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PARA-HYPERKÄHLER GEOMETRY OF THE DEFORMATION SPACE
OF MAXIMAL GLOBALLY HYPERBOLIC ANTI-DE SITTER

THREE-MANIFOLDS

FILIPPO MAZZOLI, ANDREA SEPPI, AND ANDREA TAMBURELLI

Abstract. In this paper we study the para-hyperKähler geometry of the deformation
space of MGHC anti-de Sitter structures on Σ ˆ R, for Σ a closed oriented surface. We
show that a neutral pseudo-Riemannian metric and three symplectic structures coexist
with an integrable complex structure and two para-complex structures, satisfying the re-
lations of para-quaternionic numbers. We show that these structures are directly related
to the geometry of MGHC manifolds, via the Mess homeomorphism, the parameteriza-
tion of Krasnov-Schlenker by the induced metric on K-surfaces, the identification with
the cotangent bundle T˚

T pΣq, and the circle action that arises from this identification.
Finally, we study the relation to the natural para-complex geometry that the space inher-
its from being a component of the PSLp2,Bq-character variety, where B is the algebra of
para-complex numbers, and the symplectic geometry deriving from Goldman symplectic
form.
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1. Introduction

The main purpose of this paper is to study the geometry of the deformation space

of maximal globally hyperbolic Cauchy-compact three-dimensional Anti-de Sitter three-

manifolds. In short, our results show that these deformation spaces are endowed with

a mapping-class group invariant para-hyperKähler metric, and then provide geometric

interpretations to each element that constitutes the para-hyperKähler structure.

1.1. Motivation and state-of-the-art

Since the pioneering work of Mess of 1990 [Mes07], maximal globally hyperbolic Anti-de

Sitter manifolds in dimension three have been largely studied, motivated on the one hand by
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the striking analogies with quasi-Fuchsian manifolds, and on the other by the deep relations

with Teichmüller theory. See also, among others, [ABB`07, BB09, Bar15, Bar18, BS20].

In particular, the deformation space of maximal globally hyperbolic Anti-de Sitter man-

ifolds, which in this paper we will denote by MGHpΣq, where Σ is a closed surface of

genus ě 2, is intimately related with the Teichmüller space T pΣq. This has been first ob-

served by Mess, who provided a parametrization of MGHpΣq by the product T pΣqˆT pΣq;
other parametrizations again by T pΣq ˆ T pΣq or by T ˚T pΣq were introduced in [KS07].

The latter relies on existence and uniqueness results for maximal surfaces, as shown in

[BBZ07, BS10]. A further understanding of the geometry of Anti-de Sitter manifolds and

their deformation space has been obtained by the study of geometric invariants such as the

convex core ([BS12, SS18]), its width ([BS10, Sep19]), its volume ([BST17]), by means of

surfaces with curvature conditions ([BBZ07, ABBZ12, BS18, Tam19, CT19]), and by the

symplectic geometric approach ([BMS13, BMS15, BS19]).

Stepping back to the parallel with quasi-Fuchsian hyperbolic manifolds, recently Don-

aldson highlighted the existence of a natural hyperKähler structure on a neighborhood of

the Fuchsian locus in the deformation space of almost-Fuchsian manifolds, seen as a neigh-

borhood of the zero section in the cotangent bundle T ˚T pΣq. See [Don03, Hod05, Tra18,

Tra19]. The purpose of this paper is to develop a similar approach for maximal globally

hyperbolic Anti-de Sitter manifolds, and to demonstrate that the natural structure that

appears in this setting is a para-hyperKähler structure. For more details on para-Kähler

and para-hyperKähler geometry, see [CFG96, GMV01, AMT09a, Vac12]. We will see that

this structure recovers many of the geometric constructions that have been introduced be-

fore, so as to elucidate the global picture and the relations between different approaches.

We now give the fundamental definitions and state our main results.

1.2. Deformation space of MGHC AdS manifolds

We give here the standard definition of maximal globally hyperbolic Cauchy compact Anti-

de Sitter manifolds (in short, MGHC AdS). A Cauchy surface in a Lorentzian manifold

is an embedded hypersurface that intersects every inextensible causal curve exactly in one

point; a Lorentzian manifold admitting a Cauchy surface is called globally hyperbolic. It is

moreover maximal if every isometric embedding in another globally hyperbolic manifold

sending a Cauchy surface to a Cauchy surface is surjective. Finally, a MGHC AdS mani-

fold is a maximal globally hyperbolic Lorentzian manifold of constant sectional curvature

´1 admitting a closed Cauchy surface. A simple example of MGHC AdS manifolds are

Fuchsian manifolds, whose metric G can be written globally as a warped product

G “ ´dt2 ` cos2ptqh , (1.1)

for t P p´π{2, π{2q and h a hyperbolic metric on a closed manifold. In this case the Cauchy

surface t “ 0 is totally geodesic.
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A classical fact in Lorentzian geometry (see [Ger70, BE81, BS03]) is that globally hy-

perbolic Lorentzian manifolds are diffeomorphic to Σ ˆ R, where Σ is a Cauchy surface,

and any two Cauchy surfaces are diffeomorphic. In this work we will only consider three-

dimensional AdS manifolds whose Cauchy surfaces are closed. Hence from now on we will

fix a closed oriented surface Σ. We then define the deformation space of MGHC AdS

manifolds as follows:

MGHpΣq :“ tG |G is a MGHC AdS metric on Σ ˆ Ru{Diff0pΣ ˆ Rq ,

where the group Diff0pΣˆRq of diffeomorphisms isotopic to the identity acts by pull-back of

G. It turns out that MGHpS2q is empty, MGHpT 2q is a four-dimensional manifold, while

if Σ is a surface of genus ě 2, then MGHpΣq has dimension 6|χpΣq|. Observe moreover

that there is a natural action of the mapping class-group MCGpΣq “ Diff`pΣq{Diff0pΣq on

MGHpΣq, again by pull-back. When Σ has genus ě 2, the deformation space MGHpΣq
contains the Fuchsian locus FpΣq, namely those manifolds whose metric is of the form

(1.1), which is MCGpΣq-invariant and naturally identified to the Teichmüller space T pΣq.

1.3. Para-hyperKähler structures

We now introduce the notion of para-hyperKähler structure and state our first result.

Recall that a pseudo-Kähler structure on a manifold M consists of a pair pg, Iq where

g is a pseudo-Riemannian metric and I is an integrable almost complex structure (i.e.

I2 “ ´1) such that gpIv,wq “ ´gpv, Iwq and the 2-form ωIp¨, ¨q :“ gp¨, I¨q is closed (hence

a symplectic form). Similarly, a para-Kähler structure consists of an integrable almost

para-complex structure P, which means that

‚ P2 “ 1;

‚ the P-eigenspaces of 1 and ´1 have the same dimension;

‚ the distributions on M given by the 1 and ´1 eigenspaces of P are integrable;

and P is such that gpPv,wq “ ´gpv,Pwq and the 2-form ωPp¨, ¨q :“ gp¨,P¨q is closed.

Observe that a direct consequence of the existence of a para-Kähler structure is that

gpP¨,P¨q “ ´gp¨, ¨q, hence g is necessarily of neutral signature. Moreover the condition

that dωI “ 0 (resp. dωP “ 0) is known to be equivalent to ∇I “ 0 (resp. ∇P “ 0),

for ∇ the Levi-Civita connection of g. We finally give the definition of para-hyperKähler

structure:

Definition. A para-hyperKähler structure on a manifold M is the data pg, I,J,Kq, where

pg, Iq is a pseudo-Kähler structure, pg,Jq and pg,Kq are para-Kähler structures, and

pI,J,Kq satisfy the para-quaternionic relations.

By para-quaternionic relations we mean the identities I2 “ ´1, J2 “ K2 “ 1 — which

are implicitly assumed by the condition that I (resp. J, K) is a complex (resp. para-

complex) structure — and moreover IJ “ ´JI “ K.
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We remark that, given a para-hyperKähler structure pg, I,J,Kq, a complex symplectic

form is defined by:

ωC

I :“ ωJ ` iωK .

It is complex in the sense that it is a C-valued symplectic form and satisfies ωC
I

pIv,wq “
ωC
I

pv, Iwq “ iωC
I

pv,wq. Similarly, one has two para-complex symplectic forms defined by

ωB
J :“ ωI ` τωK and ωB

K :“ ωI ´ τωJ ,

where we denote by B “ R ‘ τR the algebra of para-complex numbers, i.e. τ2 “ 1.

Again, these are para-complex in the sense that ωB
J

pJv,wq “ ωB
J

pv,Jwq “ τωB
J

pv,wq and

ωB
K

pKv,wq “ ωB
K

pv,Kwq “ τωB
K

pv,wq.
Only manifolds of dimension 4n can support a para-hyperKähler structure. Our first

result is that MGHpΣq, whose dimension is four if Σ has genus one and 6|χpΣq| otherwise,

does support a very natural one.

Theorem A. Let Σ be a closed oriented surface of genus ě 1. Then MGHpΣq admits a

MCGpΣq-invariant para-hyperKähler structure pg, I,J,Kq. When Σ has genus ě 2, the

Fuchsian locus FpΣq is totally geodesic and pg, Iq restricts to (a multiple of) the Weil-

Petersson Kähler structure of Teichmüller space.

The para-hyperKähler structure of MGHpΣq is extremely natural from the point of view

of AdS geometry, in the sense that all the elements that constitute the para-hyperKähler

structure have (at least one) interpretation in terms of the geometry of MGHC AdS man-

ifolds. We now state and explain all these interpretations.

1.4. Parameterizations of MGHpΣq

The first interpretation is in terms of the cotangent bundle of Teichmüller space. There is

a natural map

F : MGHpΣq Ñ T ˚T pΣq ,
which associates to a MGHC AdS manifold pΣ ˆ R, Gq the pair pJ, qq, where J is the

(almost-)complex structure of the first fundamental form of the unique maximal Cauchy

surface in pM,Gq, and q is the holomorphic quadratic differential whose real part is the

second fundamental form. The map F is a (MCGpΣq-equivariant) diffeomorphism if Σ

has genus ě 2; for genus one it is a diffeomorphism onto the complement of the zero

section. The cotangent bundle T ˚T pΣq is naturally a complex symplectic manifold; our

first geometric interpretation is the fact that the map F is anti-holomorphic and preserves

the complex symplectic forms up to conjugation.

Theorem B. Let Σ be a closed oriented surface of genus ě 1. Then

F˚pIT˚T pΣq,Ω
C

T˚T pΣqq “
ˆ

´I,´ i

2
ωC
I

˙
,
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where IT˚T pΣq denotes the complex structure of T ˚T pΣq and ΩC

T˚T pΣq its complex symplec-

tic form.

Let us assume (until the end of this section) that Σ has genus ě 2. In [Mes07], Mess

proved that MGHpΣq is parameterized by the product of two copies of the Teichmüller

space of Σ, by a map

M : MGHpΣq Ñ T pΣq ˆ T pΣq ,
that essentially gives (under the isomorphism between the isometry group of AdS space and

PSLp2,RqˆPSLp2,Rq), the left and right components of the holonomy map of a MGHC AdS

manifold pM,Gq. The manifold T pΣq ˆT pΣq is easily a para-complex manifold, where the

para-complex structure PT pΣqˆT pΣq is the endomorphism of the tangent bundle for which

the integral submanifolds of the distribution of 1-eigenspaces are the slices T pΣqˆt˚u, and

those for the p´1q-eigenspaces are the slices t˚u ˆ T pΣq. It has moreover a para-complex

symplectic form compatible with PT pΣqˆT pΣq:

ΩT pΣqˆT pΣq :“
1

2
pπ˚
l ΩWP ` π˚

rΩWP q ` τ

2
pπ˚
l ΩWP ´ π˚

rΩWP q

where ΩWP is the Weil-Petersson symplectic form and πl, πr denote the projections on the

left and right factor.

Theorem C. Let Σ be a closed oriented surface of genus ě 2. Then

M˚pPT pΣqˆT pΣq, 4Ω
B

T pΣqˆT pΣqq “ pJ, ωB
Jq ,

where PT pΣqˆT pΣq denotes the para-complex structure of T pΣq ˆ T pΣq and ΩB

T pΣqˆT pΣq its

para-complex symplectic form.

Combining Theorems B and C in a particular case, we see that p1{2qωK equals on the

one hand the pull-back by M of the symplectic form π˚
l ΩWP ´ π˚

rΩWP , and on the other

hand the pull-back by F of minus the real part of ΩC

T˚T pΣq (i.e. the natural real symplectic

form of the cotangent bundle). This identity has been proved in [SS18, Theorem 1.14], by

completely different methods.

There is another parameterization of MGHpΣq by the product of two copies of the

Teichmüller space of Σ, which has been introduced in [KS07]. It is given by the map

C : MGHpΣq Ñ T pΣq ˆ T pΣq ,
which associates to pM,Gq the first fundamental forms of the two Cauchy surfaces (one

future-convex, one past-convex) of constant intrinsic curvature ´2. These two Cauchy

surfaces of constant curvature are unique ([BBZ11, BS18]), and we rescale their first fun-

damental forms by a factor so as to consider them as hyperbolic metrics. We show:

Theorem D. Let Σ be a closed oriented surface of genus ě 2. Then

C˚pPT pΣqˆT pΣq, 4Ω
B

T pΣqˆT pΣqq “ pK, ωB
Kq ,
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where PT pΣqˆT pΣq denotes the para-complex structure of T pΣq ˆ T pΣq and ΩB

T pΣqˆT pΣq its

para-complex symplectic form.

We remark that there are formal analogues of Theorem C and Theorem D in genus one

(see Section 3.6 and 3.8), but the corresponding maps M, C : MGHpT 2q Ñ T pT 2qˆT pT 2q
do not have the same geometric interpretation (namely, the holonomy map or the constant

curvature surfaces) as in the higher genus case, which is why we restricted to genus ě 2

when stating these results here.

1.5. The circle action

We now move on to studying a circle action on MGHpΣq. Using the diffeomorphism

F : MGHpΣq Ñ T ˚T pΣq, the circle action on T ˚T pΣq given by eiθ ¨ pJ, qq “ pJ, eiθqq
(where J is an almost-complex structure on Σ and q a holomorphic quadratic differential)

induces an action of S1 on MGHpΣq. Let us denote by Rθ : MGHpΣq Ñ MGHpΣq the

corresponding self-diffeomorphism. For genus ě 2, this action of S1 induces an action on

T pΣq ˆ T pΣq by means of the map M. The so obtained S1-action on T pΣq ˆ T pΣq has

been studied in [BMS13, BMS15] under the name of landslide flow.

It will be relevant to introduce the function

A : MGHpΣq Ñ R

which associates to a MGHC AdS manifold the area of its unique maximal Cauchy surface.

It is easy to see that A is constant on the orbits of the circle action. We show:

Theorem E. Let Σ be a closed oriented surface of genus ě 1. The circle action on

MGHpΣq is Hamiltonian with respect to ωI, and satisfies

R˚
θg “ g R˚

θωI “ ωI R˚
θω

C
I “ e´iθωC

I .

When Σ has genus ě 2, the function A is a Hamiltonian function.

We remark that, in terms of the (para-)complex structures I,J,K, the pull-back relations

of Theorem E read:

R˚
θ I “ I R˚

θJ “ cospθqJ ` sinpθqK R˚
θK “ ´ sinpθqJ ` cospθqK . (1.2)

In [BMS15], Bonsante, Mondello and Schlenker showed that the landslide flow is Hamil-

tonian with respect to the symplectic form π˚
l ΩWP`π˚

rΩWP. As a consequence of Theorem

C and the first part of Theorem E, we thus recover (by independent methods) their results

and include it in a more general context.

