a moment map for the action of Ham(3%, p) on (J(X), ).



PARA-HYPERKAHLER GEOMETRY OF THE SPACE OF ADS STRUCTURES 43

Here, we are using the inclusion B3(X) < $(%,p)* introduced in (EI). By property
i) in Definition Il the preimage p~!(0) is invariant by the action of the Hamiltonian
group Ham(3, p). Consequently, any variation J = Ly J induced by a Hamiltonian vector
field V lies in the kernel of du. By property ii) in Definition Bl for any J € p~1(0) the
space Ker(du ;) coincides with the Qj-orthogonal of the tangent space Ty(Ham(X, p) - J)
to the orbit of J under the action of the Hamiltonian group. Therefore, there is a well-
defined induced symplectic form on the quotient 7 (X) = x~(0)/Ham(X, p). The classical
Teichmiiller space 7(X) can be identified (see [Don03| §2.2]) with the further quotient of
T() by

H:= Symp0(27p)/Ham(Eap) ’

as briefly sketched at the end of Section Because the orbits of H are symplectic sub-
manifolds of 7(X) (see [Don03l §2.2|, [Tral8, Lemma 4.4.8]), we can define a symplectic
form on 7 (X) by setting

Qu([J], [7']) = (", J™) (4.4)

where J" € Ker(dyu) denotes a lift of J that is €2j-orthogonal to the orbit of Sympgy (X, p).
These lifts can be described by a differential geometric property. For this purpose, we
introduce the notion of divergence of an endomorphism: given A € End(7%) and given G
a Riemannian metric on X, we define divg A to be the 1-form

(divg A)(X) := Z G((VEA)X,e;),

where (e;); is a local G-orthonormal frame, V¢ is the Levi-Civita connection of G and
X is a vector field on Y. We will also denote by divg V' the usual divergence of a vector
field V' with respect to the Riemannian metric G. Whenever we are dealing with a fixed
almost complex structure J, we will omit the dependence of metric g; = p(,J-) on J and
simply write g, in order to simplify the notation. In particular, if we write div, A, it has
to be interpreted as the divergence of the endomorphism A with respect to gy. Moreover,
because J is V9-parallel, 1. e. (V%J)Y =0 for every X, Y tangent vector fields on X, we
deduce

divy(JA) = —divy(AJ) = —(divg A) o J (4.5)
for any A € End(7T%). Another immediate relation that we will use repeatedly is the
following:

divy(X) = d(exp)(v, Jv) (4.6)
for any unit vector v.
Proposition 4.3. Let J be in = 1(0) © J (). An element J € Ty J () lies in the kernel

of dp if and only if divy J is a closed 1-form. Moreover, J € Ker(du) is §;-orthogonal to
Ty(Sympy (2, p) - J) inside Ker(dp) if and only if divy J is an exact 1-form.
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Proof. Let V be a vector field on ¥. We observe that
1 . . .
5 tr<JJ£VJ> = (divy J)(V) — divy(JV) . (4.7)
To see this, first we notice that
(divyg J)(V) = D 9((Ve, )V, 1)
= > 9(Ve,(JV) = IV, V,e)
= divy(JV) = > g(JVe,V,e;)

= div, (JV) — tr(JAy),

where V denotes the Levi-Civita connection of g and Ay stands for the endomorphism
Ay (X) := VxV. As shown in the proof of Lemma 19 below, the endomorphism Ly J
can be expressed as JAy — Ay J (see relation (AI3])). In particular we have

tr(JAy) = —tr(JJJAV) (J? = —1)
_ —% (iw(J71av) —u(7ir4v)) (J e T/ T (%))
- f% (tr(Jr74v) —tx( S 4vT))
- —%tr(jJLVJ>,
and so relation () follows. Now, applying such identity we find

) 1 .
O (J, Ly J) = _§f tr(JJﬁVJ>p
)

- L (% tr(jJEVJ> + divg(JV)> p
__ L(divg HV)p

= —f (divg J) A typ -
%

Consider now J in kernel of the differential of the moment map du. By property i) in
Definition {11, we have Q;(J, Ly J) = 0 for every Hamiltonian vector field V. If H denotes
the Hamiltonian function of V', then by relation (48] we have

O:f(divgj) Adef Hd(div, J),
% %

where in the last step we applied Stokes’ theorem on the 2-form d(H (div, J)). Therefore,

by letting the Hamiltonian function H vary, we deduce that div, J is a closed 1-form.
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Similarly, if div, J = df is exact and V € S(%, p), then
Af nvp=df A+ FdGvp) = d(fivp) (vp is closed)

is exact and QJ(j, Ly J) =0 for every V € &(%, p). Vice versa, assume that J is in Ker du
and it satisfies Q;(J, Ly J) = 0 for every V € &(X, p). Then, again by relation (),

j (divgj) Ana=0
b
for every closed 1-form «. Since div J is closed, and since the pairing
(o, B) — f anp
b

between closed 1-forms is non-degenerate in H*(X) x H!(X), we deduce that div, J repre-
sents the trivial class inside the first de Rham cohomology group or, in other words, that
div, J is exact. g

Remark 4.4. The argument described in the proof of Proposition B3] combined with The-
orem [4.2] provides us with a convenient way to express the first order variation of the
curvature K ; with respect to J, that is

dK s (J)p = %d(divg j) .

In the following, we briefly see how to deduce this relation. On the one hand, by the
explicit expression of the moment map p from Theorem 4.2 we have that

dp(J) | Vg = =2 L HdAK; (J)p

for any Hamiltonian vector field V' with Hamiltonian function H. On the other hand,
being p a moment map for the action of the Hamiltonian group, it satisfies

Au(J) | Vyg = Qs(J, Ly J)

— fz(divg J) A dH (relation (4.8]))

_ L Hd(divg j) ,

once again for any Hamiltonian vector field V' with Hamiltonian function H. Combining

the relations above, we find that

—2LHdKJ (J)p = —LHd(divg j) ,

and by letting the Hamiltonian function vary, we deduce the desired relation.
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Classically, one further re-normalizes the lift J" to be L?-orthogonal to the tangent space
to the orbit. This gives the additional condition that div, J =0 ([Tral8], [Tra92]), which
recovers the description of the tangent space to Teichmiiller space via traceless Codazzi
tensors and the formula of (a multiple of ) the Weil-Petersson symplectic form, if we choose
an area form p on ¥ such that Area(X,p) = —27x(X), which means that ¢ = —1 in

Theorem

Lemma 4.5 ([BMSI5, Section 2.1]). Let J,.J' € T T¢(2) be traceless Codazzi tensors
representing tangent vectors to Teichmiiller space. Then,

(Qwp)y (], J) = *é L

and the Weil-Petersson metric can be expressed as

(Gwr) (. ) = éL

where da is the volume form of the unique hyperbolic metric with conformal structure J.

tr(ij') da,
tr(jj') da

Remark 4.6. The change in the sign with respect to the relation appearing in [BMSI5|
§2.1] is due to the fact that here we are considering the complex structure v — —J on
the space of Beltrami differentials, which is opposite to the one used by [BMSI15].

Remark 4.7. We remark, however, that any choice of a supplement W of T;(Symp (X, p)-J)
inside Ker(du) that is Q j-orthogonal to T;(Symp(X, p) - J) gives a well-defined model for
the tangent space to 7¢(3) with the property that (W,Q;|w) is symplectomorphic to
(T;T4(%),42wp).

4.3. The construction of MSy(%, p)

Let us now consider the bundle over ¥ defined by
* 2
P(T*T(R?)) i= P xgpom THT(R2) = P XTITRD /oo gy,

where P is the frame bundle introduced in Section and SL(2,R) acts diagonally. The
fiber of P(T*J (R?)) over the point p € X identifies with 7% 7(T,X), i. e. the space of pairs
(Jp,0p) where J, is an almost complex structure of 7,¥ compatible with p,, and o, is a
gj,-traceless and symmetric bilinear form on 7),% that satisfies o,,(Jy,Jp) = —op. Since
the para-hyperK#hler structure of 7% (R?) is SL(2, R)-invariant (see Theorem [B.6)), each
fiber T*J(T,X) is naturally endowed with a para-hyperKéhler structure (g,,,ip,jp,f{p),
obtained by identifying 7,3 with R? using an area-preserving isomorphism Fp: T2 — R2.
The space of smooth sections
T*J (%) := D(P(T* T (R?))
can be identified with the set of pairs (J, o), where J is a complex structure on ¥, and o is

a symmetric and g-traceless 2-tensor, where g = g5 = p(-, J:). The element o can be equiv-
alently characterized as the real part of a complex valued J-complex linear and symmetric
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2-tensor ¢. We identify the tangent space of T*7 (%) at (J, o) with the space of sections of
the vector bundle (J, o)*(T*P(T*J (R?))) — X, where TVP(T*J(R?)) stands for the ver-
tical sub-bundle of TP(T*J(R?)) with respect to the projection map P(T*J(R?)) — X.
In particular, we can consider a tangent vector (J,6) at (J,0) as the data of (see Lemma
B2):

e a section J of End(TY) satistying JJ 4+ JJ = 0. In other words, J is a g-self-

adjoint and traceless endomorphism of 13;
e a symmetric 2-tensor ¢ satisfying

¢ =00—(o|J])g.
where &¢ is a symmetric and g-traceless 2-tensor. Observe in particular that the
g-full trace part of ¢ is uniquely determined by J.

Formally, T* 7 (X) is an infinite dimensional para-hyperKéhler manifold, where the sym-
plectic forms are defined as

(%) (101 (S, 6), (J',6")) := L ox((J,6),(J',6")) p, (4.9)
for X =1I,J, K, and the pseudo-Riemannian metric is given by
g(J,0) ((‘]’ é-)’ (j,’ OJ)) = fz g((‘]’ d-)’ (j,’ U,)) P (4'10)

where @ and g denote the symplectic form and the pseudo-Riemannian metric obtained
by identifying the fibers of P(T*J(R?)) — X with the space of linear almost-complex
structures on T3 as described above. Similarly we have linear endomorphisms

ILJK: T(JJ)T*j(E) — T(J7U)T*j(2),

obtained by applying pointwisely the endomorphisms I,J,K to a smooth section (j,é).
Their definition is formally identical to the ones in relations ([B.3]), ([8.6]), and (3.7), with
the only difference that now J, o, g, J, ¢ are all tensors, and f(||o||) is a smooth function
over 2.

Remark 4.8. The expression of Mess homeomorphism introduced in Section can be
formally applied to define a map

M:T*T(E) — J() x (%)
M(J,0) = (1 —JB)'J(1—JB),(1+JB)"'J(1+JB)) ,

which takes as input a almost complex structure J and a gj-traceless symmetric 2-tensor
o, and provides a pair of almost complex structures on . In what follows, we will denote
by J; and J, the left and right components of M, and a tangent vector at

T,00) T (8) x I () =TT (%) x T, (%)

will be given by a pair (jl, Jr)
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Remark 4.9. The notation introduced is intentionally abusive, to emphasize the similarities
between the toy model 77 (R?) and the infinite-dimensional manifold 77 (X). In what
follows, we will often make use of the relations proved in Section [3], which concern T* 7 (R?),
in the context of 7% 7 (X). These arguments are legitimate because identities at the level
of the toy model can be interpreted as pointwise identities at the level of smooth sections
inside T* 7 (%).

4.4. The para-hyperKéihler structure of MSy(%, p)

We will now give an explicit description of the tangent bundle of the space MSy(X, p)
(introduced in Section [2.5]), which is well suited to present its para-hyperKahler structure.

We recall from Section that MSo(X, p) is the quotient of the infinite-dimensional
manifold

g = p(-,J-) is a Riemannian metric on X,

m<z7 p) := < (J,0)| o is the real part of a J-quadratic differential,
(h = (1+ f(loll,)) g, B = h~\0r) satisfy [CT)

by the action of Sympy (%, p), where as usual f = f(|oly) = 4/1+ [o]2. We will first

introduce a very specific distribution V = {V(;, } () tangent to M(E, p), presenting
several characterizations of it in Proposition [Kl The proof of the equivalence of these
equivalent characterizations requires a certain amount of computations, and it will be
postponed to Section Theorem [[J will then describe the identification between Vg,
and the tangent space to MSy(X, p) at the equivalence class of (J,0) by the action of
Sympg (2, p). Its proof is fragmented into several lemmas, which will constitute the main
technical core of Section

Remark 4.10. The references to the process of infinite-dimensional symplectic reduction
are limited to the case of the Teichmiiller space, which has been described in Section
However, it is right and proper to acknowledge the reader that the definition itself of the
vector space V(;,), together with the ideas behind the proofs of its properties, are all
results of a deeper analysis developed in analogy to the hyperKéahler symplectic reduction
process of Donaldson [Don03] in our context of interest (see Section [G).

Proposition [Kl Given (J,0) € MSy(Z,p), and (J,&) € Ty T*T (%), the following
conditions are equivalent:

i) the pair (J,6) satisfies

divg(f_lg_ldo) = — "NV .0 J>’
dng J = —f_2<vg.0', 00>
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i1) the endomorphisms QF = Qi(j,(}') = g6 + J satisfy
divg(QTJJy) = ~(Vi,0 | QF),
divg(Q™JJr) = (V0 | Q7),

where J; and J,. denote the components of the Mess map M;
iii) the endomorphisms Q% satisfy

divg Q" = —f "1V, | QT),
divg Q™ = +f" (V9,01 Q).

Moreover, the 1-forms divy, jl and divy,, J, are ezact.

(73)

Definition 4.11. Given (J,0) € m(z,p), we define V{;,) to be the subspace of

Ty T*T (%) of those elements (J,6) that satisfy one of (and therefore all) the condi-
tions in Proposition [Kl

Theorem [l For every pair (J,o) lying in ./\f/l\é_’/o(E,p), the wvector space V( ;o) is con-
tained inside T(‘LO—).A/‘/FS/O(E, p), it is invariant by the action of I, J and K, and it defines a
Symp(%, p)-invariant distribution V = {V(j4)} (1) 0N ./T/(\go(E,p). Moreover, the natural

projection : ./\//KS/O(E,,O) — MSo(%, p) induces a linear isomorphism dm(j.) : Vije) —
175,50 MSo (%, p)-

The proof of Theorem [ is postponed to Section Lemma [LTT shows that V()
is tangent to the locus of those (J, o) that satisfy the Gauss-Codazzi equations, which is
precisely the definition of the subset ./\//KS/O(E, p) of T*J(¥). The invariance of V{;,) by
the action of I, J and K is proved in Lemma [£.13] and the invariance of the distribution V
by Symp(3, p) follows from Lemma We will show in Lemma 2T that the differential
of the projection map 7 is injective. Finally, in Lemma [£.I8 we show that the dimension
of V() is larger than or equal to the dimension of MSo(X, p), which is 6|y (%), and
therefore we conclude that the differential of the projection 7 induces a linear isomorphism
between V{;,) and the tangent space to MSo(%, p).

We are now ready to summarize the proof of Theorem [Alin genus g > 2, although some
of the steps of the proof will follow from the geometric interpretations that we provide in
Section

Theorem [Al (genus > 2). Let X be a closed oriented surface of genus = 2. Then MGH(X)
admits a MCG(X)-invariant para-hyperKdhler structure (g,1,J,K). Moreover the Fuch-
sian locus F(X) is totally geodesic and (g, 1) restricts to (a multiple of ) the Weil-Petersson
Kahler structure of Teichmiiller space.

Proof. Identifying the tangent space T};,MSo(%, p) with V(;,) (Theorem [[J), we can
define on MSy(%, p) para-complex structures J and K, a complex structure I, and a
pseudo-Riemannian metric g by restriction from the infinite dimensional space T*7(X).
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The definition is well-posed, namely it does not depend on the representative in a given
Sympg (2, p)-orbit, by the invariance statement in Theorem [[] and the invariance of g, I, J
and K (which is proved immediately, with the same tools as in the proof of Lemma [£.12)).

It is clear that I, J and K are still compatible with g and satisfy the para-quaternionic
relations. We also have corresponding 2-forms wy, wy and wgk. A priori the metric g, and
consequently the 2-forms wr, wy and wk may be degenerate when restricted to V| ;,) and
thus on MS((X, p). We rule out this possibility in Section [l by identifying these forms
with well-known symplectic forms (therefore closed and non-degenerate) on 7#7¢(X) and
on T(X) x T(¥). From the results of Section [5 we also obtain that wi, wy and wk
are integrable. See Corollaries 511 (5.2 (53] and for all these statements. We can
then conclude that the quadruple (g,I,J, K) endows MSy(%, p) with a para-hyperKéahler
structure.

The mapping class group invariance of the para-hyperKahler structure follows from
the Symp(3, p)-invariance of Theorem [[] since we have a natural isomorphism between
MCG(X) and Symp(3, p)/Sympg(X, p), and again the Symp(3, p)-invariance of g, I, J
and K.

Observe that the Fuchsian locus of MGH(X) corresponds to the pairs (J, o) with o = 0.
By Proposition [K], its tangent space consists of the pairs (J, o) with ¢ = 0 and divy J = 0,
hence it corresponds precisely to the model of the tangent space of Teichmiiller space that
we described in Section (see Lemma and the preceding discussion). By comparing
the expression of the Weil-Petersson metric in Lemma [£.5] with the restriction of the metric
g (see (3.4)), we see immediately that g|r) coincides with 4Gyyp. Finally, the Fuchsian
locus is the set of fixed points of the circle action, that is isometric for the metric g by
Theorem [E] which is proved in Section Bl By a standard argument, this implies that the
Fuchsian locus is totally geodesic. O

4.5. The proof of Theorem [[J

This subsection is dedicated to the proof of Lemmas .12 13l EI7 I8 and E211
Together, these results prove Theorem [[] to identify V(J,0) With the tangent space to
MSo(2,p) at [(J,0)]. The last of them is definitely the most challenging, and it re-
quires some technical ingredients, which will be described along the way and which will be
useful for the part concerning the oo-dimensional symplectic reduction (Section []).

4.5.1. Proof of Lemmal[{.12: invariance under symplectomorphisms.

Lemma 4.12. The distribution V = {V(J,U)}(Ja)em@p
of Symp(X, p). In other words, for every symplectomorphism ¢ of (X,p) and for every
(J,0) € Vije), we have (p*J,0%0) € V(g o)

) 1s tnvariant under the action

Proof. The main point where the condition of symplectomorphism is essential concerns the
metric g5 = p(-,J-). The relation ¢*p = p implies that g «;, the metric with area form
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equal to p and complex structure ¢*J, is equal to ¢*g, the pull-back of the Riemannian
metric g = gy by ¢. This is clearly equivalent to say that ¢: (X, gyxs) — (3,97) is an
isometry. In particular, for every endomorphism of the tangent bundle A we have that

¥ (divg A) = divs4(p* A).