The map A : MGHpΣq Ñ R that encodes the area of the maximal Cauchy surface is

also applied in the following context. Given a para-Kähler structure pg,Pq on a manifold

M , a para-Kähler potential is a smooth function ρ : M Ñ R such that ωP “ pτ{2qBPBPρ.
We then prove:
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Theorem F. Let Σ be a closed oriented surface of genus ě 1. Then the para-Kähler

structures pg,Jq and pg,Kq admit a para-Kähler potential, which coincides up to a constant

with a Hamiltonian function for the circle action.

One could alternatively have used the map C to induce a circle action on T pΣq ˆ T pΣq.
However, the obtained action is the same as when using M (i.e. the landslide flow), as

a consequence of the observation that M “ C ˝ R´π{2. By this relation, Theorem D

immediately follows from Theorem C and Theorem E.

In fact we can define a one-parameter family of maps

Cθ : MGHpΣq Ñ T pΣq ˆ T pΣq ,
simply defined by Cθ “ C ˝ Rθ. An immediate consequence of our previous Theorems D

and E is the following identity:

C˚
θ pPT pΣqˆT pΣq, 4Ω

B

T pΣqˆT pΣqq “ pcos θK ´ sin θJ, ωI ´ τpcospθqωJ ` sinpθqωKqq . (1.3)

The maps Cθ have the following interpretation purely in terms of harmonic maps and Te-

ichmüller theory. From the theory of harmonic maps between hyperbolic surfaces ([Sam78,

Wol89, Wol91b, Wol91a, Min92]), Teichmüller space admits a parameterization by the vec-

tor space of holomorphic quadratic differentials H0pΣ,K2
J q with respect to a fixed complex

structure J on Σ. The construction goes as follows. To a holomorphic quadratic differ-

ential q, we associate the hyperbolic metric hpJ,qq on Σ (unique up to isotopy) such that

the (unique) harmonic map pΣ, Jq Ñ pΣ, hq isotopic to the identity has Hopf differential

q. We now let J vary over T pΣq. Then the map

Hθ :“ Cθ ˝ F´1 : T ˚T pΣq Ñ T pΣq ˆ T pΣq
can be interpreted as follows:

HθpJ, qq “ phpJ,´eiθqq, hpJ,eiθqqq .
There is a completely analogous construction in genus one, by replacing hyperbolic surfaces

by flat tori. As a consequence of Equation (1.3), we obtain:

Theorem G. Let Σ be a closed oriented surface of genus ě 1. Then

ImH˚
θ p2ΩB

T pΣqˆT pΣqq “ ´RepieiθΩC

T˚T pΣqq .

We remark that the statement above is expressed purely in terms of Teichmüller theory,

and is independent of Anti-de Sitter geometry.

1.6. The character variety

Let us now consider the character variety of the fundamental group π1pΣq in the isometry

group of AdS space. We have already observed that the isometry group is isomorphic to

PSLp2,Rq ˆPSLp2,Rq; using the model of Hermitian matrices ([Dan13, Dan14]), it can be
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described as the Lie group PSLp2,Bq, where as usual B denotes the algebra of para-complex

numbers. Using the (para-complex) Killing form, the character variety χpπ1pSq,PSLp2,Bqq
is endowed with a para-complex symplectic form ΩB

Gol, which is defined by adapting the

work of Goldman ([Gol84]) to this context. It is para-complex with respect to the para-

complex structure T induced by multiplication by τ . It can be checked that, under the

isomorphism PSLp2,RqˆPSLp2,Rq – PSLp2,Bq, the para-complex structure T corresponds

to the para-complex structure P for which the integral distributions of the 1 and ´1

eigenspaces are the horizontal and vertical slices.

Hence if we denote by

Hol : MGHpΣq Ñ χpπ1pSq,PSLp2,Bqq
the map that associates to a MGHC AdS manifold its holonomy representation, we obtain

the following corollary of Theorem C:

Corollary H. Let Σ be a closed oriented surface of genus ě 2. Then

Hol˚pT , 4ΩB
Golq “ pJ, ωB

Jq .
We conclude the overview of our results by a concrete description of the para-complex

symplectic structure ωB
J
. In [Tam20], the third author introduced B-valued Fenchel-Nielsen

coordinates. Roughly speaking, these are defined as follows. Let ρ “ pρ`, ρ´q : π1pΣq Ñ
PSLp2,Rq ˆ PSLp2,Rq be the holonomy representation of a MGHC AdS manifold. Since

both ρ´ and ρ` are Fuchsian representations, ρ˘pαq are loxodromic elements for any non-

trivial α P π1pΣq. As a consequence, we can associate to α a principal axis α̃ in AdS space,

which is the spacelike geodesic with endpoints in RP
1 ˆRP

1 given by the pair of attracting

and the pair of repelling fixed points of ρ˘pαq. Then the Fenchel-Nielsen coordinates of ρ

are pℓB,jρ , tw
B,j
ρ q (for γj a pants decomposition of Σ), where ℓB,jρ are para-complex numbers

whose real part corresponds to the translation length and imaginary part to the bending

angle of ρpγjq on the principal axis γ̃j ; a similar interpretation can be given for the (para-

complex) twist coordinates tw
B,j
ρ .

These coordinates are an analogue of the complex Fenchel-Nielsen coordinates on the

space of quasi-Fuchsian manifolds, which are Darboux coordinates ([Wol83],[Pla01],[PP08]).

Here we show that an analogous result holds for ωB
J
, which we recall corresponds (up to a

multiplicative constant) both to the para-complex sympletic form on T pΣq ˆ T pΣq and to

the Goldman form ΩB

Gol.

Theorem I. The B-valued Fenchel-Nielsen coordinates are para-holomorphic for J, and

are Darboux coordinates with respect to the para-complex symplectic form ωB
J
.

In other words, we can express the symplectic form ωB
J
, which coincides up to a multi-

plicative constant with the para-complex Goldman form ΩB

Gol, as

ωB
J “ 1

4

nÿ

j“1

dℓB,jρ ^ dtwB,j
ρ
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where ℓB,jρ and tw
B,j
ρ are the B-valued length and twist parameters on the curve γj in a

pants decomposition of Σ (where n “ p3{2q|χpΣq| is the number of such curves).

Finally, we give a formula for the value of the symplectic form ωB
J

along two twist defor-

mations, generalizing Wolpert’s cosine formula. For this purpose, given α, β P π1pΣq two

intersecting closed curves, the principal axes of ρpαq and ρpβq admit a common orthogonal

geodesic of timelike type. Then we define the B-valued angle as the para-complex number

whose imaginary part is the signed timelike distance between the two axes, and the real

part is the angle between one principal axis and the parallel transport of the other, along

the common orthogonal geodesic.

Theorem J. Let ρ “ pρ`, ρ´q : π1pΣq Ñ PSLp2,Rq ˆ PSLp2,Rq be the holonomy of a

MGHC AdS manifold, and let α, β be non-trivial simple closed curves. Then

ωB
J

˜
B

BtwB,α
ρ

,
B

BtwB,β
ρ

¸
“ 1

4

ÿ

pPαXβ

cos
´
dBpα̃ρ, β̃ρq

¯
,

where α̃ρ and β̃ρ are the principal axes of ρpαq and ρpβq on AdS space, and dBpα̃ρ, β̃ρq is

their B-valued angle.

Here the cosine of a para-complex number is formally defined by the power series ex-

pansion.

1.7. Outline of techniques and proofs

We now provide an overview of the techniques that we apply in the proofs.

The “toy model”: genus one

After reviewing the necessary preliminaries on the deformation space of Anti-de Sitter

three-manifolds in Section 2, we complete in Section 3 the proof of our results from Theorem

A to Theorem G (or their formal analogues, for Theorems B and C) in genus one. The

reason is that the methods used to prove these results in genus one also provide the

fundamental step on which the proofs in higher genus rely. Let us give a quick outline.

Denote by J pR2q the space of linear almost-complex structures on R
2 compatible with

the standard orientation, namely those endomorphisms J of R2 such that J2 “ ´1 and

that tv, Jvu is a positive basis. This space is naturally identified to H
2, in such a way

that the natural transitive SLp2,Rq action by conjugation on J pR2q corresponds to the

SLp2,Rq action on the upper half-space model. We construct an explicit SLp2,Rq-invariant

para-hyperKähler structure on the cotangent bundle T ˚J pR2q, which is in turn identified

to the space of pairs pJ, σq where σ is a symmetric bilinear form satisfying σpJ ¨, J ¨q “ ´σ,

and give geometric interpretations to each object of the para-hyperKähler structure. For

instance, the complex symplectic form ωC
I

coincides up to conjugation and a multiplicative

factor with the complex symplectic form of T ˚J pR2q, and the almost-complex structure

I is compatible with its complex structure. Also, the restriction to the zero section is
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identified, up to a factor, with the area form of H
2. All the theorems until Theorem G

have an analogue that we prove in this context.

The construction of the para-hyperKähler structure on MGHpT 2q (Theorem A), as well

as all the other statements in genus one, follow immediately by identifying (using the

first and second fundamental form of the unique maximal surface) the deformation space

MGHpT 2q with the complement of the zero section in T ˚J pR2q, in such a way that the

mapping class group action corresponds to the action of SLp2,Zq ă SLp2,Rq (Lemma 3.11.)

Setup in higher genus

Let us now move on from genus one to genus ě 2. The proof of Theorem A, and of

the geometric interpretations from Theorem B to Theorem G, rely on the following con-

struction, which is developed in Section 4. Fix an area form ρ on Σ. Then we consider

the space of all pairs pJ, σq where (similarly to T ˚J pR2q above) J is an almost-complex

structure on Σ and σ a smooth symmetric bilinear form satisfying σpJ ¨, J ¨q “ ´σ. This

infinite-dimensional space, that is denoted by T ˚J pΣq, can be endowed formally with three

symplectic structures ωI, ωJ, ωK. Indeed the tangent space TpΣ at every point has a para-

hyperKähler structure induced by choosing an area-preserving linear isomorphism between

TpΣ and R
2, which induces an identification between T ˚J pR2q and T ˚J pTpΣq. Since the

para-hyperKähler structure on T ˚J pR2q is SLp2,Rq-invariant, the induced structures on

T ˚J pTpΣq do not depend on the chosen area-preserving linear isomorphism. Then one

can formally integrate each symplectic form over Σ, evaluated on first-order deformations

p 9J, 9σq.
To make this construction more formal, T ˚J pΣq is identified with the space of smooth

sections of the bundle

P pT ˚J pR2qq “ P ˆ T ˚J pR2qäSLp2,Rq,

where P is the SLp2,Rq-principal bundle over Σ whose fiber over p P Σ is the space of

linear isomorphisms between R
2 and TpΣ that pull-back the area form ρ on TpΣ to the

standard area form of R2. Hence one can introduce the formal symplectic forms

pωXqpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq :“
ż

Σ

ω̂Xpp 9J, 9σq, p 9J 1, 9σ1qq ρ, (1.4)

for X “ I,J,K, where ω̂X is the symplectic form induced on the vertical space at every

point, and analogously for the formal pseudo-Riemannian metric

gpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq :“
ż

Σ

ĝpp 9J, 9σq, p 9J 1 , 9σ1qq ρ , (1.5)

on the infinite-dimensional space of sections. Similarly, one can define the endomorphisms

I, J and K by applying pointwise those that have been defined on T ˚J pR2q under the

identification as above. (See the discussion on symplectic reduction below for more details.)
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Now, recalling that every MGHC AdS manifold contains a unique maximal Cauchy

surface, the essential point is to determine the space of solutions to the Gauss-Codazzi

equations for maximal surfaces in AdS space, as a subspace of sections pJ, σq. Given an

almost-complex structure J , one can build a Riemannian metric gJ “ ρp¨, J ¨q. However, in

general this metric cannot be realised as the first fundamental form of a maximal surface

in a MGHC AdS manifold, because the area form of gJ coincides with ρ, hence all metrics

gJ have the same area, which is not the case for maximal surfaces. Instead, inspired by

a similar “change of variables” used in the construction of the hyperKähler structure on

a neighborhood of the Fuchsian locus in the space of quasi-Fuchsian manifolds ([Don03,

Hod05, Tra19]), we define the metric h “ p1 ` fp}σ}gJ qqgJ , where }σ}gJ is the norm of

the 2-tensor σ with respect to the metric gJ , and fptq “
?
1 ` t2. Then imposing the

Gauss-Codazzi equations on I “ h and II “ h´1σ, we determine a Symp0pΣ, ρq-invariant

subspace of the space of smooth section pJ, σq, which we denote by ĄMS0pΣ, ρq, whose

quotient MS0pΣ, ρq by the action of Symp0pΣ, ρq is identified to MGHpΣq thanks to the

existence and uniqueness result for maximal surfaces, together with a standard application

of Moser’s trick. We remark that, unlike the construction in the quasi-Fuchsian setting

where the correct function to apply the change of variables is fptq “
?
1 ´ t2, hence only

defined for t “ }σ}gJ ă 1, in the AdS setting this change of variables permits to recover

all the maximal surfaces in MGHC AdS manifolds, and not only a neighborhood of the

Fuchsian locus.

A distinguished complement to the orbit

In order to induce a para-hyperKähler structure on MS0pΣ, ρq, by restriction of the sym-

plectic forms ωI, ωJ and ωK and of the metric g, we need to construct a distribution of

subspaces of the tangent space of ĄMS0pΣ, ρq which are isomorphic at every point pJ, σq to

the tangent space to the quotient MGHpΣq, and invariant for the action of Symp0pΣ, ρq.
The construction of such invariant distribution, which is denoted by VpJ,σq and defined

as the space of solutions of a system of partial differential equations, constitutes the main

technical difficulty of Section 4. The defining equations can be formulated in several equiv-

alent ways, as in the following technical statement, whose proof is done in Section 4.6 by

overcoming a number of technical difficulties.

Proposition K. Given pJ, σq P ĆMS0pΣ, ρq, and p 9J, 9σq P TpJ,σqT
˚J pΣq, the following

conditions are equivalent:

i) the pair p 9J, 9σq satisfies

#
divgpf´1g´1 9σ0q “ ´f´1x∇g

J‚σ | 9Jy,
divg 9J “ ´f´2x∇g

J‚σ, 9σ0y.
(V1)
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ii) the endomorphisms Q˘ “ Q˘p 9J, 9σq :“ f´1g´1 9σ0 ˘ 9J satisfy
#
divgpQ`JJlq “ ´x∇g

J‚σ | Q`y,
divgpQ´JJrq “ x∇g

J‚σ | Q´y,
(V2)

where Jl and Jr denote the almost complex structures of the components of the

Mess map M;

iii) the endomorphisms Q˘ satisfy
#
divgQ

` “ ´f´1 x∇g
J‚σ | Q`y,

divgQ
´ “ `f´1 x∇g

J‚σ | Q´y.
(V3)

Defining VpJ,σq as the space of solutions to some (hence all) the conditions V1-V3, the

fundamental result is the following, whose proof again contains a number of technical

difficulties and is done in Section 4.5.

Theorem L. For every pair pJ, σq lying in ĆMS0pΣ, ρq, the vector space VpJ,σq is con-

tained inside TpJ,σq
ĆMS0pΣ, ρq, it is invariant by the action of I, J and K, and it defines a

SymppΣ, ρq-invariant distribution V “ tVpJ,σqupJ,σq on ĆMS0pΣ, ρq. Moreover, the natural

projection π : ĆMS0pΣ, ρq Ñ MS0pΣ, ρq induces a linear isomorphism dπpJ,σq : VpJ,σq Ñ
TrJ,σsMS0pΣ, ρq.

Once these steps are achieved, the proofs of all the results from Theorem A to Theorem

G mostly follow from their analogues that are showed in Section 3, by applying the same

computations pointwise, and recognizing the geometric interpretations in terms of the

geometry of MGHC AdS manifolds either in a similar fashion to what has been done in

the case of the torus (for instance for Theorems B, E and Theorem F), or by recalling the

known constructions of Mess homeomorphism and constant curvature surfaces explained

in Section 2 (Theorems C and D). These proofs are provided in the first part of Section 5.

The second part then contains the proofs of Theorem I and Theorem J, which mainly rely

on the isomorphism PSLp2,Bq – PSLp2,Rq ˆ PSLp2,Rq for the isometry group of Anti-de

Sitter space, and some geometric constructions in the PSLp2,Rq model.

Relation with symplectic reduction

Although the proofs of the results stated above are essentially self-contained and completed

entirely in Sections 3, 4 and 5, in Section 6 we include a discussion with the aims, on the one

hand, of highlighting the relations with symplectic reduction, which is also the motivation

that led us to the definition of the distribution VpJ,σq as in Proposition K and Theorem

L; on the other hand, of explaining the additional difficulties that do not permit to apply

directly the strategy of symplectic reduction to obtain our results.

The starting point is a general theorem of Donaldson ([Don03, Theorem 9], see Theo-

rem 6.2 for the statement with minimal hypothesis that we apply in our setting). In short,
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it turns out that the SLp2,Rq-action on T ˚J pR2q is Hamiltonian with respect to any of

the three symplectic forms constituting the para-hyperKähler structure on T ˚J pR2q, with

moment maps that we denote by ηI, ηJ and ηK. Donaldson’s theorem gives a formula to

compute a corresponding map (that we call µI, µJ and µK) for the action on T ˚J pΣq of

the group HampΣ, ρq of Hamiltonian symplectomorphisms of pΣ, ρq. It turns out that µJ
and µK are moment maps for the action of HampΣ, ρq, whereas µI needs to be modified

by an adding a scalar multiple of ρ. We denote this new map by µ̃I. Moreover, although

HampΣ, ρq is a proper normal subgroup of Symp0pΣ, ρq, µJ and µK can actually be pro-

moted to moment maps µ̃J and µ̃K for the action of Symp0pΣ, ρq; µ̃I cannot, but it still

satisfies some additional properties that make it “almost” a moment map for Symp0pΣ, ρq.
We compute explicit formulas for these three maps, and show that the kernel of µ̃J ` iµ̃K
consists precisely of the pairs pJ, σq such that σ is the real part of a holomorphic quadratic

differential on pΣ, Jq. The intersection with the kernel of the third map µ̃I is then precisely

the space ĄMS0pΣ, ρq. Hence one is tempted to apply the symplectic reduction in order

to induce a pseudo-Riemannian metric and three symplectic stuctures, in the quotient

µ̃´1
I

p0q X µ̃´1
J

p0q X µ̃´1
K

p0q{Symp0pΣ, ρq.
However, at this point the usual construction by which the quotient inherits a hyper-

Kähler structure fails because of the fact that our metric on each fiber is not positive

definite. Hence we do not have a natural Hilbert space structure on the tangent space to

the space of sections T ˚J pΣq. Concretely, this means that we cannot take the orthogonal

complement to the tangent space to the Symp0pΣ, ρq-orbit as a distribution which is in-

variant by the actions of I, J and K and isomorphic to the tangent space to the quotient.

Nevertheless, inspired by the properties satisfied in the hyperKähler setting, we prove the

following characterization of VpJ,σq, which is the main result of Section 6:

Theorem M. For every pJ, σq P ĄMS0pΣ, ρq, VpJ,σq is the largest subspace of TpJ,σq
ĄMS0pΣ, ρq

that is:

‚ invariant under I, J and K;

‚ g-orthogonal to TpJ,σqpSymp0pΣ, ρq ¨ pJ, σqq

As said before, Theorem M is not applied in the proof of any of the previous results;

nevertheless, it serves as a motivation for Proposition K and Theorem L, namely the two

technical tools which play an essential role in passing from the para-hyperKähler structure

in genus one (or more precisely, on T ˚J pR2q) to that for higher genus surfaces.
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2. Preliminaries on Anti-de Sitter geometry

In this preliminary section, we introduce the necessary notions concerning maximal

globally hyperbolic Cauchy compact Anti-de Sitter three-manifolds (in short, MGHC AdS

manifold) and their deformation space.

2.1. Maximal surfaces

The starting point of our construction comes from the role of maximal surfaces in MGHC

AdS manifolds. Recall that a maximal surface in a Lorentzian three-manifold is a spacelike

surface (i.e. its first fundamental form is a Riemannian metric) whose mean curvature

vanishes identically. Then we have the following existence and uniqueness result:

Theorem 2.1 ([BBZ07, BS10]). Any MGHC AdS three-manifold admits a unique maximal

Cauchy surface.

This result permits to obtain a parameterization of MGHpΣq by means of embedding

data of maximal surfaces. Recall that the embedding data of a spacelike surface in a

Lorentzian manifold consists of the pair ph,Bq, where h is the first fundamental form and

B the shape operator, and these satisfy the Gauss-Codazzi equations
#
Kh “ ´1 ´ detB,

d∇
h
B “ 0,

(GC)

where the exterior derivative d∇
h
B is the TΣ-valued 2-form

pd∇h

BqpX,Y q “ p∇h
XBqY ´ p∇h

YBqX ,

for X, Y tangent vector fields on Σ, ∇h being the Levi-Civita connection of h and Kh its

curvature. By definition, the surface is maximal if and only if B is traceless. Conversely,

every pair ph,Bq satisfying (GC), with h a Riemannian metric and B a traceless h-self-

adjoint tensor, represents the embedding data of a maximal surface in a MGHC AdS

manifold diffeomorphic to Σ ˆ R, whose metric has the following explicit expression in a

tubular neighbourhood of the surface (namely for t P p´ǫ, ǫq):

´dt2 ` hppcosptq1 ` sinptqBq¨, pcosptq1 ` sinptqBq¨q .

See [BS20, Lemma 6.2.2, Proposition 6.2.3]. Moreover the above correspondence is natural

by the actions of DiffpΣq. Motivated by these observations, let us introduce the space of

embedding data of maximal surfaces:
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MSpΣq :“

$
’&
’%

ph,Bq

ˇ̌
ˇ̌
ˇ̌
ˇ

h is a Riemannian metric

B is traceless and h-self-adjoint

equations (GC) are satisfied

,
/.
/-

{Diff0pΣq ,

where Diff0pΣq denotes the group of diffeomorphisms isotopic to the identity.

In summary we have:

Proposition 2.2. Let Σ be a closed surface of genus g ě 1. There is a MCGpΣq-invariant

homeomorphism between MGHpΣq and MSpΣq, given by the embedding data of the unique

maximal Cauchy surface.

In the remainder of the paper, we will often implicitly identify MGHpΣq with MSpΣq.

2.2. Cotangent bundle of Teichmüller space

Maximal surfaces also permit to obtain a parameterization of MGHpΣq by means of the

cotangent bundle of Teichmüller space. Recall that the Teichmüller space of the surface Σ

is defined as:

T cpΣq :“ tJ P ΓpEndpTΣqq |J2 “ ´1, pv, Jpvqq is an oriented frameu

We use the notation T c to highlight that this is the Teichmüller space defined in terms

of (almost-)complex structures J , to distinguish with the other incarnations of Teichmüller

space (see Section 2.3 below).

To explain this parameterization, let us first provide several equivalent descriptions of

the Codazzi equation d∇
h

B “ 0, which we summarize in the following statement:

Lemma 2.3. Let h be a Riemannian metric on Σ, and denote by J the almost-complex

structure induced by h. Assume a p1, 1q tensor B and a p2, 0q tensor σ are related by

σ “ hB (i.e. σp¨, ¨q “ hp¨, B¨q). Then B is h-self-adjoint and traceless if and only if σ is

the real part of a quadratic differential, which can be expressed as q “ σ ´ iσp¨, J ¨q. If this

holds, then the following conditions are equivalent:

i) B is h-Codazzi, i.e. d∇
h

B “ 0;

ii) σ is the real part of a holomorphic quadratic differential on pΣ, Jq;
iii) σ is h-divergence-free;

iv) for every tangent vector field X on Σ we have ∇h
JXσ “ p∇h

Xσqp¨, J ¨q.

A standard reference for these equivalences is [Tro92]; see also [Hop51, Tau04, KS07].

Remark 2.4. Since the condition iiq in Lemma 2.3 only depends on J , and not on the

metric h, it follows that if conditions iiiq or ivq hold for some metric h compatible with J ,

then they hold for any other metric conformal to h.
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Remark 2.5. We will repeatedly use the following fact. Suppose q is a holomorphic qua-

dratic differential and B “ h´1 Repqq is the corresponding traceless, h-self-adjoint, h-

Codazzi tensor. Writing q “ σ ´ iσp¨, J ¨q and multiplying by eiθ, one checks immediately

that

Repeiθqq “ cos θ σ ` sin θ σp¨, J ¨q .
Hence the traceless, h-self-adjoint, h-Codazzi tensor h´1 Repeiθqq corresponding to eiθq is

precisely pcospθq1 ´ sinpθqJqB.

Based on Lemma 2.3, Krasnov and Schlenker established the following result:

Theorem 2.6 ([KS07, Lemma 3.6, Theorem 3.8]). Let Σ be a closed oriented surface of

genus ě 2. Given a complex structure J on Σ and a holomorphic quadratic differential q

on pΣ, Jq, there exists a unique Riemannian metric h compatible with J such that the pair

ph,B “ h´1σq satisfies (GC), where σ “ Repqq.

Again, the map that associates to a pair ph,Bq satisfying the Gauss-Codazzi equations

the pair pJ, qq, where J is the complex structure of h and σ “ hB “ Repqq, is natural with

respect to the action of DiffpΣq.
We remark that Theorem 2.6 is proved in [KS07] for a closed surface of genus ě 2.

However, the case of genus one holds true, and can be proved directly, provided σ ‰ 0.

Proposition 2.7. Given a complex structure J on T 2 and a non-zero holomorphic qua-

dratic differential q on pT 2, Jq, there exists a unique Riemannian metric h compatible with

J such that the pair ph,B “ h´1σq satisfies (GC), where σ “ Repqq.

Proof. It turns out that, given any MGHC AdS manifold diffeomorphic to T 2 ˆ R, the

(unique) maximal Cauchy surface is intrinsically flat, and the MGHC metric can be written

(now globally) from the maximal surface as

p1 ` sinp2tqqdx2 ` p1 ´ sinp2tqqdy2 ´ dt2 , (2.1)

where:

‚ t P p´π{4, π{4q represents the timelike distance from the maximal surface;

‚ x, y are global flat coordinates for the first fundamental form h “ dx2 ` dy2 of the

universal cover of the maximal surface.

See Section 5 of [BS20], and in particular Lemma 5.2.4, after a simple change of coordinates

(translate the vertical coordinate by π{4, and then perform a change of variables on x, y).

Moreover, since the second fundamental form of the maximal surface tt “ 0u equals one

half the derivative at t “ 0 of the metric on the level sets of t, we find that σ is expressed

as dx2 ´ dy2, hence (in the complex coordinate z “ x ` iy) q “ dz2 is the holomorphic

quadratic differential whose real part equals σ, as in Lemma 2.3.

Inspired by these observations, let us now reconstruct a MGHC AdS manifold from a

pair pJ, σq on the torus. Let us realize the complex structure J as that induced by a flat
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metric on T 2, obtained as the quotient of the complex plane by a lattice Λ. In other

words, we find a biholomorphism between pT 2, Jq and C{Λ endowed with the complex

structure induced by the standard complex structure of C. We stress that for the moment

we do not assume any normalization on the lattice Λ, which is therefore determined up to

automorphisms of C.

Let us call x, y (where z “ x`iy) the flat coordinates on C, which induce flat coordinates

on the quotient C{Λ. Then the holomorphic quadratic differential q has the expression cdz2,

for c ‰ 0 a complex number. Multiplying the coordinate z by a square root of 1{c, we can

also assume that q “ dz2. This has the effect of rescaling and rotating the lattice Λ, thus

obtaining a new lattice Λ1 inducing the same J on T 2. Hence the expression (2.1) gives a

MGHC AdS metric on pC{Λ1q ˆ p´π{4, π{4q, for which tt “ 0u is a maximal surface whose

corresponding complex structure is J and quadratic differential is q. �

Recalling that the cotangent bundle of Teichmüller space is identified with the bundle

of holomorphic quadratic differentials, as consequence of Theorem 2.6 (for higher genus)

and the above discussion (for genus one), one obtains:

Theorem 2.8. Let Σ be a closed oriented surface of genus ě 2. The map sending a pair

ph,Bq to the pair pJ, qq, where J is the complex structure induced by h and Repqq “ hB,

induces a MCGpΣq-invariant homeomorphism

F : MGHpΣq – MSpΣq Ñ T ˚T cpΣq .
If Σ “ T 2, the same map gives a MCGpT 2q-invariant homeomorphism between MGHpT 2q
and the complement of the zero section in T ˚T cpT 2q.

2.3. Mess’ parameterization

Let us now focus on genus ě 2 and move on to another parameterization of MSpΣq, which

has been essentially introduced by Mess. For this purpose, let us introduce the hyperbolic

model of Teichmüller space, namely:

T hpΣq :“ th |h is a hyperbolic metric on Σu{Diff0pΣq .
The “hyperbolic” Teichmüller space is MCGpΣq-invariantly homeomorphic to T cpΣq

by the uniformization theorem. Also, the holonomy representation provides a MCGpΣq-
invariant homeomorphism to the space of Fuchsian representations, which we denote by:

T reppΣq :“ tρ : π1pΣq Ñ IsompH2q discrete and faithful representationsu{IsompH2q ,
where IsompH2q acts by conjugation ([Gol80]). Now, given a pair ph,Bq satisfying (GC),

one can construct two hyperbolic metrics by the formula

ph,Bq ÞÑ phl :“ hpp1 ´ JBq¨, p1 ´ JBq¨q, hr :“ hpp1 ` JBq¨, p1 ` JBq¨qq . (2.2)

(Here hl and hr stand for “left” and “right”, and in fact these metrics can be interpreted

as the pull-backs via the so-called left and right Gauss maps, see [KS07, §3], [BS20, §6],
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[Bar18, §6].) It can be proved (see for instance the indicated references) that the metrics hl
and hr are hyperbolic and that, interpreting the isometry group of Anti-de Sitter space as

PSLp2,Rq ˆPSLp2,Rq, the map (2.2) gives the left and right components of the holonomy

map

hol : π1pΣq Ñ PSLp2,Rq ˆ PSLp2,Rq
of the AdS MGHC manifold determined by the embedding data ph,Bq of the maximal

Cauchy surface, under the isomorphism between T hpΣq and T reppΣq.
In summary, we state the following theorem:

Theorem 2.9 ([Mes07],[KS07, Theorem 3.17],[BS20, Theorem 5.5.4]). Let Σ be a closed

oriented surface of genus ě 2. The map sending a pair ph,Bq to the pair of hyperbolic

metrics phl, hrq in (2.2) induces a MCGpΣq-invariant homeomorphism

Mh : MSpΣq Ñ T hpΣq ˆ T hpΣq .
Under the natural homeomorphism T hpΣq – T reppΣq, such map coincides with the map

Mrep : MGHpΣq Ñ T reppΣq ˆ T reppΣq .
sending a MGHC AdS manifold to the conjugacy class of its holonomy representation.