Moreover, it is simple to check that the inner products and pairings of the tensors (see for
instance B.2)) are preserved by . The statement then follows from the naturality of the
action and the expressions defining the subspace V{; 5. O

4.5.2. Proof of Lemma[{.13: Invariance under I,J and K

Lemma 4.13. For every (J,0) € M(E,p), the subspace V() is preserved by I, J and
K.

Proof. This is a simple consequence of the description of V(;,) provided by Proposition
K], part 7). Since K = 1J, it is enough to check that I(j,('f) and J(j, ) belong to V{;),
whenever (J, ) is in Vig,o)-

160, while the g-traceless part of the

The first component, of J(j, o) is equal to f~1g~
; 1

second component is equal to fg(-,J:). If we replace J with f~tg 'y, and g with

fg(-,J-) in the equations (Y1), we obtain the invariance of ViJ,0) under the action of J.
For the invariance under I, we observe that, for every (J7 o) in V(J,0) We have

divy(—JJ) = div,(JJ)
(divg J) o J (rel. (&H))
= —f_2<V22.0, dO>
= — XV 0 | Jg ) (Lemma 2.3 part iv))
= _f_2<vg.07 —é’o(-, J)>
This shows that I(.J, &) satisfies the first equation in (V). Arguing simililarly for divy(f~tg~to0J),
we obtain the invariance of V() by L O

4.5.3. Proof of Lemmal[{.1%: V{ ;) lies in the kernel of the linearized GC-equations

Lemma 4.14. FEvery element (j,O") of Vij,o) lies in the kernel of the linearized Codazzi
equation V"B =o0.

As observed in Lemma 23] the Codazzi equation is equivalent to the requirement that

1o is a g-Codazzi tensor. In order to prove the statement above, we need to compute

g
the first order variation of the expression V¥ (g7 'oY)— V7 (9710 X) = g 1o[X,Y], for any
pair of tangent vector fields X, Y, as we vary (J, o) in the direction (J,¢). To simplify the
notation, we will denote by V the Levi-Civita connection of g = g; and by V its variation

as we change the complex structure J.
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Lemma 4.15. Let J € T;J(X) be an infinitesimal variation of complex structures on .
If V denotes the first order variation of the Levi-Civita connection of g := p(-,J-) along J,
then the following relation holds:

VxY = —%((div N(X) JY +J(VxJ)Y),
for every pair of tangent vector fields X, Y on X.
Proof. The statement follows from Koszul’s formula, which asserts that
29(VxY, Z) = X(9(Y, 2))+Y (9(X, 2))=Z(9(X, Y ))+g([X, Y], 2)—g([X, Z],Y)—g([Y, Z], X),
for every tangent vector fields X,Y, Z. Its derivative leads to the equation

29(VxY, Z) +29(VxY, Z) = X(§(Y, 2)) + Y (9(X, Z)) = Z(3(X.Y))+
+g([X,Y],Z) *g([X’Z]’Y) *g([Y’Z]’X)'

As seen in relation (33), a first order variation of complex structures J determines a
variation of the Riemannian metric g = g of the form ¢ = —g(-, JJ) By developing the
above expression in terms of the covariant derivatives of g, and by the fact that V is a
torsion-free connection, we can express the term 2 g(V xY, Z) as follows

29(VxY, Z) = (Vx§)(Y, 2) + (Vy§)(X, 2) = (Vz9)(X.Y)
= —g(Y,J(VxJ)Z) — g(X, J(Vy ) Z) + g(X,J(VzJ)Y) (J V-parallel)
= —g(J(Vx )Y + J(Vy )X, Z) + g(J(VzJ)X,Y),
where in the last step we used the fact that J (ij ) is g-symmetric for every tangent
vector field V. Let Mx € End(T%) denote the endomorphism MxV := (VyJ)X, and let

M7 be its g-adjoint. Then the relation above can be rephrased in the following terms:

g(J(Vx )Y + JMxY,Z) + g(JMx Z,Y)

g(J(Vx )Y + IMxY, Z) — g(Z, M JY) (J* = —J)
= —g((J(VxJ) + IMx + M3 J)Y, Z).

2g(VxY, Z) = -
Since this holds for every vector field Z, we deduce that

) 1 .

VXyZ—i(J(VXj)-f—JMx—i—M;}J)Y. (4.11)
The endomorphism JMx + M% J satisfies

(JMx + MEJ)* = MEJ* + J*Mx = —(JMx + M%J),

since the adjoint of the complex structure coincides with —J. In other words, JMx + M5 J
is a g-skew-symmetric endomorphism of T3, and consequently it is of the form A J, for
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some smooth function X over ¥ (the space of g,-skew-symmetric endomorphisms of 7},
has dimension 1). The function A can be determined in the following way:

A=~ tr((TMx + ME))
= tr(Mx) (tr(Mx) = tr(M%) and J% = —1)
= Zg((veij)X’ 62‘)
— (div.J)X

where (e;); is a local g-orthonormal frame. Replacing the expression JMx + M%J = A\J
in relation (£I1]), we deduce the desired assertion. O

In the proof of Lemma 14| we will also need the following technical lemma:
Lemma 4.16. If A is a traceless endomorphism, then
(VxA)Y — (VyA)X = (divA)(Y) X — (divA)(X)Y.

Proof. 1t is enough to check the identity for X = e;, ¥ = ey, where ej,es is a local
orthonormal frame on . To simplify the notation, we set (VZ-A)? = g((Ve,A)ej,er). In
particular we have that (V;A)} = —(V;A)2 for every i. Since A is traceless, the same is
true for Vx A. With this identity in mind, we proceed to check the desired relation:

(v61A)62 - (V€2 A)

1A el + (ViA)ses — (VaA) e — (Vo A)] ey
le)2 e1 — (V1A eg + (VaAd)d e, — (VaA)i ey
(VlA) +(Vad)3)er — (ViA)] + (V24)7) e
div A)(ez) e1 — (div A)(e1) ea

AAAA

We now have all the elements to prove the statement of Lemma [LT4}

Proof of Lemma [[.17 First we compute the first order variation of the tensor g~lo along
(J,0) € T(j0)T(X). As seen in Lemma B.2] the variation of the metric g is equal to
g=—g(, JJ) In particular, we have
(97'0) =—g g9 o+ g7l
= —g Y (—gJN)g o +g o0 (o | JI)1 (Lemma 32
— Jig o+ g 60— (o | JI)1.

As aforementioned, we need to compute the derivative of the expression (dVg 1a)(X Y)=
Vx(g7'oY) — Vy (g '0X) — g '0[X,Y] as we vary (J,0) along a direction (J,5). The
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final goal will be to show that, if (J, ) belongs to our preferred space V|4, then such
variation is equal to 0. We observe that

(dVg o) (X,Y)) = Vx((g710)'Y) = Vy((g o) X) — (g7 10) [X, Y]+
+Vx(g~ oY) = Vy (g 'oX)
= (Vx(g7'0))Y = (Vy(g '0))X + Vx (g '0Y) = Vy (g '0X)
= gdiv(gfla)’)(Y) X — (div(g~to)")(X) YJ + (Lemma [£.10))

v

term 1

+ Yx(gflaY) - Vy(gilaXz.
terTn 2

First we rephrase term 1 in the expression above. Applying the expression for (g~ o)’
derived at the beginning of the proof, we have

(div(g~ o)) (Y) X — (div(g o) (X)Y = div(JJg o + g L60)(Y) X +
—div(JJg lo + g7 1o0)(X) Y +
~ Yo | JI) X + X({o | JI))Y.

Assume now that (.J, &) belongs to Vi) Taking the sum of the equations in (V2)) (Propo-
sition [K] part ii)) and using the expressions of J; and J, from (3.I7)), we obtain the relation

div(J J g o + g7 60) = (V9,0 | ).
Together with Lemma 2.3] part iv), we see that
(div(g™'0)) (V) X — (div(g ') )(X)Y =(Vyyo | )X —(Vyxo | )Y+
~Y{o | JI)X +X({o | JI)Y
— (o | J(VxJI)D)Y — (o | J(VyJ)) X.

This is the expression for term 1 that we will use in the final computation. Now we focus
our attention on term 2. Applying the variation formula of the Levi-Civita connection
given by Lemma I8 we obtain that

V(g oY) = Vy (g loX) = % ((div J)(¥V) Jg 0 X +J(Vyd)g~ o X+
—(div J)(X) Jg~ oY — J(VyJ) g_laY)
_ %Jgfla ((div J)(¥) X — (div))(X)Y) +
+ %J <(vyj)g—1aX —(VxJ) g_laY)

= %Jg_la <(VXJ)Y — (vyj)X) +



PARA-HYPERKAHLER GEOMETRY OF THE SPACE OF ADS STRUCTURES 55
1 . .
+ 57 ((VyJ)g*IJX —(Vx) g*lay)
where, in the last step, we applied Lemma (416 to A = J. As a last remark, we apply
Lemma BJ to (V.J) g 'o and g~ 'o (V.J), deriving:
g o (Vod) = (Vod) gl = 2o | J(Ve)) J. (4.12)

We finally combine the expressions found above for terms 1 and 2 with this last relation.
If (J,0) is a point of MSy(X, p) and (J,0) is an element of V| ,), then the variation of
the differential dVg~'o can be expressed as follows:

(d¥g o)X, Y)Y = o | J(VxIDY = (o | J(VyJ)) X+
+ %Jg_la ((VXJ)Y - (VYJ)X> +
+ %J ((Vyd)a'oX ~ (Vx)g~'oY)
% (20 | J(Vx DY + Jg7 (VDY — J(Vx)g oY) +
- % (2<a | J(Vy DX + Jg o (Vy J)X — J(vyj)gflax)

% (2<0 | J(Vx )Y + 2o | J(VxJ)) J2y) n
N % <2<0 | J(Vy ) X + 20 | J(Vy ) J2X>
(rel. @IZ) for e = X,Y)
= 0.

Therefore (J,&) lies in the kernel of the linearized Codazzi equation. O

Lemma 4.17. Every element (J, 7) € Vijo) lies in the kernel of the linearized Gauss-
Codazzi equations (GC).

Proof. We start by relating the Riemannian metrics h; and h, associated to the complex
structures J; and J, with h and the endomorphism B:

hir = p(,(LF JB)" (1 F JB))
=p(1FJB) YA FJB)-,(1FJB)"'J(1 FJB)")
—det(1 FJB) 'p((1 F JB)-, J(1 T JB)-)

f+l

= —5—9(1 ¥ JB),(1 ¥ JB)) (rel. (B.16))

- %h((n ¥ JB), (1 FJB)).

We remark that the metrics h;, differ by the left and right hyperbolic metrics given by
Mess” homeomorphism by a factor 2. Indeed, since the tensor 1 F JB is h-Codazzi, the
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curvature of the metric h;, can be computed as follows

2K}, 2K,
det(1FJB) 1+detB’

Khl,r =

A proof of this fact can be found in [KS07|. This shows that the Gauss-Codazzi equations
have the following equivalent descriptions:

{ av"B =0, { AVglo =0, { AVgls =0,
o i

K, = —-1—det B, Khl = —2, Ky, = —2.
Assume now that (J, ) is an element of Vise). By Lemma B.14] (J,6) lies in the kernel
of the linearized Codazzi equation. Therefore, by what previously observed, it is enough
to show that the first order variation of the curvature 2-form Kj, day, = Ky, p (or Ky, p)
along the direction J; = dM (J,&)1 (or J, = dM (J,6)s, respectively) is equal to 0.

The first order variation of the 2-form K}, p coincides with 1 d (divhl J;) (see [Don03)),
and by the last statement of Proposition [K] the divergence lehl Jl is an exact 1-form.

Since d? = 0, we deduce that the derivative of K}, dap, along Jl is 0, and therefore (J o)
lies in the kernel of the linearized Gauss-Codazzi equations. O

4.5.4. Proof of Lemma[f.18; the dimension of V() is = 6[x(2)]
Lemma 4.18. For every (J,o) € ./\f/l\S/o(E,p),
dim V{ ;) = 6[x(2)].

Proof. We make use of the description provided by Proposition [Kl part ii:). Because the
equations are decoupled, it is sufficient to show that the space of solutions of the equation

divy QF(J,6) = Tf ' (Veo | QT (J,6))

has dimension at least 3|x(X)|. We give the details for the equation concerning Q%, the
other case being analogous. Consider the differential operator D; : T;J(X) — A'(%)
defined by

Dy(Q) =divgQ + [T (Vo | Q) .

Its principal symbol coincides with that of the divergence operator div, : T;J7(X) —
AL(Y), hence Dy is Fredholm and ind(Dj) = ind(div,), where ind(-) denotes the index of
the differential operator, i.e. the difference between the dimension of its kernel and the
dimension of its co-kernel. It is well-known (see for instance [Tro92]) that dim(Ker(divy)) =
3|x(X)|: the space of traceless, divergence-free tensors represents the tangent space to the
Teichmiiller space of ¥. On the other hand, div, : T;J(X) — AL(X) is surjective. Indeed,
using the musical isomorphism # : A1(X) — I'(TY) induced by the metric g = g7, this
is equivalent to proving that divz?éE Ty J(2) — T(TY) is surjective. Let L : T'(TY) —
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T7J (%) denote the Lie derivative operator. Its L?-adjoint is L*(J) = —J(div, J)#. In
fact,

(LV, J5p = L %tr(jEVJ> 0
= fz(divg JI(V)p (Equation (4.7]))

- fz(divg N(IV)p (Equation (4.3)
= —(J(divy, J)*, V)2 .

Therefore, the operator L*L : I'(T'Y) — I'(T'Y) is self-adjoint. Moreover, if V' € Ker(L*L)
then

0=(L*L(V), V)2 = |[Lv ][22,
which implies that V' = 0 because (3, J) has no biholomorphisms isotopic to the identity.

A standard computation in local coordinates shows that the operator L*L is elliptic, thus
by [Voi02, Theorem 5.1] we have an L2-orthogonal decomposition

I(TY) = Ker(L*L) ® Im(L*L) = Im(L*L) ,

which shows that every vector field is in the image of divjﬁ.
Hence,

dim(Ker(Dy)) > ind(Dy) = ind(divy) = 3|x(X)|

and this concludes the proof of the assertion. O

4.5.5. Proof of Lemma[{.Z1} transversality to the tangent space to the Sympgy(X, p)-orbit

Lemma 4.19. For every symplectic vector field X on (X, p) and for every (J, o) € T*J (%),
with o that is the real part of a holomorphic quadratic differential on (X,J), we have
I(,CxJ, ,CXo') = (*EJXJ, *EJXO').

Proof. We need to introduce some notation to prove the desired identity. Let Ay be the
total derivative of a vector field V' tangent to ¥, i. e. AyY := V4§V, for any tangent
vector field Y (as usual g is the Riemannian metric p(-, J-)). Then we can write

(Cy )Y =[V,JY] - J[V,Y]

=V (JY) = V9,V —-JV]Y + JV{V (V9 torsion-free)
=JV]Y — Ay(JY) — JVIY + JAYY (J V9-parallel)
— (JAy — Ay J)Y.

In other words, we have that
LyJ=JAy — Ay J (4.13)
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A similar computation shows that
Lyo =Vio+o(Ay-,-) +o(-, Ay-). (4.14)

Now we apply the definition of the almost-complex structure I to the pair (LxJ,Lx0),
with X symplectic vector field:

I(LxJ, Lxo)=(—=J(Lx]), —(Lxo)o(-,J)—{o | LxJT)g)
Being J V9-parallel, we have that Ajx = JAx. Therefore

—J(LxJ)=—-J(JAx — AxJ) (rel. @I3) for V = X)
=—(JAyx — AyxJ)
=—LxJ. (rel. (I3) for V = JX)

This shows that the first component of I(Lx J, Lx o) coincides with —L ;xJ. To study the
second component we will need a few additional remarks. First we notice that it is enough
to show

—(Lx0)o(, J-) = =(Lyx0)o,
because the trace part of the second component of a pair (j,é) is uniquely determined
by J (compare with Lemma B.2]). Given V a vector field, the endomorphism Ay can be
decomposed into a sum
AV)]l B tr(JAv)
2 2
where the first term is its trace part, the second is the g-skew-symmetric part, and the

4y = J+ A,

third is the traceless and g-symmetric part.
If X is a p-symplectic vector field, then the trace part of Ax vanishes. Since Ayjx = JAx
(again because J is V9-parallel), the decomposition of A;x is

tl“(JAx)

Ayjx = JAx = ]l+0+JA§(.

In particular, X symplectic implies that the g-skew-symmetric part of Ajx vanishes, and
A%y = JA%. Therefore

tr(g loAsx + Asjxg o)

5 g (rel. @14)
= Vix0 +tr(JAx) o + o(J A% -) + o(, JAY ) —tr(9 o JAY)g

(ﬁJXo')o = V%XU + U(AJX', ) + O'(-,AJ)(-) —

Applying Lemma B to g~ o JA% and JA% g o we obtain
U('a JA;() + O'(JA;(, ) = tr(g_lo'JAg() 9,
which, combined with the expression found above, shows that
(ﬁde)o = V?}XJ + tr(JAx) o
= (V%o)(-,J) +tr(JAx) o (Lemma 23] part iv))
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On the other hand, by the decomposition of Ax, we have
tr(g_laAX + AXg_la)

(Lxo)g = V%o +o(Ax-,-) +o(, Ax:) — 5 g (rel (E14))
= V%o — W(O’(J', Y+o(,J)) +0(A%-, ) +o(-, A%) — tr(gflaAX)g

= V%o —tr(JAx) (-, J") + o(A%, ) + o, A% ) —tr(g 1o A%)g,
where in the last step we used that tr(g*10A§) = tr(gflaAX). Now, applying Lemma
Bdto g~ lo A% and A% g 'o we obtain
o(-, Ax) +o(Ax ) = tr(g 7o A%) g,
which reduces the expression above to the equality
(Lxo)g = Vo —tr(JAx)o(, J).

The identity (Lx0)o(-,J+) = (Ljx0)o is now immediate. O
Lemma 4.20. Let G be the operator G(J,0) := K, + 1 + det B, defined over the space

T*J(X) and with values in €*(X). Assume that (J,o) satisfies the Gauss-Codazzi equa-
tions and let U be a vector field on X. Then

1
dG 0 (Lud, Lyo) = §Ah(f*1 div, U) — (1 — det B) f ! div, U.

In particular, if (LyJ,Lyo) belongs to the kernel of the differential of G, then U is a p-
symplectic vector field, i. e. d(typ) = 0.