It will be useful for future computations to express this map in the conformal model of

Teichmüller space. This follows easily by observing that the complex structure of a metric

of the form hpA¨, A¨q equals the A-conjugate of the complex structure of h.

Lemma 2.10. Let Σ be a closed oriented surface of genus ě 2. The MCGpΣq-invariant

homeomorphism

Mc : MSpΣq Ñ T cpΣq ˆ T cpΣq .
is induced by the map

ph,Bq ÞÑ
`
Jl :“ p1 ´ JBq´1Jp1 ´ JBq, Jr :“ p1 ` JBq´1Jp1 ` JBq

˘
,

where J is the complex structure defined by the metric h.

The map M has also an interpretation in terms of harmonic maps. Indeed, it turns

out that the identity map id : pΣ, Jq Ñ pΣ, hlq is harmonic and its Hopf differential is

the holomorphic quadratic differential iq, where Repqq “ hB. Indeed, from the expression

(2.2), we see that

hl “ p1 ´ detpBqqh´ 2hp¨, JB¨q
where we used that JB is h-self-adjoint and traceless, hence by the Cayley-Hamilton

theorem pJBq2 “ ´ detpJBq1 “ ´ detpBq1. Hence the p2, 0q-part of hl with respect to

the complex structure J is the quadratic differential iq, where σ “ Repqq “ hB (Remark

2.5). Moreover it is holomorphic by Lemma 2.3. This implies that id : pΣ, Jq Ñ pΣ, hlq
is harmonic, since it is a diffeomorphism and its Hopf differential is holomorphic (see

[Sam78, §9]). Analogously id : pΣ, Jq Ñ pΣ, hrq is harmonic and has Hopf differential ´iq.
We summarize this in the following lemma.
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Lemma 2.11. Let Σ be a closed oriented surface of genus ě 2. Then

Mh ˝ F´1pJ, qq “ phpJ,iqq, hpJ,´iqqq ,
where hpJ, qq denotes the unique hyperbolic metric on Σ such that id : pΣ, Jq Ñ pΣ, hpJ,qqq
is harmonic.

2.4. Constant curvature surfaces and circle action

Another parameterization of MSpΣq by the product of two copies of Teichmüller space is

constructed as follows. Given a maximal surface in a MGHC AdS manifold of genus ě 2, a

standard computation shows that the two surfaces at distance π{4 from the maximal surface

have intrinsic curvature ´2 (see [CT19], [BS20, Theorem 7.1.4]). Hence, multiplying the

first fundamental forms of these surfaces by a factor 2, so that they become of intrinsic

curvature ´1, one finds two hyperbolic metrics on Σ, which are expressed by:

ph,Bq ÞÑ ph´ :“ hpp1 ´Bq¨, p1 ´Bq¨q, h` :“ hpp1 `Bq¨, p1 `Bq¨qq . (2.3)

By arguments similar to those leading to Theorem 2.9, one can prove that this produces

again a natural homeomorphism, namely:

Theorem 2.12 ([KS07, Theorem 3.21]). Let Σ be a closed oriented surface of genus ě 2.

The map sending a pair ph,Bq to the pair of hyperbolic metrics ph´, h`q in (2.3) induces

a MCGpΣq-invariant homeomorphism

Ch : MSpΣq Ñ T hpΣq ˆ T hpΣq .
The hyperbolic metrics ph´, h`q are obtained as the first fundamental forms of the π{4-
equidistant surfaces from the maximal surface, after rescaling by a suitable constant.

As in Lemma 2.10, we can express this map in terms of the conformal model of Teich-

müller space.

Lemma 2.13. Let Σ be a closed oriented surface of genus g ě 2. The MCGpΣq-invariant

homeomorphism

Cc : MSpΣq Ñ T cpΣq ˆ T cpΣq .
is induced by the map

ph,Bq ÞÑ
`
Jl :“ p1 ´Bq´1Jp1 ´Bq, Jr :“ p1 `Bq´1Jp1 `Bq

˘
,

where J is the complex structure defined by the metric h.

From Theorem 2.8, we see that MSpΣq is endowed with a circle action, which acts on a

pair pJ, qq, where J is a complex structure and q a holomorphic quadratic differential, by

multiplying the holomorphic quadratic differential by eiθ. By Remark 2.5, this S1 action

on MSpΣq has the following expression in terms of the pairs ph,Bq,
eiθ ¨ ph,Bq “ ph, ppcos θq1 ´ psin θqJqBq ,
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and it can be checked directly that the new pair obtained in this way still gives the embed-

ding data of a maximal surface in a MGHC AdS manifold. Denoting by Rθ : MSpΣq Ñ
MSpΣq the S1 action, it follows immediately from (2.2) and (2.3) that:

Mh “ Ch ˝ R´π{2 . (2.4)

Observe moreover that Rπ has the effect of switching the left and right components under

the maps Ch and Mh.

By conjugating the circle action by the map Mh (or Ch), one gets an induced circle action

on T hpΣq ˆ T hpΣq, which has been defined in [BMS13] as the landslide flow. Motivated

by this construction, we will consider the map

Ch
θ “ Ch ˝Rθ : MSpΣq Ñ T hpΣq ˆ T hpΣq .

Clearly Ch
0 “ Ch and Ch

´π{2
“ Mh. Let us introduce Hθ “ Ch

θ ˝ F´1, which is the

composed map from T ˚T pΣq Ñ T pΣq ˆ T pΣq used in Theorem G. Then we immediately

obtain:

Lemma 2.14. Let Σ be a closed oriented surface of genus ě 2. Then

HθpJ, qq “ phpJ,´eiθqq, hpJ,eiθqqq ,

where hpJ, qq denotes the unique hyperbolic metric on Σ such that id : pΣ, Jq Ñ pΣ, hpJ,qqq
is harmonic.

2.5. An equivalent model for MSpΣq

We introduce here a fundamental “change of variables”, which permits us to adopt a simpler

model to study MSpΣq. The basic idea is to replace the metric h (which is the first

fundamental form of the maximal surface) by a suitable conformal metric g, so that the

area of g is independent of the point of MSpΣq. By a standard argument in symplectic

geometry, we will be allowed to assume that the the area form of g is a fixed symplectic

form ρ on Σ.

To make this concrete, let us introduce the function fptq “
?
1 ` t2, which we will always

apply to t “ ‖σ‖2g, for g a Riemannian metric conformal to h. Recall that in general, if σ is

a symmetric (2,0) tensor on Σ, ‖σ‖2g denotes the squared norm of the operator A “ g´1σ,

namely one half the trace of ATA, where AT is the g-adjoint operator of A. When σ is the

real part of a quadratic differential, A is g-self-adjoint and traceless by Lemma 2.3, hence

‖σ‖2g “ ´ detA.

Let Σ be a closed orientable surface of genus ě 2. We now introduce the following space:

MS0pΣq :“

$
’&
’%

pg, σq

ˇ̌
ˇ̌
ˇ̌
ˇ

g is a Riemannian metric on Σ

σ is the real part of a g-quadratic differential

ph “ p1 ` fp‖σ‖gqq g,B “ h´1σq satisfy (GC)

,
/.
/-

{Diff0pΣq
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The map sending pg, σq to ph,Bq, where h “ p1`fp‖σ‖gqq g and B “ h´1σ tautologically

induces a MCGpΣq-equivariant map from MS0pΣq to MSpΣq. By [KS07], the principal

curvatures of a maximal Cauchy surface of genus ě 2 in a MGHC AdS manifold are strictly

less than one in absolute value, which implies that detB P p´1, 0s. (On the other hand, if

Σ “ T 2, then detB ” ´1 since the maximal surface is flat.) Hence the following lemma

shows that the map induced by

ph,Bq ÞÑ
ˆ
1 ` detB

2
h, hB

˙

is an inverse, and MSpΣq and MS0pΣq are homeomorphic, under the assumption that Σ

has genus ě 2.

Lemma 2.15. Given a metric g and a p2, 0q-tensor σ on Σ, let h “ p1 ` fp‖σ‖gqq g and

B “ h´1σ. Then

detB “ ´
‖σ‖2g

p1 ` fp‖σ‖gqq2 and 1 ` detB “ 2

1 ` fp‖σ‖gq . (2.5)

Proof. The first identity comes from observing that ‖σ‖2h “ ´ detB as remarked above,

and that if h “ eug then ‖σ‖2h “ e´2u‖σ‖2g. The second identity is an easy algebraic

manipulation using the definition of f . �

An immediate consequence is the following:

Lemma 2.16. Let pg, σq P MS0pΣq. Then the area of g equals ´πχpΣq.

Proof. Let h “ p1` fp‖σ‖gqq g as usual. Using (2.5), the area forms of g and h satisfy the

identity:

dAg “ 1

1 ` fp‖σ‖gqdAh “ 1 ` detB

2
dAh .

Since the pair ph,Bq satisfy (GC) by hypothesis, 1 ` detB “ ´Kh, hence
ż

Σ

dAg “ ´1

2

ż

Σ

KhdAh “ ´πχpΣq

by Gauss-Bonnet. �

From now on, we will fix an area form ρ of total area ´πχpΣq. Given an almost-complex

structure J on Σ, we define the Riemannian metric

gJp¨, ¨q :“ ρp¨, J ¨q .
Clearly dAgJ “ ρ. We introduce the space MS0pΣ, ρq of pairs pJ, σq such that pgJ , σq sat-

isfy the conditions in the definition of MS0pΣq, namely the pair ph “ p1`fp‖σ‖gJ qq gJ , B “
h´1σq satisfy (GC), and we quotient by the action of Symp0pΣ, ρq (i.e. the identity com-

ponent in the group of diffeomorphisms of Σ that preserve ρ).
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It remains to show that the map pJ, σq ÞÑ ph,Bq induces a homeomorphism between

MS0pΣ, ρq and MSpΣq. This follows from standard arguments relying on the Moser trick,

and we only give a sketch here, see for instance [Hod05, §3.2.3] for more details. Moser’s

stability theorem asserts that given a smooth family ωt of cohomologous symplectic forms

on a closed manifold, there exists a family of diffeomorphisms φt such that φ˚
t ωt “ ω0. On

a surface Σ, given two area forms ρ and ρ1 of the same total area, one can apply Moser’s

theorem to the family ρt “ p1´tqρ`tρ1 and deduce that there exists φ P Diff0pΣq such that

φ˚ρ1 “ ρ. This implies that any pg, σq as in the definition of MSpΣq has a representative in

its Diff0pΣq-orbit whose area form is ρ, i.e. a representative of the form pgJ , σq. Moreover, if

ψt is a family of diffeomorphisms such that ψ0 “ id and ψ˚
1ρ “ ρ, by applying again Moser’s

theorem to the family ρt “ ψ˚
t ρ1 one can deform ψt to a family of symplectomorphisms φt

such that φ0 “ id and φ1 “ ψ1. This shows that Diff0pΣq X SymppΣ, ρq “ Symp0pΣ, ρq.
In conclusion, we have:

Proposition 2.17. Let Σ be a closed oriented surface of genus ě 2. The map

pJ, σq ÞÑ ph “ p1 ` fp‖σ‖Jqq gJ , B “ h´1σq

induces a MCGpΣq-invariant homeomorphism between MS0pΣ, ρq and MSpΣq.

3. The toy model: genus 1

The purpose of this section is to provide a para-hyperKähler structure on the cotangent

bundle of the space J pR2q of linear complex structures on R
2. Interpreting the complement

of the zero section in T ˚J pR2q as the space MGHpT 2q, we will deduce the case Σ “ T 2

in all the results stated in the introduction.

3.1. Space of linear almost-complex structures

We begin by defining the space J pR2q. In this section, ρ denotes the standard volume

form ρ “ dx^ dy on R
2.

Definition 3.1. We denote by J pR2q the set of endomorphisms J of R2 such that J2 “ ´1,

and satisfying ρpv, Jvq ą 0 for some (and consequently for every) non-zero vector v P R
2.

In other words, J pR2q is the collection of all (linear) complex structures on R
2 that are

compatible with its standard orientation. It turns out that J pR2q is a two-dimensional

manifold.

It is simple to see that, given any J P J pR2q, the tensor gJ :“ ρp¨, J ¨q is a positive

definite scalar product on R
2, with respect to which J is an orthogonal transformation.

By differentiating the identity J2 “ ´1, we see that the tangent space of J pR2q can be

described as

TJJ pR2q “ t 9J P EndpR2q | 9JJ ` J 9J “ 0u.
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Equivalently, TJJ pR2q is the space of endomorphisms 9J that are traceless and gJ -self-ad-

joint. The tangent space TJJ pR2q is endowed with a natural (almost) complex structure,

given by Ip 9Jq :“ ´J 9J .

We will represent the cotangent space of J pR2q as follows:

T ˚
J J pR2q “ tσ P S2pR2q | J˚σ “ σpJ ¨, J ¨q “ ´σu,

where S2pR2q stands for the space of symmetric bilinear forms of R2. An equivalent way to

describe the cotangent space at J is as the set of bilinear forms on R
2 that can be written

as σ “ Reφ, where φ is a symmetric C-valued bilinear form that is complex-linear with

respect to J . In other words, φ satisfies φpJ ¨, ¨q “ φp¨, J ¨q “ iφp¨, ¨q. When this is the case,

then φ can be expressed as follows:

φ “ σ ´ i σp¨, J ¨q. (3.1)

Observe also that σ belongs to T ˚
J J pR2q if and only if g´1

J σ belongs to TJJ pR2q (here g´1
J σ

represents the gJ -self-adjoint operator associated to σ, that is, σp¨, ¨q “ gJppg´1
J σq¨, ¨q “

gJp¨, pg´1
J σq¨q). The natural pairing between the tangent and the cotangent space is the

following:

xσ | 9JyJ “ 1

2
trgJ pσp¨, 9J ¨qq “ 1

2
trpg´1

J σ 9Jq. (3.2)

We also define the following positive definite scalar products:

xσ, σ1yJ :“ 1

2
tr

`
g´1
J σg´1

J σ1
˘
, x 9J, 9J 1yJ :“ 1

2
trp 9J 9J 1q

for every 9J, 9J 1 P TJJ pR2q and σ, σ1 P T ˚
J J pR2q. It is immediate to check that the almost

complex structure I preserves both scalar products. We also denote ‖σ‖2J “ xσ, σyJ . If φ

is a quadratic differential whose real part is equal to σ, we set ‖φ‖J :“ ‖σ‖J .

3.2. The tangent space of T ˚J pR2q

We now provide a characterization of the tangent space to T ˚J pR2q.

Lemma 3.2. Let pJ, σq P T ˚J pR2q. Then p 9J, 9σq P EndpR2qˆS2pR2q belongs to TpJ,σqT
˚J pR2q

if and only if

9J P TJJ pR2q, 9σ0 P T ˚
J J pR2q and trgJ 9σ “ ´2xσ | J 9JyJ ,

where 9σ0 denotes the gJ -traceless part of 9σ.