Proof. The final goal will be to compute $G(J;, 0¢)|t—0, where (J;,00) = (¢ J,bf o). We
first determine the Riemannian metric g; = p(-, J;-) associated to the complex structure

Jp = dy, 1J dapy, where (1¢); represents the flow of U.

gr = p(, (A" T dgy)) = p((dey desy)- (dey " T dghy)-)
= (det(d%?l) o) p(deyy -, J Aoy -) = (det(d%?l) o) g(depy -, depy -)
= (det(dy; ") o 4x) ¥fg,
where g = go and det(dy; 1) = ((;Y)*p)/p. In particular, g; is conformal to 1} g with

conformal factor given by u; := det (dqﬁ; 1) o). We now determine the Riemannian metric
hy associated to the pair (J;, 0¢) as described at the beginning of Section @t

o= (LT ool ) o= (1441 ol ) ot

2
L af1+ wpol? .
= Ut¢thzvt¢th-

1+4/1+||0H£2]o¢t
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Therefore, the metric h; also differs from ¢jh by a conformal factor, here denoted by v,
and defined from the relation above (observe that vy = 1). Using the classical expression
for the curvature under conformal change of the metric, we deduce that

K, = Ky, pn

_ 1
= U 1 (K@Z}fh — §Aw;khln’l)t>

= v{l (Kh oy — %(Ahln(vt oqﬁ;l)) o¢t> .

The last term of the operator G that we need to analyze is the determinant of the endo-
morphism B, associated to the pair (Jy, 0):

det B; = det(h; 'oy)
= vy 2 det ((¥Fh) " o)
= v; %(det B) o 1.

We can finally deduce an expression for the term
1
Kht + detBt = ’Ut_l (Kh o ’l/}t — g(Ah ln(vt o] Ibt_l)) o ¢t + ’Ut_l(detB) O’l/}t> .

Combining the relations found above, we can compute the first order variation of oper-
ator G along the path t — (] J, ¥} o), obtaining

1
(K, + 1+ det By)' = —0(K + det B) + U(Ky) — 5 Ayb — o det B + U(det B)
1
= 91 — det B) — S A,

where, in the last line, we used the fact that (J, o) satisfies G(J,0) = 0. The final statement
will now follow by computing v:

- dvt

St

d(veo g )

dt

t=0

a1+ 41+ ol ou;!
- @

t=0

Ut
L+4/1+ o]

2 —1y/
o e}
_ Ul 0wy

2f(1+ 1)

We now observe that
1 _ _ 1 _ _
HUtHi = 5“(% Lor g, 1Ut) = 952 tr((4fg) YWio (Yig) liﬁa)
t

— 2
= u; *(|lo[l7 © ¥),
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which implies the following:

(loelly, o wi ) = ((ue o)) llolly = —2a |loly = —2a(f? — 1)

since ug = det(d(id)) = 1. A simple computation now shows that u = 4% |,_, = — div, U.
To conclude, we have
: fP-1 ) . 1
v=|—-——F—=x+1])u=—f "div,U.
( Fa+1) !

For the second part of the statement, observe that, being B traceless and h-self-adjoint,
its determinant is a non-positive function. In particular (1 —det B) > 1. Consequently the
linear operator

1
T:\— —§Ah)\ + (1 — det B)A

is self-adjoint and positive definite in L?(X,day), in particular injective. Therefore, if
(LyJ,Lyo) lies in the kernel of the differential of G, then the function A = f~!div, U is
sent to 0 by the operator T', and so div, U = 0. By relation ([d.G) this is equivalent to say
that U is a p-symplectic vector field. O

Lemma 4.21. For every (J,0) € ./\//rS/O(E,p), we have
Vise) 0 T(50)(Sympy (X, p) - (J,0)) = {0} .

Proof. Assume X to be a symplectic vector field such that (LxJ, Lxo) belongs to V(). By
equivariance of Mess homeomorphism, this is equivalent to the fact that (LxJ;, LxJ,.) are
exact 1-forms. In particular we must have that the h;-divergence of Lx J; is an exact 1-form.
By Proposition .3}, this implies that £xJ; is € ,-orthogonal to T);, Symp (%, p) - J;. There-
fore, for every p-symplectic vector field Y we have Q; (LxJ;, Ly J;) = 0. Consequently,
inside the quotient 7 (X) of J(X) by the action of the Hamiltonian group Ham(%, p), the
class [Lx Ji] is ﬁ[ Jg)-orthogonal to the H-orbit of [J;] (compare with Section 1.2} and in
particular with Equation (€4])). As observed by Donaldson [Don03| (see also [Tral9]), the
H-orbits are symplectic submanifolds of 7~'(E), and the class of LxJ; is tangent to the
orbit H - [J;]. By what previously observed, we deduce that the class of LxJ; is equal
to zero inside T, H - [J;] or, in other words, that Lx.J; is tangent to the orbit of J; by
the Hamiltonian group inside J(X). Since the Lie derivative operator X — LxJ is injec-
tive, because (3, J) has no biholomorphisms isotopic to the identity, the vector field X is
actually p-Hamiltonian, i. e. txp = df for some f € €°(%).

On the other hand, if (L x J, Lx o) belongs to V{ ), the same has to hold for I(Lx J, Lx o)
—(LyxJ, Lixo) (see Lemma[L19). In particular, the differential of the function G' consid-
ered in Lemma applied to (LyxJ, Ljxo) must vanish, by what observed in Lemma
117 By the second part of LemmalL20] we deduce that JX is p-symplectic, i.e. d(tyxp) =
0. This implies that the 1-form —dfoJ = —(txp)oJ = tyxp is closed, and therefore that
the function f is g-harmonic (since d(dfoJ) = —A,fp). Being ¥ compact, we deduce
that f is constant, and therefore that the vector field X is equal to 0, as desired. U
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4.6. The proof of Proposition Kl

This subsection is dedicated to the proof of Proposition [Kl which provides a series of
equivalent descriptions of the tangent space to MSy (X, p), the model for the deformation
space of MGHC AdS structures introduced in Section The proof of the result is
technically involved, and none of the tools developed here will be used in the rest of the
exposition. In particular, the reader who is willing to trust the statement of Proposition
[Kl can skip this part without losing necessary ingredients for the remainder of the paper.

We will first focus on the equivalence of the first three descriptions appearing in the
statement of Proposition [Kl This part is mainly algebraic and it follows from explicit
manipulations of the equations.

Proof of i) < ii) < iii). Recalling that QT = QT (J,6) := flg 169 + J (these terms
formally appeared already in the study of the differential of Mess’ map in Proposition
(baby version)), one readily checks that i) < ii), since taking the sum and difference of
the equations in (V1)) one obtains the equations in (V3)), and vice versa.

Let us now prove i) < iii). As a preliminary step, we claim that, for every J' e T;T (%)
and for every tangent vector field V', we have

df (J'V) = [TV gy o | T = f7HVe | T (g7 o)V). (4.15)

Assuming temporarily this relation, and using that the components J; and J,. of the map

M can be expressed as follows (see (B.17))
=fJl+gle,  Jr=fl-g o
we obtain the following identities in local coordinates z;:
(divg Q) JLV = dz' (V4QF)JJV)
= dz' (V4,Q T I)V) — da" (QTI(VE (T + g 'o))V)
(a £ dat (QTJ2V) + da (Q+J(Vgig_1a)V))
=divy(QYJ )V +df (Q1V) —da" (Q1 I (Vg '0)d) (g 'o Codazzi)
=divg(QT IV +df (QTV) —2(Vio | Q" T) (VIg~t =0

QT IV
( )
( ) )
= divg (QTJ IV + df (QTV) +2{(V],0)(~J) [ QT) (QT e T;T (X))
( ) )
( )
( )

= divg(Q

=divg(QT TV +df (QTV) +2(V9,0 | Q")  (Lemma 23 part iv)
= divg (QT IV + [NV 10 | Q) +2(VHy0 | Q). (rel. (@IH))
= divy (QTJ )V + f~ 1<vg oy | QT+ (Vo | QF),

where in the second to last line we used relation (£I5]). This can be rewritten as:

(divg QF + f1{V9,0 | Q")) 0 JJy = divg(QT Ty + (V9,0 | QF).
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This shows that the first equations in (V2) and (V3] are equivalent. Proceeding in an
analogous way for the term div, Q~, we can deduce that the second equations are equivalent
too, and therefore conclude that i) < ).

It remains to prove relation [ZI5). Since (¢~ )2 = ||o||* 1 by Cayley-Hamilton theorem,

we have

V(o)1 = (Vig o) o+ g7 a(Vig o). (4.16)

Now we observe that
2V, a\J’> da’ (J’(vg iy 9 0):) (VIg~1 =0)
= da’ (J'(Vag o) (g~ to)V) (97 to Codazzi)
= —da’ (J'g o (Ve g 'o)V) + di(llo|?) dat (J'V)  (relation (@IE))
= —da' (J'g "o (Vg )a) + d(lol®) (J'V) (9o Codazzi)

—tr(J’g Lo(Vig o)) + d(|o|?) (J'V)
= d(|lo[*) (J'V),

where, in the last step, we applied Lemma 3.9 to the triple J’ g o, V! vy “loeT;J(%).
Finally, we have

. 1 . 3 .
Af (J'V) = ———=d(|o]") 'V = [THV ]y o | ],
24/1 + ||o]]
which concludes the proof of relation (4.I5]), and hence of the statement. O

The last statement of Proposition [Kl is slightly more elaborated, because it requires a
"conversion" in the linear connection: while the first three characterizations are expressed
in terms of the Levi-Civita connection VY of g, the last one involves the Levi-Civita con-
nections V! and V" of the Riemannian metrics h; and h,., respectively. For this reason we
will need some additional ingredients, described in Lemmas [£22] 23] 424l The transition
from V9 to V!, V" is done passing through the Levi-Civita connection of the Riemannian
metric h: in Lemma we express the derivative V?B in terms of VJo, and in Lemma
we compute the h-divergence operator in terms of div,. With these tools, we will be
able to determine the expressions for the divergence with respect to h; and h, in terms of
div, and the derivative Vio, as described in Lemma [£.24] which will make the equivalence
i11) < 1v) simpler to handle.

Lemma 4.22. Let (J,0) € T*J(X), where o is the real part of a J-holomorphic quadratic
differential. Let h denote the Riemannian metric (1 + f)g, with Levi-Civita connection
V", and let B = h™'o be the h-self-adjoint operator associated to o. For every tangent
vector field X we have

ViB =1+ f)f V(g o),
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where [ = f([lo]l,) =4/1+ HO‘H;, and VY is the Levi-Civita connection of g = p(-,J-).

Proof. First we observe that, if o is zero, then the relation is obviously satisfied. In what
follows we will assume that ¢ is not identically zero.

The tensor V% (g7 10) is a symmetric and traceless endomorphism of the tangent space
of ¥. For every p € ¥ outside the set of zeros of o (which is a finite set), the elements
(g7to), and (Jg~to), form a basis of the space of traceless symmetric endomorphisms of
T,¥. In particular, using the scalar product {-,-) we can represent Vg((g*1
such basis, obtaining the following expression:

o) in terms of

Vi(gTlo)Y =

> (g0, Vgl o) g lo+{(Jg o, V(g7 o)) Jg o)

1 /1 B .
- L (300 (X000 + V) 7o )

— QHiHQ (d(llallf,) (X)g o+ d(||g||3) (JX) nga) .
g

From the first to the second line, we are making use of the definitions of the scalar products
(-,-> and Lemma 23] part ). By definition of f, we have HO‘H; = f? — 1, therefore

d(HUH;) = 2fdf. Combining this with the chain of equalities above, we obtain that
Vilg™lo)Y = (f2 =17 (Af (X) g o +df (JX) Jg'a).
The exact same observations made to express V% (¢7'0)Y allow us to deduce that

h 1

(VB = oz (ABID) () B+ d(1B1) (1) TB)

(remember that B is Codazzi with respect to h by Lemma 23] part ¢)). Unraveling the
definitions of f and B, we see that ||B||* = (1 + f)~!(f — 1), and consequently d(||B|*) =
2(1+ f)~2df. In particular we obtain that

(VAB)Y = (1+ )" 2(f = 1) (df (X) B+ df (JX)JB)
=(P-D'A+HTAfF(X)g o+ df (JX)Tg o),

where in the last step we used that B = h='o = (1 + f)"'g~'o. Outside the zero locus

of o, the statement now follows by comparing the two expressions found for V% (g lo)Y

and V’}(B , and the identity holds on the whole surface by continuity. O
Lemma 4.23. Let T be a smooth section of endomorphisms of TY. Then
div, T = divy T+ (1 + f) "' df o T§,

where T is the g-symmetric and traceless part of T .
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Proof. By Koszul’s formula we have
Qn(VEY,Z) = X (WY, 2)) + Y (WX, 2Z)) — Z(WMX,Y)) + h([X,Y], Z) — WX, Z],Y) — h([Y, Z], X)
=df (X)g(Y,2) +df (V) g(X,Z) - df (2) g(X,Y) + 2n(V Y, Z),

where in the last step we used the relation h = (1 + f) ¢ and the Koszul’s formula for g.
In particular, we deduce that

VAY = V&Y + %(1 +)7THAf(X)Y +df (V)X — g(X,Y) grad, f),
where grad, f = g~ df is the g-gradient of f. Then we have
(divy T)X = da ((V’giT)X) = dz' (vg@ (TX) — T(VgiX)>
~ dat (V4,(1X) = T(V4X)) + 3 (1+ )7 dal (2 TX +df (TX) ot
—9(0;,TX)grady f — T(0;f X + df (X) &; — g(0;, X) grad, f))
= (div, T)X + %(1 + /)N Af(TX) + 2df (TX) —df (TX) —df (TX)+
—df (X)trT + g(T grad, f, X))

= (div, T)X + %(1 + )7 HAf(TX) —df (X)) tr T + df (T*X))

2 2
= (divy, T)X + (1 + f)~tdf o T5(X).

— (div, T)X + (1 + f)"'dfo <T+T* _ ﬂn) (X)

From the first to the second line we used the relation found above between the Levi-Civita
connections of g and h; in the forth line T* is denoting the g-adjoint of T'; in the last
line we observed that the endomorphism (7' + 7%)/2 is the g-symmetric part of T', and
(trT')/21 is its full-trace part. O

Let A; and A, be the tensors
A =1-JB, A, =1+ JB.

Then the metrics h; and h, coincide with h(A;-, A;-) and h(A,-, A,-), respectively (see for
instance the proof of Lemma [LI7). If o is the real part of a J-holomorphic quadratic
differential, then the tensors A; and A, are h-Codazzi (B is h-Codazzi by Lemma 23] and
1 and J are Vh—parallel) and h-symmetric. In particular, we can express the Levi-Civita
connection of h; and h, respectively as follows:

VY = A7V (AY), VY = ATIVE(A,Y). (4.17)

These relations can be proved by checking that the connections defined on the right-hand
sides are torsion free (which follows from A; and A, being h-Codazzi), and h;- and h,-
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symmetric, respectively (which follows from A; and A, being h-symmetric and from the
description of h; and h, given above). See also [KS07].

Lemma 4.24. Let T be a smooth section of traceless endomorphisms of TX. Then
(divy, T)X = (div, T)X — V%0 | JT®)
(divy, T)X = (div, T)X + f~XV%a | JT*)

where T stands for the g-symmetric part of T.

Proof. Recalling relations ([B.16]) and (3.15), we have that

= %(1 + JB). (4.18)

In this expression and the ones that will follow, we consider the sign above in + or F to
be the one appearing for the expression of A;, and the one on the bottom for A,. Being
1 and J V’-parallel, we have V})‘(Alﬂ, = FJV% B. Applying the expressions ([IT) for the
Levi-Civita connections of h; and h,, respectively, we find

(divy,, T)X = da’ ((VE'T)X) = da* (V5 (TX) = T(V5 X))
— 4 (A;}V%(AMTX) —TA;IVE (AI,TX))
— do (ALH(VEALTX + AL A (VET)X + A7) ATV X) +
~TAZH (VA A) X — TAZ AL (V5 X))
= da’ (AN (VB AL)TX) + (divy T)X — da' (TA]) (V3 Are) X)
— (div, T)X + tr<Al_7rl(V%XAl7r) - TA;}(V’;(AM)) (AL, hy,-Codazzi)

Lemma [4.23] allows us to express the first term of the sum in terms of the divergence with
respect to g, so now we focus on the other two terms. For the first one, we express it as

follows:
_ 1+
(A7} (V) = T2l (12 7B) (T ) (xel. (EI))
1
=F ;f tr((]l + JB)Jvl}XB) (VR A, = FIVLB)
_ 1 ; / tr(JBJvi}XB> (JVh B traceless)
1+
= / tr(ngxB) (BeT;T(%))
= —(1+f)71df (TX). (d(I1BI*) = 2(1 + f)~2d/f)
We proceed similarly for the third term:

tr (TAE}(V’;(AM)) - # tr (T(]l + JB)(V’}(AM)) (rel. EIR))
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1
_ +%ft (r(1 £ 7BV B) (Vi AL = FIVEB)

1
- §f_1($ tr(TJV% (g7 o)) — tr(TJBJIV% (97 '0))) (Lemma E22)
Vo [T = (L + f) (Vo [ T o).
In the last step, we expressed B as (1 + f) !¢ 'o, and we observed that, if ' = T¢ + T*%,
where T% and T denote the g-anti-symmetric and g-symmetric parts of T', respectively,
then 7 does not contribute to the term tr(TJV% (g o)) since V¥% (g7 o) is traceless,
and similarly 7 does not contribute to the term tr(TJBJV% (g 'c)) by Lemma39] part

i) (observe that T is traceless since T is, by hypothesis).
Combining the relations obtained above with Lemma 23] we see that

(divy,, T)X = (divy T)X + tr( A} (Vhy Ary) — AL T(V AL )
= (divg T)X + (1+ /)7 df (T°X) — (1 + /) df (TX)+
(V%o | JT) — (1 + ) WV%o | T o))
= (divy T)X — (1 + £7HAF(TUX) + (1 + f)71f71<vg(0 | T to)+
F fTUVYo | ITS.