Proof. We first compute

9gJ “ ρp¨, 9J ¨q “ ´ρp¨, J2 9J ¨q “ ´gJp¨, J 9Jq . (3.3)

Then, because σ is gJ -traceless, we have

0 “ ptrgJ σq1 “ ´ tr
`
g´1
J 9gJ g

´1
J σ

˘
` tr

`
g´1
J 9σ

˘
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hence

trgJ 9σ “ ´ tr
´
J 9Jg´1

J σ
¯

“ ´2xσ | J 9JyJ .
This concludes the proof. �

The group SLp2,Rq naturally acts on J pR2q by conjugation and, more generally on its

tangent and cotangent space as follows:

pJ, 9Jq P TJ pR2q, A ¨ pJ, 9Jq :“ pAJA´1, A 9JA´1q
pJ, σq P T ˚J pR2q, A ¨ pJ, σq :“ pAJA´1, pA´1q˚σq

for any A P SLp2,Rq. The action of SLp2,Rq induces a faithful action of PSLp2,Rq “
SLp2,Rq{t˘1u.
Lemma 3.3. For every A P SLp2,Rq and J P J pR2q, we have:

xA ¨ σ | A ¨ 9JyA¨J “ xσ | 9JyJ ,
xA ¨ 9J,A ¨ 9J 1yA¨J “ x 9J, 9J 1yJ ,
xA ¨ σ,A ¨ σ1yA¨J “ xσ, σ1yJ ,

where 9J, 9J 1 P TJJ pR2q and σ, σ1 P T ˚
J J pR2q.

Proof. The proof is immediate, once one checks that g´1
AJA´1pA´1q˚σ “ Apg´1

J σqA´1. �

By differentiating the SLp2,Rq-action on T ˚
J J pR2q, we obtain a linear isomorphism

from TpJ,σqT
˚J pR2q to TA¨pJ,σqT

˚J pR2q. By a little abuse of notation, we still denote this

isomorphism by A. It is explicitly given by:

p 9J, 9σq P TpJ,σqT
˚J pR2q, A ¨ p 9J, 9σq :“ pA 9JA´1, pA´1q˚ 9σq .

We remark that, using Lemma 3.3, one could verify by hands that the conditions of Lemma

3.2 are preserved by this expression.

It is also useful to provide a natural linear isomorphism between the tangent space of

T ˚
pJ,σqJ pR2q and the product of two copies of TJJ pR2q.

Proposition 3.4. The map

ΨpJ,σq : TpJ,σqT
˚J pR2q ÝÑ pTJJ pR2qq2

p 9J, 9σq ÞÝÑ p 9J, g´1
J 9σ0q

is a linear isomorphism, with inverse

ΞpJ,σq : pTJJ pR2qq2 ÝÑ TpJ,σqT
˚J pR2q

p 9J, 9Kq ÞÝÑ p 9J, gJ p¨, 9K¨q ´ xσ | J 9JyJ gJ q.
Moreover, ΨpJ,σq commutes with the SLp2,Rq actions, meaning that

pA,Aq ˝ ΨpJ,σq “ ΨA¨pJ,σq ˝ A .

Proof. The proof follows immediately from Lemma 3.2 and Lemma 3.3. �
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3.3. A para-hyperKähler structure on T ˚J pR2q

Throughout the paper, f will denote the function fptq :“
?
1 ` t2 for t P R which we

introduced already in Section 2.5. Unless otherwise stated, we will denote by x¨, ¨y, x¨ | ¨y
the scalar products x¨, ¨yJ on TJJ pR2q and T ˚

J J pR2q (it will be clear from the context

which one of these we will refer to) and the pairing x¨ | ¨yJ between TJJ pR2q and its dual.

Similarly ‖¨‖ “ ‖¨‖J .

Definition 3.5. Let us define the symmetric bi-linear form g on TpJ,σqT
˚J pR2q:

gpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq “ fp‖σ‖q x 9J, 9J 1y ´ 1

fp‖σ‖q x 9σ0, 9σ1
0y (3.4)

and the endomorphisms I,J,K of TpJ,σqT
˚J pR2q:

IpJ,σqp 9J, 9σq “
´

´J 9J, ´ 9σ0p¨, J ¨q ´ xσ | 9Jy gJ
¯

(3.5)

JpJ,σqp 9J, 9σq “
ˆ

1

fp‖σ‖q g
´1
J 9σ0, fp‖σ‖q gJp¨, 9J ¨q ` xσ, 9σ0p¨, J ¨qy

fp‖σ‖q gJ

˙
(3.6)

KpJ,σqp 9J, 9σq “
ˆ

´ 1

fp‖σ‖q Jg
´1
J 9σ0, ´fp‖σ‖q gJ p¨, 9JJ ¨q ´ xσ, 9σ0y

fp‖σ‖q gJ
˙

(3.7)

where fptq “
?
1 ` t2.

For future reference, we also record the expressions of the forms:

ωI “ gp¨, I¨q, ωJ “ gp¨,J¨q, ωK “ gp¨,K¨q.
These are given by:

pωIqpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq “ ´fp‖σ‖qx 9J, J 9J 1y ` 1

fp‖σ‖qx 9σ0, 9σ1
0p¨, J ¨qy, (3.8)

pωJqpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq “ x 9σ1
0 | 9Jy ´ x 9σ0 | 9J 1y, (3.9)

pωKqpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq “ x 9σ1
0 | J 9Jy ´ x 9σ0 | J 9J 1y. (3.10)

Theorem 3.6. The quadruple pg, I,J,Kq is an SLp2,Rq-invariant para-hyperKähler struc-

ture on T ˚J pR2q.

Proof. Observe that, through the linear isomorphism of Lemma 3.2, the endomorphisms

I,J,K can be represented as:

pΞ˚
pJ,σqIpJ,σqqp 9J, 9Kq “ p´J 9J, J 9Kq,

pΞ˚
pJ,σqJpJ,σqqp 9J, 9Kq “ pfp‖σ‖q´1 9K, fp‖σ‖q 9Jq,

pΞ˚
pJ,σqKpJ,σqqp 9J, 9Kq “ p´fp‖σ‖q´1J 9K, fp‖σ‖qJ 9Jq.

From here, it is clear that the following relations are satisfied:

I2 “ ´1, J2 “ K2 “ 1, K “ IJ.
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We will see in Lemma 3.8 that the 2-forms ωJ and ωK are respectively the real and

imaginary part of the complex symplectic form ωC on T ˚J pR2q, which is defined as the

differential of ´λC. Hence the forms ωJ and ωK are obviously exact. We will show

in Corollary 3.16 that ωI is closed, as well. One can now apply a general argument to

conclude that that I,J,K are integrable, see Lemma A.5 in Appendix A. However, we

will also deduce this directly using some of the interpretations of I,J,K that we show

below. More concretely, integrability of I is proved in Corollary 3.10; integrability of J

and K follows from the pull-back results of Corollary 3.16 and Corollary 3.19. This shows

that the quadruple pg, I,J,Kq defines a para-hyperKähler structure on T ˚J pR2q. The

SLp2,Rq-invariance is checked in each expression by applying Lemma 3.3. �

Remark 3.7. Let us observe that I preserves the tangent space to the 0-section of T ˚J pR2q,
since IpJ,0qp 9J, 0q “ p´J 9J, 0q. We will denote by G and Ω the restrictions of g and ωI to

the 0-section of T ˚J pR2q, which is identified to J pR2q. In particular, for every J P J pR2q

GJp 9J, 9J 1q :“ x 9J, 9J 1yJ ΩJp 9J, 9J 1q :“ ´x 9J, J 9J 1yJ ,

where 9J, 9J 1 P TJJ pR2q. Hence pG,Ωq is a Kähler structure on J pR2q.
Now, it turns out that J pR2q is diffeomorphic to the hyperbolic plane H

2. To see this,

one can define a map from J pR2q to the upper half-space model of H2 by declaring that

the standard linear complex structure

J0 “
ˆ
0 ´1

1 0

˙

is mapped to i P H
2. Observe that SOp2q ă SLp2,Rq stabilizes both J0 (for the SLp2,Rq-

action on J pR2q introduced in Section 3.2) and i (for the classical action in the upper half-

plane model). Since both actions are transitive, one can uniquely extend this assignment

to an SLp2,Rq-equivariant diffeomorphism. It is not hard to check that this is a Kähler

isometry, that is, the metric G corresponds to the hyperbolic metric of H2, the complex

structure I to the standard complex structure of H2, and therefore the symplectic form Ω

to the area form of H2. See [Tra18, Lemma 4.3.2], [Tra19, §3.1] or [Hod05, §2.2.2] for more

details.

3.4. Liouville form on T ˚J pR2q

Recall that the Liouville form of any manifold M is the 1-form λ on T ˚M defined by

λpp,αqpvq “ αpπ˚vq, for α P T ˚
pM . If M is a complex manifold, one has an induced complex

structure I on T ˚M , and λ is the real part of the complex-valued 1-form λC “ λ´ iλ ˝ I.

The term λ ˝ I can also be written as αpπ˚pIpvqqq, where I is the complex structure of M ,

since π is holomorphic. In our setting, we therefore have the following expression for the

(complex-valued) Liouville form on T ˚J pR2q:

λCpJ,σqp 9J, 9σq “ xσ | 9JyJ ` i xσ | J 9JyJ .
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We define the complex-valued cotangent symplectic structure of T ˚J pR2q by setting

ωC :“ ´ dλC .

In this section we show the following:

Lemma 3.8. The C-valued symplectic form ωC on T ˚J pR2q equals ωJ ` iωK.

In other words, we have to show that ωC has the following expression:

ωCpp 9J, 9σq, p 9J 1, 9σ1qq “ px 9σ1
0 | 9JyJ ´ x 9σ0 | 9J 1yJq ` i px 9σ1

0 | J 9JyJ ´ x 9σ0 | J 9J 1yJq.
Before providing the proof, we give a useful lemma.

Lemma 3.9. For every 9J, 9J 1 P TJJ pR2q we have

9J 9J 1 “ x 9J, 9J 1yJ 1´ xJ 9J, 9J 1yJ J.
Moreover, we have:

i) 9J2 “ ´pdet 9Jq1 “ } 9J}2J1 for every 9J P TJJ pR2q;
ii) trp 9J 9J 1 9J2q “ 0 for every 9J, 9J 1, 9J2 P TJJ pR2q.

Proof. Let us first observe that

J 9J 9J 1 “ ´ 9JJ 9J 1 “ 9J 9J 1J.

Therefore, 9J 9J 1 commutes with J . It is simple to check that M P EndpR2q commutes with

J if and only if M belongs to Spanp1, Jq, hence

9J 9J 1 “ x 9J, 9J 1yJ 1´ xJ 9J, 9J 1yJ J.
By Cayley-Hamilton theorem,

0 “ 9J2 ´ ptr 9Jq 9J ` pdet 9Jq1 “ 9J2 ` pdet 9Jq1.

Therefore, we have 2‖ 9J‖
2

J “ trp 9J2q “ ´2 det 9J . For the last assertion, we apply the first

part of the statement:

trp 9J 9J 1 9J2q “ x 9J, 9J 1yJ trp 9J2q ´ xJ 9J, 9J 1yJ trpJ 9J2q.

This expression vanishes because 9J2 and J 9J2 are both traceless, being elements of TJJ pR2q.
�

Proof of Lemma 3.8. The set T ˚J pR2q can be considered as a submanifold of the vector

space EndpR2q ˆ S2pR2q. In particular, any tangent vector p 9J, 9σq P TpJ,σqT
˚J pR2q can

be extended to a vector field, that we continue to denote with abuse by p 9J, 9σq, on a

neighborhood of pJ, σq in EndpR2q ˆ S2pR2q, with values in EndpR2q ˆ S2pR2q. Moreover,

we can require that the component 9J depends only on the variable J P EndpR2q. In

all the following computations, we will denote by D the standard flat connection on the

vector space EndpR2q ˆ S2pR2q, and we consider x¨ | ¨y as a pairing defined for elements
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of the entire vector spaces EndpR2q and S2pR2q, where the extension is given by the same

expression (3.2).

If λ :“ ReλC, then we have:

dλ pp 9J, 9σq, p 9J 1, 9σ1qq “ p 9J, 9σqpλp 9J 1, 9σ1qq ´ p 9J 1, 9σ1qpλp 9J, 9σqq ´ λprp 9J, 9σq, p 9J 1, 9σ1qsq
“ p 9J, 9σqpxσ | 9J 1yJq ´ p 9J 1, 9σ1qpxσ | 9JyJq ´ xσ | r 9J, 9J 1syJ .

Observe that 9JpgJq “ ´gJp¨, J 9J ¨q. Then

p 9J, 9σqpxσ | 9J 1yJq “ 1

2
p 9J, 9σqptrpg´1

J σ 9J 1qq

“ 1

2
p´trpg´1

J
9JpgJ qg´1

J σ 9J 1q ` trpg´1
J 9σ 9J 1q ` trpg´1

J σD 9J
9J 1qq

“ 1

2
trpJ 9Jg´1

J σ 9J 1q ` 1

2
trpg´1

J 9σ0 9J 1q ` xσ | D 9J
9J 1yJ

“ x 9σ0 | 9J 1yJ ` xσ | D 9J
9J 1yJ .

In the last step we applied point ii) of Lemma 3.9. Replacing this relation in the expression

for dλ we obtain

dλ pp 9J, 9σq, p 9J 1, 9σ1qq “ x 9σ0 | 9J 1yJ ´ x 9σ1
0 | 9JyJ ` xσ | D 9J

9J 1 ´D 9J 1
9J ´ r 9J, 9J 1syJ

“ x 9σ0 | 9J 1yJ ´ x 9σ1
0 | 9JyJ .

The same type of argument applies to the imaginary part of λC. More concretely, setting

µ :“ ImλC, we arrive at the expression:

dµ pp 9J, 9σq, p 9J 1, 9σ1qq “ x 9σ0 | J 9J 1yJ ´ x 9σ1
0 | J 9JyJ ` xσ | D 9J

pJ 9J 1q ´D 9J 1pJ 9Jq ´ Jr 9J, 9J 1syJ .

It remains to check that the last term vanishes. But this term equals xσ | 9J 9J 1 ´ 9J 1 9Jy.
Using Lemma 3.9, 9J 9J 1 ´ 9J 1 9J is proportional to J , hence this scalar product vanishes

because xσ | Jy “ p1{2qtrpg´1
J σJq “ 0. �

Corollary 3.10. The almost-complex structure I equals the almost-complex structure in-

duced by I on T ˚J pR2q. In particular, I is an integrable almost-complex structure.

Proof. We have showed in Lemma 3.8 that ωJ and ωK are the real and imaginary parts of

the complex symplectic form ωC of T ˚J pR2q. Denote by Î the almost complex structure

of T ˚J pR2q. Since J pR2q is a complex manifold, ωC is a complex symplectic form, which

means ωCp¨, Î¨q “ iωCp¨, ¨q. Taking the imaginary parts in this equality we find ωJ “
ωKp¨, Î¨q. But from the definitions of ωJ and ωK, we see that

ωJ “ gp¨,J¨q “ gp¨,KI¨q “ ωKp¨, I¨q .

Since ωJ and ωK are nondegenerate, this implies Î “ I. �
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3.5. Relation with MGHpT 2q

Theorem 2.8 furnishes a diffeomorphism F : MGHpT 2q Ñ T ˚T cpT 2q between the deforma-

tion space of MGHC anti-de Sitter manifolds diffeomorphic to T 2 ˆR and the complement

of the zero section of the cotangent space T ˚T cpT 2q to the Teichmüller space of the torus.

The latter can be identified with T ˚J pR2q, as we show in the following lemma.

Lemma 3.11. There is a homeomorphism between J pR2q and T cpT 2q, which is equivariant

with respect to the actions of SLp2,Zq – MCGpT 2q.

Proof. The map from J pR2q to T cpT 2q is defined by considering a linear almost-complex

structure J as a (constant) tensor on R
2, which therefore induces an almost-complex struc-

ture on the torus T 2 – R
2{Z2. The map is a bijection because every element in T cpT 2q,

namely an isotopy class of almost-complex structures on T 2, can be represented as the

conformal structure induced by J0 on R
2{Λ, for Λ – Z

2 a (marked) lattice. One can

moreover assume (up to homothety of Λ) that R
2{Λ has area 1, and such representation

is unique up to conjugation in SOp2q. Conjugating J0 by the unique element of SLp2,Rq
that maps Λ to Z

2 (as marked lattices), one finds the unique J P J pR2q that is mapped

to the given class in T cpT 2q. Identifying MCGpT 2q with SLp2,Zq, the homeomorphism is

clearly equivariant. �

Remark 3.12. We observe that the symplectic form Ω introduced in Remark 3.7 coincides

with 4ΩWP, where ΩWP denotes the Weil-Petersson symplectic form on the space J pR2q –
T cpT 2q through the identification described in Lemma 3.11 (see also Lemma 4.5).

Hence we immediately obtain the proof of Theorem A in genus one.

Theorem A (genus one). The deformation space MGHpT 2q admits a MCGpT 2q-invariant

para-hyperKähler structure pg, I,J,Kq.

Proof. By Proposition 2.2 and Theorem 2.8, MGHpT 2q is identified to the complement of

the zero section in T ˚T cpT 2q, which is in turn naturally identified to the complement of

the zero section in T ˚J pR2q by Lemma 3.11. Hence the existence of the para-hyperKähler

structure follows immediately from Proposition 3.6. Since all the identifications are equi-

variant with respect to the action of MCGpT 2q – SLp2,Zq, and the para-hyperKähler

structure of T ˚J pR2q is PSLp2,Rq-invariant by Proposition 3.6, it follows that the ob-

tained para-hyperKähler structure on MGHpT 2q is mapping-class group invariant. �

More concretely, we can see the induced map from T ˚J pR2q to T ˚T cpT 2q as the map

sending the pair pJ, σq, for σ a symmetric bilinear form on R
2 satisfying σpJ ¨, J ¨q “ ´σ,

to the pair prJs, φq where rJs is the isotopy class as in the proof of Lemma 3.11 and φ is

the holomorphic quadratic differential whose real part is σ as in Equation (3.1).

Remark 3.13. We remark that the complex-linear quadratic differential φ is holomorphic

with respect to J simply because, identifying pT 2, Jq with a biholomorphism to the quotient
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of R2 by a lattice Λ as in the proof of Lemma 3.11, the lift of φ to R
2 is constant. As

a matter of fact, every holomorphic quadratic differential on pT 2, Jq lifts to a constant

holomorphic quadratic differential, namely of the form adz2 for a P C, on R
2 – C.

Remark 3.14. It will be useful to interpret the map from J pR2q to T cpT 2q in terms of

Beltrami differentials. Let us consider a smooth path Jt P J pR2q, and denote Jt“0 “ J .

As usual, we consider these as almost-complex structures on T 2 “ R
2{Z2. Then the

Beltrami differential of the identity map id : pT 2, Jq Ñ pT 2, Jtq coincides with

νt “ p1 ´ JtJq´1p1 ` JtJq.

Indeed νt coincides with L´1 ˝ A, where L and A are the complex linear and complex

anti-linear parts of dpidq : pT¨T
2, Jq Ñ pT¨T

2Jtq, respectively. Hence νt is constant over

T 2, which means that it is a harmonic Beltrami differential (i.e. of the form g´1ψ for g

the flat metric and ψ a holomorphic quadratic differential, see Remark 3.13 above). A

simple computation shows that the derivative of νt at t “ 0, which represents an element

of TT cpT 2q, is again harmonic and has the expression

9ν “ 1

2
9JJ (3.11)

We are now ready to conclude the proof of Theorem B in genus one. Considering

MGHpT 2q as the complement of the zero section in T ˚J pR2q, the map F : MGHpT 2q Ñ
T ˚T cpT 2q given by Theorem 2.8 is nothing but the restriction of the map that we used

in Lemma 3.11, which we still denote as F : T ˚J pR2q Ñ T ˚T cpT 2q by a little abuse of

notation.

Theorem B (genus one). We have

F˚pIT˚T pT 2q,Ω
C

T˚T pT 2qq “
ˆ

´I,´ i

2
ωC

I

˙
,

where IT˚T pT 2q denotes the complex structure of T ˚T pT 2q and ΩC

T˚T pT 2q its complex sym-

plectic form.

Before the proof, we recall that (in any genus) the cotangent bundle of T cpΣq has a

natural complex symplectic form ΩC

T˚T pΣq defined as ´dλC
T˚T pΣq, where λC

T˚T pΣq is the

Liouville form. Given a point prJs, φq P T ˚T cpΣq, the pairing between holomorphic qua-

dratic differentials and tangent vectors expressed as classes of Beltrami differentials r 9νs is

the following:

xφ | 9νyrJs “
ż

Σ

φ ‚ 9ν (3.12)

where

pφ ‚ 9νqpv,wq :“ 1

2i
pφp 9νpvq, wq ´ φp 9νpwq, vqq (3.13)
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(see e. g. [BMS15, Section 2.1]). The complex Liouville form is then simply expressed as:

pλCT˚T cqprJs,φqpr 9νs, 9φq “ xφ | 9νyrJs

We now prove Theorem B in the torus case.

Proof of Theorem B, genus g “ 1. Let pJtqt be a smooth path in J pR2q, with Jt“0 “ J .

If π : T ˚T cpT 2q Ñ T cpT 2q is the projection, Equation (3.11) in Remark 3.14 shows:

dπ ˝ dF pJ,σq p 9J, 9σq “ 1

2
9JJ “: 9ν .

Recall that FpJ, σq “ prJs, φq, where φ “ σ ´ i σp¨, J ¨q is the holomorphic quadratic

differential whose real part is σ. Let now gJ be the bilinear form ρp¨, J ¨q, and let te1, e2 “
Je1u be a gJ -orthonormal basis of R

2. Since all the quantities that we consider lift to

constant tensors on R
2, we can get rid of the integral over T 2 – R

2{Z2 in Equation (3.12),

and we find:

xφ | 9νyrJs “ 1

2i
pφp 9νpe1q, e2q ´ φp 9νpe2q, e1qq

“ 1

4i
pσp 9JJe1, e2q ´ i σp 9JJe1, Je2q ´ σp 9JJe2, e1q ` i σp 9JJe2, Je1qq

“ 1

4i
pσp 9Je2, e2q ` i σp 9JJe1, e1q ` σp 9Je1, e1q ` i σp 9JJe2, e2qq

“ 1

4i

´
tr

´
g´1
J σ 9J

¯
` i tr

´
g´1
J σ 9JJ

¯¯

“ ´ i

2

´
xσ | 9JyJ ´ ixσ | J 9JyJ

¯

“ ´ i

2
λCpJ,σqp 9J, 9σq.

Therefore we have shown

pF˚λCT˚T pT 2qqpJ,σqp 9J, 9σq “ ´ i

2
λCpJ,σqp 9J, 9σq.

Taking differentials , we obtain

F˚ΩC

T˚T pT 2q “ ´ i

2
pωJ ´ i ωKq “ ´ i

2
ωC
I .

To show that F pulls-back the almost-complex structure of T ˚T pT 2q to ´I, one can argue

exactly as in the proof of Corollary 3.10, observing that ΩC

T˚T pT 2q is a complex symplectic

form with respect to the complex structure of T ˚T pT 2q, while ωC
I

is a complex symplectic

form with respect to the (almost)-complex structure ´I. �
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3.6. A formal Mess homeomorphism

In this section we interpret the para-complex structure J and the para-complex sympletic

form ωB
J

as the pull-back of natural structures on T pT 2q ˆ T pT 2q via a map

M : T ˚J pR2q Ñ T pT 2q ˆ T pT 2q ,

which is formally defined essentially as the Mess homeomorphism (Section 2.3), although

in the genus one case this map does not have the same geometric significance from the

Anti-de Sitter viewpoint as for the higher genus case. Nevertheless, this “toy model” is

essential for the higher genus case, since the map M studied here will then induce Mess

homeomorphism for genus ě 2.

Inspired by Section 2.5, given a pair pJ, σq P T ˚J pR2q, we define h “ hpJ, σq the

Riemannian metric

h :“ p1 ` fp‖σ‖qqgJ “
ˆ
1 `

b
1 ` ‖σ‖2

˙
gJ ,

where we recall that gJ “ ρp¨, J ¨q and ‖¨‖ “ ‖¨‖J . We also set B :“ h´1σ. Exactly as in

Lemma 2.15, we have the identities

detB “ ´ ‖σ‖2

p1 ` fp‖σ‖qq2 and 1 ` detB “ 2

1 ` fp‖σ‖q . (3.14)

The second identity shows that 1¯JB is invertible for every pJ, σq P T ˚J pR2q. Indeed,

detp1 ¯ JBq “ 1 ` detB, since JB is traceless. We can thus define

M : T ˚J pR2q ÝÑ J pR2q ˆ J pR2q
MpJ, σq :“

`
p1 ´ JBq´1Jp1 ´ JBq, p1 ` JBq´1Jp1 ` JBq

˘
.

Remark 3.15. We remark that this is formally the analogue of the expression of Mess home-

omorphism in terms of almost-complex structures, given in Lemma 2.10. In particular, the

left and right components of M are the linear complex structures associated to the metrics

hpp1 ¯ JBq¨, p1 ¯ JBq¨q on R
2. As a reminder of this fact, we will often denote them by

Jl and Jr, respectively, to be consistent with the notation that will be used in Section 4,

where the higher genus case is discussed.

Now, the space J pR2q ˆ J pR2q is naturally endowed with the almost para-complex

structure P coming from its product structure. This is defined at any pJ, J 1q P J pR2q ˆ
J pR2q as follows:

Pp 9J, 9J 1q :“ p 9J,´ 9J 1q.
Moreover, denoting by ΩWP the Weil-Petersson symplectic form of J pR2q (see also Remark

3.12), and by πl, πr : J pR2q ˆJ pR2q Ñ J pR2q the projections to the left and right factor,

J pR2q ˆ J pR2q has two symplectic forms given by π˚
l ΩWP ˘ π˚

rΩWP. Together, they are
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combined into a para-complex symplectic form

ΩB :“ 1

2
pπ˚
l ΩWP ` π˚

rΩWPq ` τ

2
pπ˚
l ΩWP ´ π˚

rΩWPq .

It is easily checked that ΩB is para-complex with respect to P in the sense that ΩBpP¨, ¨q “
ΩBp¨,P¨q “ τΩBp¨, ¨q.

Theorem C (baby version). We have

M˚pP, 4ΩBq “ pJ, ωB
Jq .

where P denotes the para-complex structure of J pR2q ˆ J pR2q and ΩB its para-complex

symplectic form.

Proof. Since B and JB are traceless and detJ “ 1, we have B2 “ pJBq2 “ ´ detB 1.

We will make use of this relation all along the current proof. A simple consequence is the

following:

p1 ¯ JBq´1 “ 1

1 ` detB
p1 ˘ JBq. (3.15)

Applying this relation, we can develop the left and right complex structures Jl and Jr (the

left and right components of M, respectively) as follows:

Jl,r “ p1 ¯ JBq´1Jp1 ¯ JBq

“ 1

1 ` detB
p1 ˘ JBqJp1 ¯ JBq

“ 1

1 ` detB
pJ ˘ JBJ ¯ J2B ´ JBJ2Bq

“ 1 ´ detB

1 ` detB
J ˘ 2

1 ` detB
B.

In these relations and the ones that will follow the upper sign in ˘ or ¯ always refers to

Jl and the lower sign to Jr. From the second identity in (3.14), we get:

2

1 ` detB
“ 1 ` f,

1 ´ detB

1 ` detB
“ f , (3.16)

where f “ fp‖σ‖q. Combining these relations with the development above, we obtain:

Jl “ f J ` g´1
J σ, Jr “ f J ´ g´1

J σ. (3.17)

We are interested in computing the first order variation of these expressions along a direc-

tion p 9J, 9σq P TpJ,σqT
˚J pΣq. First we compute the derivative of the function f “ fp‖σ‖q:

f 1 “
ˆb

1 ` ‖σ‖2
˙1

“ p‖σ‖2q1

2

b
1 ` ‖σ‖2
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“ 1

2f
tr

`
g´1
J σpg´1

J σq1
˘

“ 1

2f
tr

`
g´1
J σp´g´1

J 9gJg
´1
J σ ` g´1

J 9σq
˘

As already observed in relation (3.3), the first order variation of gJ with respect to 9J is

equal to ´gJp¨, J 9J ¨q. Therefore Lemma 3.9 part ii) implies that the trace of the product

g´1
J σg´1

J 9gJg
´1
J σ vanishes. Moreover, in the term tr

`
g´1
J σg´1

J 9σ
˘

there is no contribution

from the trace part of 9σ. In conclusion, we deduce that f 1 “ xσ, 9σ0y
f

. For convenience, we

also set

Q˘ “ Q˘p 9J, 9σq :“ 1

f
g´1
J 9σ0 ˘ 9J.

Then we have

9Jl,r “ pf J ˘ g´1
J σq1

“ ˘f Q˘ ˘ 1

2
trgJ 9σ 1 ¯ g´1

J 9gJg
´1
J σ ` f 1 J

“ ˘f Q˘ ¯ xσ | J 9Jy1 ˘ J 9Jg´1
J σ ` xσ, 9σ0y

f
J (Lemma 3.2 and eq. (3.3))

“ ˘f Q˘ ˘ xσ | 9JyJ ` xσ | g´1
J 9σ0y
f

J (Lemma 3.9)

“ ˘f Q˘ ` xσ | Q˘yJ,
where x¨, ¨y “ x¨, ¨yJ and x¨ | ¨y “ x¨ | ¨yJ . Then the differential of the map M can be

expressed as follows:

dMpJ,σq p 9J, 9σq “ pxσ | Q`yJ ` f Q`, xσ | Q´yJ ´ f Q´q.
Let us now determine the pull-back of the forms π˚

l Ω ˘ π˚
rΩ by the map M, where Ω

was defined in Remark 3.7. To emphasize the dependence on pJ, σq, we will now write

Jl “ pπl ˝ MqpJ, σq and Jr “ pπr ˝MqpJ, σq. Given p 9J, 9σq and p 9J 1, 9σ1q two tangent vectors

at pJ, σq, we also set Q˘ “ Q˘p 9J, 9σq and R˘ “ Q˘p 9J 1, 9σ1q, to simplify the notation. Then,

making use of the fact that trpQ˘q “ trpR˘q “ 0 and of Lemma 3.9, we deduce that

pπl,r ˝ Mq˚Ωpp 9J, 9σq, p 9J 1, 9σ1qq “ ´xdpπl,r ˝ Mq p 9J, 9σq, Jl,r ¨ dpπl,r ˝ Mq p 9J 1, 9σ1qyJl,r

“ ´1

2
tr

`
pxσ | Q˘yJ ˘ f Q˘qpfJ ˘ g´1

J σqpxσ | R˘yJ ˘ f R˘q
˘

“ ´f

2
tr

`
xσ | Q˘y Jg´1

J σR˘ ` xσ | R˘y Q˘g´1
J σJ

˘
`

´ f3

2
tr

`
Q˘JR˘

˘

“ ´f
`
xg´1
J σ,Q˘yxJg´1

J σ,R˘y ´ xg´1
J σ,R˘yxQ˘, Jg´1

J σy
˘

`
´ f3xQ˘, JR˘y
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Now, because Q˘, R˘ P TJJ pR2q, assuming σ ‰ 0, we can write

Q˘ “ 1

‖σ‖

`
xg´1
J σ,Q˘y g´1

J σ ` xJg´1
J σ,Q˘y Jg´1

J σ
˘
,

and similarly for R˘, so that the term

xg´1
J σ,Q˘yxJg´1

J σ,R˘y ´ xg´1
J σ,R˘yxQ˘, Jg´1

J σy (3.18)

coincides with ´‖σ‖2xQ˘, JR˘y by direct computation. Note that when σ “ 0, the ex-

pression (3.18) vanishes. In any case, recalling that Q˘ “ Q˘p 9J, 9σq and R˘ “ Q˘p 9J 1, 9σ1q,
we can thus conclude that

pπl,r ˝ Mq˚Ωpp 9J, 9σq, p 9J 1, 9σ1qq “ ´fxQ˘, JR˘yp´‖σ‖2 ` f2q

“ ´f

2
tr

`
Q˘ J R˘

˘
(f2 “ 1 ` ‖σ‖2)

“ ´fx 9J, J 9J 1yJ ` 1

f
x 9σ0, 9σ1

0p¨, J ¨qyJ ¯ px 9σ0 | J 9J 1yJ ´ x 9σ1
0 | J 9JyJq

“ pωI ˘ ωKqpp 9J, 9σq, p 9J 1 , 9σ1qq .
Therefore we have

M˚pπ˚
l Ω ` π˚

rΩq “ 2ωI, M˚pπ˚
l Ω ´ π˚

rΩq “ 2ωK.