Since the space of g-anti-symmetric endomorphisms of 7,,% has real dimension 1, we can
write 7% = u J for some smooth function u. Therefore

(V%o | T o) = u(V%a | Jg o)
=u(Vyo,0),
= 5 d(oll}) (7X)
=ufdf (JX), (f2=1=|ol?)

where, from the first to the second line, we used Lemma 23] part iv). Expressing again 7'
as uJ in the relation we found above for (divy,, 7')X, and combining it with what just
shown, we obtain the desired statement. ]

We are finally ready to prove the last statement of Proposition [Kk

Proof of the last statement. We will apply the previous lemma to T' = Ji, Jr. To do S0, we
express the g-symmetric and g-anti-symmetric parts of Ji, J. From the relation described
in the proof of Theorem [C] (baby version) for the differential of the Mess homeomorphism
M, we see that J; and J, can be expressed in terms of (J o) as follows:

=0 |Q")J £ fQ™, (4.19)

where Qt = Qi(j, o) is defined as in Proposition [Kl part iii) (we will not need the actual
definition of QF, but only the fact that Q* € T;7(X) and the expression (V3)) for the
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equations of V(;,)). In particular we have that the g-symmetric parts of jl, J, are:
; +
(Jir)* = £Q* (4.20)

The very last ingredient needed is the following convenient way to express the terms Jy
and J,:

Jir = FQ T I, — (o | JQH, (4.21)
whose proof goes as follows:
Jip = (0| Q5T + fQ* (rel. [@I)
=+fQF +JQFg o — (o | JQT)1
=FQTI(fT £g o) — (o | JQT)L (/2= —T and Q* € 1,7 (%))
= FQTJJiy — (o | JQ, (rel. @I7))

where in the second line we applied Lemma to JQ*, 9710 € T;J(2). Now, applying
Lemma £.24] we obtain

(divp, Ji)X = (divg Ji,) X F (Vo | J(£QF)) (rel. (E.20)
= Fdivy(QF L)X — (o | JQE) X — (Vo | JQT). (el @)
Using once again Lemma 23] part iv), this identity can be rewritten as
divy,, Jir +d(o | JQT)) = Fdivg(Q* T Ji,) — (V9,0 | QF).

This finally concludes the proof of the last part of Proposition 3.4l By a straightforward
computation using relations (B17) and (4.19), we can see that

<[J17J7"]7jl> <[Jl7Jr]7jr>

(o | JQi> = _8(1 — Iy, Je)) B 8(1 —(Jp, Jr))

5. GEOMETRIC INTERPRETATIONS

In this section we conclude the study of the para-hyperKahler structure on the defor-
mation space MGH(X) for ¥ a closed surface of genus > 2, giving interpretations in terms
of anti-de Sitter geometry to the elements that constitute the para-hyperKéhler structure
(g,I,J,K). As a byproduct, we will deduce that the symplectic forms wy,wy,wk are non-
degenerate and closed, which will conclude the proof of Theorem [Al Finally, we study the
relation between wy, wy, wk and Goldman symplectic form Q% o on the PSL(2, B)-character
variety.
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5.1. The cotangent bundle parametrization

Recall from Section 22lthat Krasnov and Schlenker introduced in [KS07] a way of parametriz-
ing the deformation space MGH(X) = MS(X) via the cotangent bundle 7*7¢(X) to the
Teichmiiller space of X. Precisely, they produced a mapping-class group invariant homeo-
morphism

F: MSX) >T*T(2),
see Theorem 2.8 Using this map, we can identify, up to a multiplicative factor, the
natural symplectic structure on T#7¢(X) with the complex symplectic form w}c, where

wic = w3y + IWK.

Theorem [Bl (genus > 2). Let 3 be a closed oriented surface of genus = 2. Then
i _
]:*(IT*T(E)an*T(E)) = (I, §Wic> ,
where Lr«7 (s denotes the complex structure of T*T (%) and Q%‘T(Z) its complex symplec-
tic form.

Proof. The proof is an adaptation of the arguments of the genus one version of Theorem
Bl proved in Section A computation identical to Remark [3.14] shows that if (J;); is a
1-parameter family of complex structures on 3, with Jy = J, then the Beltrami differential
of the identity map id: (X,J) — (X, J;) is

ve = (1 — JJJ)" N1 + J,J)
and that v = %JJ Hence given a pair (J, &) in our model of the tangent space T(5,6)MS0(%)
(see Proposition [Kl and Theorem [[]), we have

. 1.
dmo dF (10 (J,6) = 577 .

Now let g; be the Riemannian metric p(-, J-), let {e1,e2 = Jei} be a local gj-orthonor-
mal frame and let ¢ = 0 —io(-,J-) as usual. The same computation as in the genus one
case, using the definition of the pairing in 7*7¢(3) (see (B12) and (B13)), shows that

(60 9)(er,02) = o (9(0(er), €2) — (3 (ea), )

i3 (7
= —5 A(J,O’)(J’ U)
Hence we obtain , ,
1 . ?_
‘F*Qg*T(Z) = *5(% —iwK) = *?ﬁc )

which proves one part of the statement. For the pull-back of the complex structure Zp«rx),
one argues exactly as in the genus one case to conclude that F*Zpsry) = —L O

As a consequence, we immediately obtain:
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Corollary 5.1. The almost complex structure I on MSy(X) is integrable; the 2-forms wy
and wg are symplectic forms.

Proof. Since Zp«7(x) is an integrable almost-complex structure and Q%*T(E) is a complex
symplectic form, the two statements follow immediately from Theorem [Bl O

5.2. The Mess homeomorphism

In Section 2.3 we explained that, under the identification between MS(X) and MGH (),
Mess homeomorphism

M MSE) - THE) x TH(E)
is expressed by the formula of Lemma 210l which is formally the same expression as
the map M : T*J(R?) — J(R?) x J(R?) defined in Section This implies that
M MS(E) — TE) x TE(X) is induced by the map (see Remark £.8) that we introduced
in the finite dimensional context.

Recall also that 7¢(X) x T¢(X) is naturally endowed with a para-complex structure
Pre(s)xTe(x), which is the endomorphism of the cotangent bundle for which the integral
submanifolds of the distribution of 1-eigenspaces are the slices 7¢(X) x {}, and those for
the (—1)-eigenspaces are the slices {#} x T¢(X). Plus, it has a para-complex symplectic
form

1 T
QEC(Z)fo(E) = 5(7Tl*QWP + 1T Qwp) + 5(7TZ*QWP — i Qwp)

where Qyyp is the Weil-Petersson symplectic form and 7, 7, denote the projections on
the left and right factor. Here we show the relation of these structures with the para-
hyperKéhler structure (g,I,J,K), via Mess’ diffecomorphism.

Theorem [C| (genus > 2). Let ¥ be a closed oriented surface of genus = 2. Then
M*(Pr(s)r(2) 4% 5y w7m) = (3, w5)

where Pr(s)x1(x) denotes the para-complex structure of T(X) x T(X) and Q@}(E)x’r(z) its
para-complex symplectic form.

Proof. Let W, ;) denote the image of V| ;,) under dM. Because divp, jl and divy, J}
are exact 1-forms by the last statement in Proposition [Kl the vector space Wiz, 18
(2, ® (££,,))-orthogonal to the tangent space to the orbit of Sympgy(X, p) (see [Don03]
or Proposition [3]). Moreover, by Lemma [£.21] and equivariance of the map M, the space
W(4,,1,) is in direct sum with the tangent space to the orbit. Therefore, (W, 1,y i(QJl ®
(£9,,))) is symplectomorphic to (T7];,;7(%) x T T(%), 7/ Qwp £ 7 Qwp)). Finally,
the computations in Section (see the proof of the baby version of Theorem [C]) can be
carried out word-by-word in this context and show that

1
§M*((QJI @QJT) +T(QJI@(—QJT))) = Wwr + TWK zwfl? .
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The fact that M*Pr(s)x7(x) = J then follows by the usual argument, as in the conclusion
of the baby version of Theorem [C] at the end of Section O

As a consequence, we obtain:

Corollary 5.2. The almost para-complex structure J on MSy(X) is integrable; the 2-forms
wr and wg are symplectic forms.

Proof. This follows immediately from Theorem [C] the integrability of Pr=)x7(x) and the
closedness and non-degeneracy of Qg(z)xT(z)- O

Corollary 5.3. The metric g on MSy(X) is non-degenerate.

Proof. The proof follows by observing (for instance) that g(-,-) = wz(-,J), together with
the non-degeneracy of wy and the invertibility of J. O

5.3. The circle action on MS(Y)

We now consider a circle action on MS(X), which is simply defined, under the diffeomor-
phism

F:MSX)->TT(%),
by € - ([J],q) = ([J],€?q), for ¢ a holomorphic quadratic differential. As in Remark 2.5
we see that the circle action is induced by the following expression in terms of pairs (h, B):

Ry(J,0) = (J,cos(8)o + sin(0)o (-, J+)) ,

and it is easily checked that Ry descends to the quotient MS(X). As done in the intro-
duction, we denote by Cy the composition C o Ry, for every § € S'. We then prove the
following results:

Theorem [El (genus > 2). Let ¥ be a closed oriented surface of genus > 2. The circle
action on MGH(X) is Hamiltonian with respect to wi, and satisfies

C —i6, .C
Rg=g Rjwr = wr Rjwy = e uwr .

A Hamiltonian is given by the function
A:MS(E) SR A(J.o]) = f (1 /1t au?,) ,.
%

that gives the area of the mazximal surface.

Remark 5.4. In [BMS13| and [BMS15], the authors studied the landslide flow on 7¢(X) x
T*(¥) that in our notations corresponds to the 1-parameter family of maps Mo Ry, oM™,
They showed that the landslide flow is Hamiltonian with respect to the symplectic form
T Qwp + 1 Qwp. Our Theorem [El recovers this result, including it in a more general
context.
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Theorem [F] (genus > 2). Let ¥ be a closed oriented surface of genus = 2. Then the
function —4.A is a para-Kdhler potential for the para-Kdihler structures (g,J) and (g, K).

The proofs are straightforward adaptations of those provided in Section B.7for the genus
one case. We only remark that we modified the natural Hamiltonian that one obtains by
integrating the function H over ¥, namely the function

el | fllele= | 1+ 1ol

by adding a constant, so that A([J,0]) can be interpreted as the area of the maximal
surface in Anti-de Sitter space corresponding to the point [J, o] under the identification
between MS(X) and the space of equivariant maximal surfaces in Anti-de Sitter space.
Indeed, recalling that the first fundamental form of the maximal surface is given by the
metric h = (1 4 f(||o]|;))gs where g5 = p(-,J-), the area form of h is

dAy, = (1+ f(loll,))dAy, = (1 VAN Haui) )

Theorem [C] and Theorem [E]l have other direct consequences. Recalling from Section 241
the definition of the map

Cg =C OR@ : MS(E) i T(E) X T(E) s
we see that
Co (PrsyxT1(x)» 491'17%(2))(7-(2)) = (cos(#)K — sin(0)J, wr — 7(cos(f)wy + sin(f)wk)) . (5.1)

As an immediate consequence, we conclude the proofs of Theorems [Dl and [Gl For the for-
mer, it suffices to observe that for # = 0 the parameterization Cg = C o Ry : MS(X) —
T(X) x T(X), given by the induced metric on the two Cauchy surfaces of constant curva-
ture —2, is simply C = Cy.

Theorem [DI (genus > 2). Let X be a closed oriented surface of genus = 2. Then
C*(PT(E)XT(Z)’4Q§(Z)XT(Z)) = (K,wg)

where Prs)x7(x) denotes the para-complex structure of T(X) x T(X) and Qlﬁ'}(z)x’r(z) its
para-complex symplectic form.

In particular, we deduce:
Corollary 5.5. The almost para-complex structure K on MSy(X) is integrable.

Finally, we have the proof of Theorem [Gl, which is expressed purely in terms of Teich-
miiller theory. Namely, recalling that the map

Mo : T*T(S) > T(X) x T(X)

associates to a pair ([J],q) the pair (h(j _ciog), h(jeioq)) of hyperbolic metrics on ¥, where
h(sq) has the property that the (unique) harmonic map (3,J) — (X,h) isotopic to the
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identity has Hopf differential equal to ¢. By Lemma [2.T4] this map is identified to Cg oF L
Using (5.0)) and Theorem [Bl we obtain Theorem

Theorem [Gl (genus > 2). Let ¥ be a closed oriented surface of genus = 2. Then
I H5 (297 (5w 7(s)) = — Re(ie” Qur(s)) -
5.4. Para-complex geometry of the PSL(2, B)-character variety

Let B be the algebra of para-complex numbers, i.e B = R@® 7R with 72 = 1. In this
section we study the para-complex geometry of MGH(X) seen as a component of the
PSL(2, B)-character variety. We show that multiplication by 7 on B induces a para-complex
structure on the PSL(2,B)-character variety that makes Goldman symplectic form Q%ol
para-holomorphic, and that the Goldman form ngl coincides with the para-complex sym-
plectic form w? up to a multiplicative factor (Corollary [HI). Moreover, we give a formula
for Goldman symplectic form based on anti-de Sitter geometry and show that the B-valued
Fenchel-Nielsen coordinates defined in [Tam20] are para-holomorphic Darboux coordinates
for Q%al'

5.4.1. Para-complex structure on the character variety

Let us recall the construction of the isometry group of Anti-de Sitter space in terms of
the para-complex numbers, following [Danl3]. We denote by SL(2,B) the set of 2-by-2
matrices with coefficients in B and determinant 1. Any matrix A € SL(2,B) can be written
uniquely as A = Ayet + A_e™, where A4 € SL(2,R), et = &TT (see Appendix [A]). The
map

SL(2,B) — SL(2,R) x SL(2,R)

A (AJF? A*)

induces an isomorphism between PSL(2,B) and PSL(2,R) x PSL(2, R), where by PSL(2, B)
we mean

PSL(2,B) = SL(2,B)/{£1, £7} .
We define the PSL(2,B)-character variety as follows:

\(E,PSL(2,B)) = {p: m1(X) — PSL(2, B)}/PSL(2, B) |

namely the set of conjugacy classes of representations p : 71 (X) — PSL(2,B). The aformen-
tioned isomorphism between PSL(2, B) and PSL(2, R) x PSL(2, R) identifies x (X2, PSL(2,B))
with x(2,PSL(2,R)) x x(X,PSL(2,R)) by associating to p the pair of representations
p+ : m(X) — PSL(2,R) defined by the property p(v) = pi(y)e™ + p_(y)e~ for every
v em(X).

By the work of Mess ([Mes(07]), the moduli space MGH(X) is diffeomorphic, under
the holonomy map, to a connected component of x(3,PSL(2,B)), corresponding to pairs
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of representations in PSL(2,R) that are discrete and faithful, and that induce hyper-
bolic structures on ¥ compatible with the fixed orientation of . Let us denote by
Xo(X,PSL(2,B)) this connected component. By the work of Goldman [Gol84], the tangent
space of xo(X,PSL(2,B)) at [p] € xo(X,PSL(2,B)) is isomorphic to the first cohomol-
ogy group H'(X,sl2(B)aq,). We recall that elements of H!(X, sl2(B)aq,) are equivalence
classes of closed 1-forms on 3 with values in the flat bundle sl3(B)aq, defined by

s (B)adp = (X x sl2(B))/ ~ ,

where (Z,v) ~ (v& Ad(p(7))v) for every Z € %, v € m1(X) and v € sly(B). As usual,
two 1-forms are equivalent if their difference is exact. Here, the exterior differential is the
B-linear extension of the usual differential for sly(R)-valued forms.

We can then endow xo(X,PSL(2,B)) with a natural para-complex structure 7 that
multiplies by 7 an sly(B)aq ,-valued 1-form.

5.4.2. Goldman symplectic form

A general construction by Goldman endows every character variety of a semi-simple Lie
group with a symplectic form Qgo (JGol84]). In the setting of PSL(2,B) this can be
obtained as follows. The pairing

B : sl (B) @sly(B) — B
(X,Y) — tr(XY)

is a non-degenerate B-bi-linear form that is invariant under conjugation. Pre-composing
B with the standard cup-product in co-homology, we obtain a bi-linear pairing

HY(2,515(B)aa,) x HY(S,512(B)aa,) — B
(o @dl[o’ @) = | Bo.d)o r o)

which is non-degenerate by Poincaré duality and skew-symmetric. By general arguments of
Goldman ([Gol84]) and Atiyah-Bott (JAB83|) the resulting B-valued 2-form on xo (X, PSL(2,B)),
which we denote by Q%Gl, is closed.

Lemma 5.6. The B-valued symplectic form Q%o[ is para-holomorphic with respect to T .

Proof. Recall that a B-valued 2-form w in a para-complex manifold (M, P) is para-complex
if w(X,PY) = w(PX,Y) = 7w(X,Y). In our setting, for every closed slz(B)aq,-valued
1-forms 0 ® ¢ and o/ ® ¢’, we have

Wi(0 R ¢, T(0' @) = Qo ® 0’ @7¢) = L B(¢,7¢")(0 A 0')

- TJ; B(p,¢') (o And') = 79%01(0-@@5’ @) .
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Skew-symmetry and bi-linearity of Q%ol imply that Q]gol is para-complex. B_ecause Q%ol
is para-complex and closed, and the exterior differential decomposes as d = 07 + 0r (see
Appendix [A]), we deduce that éTQIgol = (, hence Q%ol is para-holomorphic. U

Because Q% o 1s B-valued and symplectic, its real and imaginary parts are closed 2-forms
and thus define two symplectic structures on xo (X, PSL(2,B)). The space xo(%, PSL(2,B))
is identified with the product T*P(X) x TP (3), where 7P (X) is meant as the space of
discrete and faithful representations with values in PSL(2,R), and is therefore endowed
with a real Goldman form Qﬂéol, defined in the analogous way. It is known from the work
of Goldman that, if

hol : TH(2) — TP(%)
is the holonomy map for hyperbolic structures on ¥, then
hol*Qg,, = Qwp , (5.2)

where Qup is the Weil-Petersson symplectic form on 77(X). We now express Q]g o 1D
terms of the real Goldman forms on each component 7 ().

Proposition 5.7. Given a closed oriented surface of genus = 2, we have the following
identity on xo(X,PSL(2,B)) = T (X) x T (X):
1 T
Q]g’ol = 5(7TI*QH§’OI + 7-(-;’!Tzﬂéol) + E(Trl*Qﬂéol - 7T;leHé’ol)'

Proof. The isomorphism PSL(2,B) =~ PSL(2,R) x PSL(2,R) induces an isomophism of Lie
algebras sly(B) =~ sl5(R) x sl3(R) given by decomposing X € slp(B) into X = X et +X_e™
with X4 € slp(R). Moreover, the adjoint action of p = p_e™ + pre™ on sly(B) induces
the action of (p4, p_) on sla(R) x sly(R) given by the adjoint action on each factor. As a
consequence, an sly(B)aq p-valued 1-form o ® ¢ can be uniquely written as (0 ® ¢ye™) +
(c®¢p_e7), and 0 ® ¢+ are sly(R)aq,,-valued 1-forms. Finally, we observe that o ® ¢ is

closed (respectively exact) if and only if o ® ¢+ are closed (respectively exact). Therefore,
by Lemma [b.6]

DB (0®p 0’ @) =Wy (0@ (b6t +6_e7),0' @ (dyet + ¢ e))
= iQ]Bci*ol (0@ (4 + ) +7(dr —0-)), 0" ® (s + 1) + 7(¢y — ¢1)))

- i (9ot (0 ® (91 +6-),0' @ (& +6L)) + Wy (0@ (61 — 6-),0' ® (6, —6L)))
+ i <QH§:ol (U® (¢4 + ¢-), 0’ ® (¢, — <75/,)) + Qﬂéol (o@ (pr — ), 0’ ® (¢ + ¢L)))
= % (Qﬂéol(a®¢+,0/®¢ﬁr) + Qﬂégl(a®¢,,a’®¢L))

+ 2 (W0 ® 64,0 ©,) ~ B0 @9-,0' @)
and the result follows. O
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Now, recall that on MGH(X) we have the holonomy map
Hol : MGH(X) — xo(2,PSL(2,B)) ,
and moreover Mess homeomorphism
MY MGH(E) — T(2) x TH(D) .

The work of Mess, combined with the expression of M that we gave in (22]) (see Theorem
[2.9) showed that the left and right components of M coincide with the holonomy of the
MGHC AdS manifold, under the identification 77(3) = 7**(X). In other words, we have
Hol = (hol, hol) o M. Combining Proposition [5.7] with Theorem [C and using Goldman’s
fundamental identity (B.2]), we obtain that Hol*(T, 4Q]Béol) = w?. Since Q]Béol is para-
complex with respect to 7, and wfl;s is para-complex with respect to J, the usual argument
shows that Hol*7T = J. This concludes the proof of the following result.

Corollary [HL Let X be a closed oriented surface of genus > 2. Then
/HOZ*(T’ 49%00 = (J’w?) :
5.4.3. The para-complex Fenchel-Nielsen coordinates

Goldman symplectic forms on Teichmiiller space and on the space of quasi-Fuchsian rep-
resentations are intimately related to hyperbolic geometry because, for instance, the (real
or complex) length and twist parameters ([Wol83|,[Pla01]) provide Darboux coordinates.
Here we show that an analogous result holds for Q% o, using the B-valued Fenchel-Nielsen
coordinates introduced in [Tam20] to describe the deformation space of MGHC anti-de
Sitter structures.

We first introduce some facts on Anti-de Sitter geometry and recall the definition of
these coordinates. The model of Anti-de Sitter space that we will use is simply the Lie
group PSL(2,R) endowed with the bi-invariant Lorentzian metric which is induced by
(1/8) the Killing form on the Lie algebra, where the factor (1/8) serves to normalize the
sectional curvature to be equal to —1. The group of orientation-preserving, time-preserving
isometries is isomorphic to PSL(2,R) x PSL(2,R), acting by left and right multiplication,
and the boundary of AdS space identifies to RP! x RP!, in such a way that the action of
the isometry group extends to the obvious component-wise action of PSL(2,R) x PSL(2, R)
on RP! x RP!.

Now, consider an isometry of the form (vy4,v-) € PSL(2,R) x PSL(2,R), where both
v_ and 7, are loxodromic. Then (,,v_) acts on the boundary RP' x RP! by fixing four
points, of which one is attracting and one repelling. It turns out (see for instance the first
part of the proof of Lemma [5.9] below) that there exists a spacelike geodesic connecting
these two points (a priori the other possibility, that is however excluded by Lemma [5.9] is
that the segment connecting the two points is lightlike and contained in the boundary).
This spacelike geodesic is what we will call the principal axis. More formally:
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Definition 5.8. Given a pair of loxodromic elements (v4,v-) € PSL(2,R) x PSL(2,R), we
call principal axis of (y4,7v-) the unique spacelike geodesic Axis(7;4,v—) of Anti-de Sitter
space whose endpoints on RP! x RP! are (v,7,+"") and (y4%, %), where Y and ¢
denote the repelling and attracting fixed points on RP!,

Now fix a pair of pants decomposition P = {y1,...,v,} of &, for n = (3/2)|x(¥)|. If
p:mi(X) — PSL(2,B) is the holonomy of a MGHC Anti-de Sitter manifold, then p(v;) is
loxodromic, i.e. conjugated to a diagonal matrix, for every v; € P. The B-valued length is

defined as
t .

EIE(WJ) = 2arccosh (W) ,
where the hyperbolic arccosine is computed using its power series expansion. This quantity
is related to how a loxodromic isometry acts on anti-de Sitter space. Indeed, the real part of
EIE(fyj) represents the translation length of p(v;) on the principal axis under p(v;), whereas
the imaginary part is the rotation angle of p(v;) acting on the orthogonal of such a geodesic.
The B-valued lengths completely determine a PSL(2,B)-representation of a pair of pants.
The B-twist parameter tw]g('yj) indicates how the pair of pants are glued together along
the boundary curve 7;: the real part describes the shear parameter and the imaginary part
the bending between the two pairs of pants in anti-de Sitter space.
It turns out that K]E(fyj) and tvv]/})B (7;) are related to the classical Fenchel-Nielsen coordinates
¢y and tw, as follows. Under the isomorphism PSL(2,B) =~ PSL(2,R) x PSL(2,R), the
holonomy p : m(X) — PSL(2,B) of a MGHC Anti-de Sitter structure corresponds to a
pair of faithful and discrete representations py : m1(2) — PSL(2,R), which are thus the
holonomies of hyperbolic metrics on 3. We have the following relations:

- <fp+(w)+fp_(%’)) +T(fp+(%‘)fp_(%')>

() = Lo ()T + Lp_(j)e” = 5 5

and

twy (1) = twp, (9)e” +twp_(1)e” = (% () oy, <m>+7 (W ()~ m)) |

Theorem [[. The B-valued Fenchel-Nielsen coordinates are para-holomorphic for T, and
are Darboux coordinates with respect to the para-complex symplectic form Q]Bé ol

Proof. Let us show the first statement. As a consequence of the definition of 7, 7 acts as
the identity on the first factor on the tangent space to 7™ (X) x 7'*(X), and as minus
the identity on the second factor. Hence for any curve v; € P, we have

T<%>=i% and T( 6j >=i 6j )
ol ol Otwy, otwy,

0 +14+7
e, | T ; =
0lps 2

Therefore,
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and

+ +
Tdﬁ%( i >=T<1_T>:_1+T.
0o,

Otw,

On the other hand, it is clear that

ME(T( aj>>:=0:TM§<
Otwy,

2

hence the B-lengths are para-holomorphic. A similar computation holds for the B-twist

parameters.

For the second statement, let K]E’j and tw%’j denote the B-length and B-twist parameters
along the curve v; € P. We use an analogous notation for the Fenchel-Nielsen coordinates

associated to the representations pi into PSL(2,

R) such that p =

pret + p_e . By

Proposition 5.7 and the fact that the classical Fenchel-Nielsen coordinates are Darboux

for Qw p, we have

0 0 1 0
Q — —— | == | Qw
Re ( Gol) (8@%”7 aglpag’]) 2 ( (86’

and similarly

0 0 1 0
( Gol) <a€]§’l7 a€§7]> 2 < wP <a€;)+7

For the same reason

0
Q o) —47 ——— - 0 .
ol <5tWIE’Z 5tWIE’J>

0

On the other hand,

0 0 1 0
Re QBO —.’—» = - Q —A’
(o) (ME,Z 8tw]§’j> 5 ( WP <6€;+

and

0

d ) -
06,

Otw.,

0 0 1 0
B - - —_
Im(QGol) (atw]l}?p aeIE’J> 9 <QWP <é’twlp

We conclude that

0E = Z AT A dtwid

7j=1

as claimed.

0
a£p+

0
) : - QWP (
: a%)

e
g

0
oty

0

o6,

9
o, '

otwi,

0
86]

0
ol

0

J
Otwi_

)

0

ol

)

)

)-s
)
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5.4.4. The para-complex cosine formula

Let us now move on to the proof of Theorem [Jl namely a B-valued version of the cosine
formula for the Weil-Petersson symplectic form. For this purpose, it will suffice to focus
on the case where there is at least a point of intersection. The fundamental geometric
computation is contained in the following lemma.

Lemma 5.9. Let (ay,a_) and (B4, B-) be two pairs of loxodromic elements in PSL(2,R) x
PSL(2,R). Suppose that the actions of (ay,B+) and (a_,B_) on RP! are topologically
conjugated (i.e. there exists an orientation-preserving diffeomorphism f of RP! such
that fa_f=' = ay and fB_f~' = Bi) and that the aves of ay and By intersect in
H? with counterclockwise angle equal to ¢4 € [0,7). Denote & = Axis(ay,a_) and
B = Axis(B,B_) the principal azes in Anti-de Sitter space. Then

(1) There is a unique complete timelike geodesic o that intersects both & and ﬁN orthogo-
nally. Call the points of intersection qs and 43 Orient o so that its tangent vector
1s future-directed.

(2) The signed timelike distance along o between qa and qz equals (o4 — p-)/2 €
(—7/2,7/2).

(8) The counterclockwise angle of intersection between & and the parallel transport of
B to qa along the unique orthogonal timelike geodesic o equals (v+ + p—)/2.

Let us clarify the meaning of the second statement. Given two points p and ¢ in AdS
space connected by a timelike geodesic, the timelike distance between p and ¢ is the length
of the shortest geodesic segment from p and ¢. Recalling that timelike geodesics are closed
and have length 7, there are two such geodesic segments, whose sum equals 7. If the
points p and ¢ are not antipodal (i.e. the timelike distance is not 7/2), then we can define
the signed timelike distance d(p,q), which is just the timelike distance introduced above
with positive sign if the realizing geodesic segment is oriented towards the future, and with
negative sign if it is oriented towards the past. We remark that d(p,q) = —d(q, p).

Proof. Denote by @+ the axes of a4 in H?, and analogously Bi are the axes of f1+. Applying
the action of the group PSL(2,R) x PSL(2,R), we can assume that, in the upper half-space
model of H?, the repelling fixed point of o is 0, and the attracting fixed point of a4 is
oo (hence both axes @_ and &, coincide with the geodesic ¢ connecting 0 and o), and
moreover the intersection point of the axes A_ and 5+ with £ is i. Then the set of order two
isometries in PSL(2, R) having fixed point on £ is an Anti-de Sitter spacelike geodesic with
endpoints (0,0) and (o0, 00) in RP! x RP!, and is therefore the principal axis & of (ay, ).
Indeed, the Lie group and the Riemannian exponential maps coincide for a bi-invariant
metric on a Lie group, and this is a left translate of a one-parameter group of hyperbolic
transformations in PSL(2,R). To see that the endpoints are precisely (0,0) and (o0, o0),
one can apply the criterion in [BS20, Lemma 3.2.2|; anyway this follows from the more
general observation ([BS20, Lemma 3.5.1], that we will apply below) that the surface P
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of order two isometries is a totally geodesic spacelike plane in Anti-de Sitter space, whose
boundary at infinity is the diagonal in RP! x RP!, for which the map P — H? sending an
order two element to its fixed point is an isometry, equivariant for the action of PSL(2,R)
(by conjugation on P, and the obvious action on H?). En passant, we have showed that
the principal axis in Definition (.8 is well-defined.

Now, by our assumption the axis Bi is obtained by applying to a4+ a rotation R,
of angle w4 fixing ¢. Since the actions are topologically conjugated, the attracting and
repelling fixed points of a4 and B4+ appear with the same cyclic order on RP'. This
implies that either the rotations R, and R,_ both map attracting (resp. repelling) fixed
points of oy to attracting (resp. repelling) fixed points of B4, or they both map the
attracting fixed point to the repelling one and vice versa. This implies that the principal
axis 3 equals (R, , Ry ). Now, set

d= 2" ¥ .d 9:&.
2 2

Observe that ¢y € (0,7), hence 6 € (0,7) and d € (—7/2,7/2). Then we have
(Rps Rp_) = (Rg, R-q) © (Rg, Ry) -

By the above considerations on the totally geodesic spacelike plane P (in particular the
equivariant isometry with H?), (Ry, Ry) acts as a rotation of angle #. Moreover, by a general
fact that we prove in Proposition 510l below for completeness, the parallel transport along
the geodesic t — Rg; (which is parameterized by arclength, future-directed, and orthogonal
to the totally geodesic plane P by a simple symmetry argument) equals the differential of
the isometry (R, R—¢). In conclusion, we have ¢5 = Ry, a5 = (R4, R_4)qa, so their signed

timelike distance is d, and finally the angle at g5 between the parallel transport of 3 at g5
and & equals #. This concludes the proof of the second and third items. O

Proposition 5.10. Given a bi-invariant metric on a Lie group G and X,Y € g, the parallel
transport of Y along the geodesic g, = exp(tX) at the point g is given by (Lg, , )« (Rg, ,)x(Y).

Proof. The Levi-Civita connection of a bi-invariant metric on G is given by
1

where D! and D" are the left and right invariant connections, which are defined in the
following way: given a path ~(t) such that v(0) = g and 7/(0) = V € T,G, then D{/W
(resp. Dy, W) is the derivative at time 0 of the left (resp. right) translated of W, at g,
namely (Lg,)-1)«Wy ) (resp. (Rgy)-1)«Wy))-

Let us apply this to the geodesic y(t) = ¢ = exp(tX) and the vector field along ~
defined by Wy, = (Lg,,)«(Rg,,)«(Y). In order to check that W is parallel along g, it
suffices to check it at ¢ = 0 (namely that VxW = 0), because multiplication on the left
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and on the right by g/, is an isometry that preserves the vector field W and the geodesic
~ by definition. We have

d
DW= 2| (Lgr)a(Lgy )Ry, ) (V)
t=0
d
- E (Lg*t/2)*(Rgt/2)*(Y) = —adyxY .
t=0

A similar computation shows D\, W = adxY. Hence VxW = 0, which concludes the
claim. O

Motivated by Lemma [5.9] above, we give the following definition.

Definition 5.11. Given two spacelike geodesics & and 3 in AdS space that admit a com-
mon orthogonal timelike geodesic o, let g5 and 45 the intersection points of & and § with o.

Then we define the B-valued angle dB(o?7 B) between & and B as the para-complex number
whose imaginary part equals d(ga, qB), and the real part equals the counterclockwise angle

between the parallel transport of & at 45 along o, and 3.

Remark 5.12. Let d®(&, B) = 0 + 7d be the B-valued angle introduced above. If we invert
the role of & and f3, clearly the real part of the B-valued angle becomes m—6. The imaginary
part instead only changes sign, so

B(B,a) = (r—0)—7d .
Hence cos (dB(ﬁN, d)) = —cos <dB(&,B)> because
cos(f + 7d) = cos ((0 + d)e™ + (0 — d)e™) = cos(0 + d)e™ + cos(f — d)e~

where the last step is justified by the power series expansion of cosine. This is consistent
with the skew-symmetry in the generalized cosine formula of Theorem [Jl

Hence Lemma can be restated by the following formula:

P (6, §) = £t e +T<s0+so> 7 (5.4)

2 2
We are finally ready to prove:

Theorem [l Let p = (p4,p-) : m(EX) — PSL(2,R) x PSL(2,R) be the holonomy of a
MGHC AdS manifold, and let o, 8 be non-trivial simple closed curves. Then

0 0 >
QB — = a | = CcoSs dB Qa,, s
Gol <8tWIpB’a atw]§ﬁ> Z ( ( p 5P))

peanS

where &, and Bp are the principal azes of p(a) and p(B) on AdS space.
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Proof. If the closed curves «, 3 € m(X) are disjoint, then equality holds, as the LHS
vanishes as a consequence of the formula (5.3)), and the RHS vanishes by definition. Let
us suppose « and S intersect, and let us evaluate Goldman symplectic form on the twist
deformations along « and . As before, we write the representation p : m1(X) — PSL(2,B)
as p = pyet + p_e” with py : m(X) — PSL(2,R). For any p € a n 3, we denote by
v+ (p) € (0.7) the angle between the geodesic representatives of o and (3 for the hyperbolic
metrics with holonomies py measured from «. By the work of Wolpert ([Wol83]|), we have

0 0 0 0 0 0
Re(Q,) | —=,—== | = Q — — | +Q —
(2601 <8tw]§’a 6tw%’6> < e <5tW%+ 8tw§+> e <ath 8twg_>>

= Z cos(p+(p)) + cos(p—(p))

peanS

(NN NCR

and similarly,

0 0 1 0 0 0 0
ImQBO = — Y, T wa = — Q Y _Q —_—
(201 <8tWIE’a atW]pB’ﬁ> 2 < e <5tW2‘+ 8twg+> wE <5twg‘_ 8twg>>
1
=5 2 0s(¢+(p)) —cos(p-(p)) -
peanS

Therefore,

Qo (ﬁ7 é‘tTa]E’B> = %peéﬁ(cos(@+(]9)) + cos(¢—(p)) + 7(cos(p4(p)) — cos(v—(p)))
= ). cos(pi(p))et + cos(p-(p))e”

= Z cos(tp+(p)€++90—(p)e_)

- P+ + P P+ — P
= Z cos( 5 + 7 5 >

cos <dB(dp,Bp)),

peanS

where the second to last step can be formally justified by considering the definition of
cosine as power series, and the last step is obtained by applying Equation (5.4)). Indeed we
can apply Lemma 5.9 because the representations p_ and p, are both in the Teichmiiller
component 7*(¥), hence their actions on RP! are topologically conjugated. The proof is
then concluded. 0
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6. SYMPLECTIC REDUCTION

In this section we explain the process that led us to the definition of the para-hyperKéahler
structure on MS((2, p) and to the explicit model of its tangent space described in Sec-
tion @ The main tool we use is Donaldson’s construction of moment maps on infinite
dimensional spaces.

6.1. The moment maps on T*7(R?)

To apply Donaldson’s construction, which we recall in the next section, we first need
to provide moment maps for the action of PSL(2,R) on T*7(R?), with respect to the
symplectic forms that we introduced in Section 3.3l

Recalling that slo(R) = {X € End(R?) | tr X = 0}, we define the maps 71,73, 7K :
T*J(R?) — sly(R)*:

m(J,a) = f(loll,) tr(J")
n(J,0) = (o | [ JTDs = —tr(gy o)
k(J,0) = (o | J[-, J]ys = tr(g; o)

where [X,Y] = XY —Y X € sl3(R). Observe that, for every X € sl3(R), the element [ X, J]
belongs to T;J (R?).

Theorem 6.1. The maps ny1, ny and nk are moment maps for the action of PSL(2,R)
over T* J (R?) with respect to the symplectic structures wy, wy and wk introduced in (B.8),

B9) and BI0) respectively.