By what observed in Remark 3.12, this proves that M˚p4ΩBq “ ωB

J
.

One can then check directly that dMpJ,σq ˝ J “ P ˝ dMpJ,σq, using that Q˘ ˝ Jp 9J, 9σq “
˘Q˘p 9J, 9σq. However, the fact that M˚P “ J also follows immediately by the same

trick as in Corollary 3.10. Indeed, since ΩB is para-complex with respect to P, if we denote

Ĵ “ M˚P, then ωB
J

is para-complex with respect to Ĵ, which means that ωKp¨, ¨q “ ωIp¨, Ĵ¨q.
But since the same holds for J, we deduce that Ĵ “ J. �

As an immediate consequence, we obtain:

Corollary 3.16. The 2-forms ωI and ωK on T ˚J pR2q are closed, and J is an integrable

almost para-complex structure.

3.7. The circle action

Let us now study the behavior of a natural circle action on T ˚J pR2q with respect to the

para-hyperKähler structure pg, I,J,Kq. Recall that a cotangent vector σ P T ˚
J J pR2q can

be seen as the real part of a complex-valued, J-complex linear symmetric form φ. By

Remark 2.5, multiplication by eiθ on complex bi-linear forms induces a circle action on

T ˚J pR2q given by

eiθ ¨ pJ, σq “ pJ, cospθqσ ` sinpθqσp¨, J ¨qq .
We will denote by Rθ : T ˚J pR2q Ñ T ˚J pR2q the action of eiθ. Observe that clearly Rθ
preserves the zero section, hence it induces a circle action on MGHpT 2q, which is identified
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to the complement of the zero section in T ˚J pR2q as in the proof of the genus one version

of Theorem A in Section 3.5.

Theorem E (genus one). The circle action on T ˚J pR2q is Hamiltonian with respect to

ωI, generated by the function HpJ, σq “ fp}σ}q and satisfies

R˚
θg “ g R˚

θωI “ ωI R˚
θω

C
I “ e´iθωC

I .

Proof. The infinitesimal generator of the circle action is

VθpJ, σq “ d

dθ
pJ, cospθqσ ` sinpθqσp¨, J ¨qq

ˇ̌
ˇ̌
θ“0

“ p0, σp¨, J ¨qq .

We now compute

ιVθωIp 9J, 9σq “ ´ωIpp 9J, 9σq, p0, σp¨, J ¨qqq “ ´gpp 9J, 9σq, Ip0, σp¨, J ¨qqq
“ gpp 9J, 9σq, p0, σp¨, J2 ¨qqq “ ´gpp 9J, 9σq, p0, σqq

“ 1

fp}σ}qx 9σ0, σy “ 1

fp}σ}qx 9σ, σy “ dHpJ,σqp 9J, 9σq ,

which proves the first statement. This immediately implies that R˚
θωI “ ωI, by Cartan’s

magic formula.

We now compute R˚
θω

C. Let us first find an expression for the differential of Rθ. By

definition, we have

pdRθqpJ,σqp 9J, cospθq 9σq “ p 9J, cospθq 9σ ` sinpθq 9σp¨, J ¨q ` sinpθqσp¨, 9J ¨qq . (3.19)

By Lemma 3.2, we can write

9σ “ 9σ0 ´ xσ | J 9JyJgJ
so that

9σp¨, J ¨q “ 9σ0p¨, J ¨q ` xσ | J 9JyJρ . (3.20)

Moreover, by Lemma 3.9, we have

g´1
J σ 9J “ xg´1

J σ, 9JyJ1 ´ xJg´1
J σ, 9JyJJ

which implies that

σp¨, 9J ¨q “ xσ | 9JyJgJ ´ xσ | J 9JyJρ . (3.21)

Combining (3.20) and (3.21) with (3.19), we obtain that the differential of Rθ can be

expressed as follows

pdRθqpJ,σqp 9J, 9σq “ p 9J, cospθq 9σ ` sinpθq 9σ0p¨, J ¨q ` sinpθqxσ | 9JygJq .
Hence,

pR˚
θω

Cqpp 9J, 9σq, p 9J 1 , 9σ1qq “ xcospθq 9σ1
0 ` sinpθq 9σ1

0J | 9Jy ´ xcospθq 9σ0 ` sinpθq 9σ0J | 9J 1y
` ipxcospθq 9σ1

0 ` sinpθq 9σ1
0J | J 9Jy ´ xcospθq 9σ0 ` sinpθq 9σ0J | J 9J 1yq

“ cospθqpx 9σ1
0 | 9Jy ´ x 9σ0 | 9J 1yq ` sinpθqpx 9σ1

0 | J 9Jy ´ x 9σ0 | J 9J 1y
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` ipcospθqpx 9σ1
0 | J 9Jy ´ x 9σ0 | J 9J 1yq ´ sinpθqpx 9σ1

0 | 9Jy ´ x 9σ0 | 9J 1yq
“ pcospθqωJ ` sinpθqωKq ` ipcospθqωK ´ sinpθqωJq
“ e´iθωCpp 9J, 9σq, p 9J 1, 9σ1qq .

Let us finally check that Rθ preserves the metric g. We denote by

prθqpJ,σqp 9J, 9σq “ cospθq 9σ ` sinpθq 9σ0p¨, J ¨q ` sinpθqxσ | 9JygJ
the second component of the differential of Rθ at the point pJ, σq. Moreover, we remark

that }σ}J “ } cospθqσ`sinpθqσp¨, J ¨q}J , in other words the circle action preserves the scalar

product on T ˚
J J pR2q. We can now compute

pR˚
θgqpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq “ gRθpJ,σqpp 9J, prθqpJ,σqp 9J, 9σqq, p 9J 1, prθqpJ,σqp 9J 1, 9σ1qqq

“ fp}σ}Jqx 9J, 9J 1yJ ´ 1

fp}σ}Jqxcospθq 9σ0 ` sinpθq 9σ0p¨, J ¨q, cospθq 9σ1
0 ` sinpθq 9σ1

0p¨, J ¨qyJ

“ fp}σ}Jqx 9J, 9J 1yJ ´ 1

fp}σ}Jqx 9σ0, 9σ1
0yJ

“ gpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq .

This concludes the proof. �

We then immediately obtain the relations of (1.2) for the pull-back of I,J,K, which we

re-write here for completeness.

R˚
θ I “ I R˚

θJ “ cospθqJ ` sinpθqK R˚
θK “ ´ sinpθqJ ` cospθqK . (3.22)

We now turn to the proof of the genus one case of Theorem F, concerning a para-Kähler

potential for g. We recall that a smooth function f is a para-Kähler potential for a para-

Kähler structure pg,Pq if ωP “ pτ{2qBPBPf . We will make use of the following identity,

whose proof is similar to the Kähler case and is given in Appendix A, Lemma A.4.

2τ B̄PBPf “ dpdf ˝ Pq (3.23)

Theorem F (genus one). The function ´4H is a para-Kähler potential for the para-Kähler

structures pg,Jq and pg,Kq on T ˚J pR2q.

Proof. From the previous result we have:

LVθpωJ ` iωKq “ d

dθ
R˚
θ pωJ ` iωKq

ˇ̌
ˇ̌
θ“0

“ d

dθ
R˚
θω

C
I

ˇ̌
ˇ̌
θ“0

“ ´iωC
I “ ´iωJ ` ωK

which implies

LVθωJ “ ωK and LVθωK “ ´ωJ .

Therefore,

2τ B̄JBJp´Hq “ ´dpdH ˝ Jq “ ´dpιVθωIpJ¨qq “ ´dpιVθωKq “ ´LVθωK “ ωJ
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and similarly,

2τ B̄KBKp´Hq “ ´dpdH ˝ Kq “ ´dpιVθωIpK¨qq “ dpιVθωJq “ LVθωJ “ ωK ,

which shows that p´4Hq is a para-Kähler potential for g with respect to J and K. �

3.8. A one-parameter family of maps

Using the circle action, we can define for every θ P S1 the map

Cθ “ C ˝ Rθ : T ˚J pR2q Ñ J pR2q ˆ J pR2q .

Remark 3.17. Using Remark 2.5, we observe that for θ “ ´π{2 the map C “ C´π{2 has

the expression

CpJ, σq :“
`
p1 ´Bq´1Jp1 ´Bq, p1 `Bq´1Jp1 `Bq

˘

and is therefore a formal analogue of the parameterization

C : MGHpΣq Ñ T pΣq ˆ T pΣq ,

of the deformation space MGHpΣq by means of the induced metric on the surfaces of

constant curvature ´2.

Remark 3.18. Exactly as in Lemma 2.14, identifying J pR2q with T cpT 2q (Lemma 3.11),

we obtain a map

T ˚J pR2q Ñ T cpT 2q ˆ T cpT 2q
which can be interpreted as the map

HθpJ, qq “ phpJ,´eiθqq, hpJ,eiθqqq ,

where hpJ, qq denotes the unique complex structure on T 2 such that the identity is harmonic

with respect to the flat metric gJ on T 2 – R
2{Z2 on the source and to hpJ, qq on the target.

Now, using the genus one versions of Theorem C and Theorem E (see also (3.22)), which

have been proved above in this section, and the identity Cθ “ M ˝ Rθ`π
2

, which follows

from (2.4), we see that

C˚
θ pP, 4ΩBq “ p´ sinpθqJ ` cospθqK, ωI ´ τpcospθqωJ ` sinpθqωKqq .

As an immediate consequence, we have the following “baby versions” of Theorems D and

G.

Theorem D (baby version). We have

C˚pP, 4ΩBq “ pK, ωB

Kq ,

where P denotes the para-complex structure of J pR2q ˆ J pR2q and ΩB its para-complex

symplectic form.
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Theorem G (baby version). We have

ImH˚
θ p2ΩBq “ ´RepieiθΩC

T˚J pR2qq .

where ΩB is the para-complex symplectic form of J pR2q ˆ J pR2q.

As a consequence, we obtain, among other things, a direct proof of the integrability of

K, thus completing Theorem 3.6.

Corollary 3.19. The 2-forms ωI and ωJ on T ˚J pR2q are closed, and K is an integrable

almost para-complex structure.

4. The general case: genus ě 2

In the next two sections we give a proof of Theorem A in the general case of closed

surfaces of genus ě 2. In this section, we realize the deformation space of MGHC anti-de

Sitter structures MGHpΣq as the quotient by Symp0pΣ, ρq (the group of symplectomor-

phisms of pΣ, ρq isotopic to the identity, see Section 2.5) of a set ĄMS0pΣ, ρq sitting inside

an infinite dimensional space T ˚J pΣq that is formally endowed with a para-hyperKähler

structure pg, I,J,Kq. We then give a distribution inside TT ˚J pΣq that is preserved by I,

J, and K and maps isomorphically to the tangent space to MS0pΣ, ρq, thus deducing that

these structures descend to the quotient. To this aim, we characterize tangent vectors in

several different ways (Proposition K), that we prove are equivalent in Section 4.6. The

proof of Theorem A is then completed in Section 5, where we show that the induced sym-

plectic forms are non-degenerate and closed, generalizing the constructions seen for the toy

model in Section 3.

4.1. The group of (Hamiltonian) symplectomorphisms and its Lie algebra

Let us fix a symplectic form ρ on Σ. By Cartan’s formula for every vector field V on Σ we

have

LV ρ “ ιV dρ` dpιV ρq “ dpιV ρq ,
since dρ “ 0. Therefore, the flow of V acts by symplectomorphisms on pΣ, ρq if and only

if the 1-form ιV ρ is closed. Hence we can define the Lie algebra of the group Symp0pΣ, ρq
of symplectomorphisms of pΣ, ρq isotopic to the identity as follows:

SpΣ, ρq :“ LiepSymp0pΣ, ρqq “ tV P ΓpTΣq | dpιV ρq “ 0u –ρ Z
1pΣq,

where in the last step we are using the identification between ΓpTΣq and Λ1pΣq “ ΓpT ˚Σq
induced by ρ, and Z1pΣq denotes the space of smooth closed 1-forms. A symplectomor-

phism ψ is Hamiltonian if there is an isotopy ψ‚ : r0, 1s Ñ Symp0pΣ, ρq, with ψ0 “ id and

ψ1 “ ψ, and a smooth family of functions Ht : Σ Ñ R such that ιVtρ “ dHt, where Vt is the

infinitesimal generator of the symplectomorphism ψt. We denote by HampΣ, ρq the group
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of Hamiltonian symplectomorphisms of pΣ, ρq. This is a normal subgroup of SymppΣ, ρq
and its Lie algebra is defined as

HpΣ, ρq :“ LiepHampΣ, ρqq “ tV P ΓpTΣq | ιV ρ exactu –ρ B
1pΣq,

where B1pΣq denote the space of smooth exact 1-forms on Σ.

We have the following non-degenerate pairings:

x¨ | ¨yS : Λ1pΣqäB1pΣq ˆ Z1pΣq ÝÑ R

prαs, βq ÞÝÑ
ş
Σ
α ^ β,

x¨ | ¨yH : Λ1pΣqäZ1pΣq ˆB1pΣq ÝÑ R

prαs, βq ÞÝÑ
ş
Σ
α ^ β.

Since Z1pΣq “ ker d, the group Λ1pΣq{Z1pΣq identifies with B2pΣq through the differential

map d. In particular we have

Λ1pΣqäB1pΣq Ă SpΣ, ρq˚, B2pΣq –d
Λ1pΣqäZ1pΣq Ă HpΣ, ρq˚. (4.1)

Observe that, for every tangent vector field V and for every 1-form α, we have

ιV α ρ “ α ^ ιV ρ. (4.2)

In particular, if V is a Hamiltonian vector field, with ιV ρ “ dH, then

xrαs | dHyH “
ż

Σ

α ^ dH “
ż

Σ

H dα “
ż

Σ

αpV q ρ, (4.3)

for every H P C 8pΣq and rαs P Λ1pΣq{Z1pΣq.

4.2. The Teichmüller space as a symplectic quotient

Before treating the case of MSpΣq, we recall briefly how we can recover Teichmüller space

as an infinite dimensional symplectic quotient. Most of the computations of this section

can already be found in [Don03] and [Tra18]: we report them here for reference purposes.