Proof. We start by noticing some properties of our action. If p4: T*J(R?) — T*J(R?)
denotes the transformation (J,0) — A - (J,0), then a simple computation shows that, for
every A € PSL(2,R) and X € sl(R),

Vx(pa(J,0)) = d(pa) () Vaaa-nx(J,0)), (6.1)

where Vy(J,0) := L exp(tX) - (J,0)|i0 € T1,0)T*J (R?). Actually, this relation is true
whenever a Lie group acts by diffeomorphisms on a smooth manifold. For future conve-
nience, we give also an explicit description of Vy:

Vx(J,o) = i(exp(tX)Jexp(ftX),exp(ftX)*a) =([X,J],—o(X:,") —o(-, X")).

d t=0
(6.2)
We also notice that the action of PSL(2, R) on 7 (R?) is by biholomorphisms with respect to
the complex structure Z (defined in Section B.1]), and its extension on 7% (R?) is natural,
in the sense that it preserves the complex Liouville form A® of T* 7 (R?) (see Section 3.4]
for the definition of A€). This in particular implies that Ly, A® = 0 for every X € sly(R).
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Property (i) from Definition 4.1l Using the relation [|o||; = ||A- o]/ 4.; (see Lemma
[3.3) and the invariance of the trace by conjugation, it is straightforward to check that the
maps 71, 3 and g are Ad*-equivariant.

Property (ii) from Definition @Il From relation (6.2) and the definition of A®, the
maps 1y and nk satisfy:

(03 + 1K) (J.0) (X) = (v AD) (.09

This relation and the observations above are enough to show that ny, nk are moment maps
with respect to the symplectic structures wy, wk, respectively. Indeed we have:

d(n¥ + i) = d(WX)\‘C)

= Ly AC — 1y, dXC (Cartan’s formula)
= iy w® (def. of w® and Ly, A€ = 0)
= Ly, WJ + 1Ly WK. (wWC = wy + iwk)

It remains to check that, for every X € sly(R), we have ty,wr = anX . To see this, we
show that

(lol5)" = 2o, 60)s. (6.3)
Indeed,
(lo13) = 5 tr((g5 o)) = tr(g olg;" o))
= (950 (=95 41950 + 95'6))
= tr((g;la)2Jj> +tr(g; og; " 60) (rel. 33) and try, o = 0)
= ][JH?,‘CI“(JJ) +tr(g; og; " 60) (Lemma [3.9)
= 2(0,60);- (tr(Jj> =0)

Therefore we have:

X (J,5) = ST ry 4 f(HJHJ)tr(jX).
flelly)
On the other side, we need to determine (1ywr)(J,6). Let X* denote the adjoint of
X with respect to the metric g;. From the definition of wy in equation (B.8) and the
expression (6.2)), we see that:

(vxwn)(J,6) = = f(llol| )X, T1, T Ty — m«a(& )+ 0o X))o,60( )0
- L”;’”J) tr([X, J]JJ') — 72f(||10\|J) tr(g; 607 (97 0 X + X*g; 0)0).

(6.4)
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In order to simplify the last term of the expression, we decompose the endomorphism X

as sum of its skew-symmetric part X% = —%J and its symmetric and traceless part

X? (recall that X is traceless, since it lies in sl3(R)). A simple application of Lemma B.9]
shows that

(g;laXs + ngjla)o =0,
while the term in the skew-symmetric part contributes with
(g;laXa + (Xa)*gjla)o = (g;laX“ — X“g;la)o = tr(JX) Jg;la.

As a result we obtain (g;laX + X*g;la)o = tr(JX) Jg;la. Making use of this identity
in relation (6.4]), we find that

. . tr(JX 1. _
vnan). ) = =L (. 127 = D w5 o0 g5 1)
_ ; {0,00))
= f(HUHJ)tT(JX) + mtT(JX),
which proves the desired equality (cy,wi)(J,&) = dng (J, ). O

6.2. Donaldson’s construction

Let us now recall briefly the setting of Section @l We defined T*7(X) as the space of
smooth sections of the bundle

P(T*J(R?)) — 3,

and an element of 7*7(X) identifies with a pair (J,0), in which J is a complex structure
on X, and o is a symmetric and g -traceless 2-tensor. Moreover, a tangent vector (J,J) at
(J,o) can be considered as the data of:

e a section J of End(T'Y) satisfying J.J + J.J = 0;
e a symmetric 2-tensor ¢ satisfying o = g9 — (o | JJ)g
We will often denote by s = (J,0) an element of T7%7 (%), and by s a tangent vector.
Now, given an SL(2,R)-invariant symplectic form w on T*J(R?), every vertical space

of P(T*J(R?)) inherits a symplectic structure, which we denote by Wy(p)- In particular,

28
given §,§' € T,T*J(X) two tangent vectors, we define

ws(8,8) = Jz ws(8,8) p. (6.5)

This gives a formal symplectic structure on T%7 (%), which is preserved by the action
of Sympy (3, p). Suppose the natural SL(2,R)-action on 7*7(R?) is Hamiltonian, with
moment map 1 : T*J(R?) — sly(R)*. Given any section s € T*J(X), the moment
map 7 induces a section 7, of the bundle Endg(7'X)*. Then the action of Ham(X, p) <
Symp (2, p) is Hamiltonian, according to the following result of Donaldson.
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Theorem 6.2 (Donaldson’s map, [Don03, Theorem 9]|). Let V be any torsion-free connec-
tion on ¥ satisfying Vp = 0. Define the map pu: T*J () — A%(X) as follows:

p(s) = &(Vas, Vas) + (s | RY) = d(c(Vars)) -

Then

i) wu(s) is closed for every s € T*J(X);
i) w is equivariant with respect to the action of Ham(X, p);
i11) Given V' a vector field in (X, p), and By a primitive of vy p, the differential of the
map

1°7(2) 35— | Bunls) R
b
equals

wn(5Lys) = | 6 Lvs)p.
>

Let us clarify the notation of the theorem above. We set w(V.s, Ves) to be the 2-form
on X given by

W(Ves,Ves)(u,v) := 0(Vys, Vys).
Moreover, we define

c(Vens)(v) = Z<vej77$ | (v ®6j)0> )
J

where (e;); is a local orthonormal frame and (e;‘ ); is the associated dual frame in 7*¥. In
particular ¢(Vens) € T'(T*Y) is a 1-form on ¥, because Vons € I'(T*X ® Endy(TX)*).
Finally, the curvature tensor RV of the torsion free connection V is defined as

RY(U V)W :=VyVyW = VyVyW = VW,

for all tangent vector fields U, V, W on ¥. Since RV (U, V)W = —RV(V,U)W, the tensor
RY can be considered as a section of A%(¥) ® Endo(T'Y). In particular, for every U, V, we
can evaluate the tensor 7, on RY (U, V) € Endg(TY). This determines a 2-form on X, that
will be denoted by (1, | RY).

Remark 6.3. Donaldson’s construction is actually much more general. It can be applied
to the context of an n-dimensional manifold endowed with a volume form (which in our
case is X)), and a symplectic manifold X, together with a moment map for an action of
SL(n,R) on X (which in our case is T*J(R?)). Then one constructs a bundle P(X)
similarly to our case, and one obtains a moment map for the action of the group of exact
diffeomorphisms (which in dimension two correspond to Hamiltonian diffeomorphisms) on
the space of sections of the bundle P(X). The general statement of Donaldson’s theorem
can be found in [Don03| Theorem 9], see also [Tral9]. We decided to state the result only
in the situation of our paper, since this reduces remarkably the necessary preliminaries.
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We also recall the following fact, which of course can be stated in much larger generality
as explained in Remark above:

Lemma 6.4 (|[Don03, Lemma 13]). There exists a natural closed 2-form wp s 7(r2)) on
P(T*J(R?)) such that, for every section s € I'(S, P(T*J (R?))) we have

S*GJP(T*J(]RQ)) = (AAJ(V.S, V.S) + <775 ‘ Rv>

In particular, since T*J(R?) is contractible, the de Rham cohomology class of u(s) in
H2(X) is independent of the chosen section.

6.3. The moment maps on 7% 7 (%)

In Section [, we defined a formal para-hyperKéhler structure (g, I,J,K) on T*7(3). Note
that the corresponding symplectic forms

(WX)(J,U)((j’ d)’ (‘j/’ U,)) = J;] ‘DX((‘]’O_)’ (j,’é-/)) P, (6'6)

for X = I,J,K (here wx denotes the symplectic forms induced on each fiber by an area-
preserving identification of the tangent space of ¥ with R?), can be obtained from the
general theory of Donaldson, specifically from Equation (6.5) by integrating fiberwise the
three symplectic forms introduced in the toy model. Therefore, the group Symp,(X, p)
acts on T*7 (%) preserving all symplectic forms wx and the action of Ham(X, p) is actually
Hamiltonian. In order to describe the moment map ux for the action of Ham(3, p) with
respect to each of the symplectic form wx it is convenient to introduce the following

operator:
. 2
ro DI 2@ (T ) 2)*®) — DT %)
w(vvvv')
(G — S
llvll
for some v # 0. Since ¥ is C-linear in the first component and anti-C-linear in the second

¢(U7U7')

2
ol

one, the 1-form does not depend on the choice of v # 0.

Theorem 6.5. Donaldson’s maps for the action of Ham(X, p) over T*J(X) can be ex-
pressed as:

3 2 0 2 _
WWzm\aH)KJp—2i88f<HaH),

(u3 + ipx)(J, 0) = —2i 0r(09),
where ¢ is the quadratic differential whose real part is equal to o, and 0 = 05, 0 = 0.

:U'I(‘LU) =

Proof. In order to determine the expressions for Donaldson’s maps ur, 3, K, we apply
Theorem starting from the moment maps 11,7y, Nk introduced in Section We
will focus on each term of Donaldson’s maps individually, and then combine the resulting
expressions to determine the evaluations of ur, uy, ux at (J,0) € T*J(X). As a torsion-
free connection we will use the Levi-Civita connection of the metric gy, which satisfies
Vep = 0, since p equals the Riemannnian volume form of g;.
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The term ©1(Ves, Ves): Since V is the Levi-Civita connection of g;, we have V,J = 0.
In particular Vs = (0, V,0). Then we have:

(61) (1) (0, Vir 0, (0, Vi) = mtr(gﬂvqamﬂv@a)n

1
= (Vio11Vaoi2 — V1022Vaeo91 + V1012Vaoas — V1021 Vao1)

21(llell)
1

= ——— (Vion1Vaoi2 — Vi012Vao11) ,

flel)

where V;0j;, = (Ve,0)(ej, e). In the last step we used the fact that V,o is symmetric and
g-traceless for every v. The operators d; and 0y are defined as follows:

1 ) = 1 )
(aj(b)(’l), Yy ) = 5 (VU¢ —1 VJU¢) ) (aJ(b)(va %y ) = 5 <VU¢ +1 VJv(ﬁ) .
A simple but tedious computation shows that

|0s9(er, -, ')H2 —llosd(er, -, )I* = Via11Vaoia — V1i012Va0r.
In the end, we get

A [2s8]° ~ 12501
Ve(J,0),Ve(J,0)) =
where [|05¢] = |059(v,-,-)|, ||0s¢]| := Ha]gb(v,~, || for some unit vector v (the norm is

independent of the choice of such v).

The term (5 | RV ): Since we are considering the Levi-Civita connection of g, the tensor
RY coincides with the Riemann tensor of g;. Then we have Ry = K;J ® p, where K
denotes the Gaussian curvature of g;. In particular (n1(J,0) | Ry) = =2f(||o||) K p.
The term d(c(Venr)): First we observe that

(Vorn(g,0))(X) = d(f(lla]])) (v) tr(J X),
where X € sl(T'%, p) = Endy(T7'X). Then we have

c(Vani(g0)) (W) := (Ve (o) | (w®e7)o) +{Veais0) | (W@ e€3)0)
= d(f(lle])) (ex) tr(J(w ® e7)o) + d(f([lo]])) (e2) tr(J(w ® €5 )o)
= d(f(llel)) (er) €1 (Jw) + d(f(llo]])) (e2) €5 (Jw)
= (d(f(llel])) o J)(w).
Therefore ¢(Vani(;)) = d(f(l[o]])) o J. It is immediate to check that, for every function
peE*P(X), we have d(dp o J) = —Ag @ p = —2i0;0;p = 2i050;.
The combination of the terms found above provides the desired description of the
Donaldson’s map uy. We now focus on the addends appearing in the expression of

(MJ + Z,U'K)(‘L U)'
The term (W3 + iwk)(Ves, Ves): Since VoJ = 0, we have

WC(Vo(J,0),Ve(J,0)) = (03 + ik )((0, Veo), (0,Vea)) = 0
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The term (ny + ink | RY): Observe that {(ny + inKk) () | KsJ ® p) = 0 because
[/,J] =0

The term d(c¢(Veny +ink)): From the definition of the moment maps ny and nk, we
observe the following:

(3 +ink) e | X)=— tr(g; o JX) + itr(g;laX)
= itr(g;l(a +io(-,J))X)
=itr(g;'¢X), (rel. (B1))
where we are denoting by ¢ the quadratic differential whose real part is equal to o. Since V

is the Levi-Civita connection of g, we have V,g; = 0 and, as already mentioned, V,J = 0.
In particular we deduce that:

c(Ve(ns +ink)) Z<Ve] n3 +ink) | (v®ej)oy

=i > tr(g; (Ve,0) (v @€l )o)
j
i Bl e o)

_ZZ vej

=i (dIVgJ 95" 9)(v).
On the other hand, we see that:
r(010)(v) = (059)(e1,e1,0)
(Verd)(e1,v) =i (Ve d)(e1,v))

(Verd)(er,v) + (Ve 0)(Je1,v))

—~

RN RN

— S (divy, g7 3)(v).
Therefore ¢(Ve(ny+ink)) = 2ir(ds¢) € I’(T(’al)E). Since d = d;+0; and 0;(r(0;9)) =

we obtain
d(c(Ve(ns +ink))) = 20057r(0s9),
which, combined with Theorem [6.2] proves the expression for Donaldson’s map uy + i uk.
O

Proposition 6.6. Let p be a fized volume form on X, and let C := *Aﬁ;(((zz)p)'

e The map
fr: T*J(E) — 5 )"
(J,0) +— ur(J,0)—Cp
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is a moment map for the action of Ham(X, p) over the space of smooth sections
T*7J(X), endowed with the symplectic form wy.
o The map
fistifx: T*J(E) — S(Z,p)*®C
(J,o)  — [=2ir(0s9)]

is a moment map for the action of Sympgy(3, p) over the space of smooth sections
T*J(X), endowed with the symplectic form wy+iwk (where ¢ denotes the quadratic
differential whose real part is equal to o).

Proof. By Lemma[6.4] the integral of the 2-form uy(J, o) does not depend on the choice of
the section (J,0) € T*J(X). If 0 = 0, then by Gauss-Bonnet theorem we have

| (.0 = ~amx().
b}

Therefore, the integral of the 2-form py(J,0) — C p vanishes. By Poincaré’s duality, a 2-
form on X is exact if and only if its integral over X vanishes. This in particular proves that
fi1 takes values in B?(X), which is contained in the dual of the Lie algebra of Ham(X, p),
as observed in Section Following Definition [} the analogous properties i) and ii)
for fiy are guaranteed by Theorem 6.2 since the term C p is independent of the section
(J,0) e T*T(%).

Our moment map uy + i uk is exactly the same as the map po + i ug appearing in the
original process of symplectic reduction developed by [Don03] to describe the hyperKéhler
structure on the space of almost-Fuchsian manifolds. In particular, the argument in [Don03,
Section 3.1] to ug + @ us applies verbatim to our context, showing that py + i ux can be
promoted to a moment map fiy + i fixk for the action of Sympy (X, p) on T*7(X). For a
more detailed exposition of this phenomenon, we refer to [Tral9, Theorem 4.10]. O

6.4. The symplectic quotient
We are interested in the symplectic quotient

Air ' (0)  fi31(0) 0 figg' (0)/ Sympo (2, p) -
The aim of this section is to show that this quotient can be identified with MS(3) so
that the para-hyperKéhler structure on MS(X) defined in Section [ is inherited from
the infinite dimensional space T*7(X). Although the arguments are inspired by similar
constructions in hyperKéhler geometry ([Don03|, [Tral9], [Hod05]), substantial difficulties
arise when dealing with a pseudo-Riemannian metric, which we now explain.

In the more common setting of infinite dimensional hyperK&hler quotients, one starts
with the data of an infinite dimensional manifold M endowed with three complex structures
I,J and K satisfying the relations of quaternionic numbers and a Riemannian metric
g compatible with each of the complex structures. This defines three symplectic forms
wx =g(-,X) for X =I,J, K on M. Assume now that a group G acts on M by Hamiltonian
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symplectomorphisms with respect to each of the symplectic forms with moment map (x
and let N be the submanifold

N = ¢H0) 0 ¢5H(0) ¢ H(0)

The properties of the moment maps and the Riemannian metric g allow to orthogonally
decompose the tangent space of M at every point p € N as

T,M = T,N @ I(Tp(G - p)) © I(T,(G - p)) ©K(T,(G - p))

and the g-orthogonal of T),(G - p) inside T, N furnishes a model for the tangent space of
the quotient N /G that is invariant under I,J and K. This is sufficient to conclude that
the quotient inherits a hyperKahler structure ([Hit87]).

In our pseudo-Riemannian setting, however, the absence of a Hilbert space structure
on the tangent space prevents us from obtaining a similar orthogonal decomposition using
only the properties of the moment maps. However, the hyperKéahler construction suggests
that the tangent space at (J, o) to the zero locus of the three moment maps is the largest
subspace V(5 © T(j,)T*J(X) that is g-orthogonal to T ;) (Sympy (%, p) - (J,0)) and
invariant under I, J and K, inside the kernel of the differential of the three moment maps.
These are the properties that led us to the equations defining V{;,) in Section @l In
what follows we explain how to derive the equations in Proposition [K] starting from these
geometric conditions.

6.4.1. Identifying /%O(E,p) as the zero locus of the moment maps

Let us start by characterizing the pairs (J, o) that lie in the zero locus of the three moment
maps.

Lemma 6.7. A pair (J,0) € T*J(X) satisfies (fig + 1 ix)(J,0) = 0 if and only if o is the
real part of a holomorphic quadratic differential ¢ on the Riemann surface (X, J).

Proof. Let us consider the subalgebra of &(X, p) defined by
by ={V eI(TX) [ d(tvp) = d(esvp) = 0} .

Because (i3 + i i )(J,0) = 0, by definition of moment map, we have

0=-2 fzr(@]qz_b) ALy p

for every V € b;. Note that the form r(d;¢) is anti-holomorphic, being it in the zero
locus of puy + ipk. Since {typ | V € by} parameterizes harmonic 1-forms on (X, ), by
Poincaré duality the real and imaginary parts of 7(0;¢) are exact. Hence, r(d;¢) is exact
and identically zero because the only anti-holomorphic functions on (X, .J) are constant.
This shows that d;¢ = 0, thus ¢ is a holomorphic quadratic differential on (%, .J). U
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Lemma 6.8. Let (J,0) € T*J(X). If o is the real part of a holomorphic quadratic differ-
ential, then

N 4K,
fald,o) =~ g P~ O
where =)
_ 4y (2
= = 1 =——".
hi=Q+f(lol) g5, B:=h"'e¢ C Area(>. )

Proof. If o is the zero quadratic differential, then the statement is immediate. From now
on, we will assume o to be non-zero. We make use of the computations developed by
Trautwein in [Tral9]. In particular, we will need the following relations: if A denotes the
function ||o|?, then, outside the zeros of o,

—;—Aéx AON=||0))2p,  d0(InN) = 2 K p,

where 0 = 07 and 0 = ;. In particular we can write ji; as follows:

. [ ONAON ~ _
IUI(J, 0') =1 <2)\\/+ﬁ +V1+ A 88(ln )\) - 266(\/ 1+ )\)) - Cp

From here, the strategy is the same as the one in [Tral8| Proposition 4.5.16]. In partic-
ular, we can find the following sequence of identities:

ji(J, o) =i (% + 414+ X 00(In ) — 200(+/1 + )\)) —Cp

— i (AWTHX) A dlnA) + VI 00(In ) - 200(VT+ X)) = Cp
(\/ X a(ln ) — 20(v1 + )) —Cp
(=20 (m(1+VI+R)) +amn) - cp

i0
( gJ1n<1+ 1+HUH)2KJC) 0,
= (A, W+ (o) = 2K5 = C) p,

where, in the second to last step, we used again the identity d0(In \) = 2i K p, and the
fact that —2i0dp = Ay, ¢ p.
From the formula of the curvature under conformal change, we obtain that the Gaussian

curvature K} of the metric h satisfies:
e (Ko = 58 @+ £l
T+ (o) 27
A computation exactly as in Lemma shows the identity
2
L+ f(lel)

Ky =

=1+ det B.
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If we combine this relation with the expression for the Gaussian curvature of A and the
description we found above for jiy, we see that

_ 4K},
falJ.o) = = (m * C) z

This proves the desired relation outside of the zero locus of ¢, which is a finite set. The

statement then follows by continuity of the expression.
O

Combining Lemma and Lemma [6.8] we can then identify the zero locus of the three
moment maps with MSy(3, p). Recall that the symplectic form p that we fixed in Section
25 has area —my(X).

Corollary 6.9. Let (J,0) € T*J(X). Then ay1(J,0) = ay(J,0) = ax(J,0) = 0 if and
only if (J,0) € MSy(%, p).

Proof. Recall from Section that M8 (X, p) is the space of pairs (J,0) such that h =
(1 + f(|le]]))gs and B = h~'o satisfy the Gauss-Codazzi equations. By Lemma 6.7, we
know that o is the real part of a holomorphic quadratic differential, hence B is Codazzi
by Lemma 23l Now, from our choice of p, we see that

C = __Amx(®) 4
Area(X, p)
so by Lemma we have that fr(J,0) = 0 if and only if K, = —1 — det(B), which is
exactly the Gauss equation for space-like surfaces in Anti-de Sitter space. U

6.4.2. The differential of the map ux

One subtlety we have to take care of concerns the fact that the action of Sympy (X, p) is
not Hamiltonian with respect to wy. However, we can show by an explicit computation
that (up to a sign) property ii) in Definition [£.T]

din(J,6) | Vye = wi((J,6), (Ly ], Ly o))
holds for every (J,&) e Ty T*J(X) and for every V € &(%, p), not only for V e H(X, p).

Proposition 6.10. For every (J,0) € T*J(X) such that o is the real part of a holomorphic
quadratic differential, and for every tangent vector (J,0) € T(;,T*J (%) we have

djin(J, &) = —d(fdivg‘,j+dfoJ+dfoJ'—f‘lﬁ> :

where f = f(|o]s) = 4/1+ |lo|% and B is the 1-form on S defined by B(V) := (&0, (Vvo)(:, J-)).
Proof. The main bulge of the proof is to show that

(uaqsuz — ||og]>

B . . . .
e p) =d(f7'8) + 2fKyp + divy, J A df, (6.7)
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where we are taking the derivative of the expression with respect to (J,0) in the direction
(J,6). Assuming this relation for now, we see how to conclude. The variations of the other
two terms appearing in the expression for fiy (see Theorem [6.5) are simpler to handle. We
have that

(—2fKp) = —2fK;p—2fdK,;(J)p
— 2fK;p— fd(divgJ j) :

where in the last step we used the expression for the derivative of the curvature described
in Remark 44l and

(Ag, f)p = —d((df 0.7)) = —d<dfoJ+dfoj>.
By combining these relations, we find
djin(J,6) = d(f71B) —|—2f'KJp—|—dng(,J'/\df—QfKJp—fd<divg_, j) —d<dfoJ+dfoj>
=—d<fdivgJj+dfoJ+dfoJ—f_1B),

which proves the desired formula.
Let us now focus on (6.7). As derived in the proof of Theorem [6.5] we have that

_ 2 _ 2
W = &1((0, V2,0, (0, Ve, 0), o

for any choice of a local frame ej, ey satisfying p(ej,ez) = 1. We will determine relation
(6) by computing the derivative

(W) = (@i1((0, Ve, 0), (Ovveza))),

= (f71<v610-’ (VGQU)(" J)>)/
= (%f—ltr(gJ1(velo)gJ1(v620)J))>

In order to simplify the development of this first order variation, we need a few preliminary

!/

observations. Since equation (6.8]) holds for any local frame e, es with p-volume equal to 1,
we can assume eq, e to be a gj-orthonormal frame and to not change under the variation
J. Moreover, in light of Lemma B3 part ii) and relation (33), the traces of the terms
involving the derivatives of g;l and of J vanish. This allows us to reduce the number of
addends to study. In particular we have that

(H(MHQ — |||

flelh) ) = — 2 [((Vey0, (Ve 0) (5, J ) + (Ve 0), (Vep0) (-, T )+

(6.9)
+ f_1<v610-’ (VGQU)/(" J)>
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Now, using Lemma [L.I5 we can obtain an expression for (V¢,0)’. In fact, observing
that
(Vvd)/ =Vyo + vva , (6.10)

we compute
(Vyo)(X,Y) = —o(VyX,Y) —o(X,VyY)

= % ((divgJ NV (e(JX,Y) +0(X,JY)) + o(J(VvJ)X,Y) + o(X, J(VVJ)Y))

= (divy, NV o(JX,Y) + (o | J(VyJ))gs(X,Y),
where, in the last line, we applied LemmaB.9to the products g;'o.J(Vy J) and J(ij)gjla.
Moreover we have

Vve = V(60— (o | JJygs) = Vveo — V(o | JJ)) gs
= Vvéo— (Vvo | JI)y+{o | JVv.])) g .
Combining the previous two equations with (G.I0]), we get
(Vvo) =Vyéo — (Vyo | JI)y+{o | JVvI))gs + (divg, NV a(-J) + (o | IVyJ)gs

= Vv —(Vyo | JI)gs + (divy, HVa(,J) .
(6.11)

In light of these observations, we can combine relations (G.I1]) and (6.9) to deduce that

(W) (0, Ve0), (0, Vey0)) + NV o160, (Vey) (- J )0+
b U 00, (Va0 TNy + F - (divg, F)(e1) 00 T2, (Veg) (5 T
b (divg, J)e) (Vo0 72)
= —f 1 f01((0,Ve,0), (0, Ve 0)) + @1((0, Ve, 60), (0, Ve, )
§01((0, Ver0), (0, Vo)) + £~ (dlivg, ) (er) eallo]?/2)+
— f (divg, S)(es)er (lo?/2)
(0, V0,00, (0, Vey0)) + 61((0, Verb0), (0, Vo))

+ @1((0, Ve, 0), (0, Vep60)) + (divg, J A df)(eq, ea)
(6.12)

where in the first step we used the fact that the trace part in the expression for (Vy o)’
does not give a contribution. Comparing relation (6.7) with (612]), the proof is complete
if we show that

a) (df A /8)(61762) = f.]édjl((o7 Ve10)7 (07v620))
b) dﬁ(el, 62) = f@]((o, veldo), (0, VeQO')) + (2)1((0, Vela), (0, VGQO"()))) — 2KJ<O"0,0'>.
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Proof of relation a). First we observe that, if o is zero, then the relation is obviously
satisfied. In what follows we will assume that ¢ is not identically zero. By definition of /3
and of wedge product

df A Bler, e2) = e1(f){00, (Ve,0) (-, J-)) — ea(f){00, (Vey 0) (5 J-))
= f_l (<U7 v€10><0.'07 (v620)('7 J)> - <Ua v620><é’07 (Vela)(-, J)>) :

As observed in the proof of Lemma [£22] for every p € X outside the set of zeros of

o, the elements (g7'0), and (Jg~1o), form a basis of the space of traceless symmetric

endomorphisms of 7,%. In particular, using the scalar product {-,-) we can represent oy
in terms of such basis, obtaining the expression ¢y = W ((60,0)0 + {c0,0(-,J-))o (-, J)).
Replacing this identity in the previous equation, we get

Af A Bler,e2) = FL ({0, Ve, oX&0, (Veyo ) (-, J)> — (0, Ve,0550, (Vey ) (-, J))
- HU%f ({0, Ve, 0)({G0, 0K, (Veyo ) (-, J)) + (G0, (-, T )Xo (-, J-), (Vep o) (-, J)))+
—(0,V0,0)({50, X0, (Vey0) (-, J)) + (60,0 (-, T)NXT (-, ), (Vey 0) (-, T))))
_ ”J%f (0, Ve, 05 ({0, X, (Vey0) (-, T + (60,0 (-, J)Xa, Ve, o)+
{0,V e, 0560, X0, (Ver0) (-, J)> + (50, 0 (-, J)Xo, Ve, o))
= <?”’zaf> ((0,Ve,0)0, (Vey0) (-5 J+) = {0, V00, (Ve 0) (-5 T)))

09,0
~ R 0.V00)0 4 0,10, 9000, ). (Tes0) )
At this point, we use once again the fact that g~
of traceless symmetric endomorphisms of 7' (outside the zeros of o) to express V., o as
W (Ve 0,000 +{(Ve,0,0(-,J-))o(-,J-)). Combining this observation with the computa-
tions above, we deduce that
df A 5(617 62) = f_1<0.'07 0><v6107 (VEQO')(', J)>
= f<v610’ (V62O-)(" J)>
= 1£@1((0,V¢,0),(0,Ve,0))
which finally proves the identity a) outside the zeros of ¢. In fact, since both terms of the
equality extends continuously at the zeros of o (which form a finite set), we conclude that
the identity df A 5 = ffwr((0,Veo),(0,Veo)) holds everywhere on .
Proof of relation b). By definition of exterior differential we have

dB(e1, e2) = €1 ((0, (Ve,0)(+, J+))) — €2 ({60, (Ve, 0) (5 J))) = <60, (V[e1,e010) (5 )
= <v€10.'07 (v620)('7 J)> - <v620.'07 (vela)('v J)> + <é'07 R(el7 62)0('7 J)>
=f (@I((Oa veldo)7 (07 VGQU)) - @I((Ov V@é'o), (07 Vela))) + <0.'07 R(el7 62)0('7 J)>

lg and Jg~'o form a basis of the space
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where R(e1,e2)0 = Ve, Ve,0 — Ve, Ve 0 — Vg, ep)0. The same proof that relates the
Riemann curvature tensor with the Gaussian curvature adapts to the operator R(e1,es)o
and shows that

R(e1,e2)0 = 2K 0(-,J) .

Relation b) follows. O

Remark 6.11. In what follows, we will fix a primitive of the two form dpy found in Propo-
sition B.10L and define the linear map Fjqy : T(;nT*T(2) — AL(Z)/BY(E) c &(3, p)*
so that F(JJ)(J', ) equals this primitive (modulo exact 1-forms). Note that Ker(F( ;) is
a subspace of T(j,)muy 1(0), and a priori the inclusion might be strict. By an abuse of
notation, for the rest of the paper we will simply denote (dﬂl)(J,o) = Fljo)-

We can finally show the connection between wy and djiy:

Proposition 6.12. Let (J,0) € ./\/Z:So(z,p). For every (J, ) € Ty T*T(X) and for
every V e 6(%, p), we have

WI((EV!L LVO-)’ (J’O-)) = 7<dﬂ1(‘j’ U) | V>G .

Proof. By definition of wy, we have

wi((Ly J, Lvo), (J,6)) = L (= FLv g a0y + fK(Lva)o G0, D) o (6.13)

In order to simplify the second term inside the integral, we make use of the following
relation the proof of which will be postponed to the end:

o, J), (Lvo)o) = (G0l J), Vvo) = divg, (JV){a,60) (6.14)
Using this fact and recalling that f = f~1{o,&o) (by relation (63)), we have

FH(Lvo)o,60(- )y = f~Kb0(- ), Vvoy — f~ divy, (JV){o,50)
= fX60(-, J-), Vvoy — divy, (f o, 60)JV) + d(f o, 60)) JV
= [760(, ), Vve) = divy, (f Ko, 60)JV) + df (JV)

and integrating over ¥ we find

f (f 7Ly oo, 60(-, ) p j (=760, (Tv)(, 1)y + df(IV) ) p
% 2

(6.15)

L(df(JV) BV s
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Using Equation (47, we can rewrite the first term in (G.I3]) as
L — Ly, JTp = L ( f(divy, J)V — fdivgJ(jV)> P
= | (#tivg, DYV -+ 4FIV) iy, (£37)) 5

_ L (F(divg, IV +dF(iV)) o
Combining this last relation with (€I3]) and (6I5), we find

aal(Ly 7, Lva). (3.6) = | (#idivg, DV +df o JV = £718(V) + df(TV)) o
:f w (fdivg, J+dfo i +dfot—f78)p
3

= L(fdivg_,j+dfoj+dfoj—f1ﬁ) Awp  (by @)

= —(dju(J,6) | V)s -

We are left to prove Equation (6.I4]). Let Ay denote the endomorphism of T3 given by
Ay (X) = VxV. It is easy to verify using the definition of Lie derivative that

Lyo=Vyo+ A’{/O' + oAy .

Because V € G(, p), we know that tr(Ay) = 0. In particular, Ay € Span(J, J,.JJ) and
we can write

Ay = *%tr(JAV)J+ ﬁ <tr(jAv>j +tr(JjAV) JJ)

1 1 ) ) ) )
* _ = _—_—m
Ap = S tx(JAV)T + - (tr(JAV) J+ tr(JJAV) JJ)
2tr(J
- ) .1 .
JAY + Avd = —t(JAV)IT + 5 tr(JAV)]l
where Aj, denotes the adjoint of Ay with respect to g;. Then for every Je ;T (%), we

have

(, (Lyo)o) = tr(jgglﬁva)

tr(Jg5' Vo) + gyt Ave) + gy loay))
tr(jgjlvva) + tr(jA*Vg;10> + tr<Ang;10))
= (J,Vyo)+ o | JAL + AvJ)

= (J,Vyo)—tr(JAy) o | JJ)

N~ N~ DN~

/N N



PARA-HYPERKAHLER GEOMETRY OF THE SPACE OF ADS STRUCTURES 99
= (J,Vyo) —divy,(JV)a | JJ)
and Equation (6.14) follows by taking J = &o(-, J-). O

Remark 6.13. Note that, because iy and py differ by a constant, Proposition holds
for pr as well.

6.4.3. The differential of the map iy + i ik

With similar techniques, we can compute the differential of the other two moment maps:

Proposition 6.14. For every (J,0) € T*J(2) and for every (J,&) € Ty T*T(X) we
have:

A(fis +ijixc) (1,6) = =i (divy, (97" 60) +(Vud | )= (& | Vo +i V) € &(Z, p)*@LC,

where ¢ is the quadratic differential whose real part is equal to o, QLSO denotes the gj-traceless
part of ¢.

Proof. To simplify the notation, we set div(T) = div,,(¢g~'7) for any symmetric 2-tensor
T. In the proof of Theorem 6.5 we showed that r(0 76) = 3(divg). In particular we have
(y+iiak)(J,0) = [—idiv ¢], where ¢ is the quadratic differential whose real part coincides
with o. Therefore, in order to compute the differential of the moment map fiy + ¢ i, we
need to understand the variation of the quantity div ¢ along (J,¢) € Ty T*T (%)

Let €35 denote the contraction of the tensor S in its i-th covariant and j-th contravariant
entries. Then the gj-divergence of a symmetric 2-tensor 1" can be expressed as

clcHg* @ V.T),

where g* denotes the metric induced by g = g7 on T*¥. As seen in relation ([B.3]), the first
order variation of g = p(-,J-) along .J can be expressed as § = —g(-,J.J-). It is simple to
check that the corresponding variation of ¢g* satisfies ¢* = g*(-, (JJ')to), where (Jj)t is the
transpose of J J. In particular, for every symmetric 2-tensor 1" we have

(divT) = ClCH(§* Q VT + ¢* @ VT + g* @ V1)
= >(VeT) (T e, ) + Ve, T)(ei, ) + div T,

J J \ J

g g
term 1 term 2 term 3

where (e;); is a local g-orthonormal frame. In order to compute the differential of fiy +1 ik,
we will study each term of this expression for T = ¢.

Term 1. For every JeT;J (3), for every J-quadratic differential ¢ and for every tangent
vector field V' on 3, we have

(Vx)(JJ-, ) =(Vx | JJ) g+ (Vx| J)g(-,J").
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This relation is a simple application of Lemma [B.9] where the endomorphisms in 777 (%)
are the real (or imaginary) part of g~ 'V x ¢, and J J (we are implicitly extending the bilin-
ear pairing (- | -) to the complexified bundles by requiring the C-linearity in its arguments,
ie i(-|y={-|-y={1]17-)). From this expression we deduce that

DV, d)(JJei, V) =Y ((Veid | JT) glei, V) + (Ve | ) glei, TV))

— (Vv | JI + (Vv | I
— (Vv | Iy +(Vvd | I,

where in the last step we used the fact that V¢ is J-antilinear in its arguments.
Term 2. Applying Lemma T8, we see that

(Vv)(X,Y) = —3(VvX,Y) — (X, VyY)

—_

((div HV(BIX,Y) + G(X, TY)) + (I (Vv )X, Y)+
+H(X, J(Vy)Y))

—i(divJ)V §(X,Y) — % (&((VVJ)X, Y) + ¢(X, (VVJ)Y)> .

N |

In the last line, we used the fact that ¢ is J-antilinear. Applying Lemma [33J] to the real
(and imaginary, separately) part of ¢ and to Vv J, we deduce the following relation:

(Vv J),) +6( (Vvd)) =2 | VvJ) g,
This, combined with the previous computation leads us to the following expression:
(Vve)(X,Y) = —i(div J)V ¢(X,Y) —i{p | VyJ) g(X,Y). (6.16)
Moreover, the following equality holds:

Ddivd)e; dlei, V) = (b | Vv +iV ). (6.17)

i

We will temporarily assume this fact, the proof is postponed to the end of the current
argument. We can now express the second term of our initial expression as follows:

Z(Vezfﬁ e, V) = —ZZ (div J)e; ples,V ZZ<¢ | Ve, ) g(es, V) (relation (6.16))

7

=—z<¢|VVJ+ZVJVJ>—22<¢|V61J> g(e;, V) (relation (6I7))

= —il@| Vv +iVyvd) —ilo | VvJ).
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Term 3. Following the same argument of the proof of Lemma [3.2] we see that the first
order variation of a quadratic differential ¢ is of the form ¢ = ¢g — (¢ | JJ) g, where ¢y
denotes the g-traceless part of ¢. In particular, we deduce that

(div $)V = div(po — (& | JJ) g)V
— (div o)V —d(¢b | L))V
= (div (EO)V +1 d(<<5 ‘ J>) V (¢ J-antilinear)

— (div o)V + i(Vyd | Jy+i(p | Vv

Finally, we combine the expressions of the three terms involved in the derivative (div ¢)’
that we developed above, obtaining:

d(fis + i fix) (J,6) = —i (div ¢)’
= —i <Z(Veiq§)(Jje,~, )+ Z(Veiqg)(ei, ) + div (b)
i (—¢<v.<5 | IS+ (Ve | > — (D | Vad +iV jed)+
(g | Vad) + div o +(Vad | J) + 18 | Vo))
fi (div G0+ (Vyed | J>—i{B| Ve + z'VJ.j>) ,
which proves our statement.
Finally, we provide a proof of Equation (6.I7). Since J is symmetric with respect to g,
the same is true for VxJ for any tangent vector field X. In particular, if (V; J )jk denotes

9((Ve, J)e], ex), we must have (V; J)Jk =(V; J)k] for every i, j, k. Unraveling the definition
of the divergence of J, we see that

(diV J)(el) er + (diV J)(eg) €9 ( Vlj)u + (sz)lg) er + ((Vlj)21 + (sz)gg) €9
(Vi) + (Vad)ar) er + (Vid)12 + (Vo )22) €2

(Ve,J)er + (VeyJ)es.

(
(

Hence we have
DidivT)e; dlei, V) = ¢((Ve, Der + (Veyd)e2, V)
=V o((Vey et + (Veyd)ea,en) + VE(Vey et + (Veydea, e2),
where V¢ = g(V, e;). We will now make multiple use of the following elementary properties:
e co=Je, VI=g(JV,e3) = (JV)2, V2 = —g(JV,e1) = —(JV);
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. (Veij ) is g-symmetric and traceless. In particular, it anticommutes with the com-
plex structure J;
e the tensor ¢ is anti-bilinear in its entries, therefore ¢(J-,-) = ¢(-, J-) = —id(-,").

From the previous expression we deduce

Z(div Dei dlei, V) = VIo((Ve, Jer,e1) + (JV)2((VeyJ)Jer, 1)+

— (IV)'((Vey)er, Jer) + VE((Vey ) Jer, Jen)

= V'O((Vey J)er, e1) +iV3(J (Vey J)er, 1)+
— (VYOI (VerDJerer) + iV O(Ver erser)  (O18)

=Vo((Ve,)er,en) + V2G(Vey e, 1)+
+i(JV)2 (Ve der,e1) + i(JV) d(Ve, J)er, e1)

= (Vv J)er,er) +id((Vyvd)er,er)

In order to derive the desired relation, we are left to show that
(Vv D)er,er) +id(Vyver,er) =< | VyJ +iV v J)

This equality can be deduced from the properties of ¢ and V xJ previously mentioned.
Indeed we have

(| VyJ)= tr(gilévvtj)

(B(Tv-d)er,er) + @((Tv ) Jer, Jer) )

N~ N~ DN~

(8((VvDer,er) = oI (Tyder, Jer) )

= (Vv J)er, er).
By replacing the role of V with JV, we obtain also that (¢ | Vi -J> = ¢((VyvJ)er, er).
This cocludes the proof of relation (6.17]). O
6.4.4. Model for the tangent space to MS(X)

We finally come to the main statement of this section.
Theorem Ml For every (J,0) € MSo(Z, p), Vise) is the largest subspace OfT(J7O—)./\7SO(E, )
that s:

o nvariant under I, J and K;

e g-orthogonal to T( ;) (Sympy (%, p) - (J,0))

The proof of Theorem [M] is completed in the rest of this section, by means of three
lemmas that simplify the statement in several steps.
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Lemma 6.15. Let (J,0) € MSo(2,p) and (J,6) € T(;5T*T(). The following condi-
tions are equivalent:

a) (J,6),1(J,6),3(J,6) and K(J,&) belong to Ker(djig) n Ker(djiy) n Ker(dfix);

b) (J,6) and J(J,c) belong to Ker(dfiy) n Ker(djik).

Proof. We only need to prove that b) implies a). By Proposition (plus Remark [6.13])
and the quaternionic relations between I, J and K, we find
fin(I(J.6)) | V) = —w1(J(J.6). (LvJ. Ly0)) = g(LI(J,5). (Ly ], Lv o))
= g(K(J,0). (Lv ], Lvo)) = —wk((]. &), (Lv ], Ly o))
= {dji(J.6) | Ve -

Therefore, (J,6) € Ker(dfix) if and only if J(.J, &) € Ker(djig). With a similar computation,
one can also show that (J, ) € Ker(djik) if and only if I(J,¢) € Ker(djy). It follows that
if we start from a pair (J, d) satisfying b), then

e (J,6) € Ker(dfix) = I(J,6) € Ker(djig) and J(J, &) € Ker(dfir);

o (J,0) € Ker(djig) = I(J,0) € Ker(diix) and K(J, o) € Ker(dfir);

e J(J,0) e Ker(dik) = K(J,0) € Ker(djzy) and (J,0) € Ker(dji);

e J(J,0) € Ker(djiy) = K(J,0) € Ker(dfix) and I(J,¢) € Ker(djir)
which implies a). O

Lemma 6.16. Let (J,0) € MSy(S,p) and (J,6) € TnT*T (). The following condi-
tions are equivalent:

1) (j,&) is g-orthogonal to T{ ;- (Sympy (X, p) - (J,0));

2) for some L € {I,J,K}, we have L(J,&) € Ker(dfi,);

3) for all L € {I,J,K}, we have L(J,¢) € Ker(dfir,).

Proof. We first show that 1) is equivalent to 2) for L = J, the other cases being analogous.
The properties of the moment maps imply

g((Lv ], Lyo), (1,6)) = g((Lv T, Lvo),3%(J,5)) (J2=1)
= wy((Ly T, Lya),I(J,5)) (wy =g(,J"))
= —(dis (3(J,6)) | V)e -

so (J,6) is g-orthogonal to (LyJ, Ly o) for every V € & if and only if J(J, &) € Ker(dfiy).
Note that the above relation proves that 1) and 3) are equivalent as well. g

Combining Lemma [6.15] and Lemma [6.16] we see that the subspace V| ;) < T(;0T*TJ (%)
we are interested in can be described as

‘/(J,U) = {(J’O-) € T(J,J)T*j(z) | (J’O-)’J(J’O-) € Ker(d:&.]) N Ker(dﬂK)}
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Finally, the following result allows to describe V| ;) as the solution of the system of partial
differential equations appearing in Proposition [Kl part ii).

Lemma 6.17. Let (J,0) € T*J(X) be such that o is the real part of a holomorphic
quadratic differential ¢ on (%,J), and let (J,0) € T ;,T*T(X). Then (J,¢) and IJ(J, )
belong to ker djiy n ker djix if and only if
divg(g~'60+J J g 1o) = (V9.0 | J), (6.19)
divg(fJ + f1 T g 6097 0) = (V9.0 | f1g " 60). '

Proof. Applying Proposition [6.14] and dividing d(fiy + i fix ) into real and imaginary part,
respectively, we see that the following relations hold:

djiy (J,6) = [divg(g~"60(-, J) + (Voo | JI) = {0 | Vo = IV 1u)]
= [J*(divy g7 60 + (Veo | JT) + (o | J(Ved — IV 1)) € AL(Z)/BY(E),

dji (J,6) = —[divy g 60 + (Vyeo | J) + (o | J(VeJ — IV 1. J))] € AL(2)/BY(D).

Since ¢ is a holomorphic quadratic differential, it satisfies 074 = 0, which is equivalent
to require V jo0 = (V40)(+,J-). In light of this relation, if we set o to be the 1-form

a:=divyg 60+ (Veo | JI) + (o | J(VeJ — IV 1oJ)),
then we can express dfiy (J,¢) and dfik (J, &) as follows:
djiy (J,6) = [a o J], djix (J,6) = [-a] € A'(%)/B'(2) € &(, p)*.

Assume now that (J, &) satisfies djiz (J,6) = djik (J,6) = [0] € AY(Z)/B'(Z) or, equiv-
alently, that the forms « and «a o J are exact. In particular there exists a smooth function
over X such that o = df. Since oo J is exact, we also have

~(By, f)p = d(df o) = d(ae J) = 0.

In other words, the function f has to be harmonic with respect to g; and therefore constant,
since X is compact without boundary. This proves in particular that the 1-form « vanishes
identically if and only if (J, &) belongs to ker dfiy n ker djix. The form « can be expressed
as follows:

a=divy(g7160) + (Veo | JI) + {0 | J(Ved — IV 1o J))
= divy (g7 60 + (o | JIYT + o | JYJ) —(Vjeo | J)
= div, (g 60 + JTg o) —(Vjeo | J). (Lemma [3.9)

If we apply the same argument to J(J,&) (see Section B3] for the definition of J), we
obtain that

(J,6) € ker djig n ker djix < divy(g 160 + JJg o) = (Vjeo | J), (6.20)
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J(J,0) € ker djiy N ker djix < div,(fJ + f 1 Jg 609 o) = (Vyeo | f 197 60), (6.21)

where f = f(||lo]]) = A/1 + ||o||?, thus obtaining the desired statement. O

Proof of Theorem [M. By Corollary [6.9] the zero locus of the moment maps i1, iy and fix
coincides precisely with /%O(E, p). Observe, however, that T J,O-).//—\/\(_SO(E, p) is larger than
Ker(dpir) n Ker(djiy) n Ker(dfix) by Remark Nonetheless, the largest subspace W
of T(j,0) //\/\130(2, p) that is g-orthogonal to T\ ;) (Sympy (%, p) - (J,0)) and invariant under
I, J and K is contained in Ker(dfir) n Ker(djiy) n Ker(djik). Indeed, if (J,&) is in W,
then the same is true for I(J,&). Since I(.J,&) is g-orthogonal to the tangent of the orbit
by Symp, (X, p), Lemma [6.16] implies that Iz(j,d) = —(j, o) lies in Ker(dfiy). Being (j,d)
arbitrary, we deduce that W is contained in Ker(djr) n Ker(diy) n Ker(djik).

Now, by Lemma[6.15] Lemma[6.16] and Lemma [6.17 the subspace W is described by the
Equation (6.19). Taking the sum and the difference of the two equations, and using that
J=fJ+ g;la, Jo=fJ— g;la, it is straightforward to verify that (6.19) is equivalent
to (V2)) of Proposition [Kl O

APPENDIX A. PARA-COMPLEX GEOMETRY

In this appendix we introduce the algebra B of para-complex numbers, para-complex
coordinates, and B-valued symplectic forms. These will allow us to give an equivalent
characterization of para-Kéhler potential (Lemma [A4]) and prove a criterion to show that
a manifold is para-hyperKéhler (Lemma [AF) .

Para-complex numbers. Let B be the R-algebra generated by 7 with 72 = 1. Elements
of B are called para-complex numbers. Notice that B is a two-dimensional real vector space
and we will often denote B = R@® 7R. Borrowing terminology from the complex numbers,
we talk about real and imaginary part of an element of B and we define a conjugation

a+71b=a—71bh.

This induces a norm on B by taking

la + 70> = (a + 7)(a + 7b) = a® — b* .
Note that elements of B may have negative norm. In fact, the bi-linear extension of this
norm defines a Minkowski inner product on R? with orthonormal basis {1,7}. It is also
convenient to work with the basis of idempotents

1+ 1-—
t = T and e = T,
2 2

e

because the map

ae™ + be” — (a,b)
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gives an isomorphism of R-algebras between B and R @ R, where in the latter operations
are carried out component by component.

Para-complex structures. Let P : V — V be a para-complex structure on a real vector
space V. We denote by V' and V~ the eigenspaces of P relative to the eigenvalues +1
and —1 respectively.

Remark A.1. The multiplication by 7 on B is a para-complex structure on B with eigenspaces
VT =Re" and V- =Re™.

Given a para-complex structure P on V| we can define the para-complexification of V'
as the B-module VB = V ®@g B. We can then extend the para-complex structure P to VB
by B-linearity and define

VIO —(weVB | Pv=10} = {v+7Pv|veV}
VOl = (weVB | Pv=—10} = {v—7Pv|veV}
so that VB = v1.0 g 0.1,

A para-complex structure P induces a para-complex structure P* on the dual space
V* by requiring (P*a)(v) = a(Pv) for any v € V* and any v € V. As before, we can
decompose V*B = Vi,0® Vo1 where

Vip={aeV*® | P*a=71a} = {a+7P*a | a e V*}
Voi1={aeV*® | P*a=—1a} = {a—1P*a | ae V*}.
More in general, we have a decomposition of B-valued n-forms into types
Avo- @ R
V= @ | Zn
pt+q=n

where AP?V*E denotes the vector space spanned by a A B, with a € AP Vi and 3 €
A" Vo

Para-complex coordinates. Recall that an almost para-complex structure P on M is a
bundle endomorphism P : TM — TM such that P2 = 1 and the eigenspaces Tt M of P
relative to the eigenvalues +1 have the same dimension.

Definition A.2. Let (M, P) and (N, P’) be two almost para-complex manifolds. A smooth
map f : M — N is para-holomorphic if P’ o df = df o P. In particular, a function
f:(M,P) — B is para-holomorphic if for every vector field V' € I'(T'M) we have df (PV) =
Tdf (V).

An almost para-complex structure P on M is said to be integrable if the eigen-distributions
T*M of P are involutive. This is equivalent to the existence of local charts ¢, : Uy <
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M — B" such that change of coordinates are para-holomorphic functions. If z* is a B-
valued coordinate, its real and imaginary part

Re(z%) = 2% = %(zZ +2) Im(z)) =y = — (' — 7Y

define usual R-valued coordinates on M.

The para-complex tangent bundle of a para-complex manifold (M, P) is TEM = TM Qg
B. Extending the endomorphism P on TBAM by B-linearity, we have a decomposition
TPM = T"OM @& T%' M where

TYOM = {XeT?M |PX =7X} ={X +7PX | X e TM}
TOIM = {X eT®M | PX = —7X} ={X —7PX | X e TM} .

In local B-valued coordinates z* = 2 +7y’, the vector spaces T1OM and T%! M are spanned
by the vector fields

YR A N )
ozt 2 \oxt oyt ozt 2 \oxt oyt )

Similarly, the induced para-complex structure P* on 7% M induces a decomposition T*® M =

AYO(M) @ A% (M) where

AYOM) = {aeT*™M | P*a = ra} = {a + 7TP*a | a € T* M}
AN M) = {aeT®M | P*a = —71a} = {a — TP*a | a e T*M} .

In local B-valued coordinates z* = x' + 7y’, the vector spaces AM0(M) and A%Y(M) are
spanned by the B-valued forms

dzt = da* + 7dy' and dZ' = dat — rdy’ .
More in general, we have a decomposition of B-valued n-forms on M into types
A" (M) = (—D APA(M) .
ptqg=n
This induces a splitting of the B-linear exterior differential d : A™(M) — A"*1(M) as
d=0p +‘3P with
op : API(M) — APTHU(M)  and  dp : APY(M) — APITH(M) .

Para-Kihler potential. Recall that a para-Kéahler structure is the data of an almost
para-complex structure P and a (non-degenerate) pseudo-Riemannian metric g on M such
that

e g(PX,PY)=—g(X,Y) forevery X,Y eI'(TM),

e P is parallel for the Levi-Civita connection of g.
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This second condition is equivalent (JAMTO09b]) to the simultaneous integrability of the
eigendistributions of P and the closedness of the 2-form wp = g(-,P-). It is easy to see
that the eigendistributions of P are isotropic for g, thus g has signature (n,n).

Definition A.3. We say that f: M — R is a para-Ké&hler potential of the closed 2-form
wp if (T/Q)gpapf = Wp.

Lemma A.4. For every smooth function f : M — R we have 270pdp f = d(df o P).

Proof. In local para-holomorphic coordinates 2% = 2 + 7y’ we have
0 0 of 0 of
re (956’) f< y) oy re (91/@) f<9~’6’) ot

N Of i of
dfoP_i;a—yidx + 25 dy

thus

and

/o2 02 A _
d(df o P) = Z <6‘x{ — ay{) da’ n dy' .

On the other hand
c af af

> (dz' + Tdy)

1 G [(2f 02 , , , A
=57 Z <6‘xi f> (dx* — 1dy") A (dz' + 7dy")

i=1
o (Pf PN
—Z(axi—ayi)dx Ady' .

O

Criterion for a para-hyperKahler structure. Recall that a para-hyperKahler struc-
ture on M is a quadruple (g,I,J,K) where (g,K) and (g,J) are para-Kahler structures
on M and I = KJ is an almost complex structure on M that is compatible with g in the
sense that

g(IX, 1Y) =g(X,Y) forall X,Y e T(TM)

and that is parallel for the Levi-Civita connection of g.

Lemma A.5. Let J,K be almost para-complex structures and let I = KJ be an almost
complex structure on M. Assume that there is pseudo-Riemannian metric g compatible
with I, J and K. If the 2-forms wy, = g(-,L-) are closed for every L = I,J,K, then
(M,1,J,K,g) is para-hyperKdhler.
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Proof. We first extend the differential forms wy, to B-valued differential forms by B-linearity.
Because

wi(X,Y) = g(X,IV) = —g(X,JKY) = g(JX,KY) = wk (JX,Y)

for any section X of TBM, we have JX = 7X if and only if txwy = Ttxwk. Suppose that
JX =7X and JY = 7Y, then

ux,ywr = Lx (tywr) — ty Lxwr
= Lx(Tiywk) — ty Lxwr
= Lx(Tiywk) — Lyd(LXwI) (Cartan’s formula with wy closed)
= Lx(Tiywk) — tyd(Tixwk)
= Lx(Tiywk) — TLYﬁwa (Cartan’s formula with wk closed)
= TUX,y]WK

Hence J[X,Y] = 7[X, Y] and and the eigendistributions for J are involutive. The integra-
bility of J and the closedness of wy imply that J is parallel for the Levi-Civita connection
of g. Repeating a similar computation for I and K we obtain the result. O
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