We denote by P the SLp2,Rq-principal bundle over pΣ, ρq whose fibers are linear maps

F : R2 Ñ TpΣ that identify the area form ρp with the standard area form ρ0 on R
2 via

pull-back. In other words, we require that F ˚ρp “ dx^ dy. The SLp2,Rq-action is defined

by A ¨ pp, F q “ pp, F ˝ A´1q.
Observe that any symplectomorphism φ of pΣ, ρq naturally lifts to a diffeomorphism ϕ̂

of the total space P , by setting

ϕ̂pp, F q :“ pϕppq,dϕp ˝ F q P P,
for every pp, F q P P . We now consider the bundle over Σ

P pJ pR2qq :“ P ˆSLp2,Rq J pR2q “ P ˆ J pR2qäSLp2,Rq,
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where SLp2,Rq acts diagonally on the two factors. A section of P pJ pR2qq Ñ Σ induces a

complex structure J on Σ which is compatible with ρ, in the sense that ρp¨, J ¨q is positive

definite: this is defined on TpΣ by the endomorphism Fp ˝Jp˝F´1
p . Recalling that SLp2,Rq

acts on J pR2q by conjugation, one easily checks that this section J is well-defined, that is,

if two pairs ppp, F q, Jpq and ppp, F 1q, J 1
pq differ by the diagonal action of SLp2,Rq, then they

induce the same complex structure on TpΣ. We will often confuse sections of P pJ pR2qq Ñ
Σ with complex structures J .

We will denote by gJ the Riemannian metric ρp¨, J ¨q. By construction, the area form of

gJ is equal to ρ for every complex structure J as above. We set

J pΣq :“ ΓpΣ, P pJ pR2qqq.

Given J P J pΣq, a tangent vector 9J P TJJ pΣq identifies with a section of the pull-back

vector bundle J˚pT vP pJ pR2qqq Ñ Σ, where T vP pJ pR2qq denotes the vertical subbundle

of TP pJ pR2qq with respect to the projection over Σ. In other words, 9J is a section of

EndpTΣq that satisfies 9JJ ` J 9J “ 0. The space J pΣq is formally an infinite dimensional

symplectic manifold with symplectic form ΩJ given by

ΩJp 9J, 9J 1q “ ´1

2

ż

Σ

tr
´

9JJ 9J 1
¯
ρ .

Definition 4.1. Let pX,ωq be a symplectic manifold, and assume that a Lie group G acts

on pX,ωq by symplectomorphisms. We say that the action is Hamiltonian if there exists a

smooth function µ : X Ñ g˚ satisfying the following properties:

i) µ is Ad˚-equivariant, i.e. for every g P G and p P X we have:

µg¨p “ Ad˚pgqpµpq “ µp ˝ Adpg´1q P g˚;

ii) given ξ P g, we denote by Vξ the vector field of X generating the action of the 1-

parameter subgroup generated by ξ, i.e. Vξppq :“ d
dt
expptξq ¨ p|t“0. Moreover, we

set µξ to be the function p ÞÑ µppξq P R on X. Then, for every ξ P g we have:

dµξ “ ιVξω “ ωpVξ, ¨q.

A map µ satisfying the properties above is called a moment map for the action of G on

pX,ωq.

In the following, we denote by KJ P C 8pΣq the Gaussian curvature of the metric

gJ “ ρp¨, J ¨q.

Theorem 4.2 ([Don03], [Tra18]). Set c :“ 2πχpΣq
AreapΣ,ρq . Then the function

µ : J pΣq ÝÑ HpΣ, ρq˚

J ÞÝÑ ´2pKJ ´ cqρ
is a moment map for the action of HampΣ, ρq on pJ pΣq,Ωq.
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Here, we are using the inclusion B2pΣq Ă HpΣ, ρq˚ introduced in (4.1). By property

i) in Definition 4.1, the preimage µ´1p0q is invariant by the action of the Hamiltonian

group HampΣ, ρq. Consequently, any variation 9J “ LV J induced by a Hamiltonian vector

field V lies in the kernel of dµ. By property ii) in Definition 4.1, for any J P µ´1p0q the

space KerpdµJq coincides with the ΩJ -orthogonal of the tangent space TJpHampΣ, ρq ¨ Jq
to the orbit of J under the action of the Hamiltonian group. Therefore, there is a well-

defined induced symplectic form on the quotient rT pΣq “ µ´1p0q{HampΣ, ρq. The classical

Teichmüller space T pΣq can be identified (see [Don03, §2.2]) with the further quotient of
rT pΣq by

H :“ Symp0pΣ, ρq{HampΣ, ρq ,
as briefly sketched at the end of Section 2.5. Because the orbits of H are symplectic sub-

manifolds of rT pΣq (see [Don03, §2.2], [Tra18, Lemma 4.4.8]), we can define a symplectic

form on T pΣq by setting

pΩrJspr 9Js, r 9J 1sq :“ ΩJp 9Jh, 9J 1hq (4.4)

where 9Jh P Kerpdµq denotes a lift of 9J that is ΩJ -orthogonal to the orbit of Symp0pΣ, ρq.
These lifts can be described by a differential geometric property. For this purpose, we

introduce the notion of divergence of an endomorphism: given A P EndpTΣq and given G

a Riemannian metric on Σ, we define divGA to be the 1-form

pdivGAqpXq :“
ÿ

i

Gpp∇G
ei
AqX, eiq,

where peiqi is a local G-orthonormal frame, ∇G is the Levi-Civita connection of G and

X is a vector field on Σ. We will also denote by divG V the usual divergence of a vector

field V with respect to the Riemannian metric G. Whenever we are dealing with a fixed

almost complex structure J , we will omit the dependence of metric gJ “ ρp¨, J ¨q on J and

simply write g, in order to simplify the notation. In particular, if we write divg A, it has

to be interpreted as the divergence of the endomorphism A with respect to gJ . Moreover,

because J is ∇g-parallel, i. e. p∇g
XJqY “ 0 for every X, Y tangent vector fields on Σ, we

deduce

divgpJAq “ ´ divgpAJq “ ´pdivg Aq ˝ J (4.5)

for any A P EndpTΣq. Another immediate relation that we will use repeatedly is the

following:

divgpXq “ dpιXρqpv, Jvq (4.6)

for any unit vector v.

Proposition 4.3. Let J be in µ´1p0q Ă J pΣq. An element 9J P TJJ pΣq lies in the kernel

of dµ if and only if divg 9J is a closed 1-form. Moreover, 9J P Kerpdµq is ΩJ -orthogonal to

TJpSymp0pΣ, ρq ¨ Jq inside Kerpdµq if and only if divg 9J is an exact 1-form.
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Proof. Let V be a vector field on Σ. We observe that

1

2
tr

´
9JJLV J

¯
“ pdivg 9JqpV q ´ divgp 9JV q . (4.7)

To see this, first we notice that

pdivg 9JqpV q “
ÿ

i

gpp∇ei
9JqV, eiq

“
ÿ

i

gp∇eip 9JV q ´ 9J∇eiV, eiq

“ divgp 9JV q ´
ÿ

i

gp 9J∇eiV, eiq

“ divgp 9JV q ´ trp 9JAV q,
where ∇ denotes the Levi-Civita connection of g and AV stands for the endomorphism

AV pXq :“ ∇XV . As shown in the proof of Lemma 4.19 below, the endomorphism LV J

can be expressed as JAV ´AV J (see relation (4.13)). In particular we have

trp 9JAV q “ ´ tr
´

9JJJAV

¯
(J2 “ ´1)

“ ´1

2

´
tr

´
9JJJAV

¯
´ tr

´
J 9JJAV

¯¯
( 9J P TJJ pΣq)

“ ´1

2

´
tr

´
9JJJAV

¯
´ tr

´
9JJAV J

¯¯

“ ´1

2
tr

´
9JJLV J

¯
,

and so relation (4.7) follows. Now, applying such identity we find

ΩJp 9J,LV Jq “ ´1

2

ż

Σ

tr
´

9JJLV J
¯
ρ

“ ´
ż

Σ

ˆ
1

2
tr

´
9JJLV J

¯
` divgp 9JV q

˙
ρ

“ ´
ż

Σ

pdivg 9JqpV q ρ

“ ´
ż

Σ

pdivg 9Jq ^ ιV ρ .

(4.8)

Consider now 9J in kernel of the differential of the moment map dµ. By property ii) in

Definition 4.1, we have ΩJp 9J,LV Jq “ 0 for every Hamiltonian vector field V . If H denotes

the Hamiltonian function of V , then by relation (4.8) we have

0 “
ż

Σ

pdivg 9Jq ^ dH “
ż

Σ

H dpdivg 9Jq ,

where in the last step we applied Stokes’ theorem on the 2-form dpHpdivg 9Jqq. Therefore,

by letting the Hamiltonian function H vary, we deduce that divg 9J is a closed 1-form.
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Similarly, if divg 9J “ df is exact and V P SpΣ, ρq, then

df ^ ιV ρ “ df ^ ιV ρ` f dpιV ρq “ dpfιV ρq (ιV ρ is closed)

is exact and ΩJp 9J,LV Jq “ 0 for every V P SpΣ, ρq. Vice versa, assume that 9J is in Ker dµ

and it satisfies ΩJp 9J,LV Jq “ 0 for every V P SpΣ, ρq. Then, again by relation (4.8),
ż

Σ

pdivg 9Jq ^ α “ 0

for every closed 1-form α. Since div 9J is closed, and since the pairing

pα, βq ÞÑ
ż

Σ

α ^ β

between closed 1-forms is non-degenerate in H1pΣq ˆH1pΣq, we deduce that divg 9J repre-

sents the trivial class inside the first de Rham cohomology group or, in other words, that

divg 9J is exact. �

Remark 4.4. The argument described in the proof of Proposition 4.3 combined with The-

orem 4.2 provides us with a convenient way to express the first order variation of the

curvature KJ with respect to 9J , that is

dKJ p 9Jq ρ “ 1

2
d

´
divg 9J

¯
.

In the following, we briefly see how to deduce this relation. On the one hand, by the

explicit expression of the moment map µ from Theorem 4.2, we have that

xdµ p 9Jq | V yH “ ´2

ż

Σ

H dKJ p 9Jqρ

for any Hamiltonian vector field V with Hamiltonian function H. On the other hand,

being µ a moment map for the action of the Hamiltonian group, it satisfies

xdµ p 9Jq | V yH “ ΩJp 9J,LV Jq

“ ´
ż

Σ

pdivg 9Jq ^ dH (relation (4.8))

“ ´
ż

Σ

H d
´
divg 9J

¯
,

once again for any Hamiltonian vector field V with Hamiltonian function H. Combining

the relations above, we find that

´2

ż

Σ

H dKJ p 9Jqρ “ ´
ż

Σ

H d
´
divg 9J

¯
,

and by letting the Hamiltonian function vary, we deduce the desired relation.
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Classically, one further re-normalizes the lift 9Jh to be L2-orthogonal to the tangent space

to the orbit. This gives the additional condition that divg 9J “ 0 ([Tra18], [Tro92]), which

recovers the description of the tangent space to Teichmüller space via traceless Codazzi

tensors and the formula of (a multiple of) the Weil-Petersson symplectic form, if we choose

an area form ρ on Σ such that AreapΣ, ρq “ ´2πχpΣq, which means that c “ ´1 in

Theorem 4.2.

Lemma 4.5 ([BMS15, Section 2.1]). Let 9J, 9J 1 P TrJsT
cpΣq be traceless Codazzi tensors

representing tangent vectors to Teichmüller space. Then,

pΩWPqrJsp 9J, 9J 1q “ ´1

8

ż

Σ

tr
´

9JJ 9J 1
¯
da ,

and the Weil-Petersson metric can be expressed as

pGWPqrJsp 9J, 9J 1q “ 1

8

ż

Σ

tr
´

9J 9J 1
¯
da

where da is the volume form of the unique hyperbolic metric with conformal structure J .

Remark 4.6. The change in the sign with respect to the relation appearing in [BMS15,

§2.1] is due to the fact that here we are considering the complex structure 9ν ÞÑ ´J 9ν on

the space of Beltrami differentials, which is opposite to the one used by [BMS15].

Remark 4.7. We remark, however, that any choice of a supplement W of TJpSymp0pΣ, ρq¨Jq
inside Kerpdµq that is ΩJ -orthogonal to TJpSymppΣ, ρq ¨ Jq gives a well-defined model for

the tangent space to T cpΣq with the property that pW,ΩJ |W q is symplectomorphic to

pTJT cpΣq, 4ΩWPq.
4.3. The construction of MS0pΣ, ρq

Let us now consider the bundle over Σ defined by

P pT ˚J pR2qq :“ P ˆSLp2,Rq T
˚J pR2q “ P ˆ T ˚J pR2qäSLp2,Rq,

where P is the frame bundle introduced in Section 4.2 and SLp2,Rq acts diagonally. The

fiber of P pT ˚J pR2qq over the point p P Σ identifies with T ˚J pTpΣq, i. e. the space of pairs

pJp, σpq where Jp is an almost complex structure of TpΣ compatible with ρp, and σp is a

gJp-traceless and symmetric bilinear form on TpΣ that satisfies σppJp, Jpq “ ´σp. Since

the para-hyperKähler structure of T ˚J pR2q is SLp2,Rq-invariant (see Theorem 3.6), each

fiber T ˚J pTpΣq is naturally endowed with a para-hyperKähler structure pĝp, Îp, Ĵp, K̂pq,
obtained by identifying TpΣ with R

2 using an area-preserving isomorphism Fp : TpΣ Ñ R
2.

The space of smooth sections

T ˚J pΣq :“ ΓpP pT ˚J pR2qq
can be identified with the set of pairs pJ, σq, where J is a complex structure on Σ, and σ is

a symmetric and g-traceless 2-tensor, where g “ gJ “ ρp¨, J ¨q. The element σ can be equiv-

alently characterized as the real part of a complex valued J-complex linear and symmetric
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2-tensor φ. We identify the tangent space of T ˚J pΣq at pJ, σq with the space of sections of

the vector bundle pJ, σq˚pT vP pT ˚J pR2qqq Ñ Σ, where T vP pT ˚J pR2qq stands for the ver-

tical sub-bundle of TP pT ˚J pR2qq with respect to the projection map P pT ˚J pR2qq Ñ Σ.

In particular, we can consider a tangent vector p 9J, 9σq at pJ, σq as the data of (see Lemma

3.2):

‚ a section 9J of EndpTΣq satisfying 9JJ ` J 9J “ 0. In other words, 9J is a g-self-

adjoint and traceless endomorphism of TΣ;

‚ a symmetric 2-tensor 9σ satisfying

9σ “ 9σ0 ´ xσ | J 9Jy g,
where 9σ0 is a symmetric and g-traceless 2-tensor. Observe in particular that the

g-full trace part of 9σ is uniquely determined by 9J .

Formally, T ˚J pΣq is an infinite dimensional para-hyperKähler manifold, where the sym-

plectic forms are defined as

pωXqpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq :“
ż

Σ

ω̂Xpp 9J, 9σq, p 9J 1, 9σ1qq ρ, (4.9)

for X “ I,J,K, and the pseudo-Riemannian metric is given by

gpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq :“
ż

Σ

ĝpp 9J, 9σq, p 9J 1 , 9σ1qq ρ , (4.10)

where ω̂ and ĝ denote the symplectic form and the pseudo-Riemannian metric obtained

by identifying the fibers of P pT ˚J pR2qq Ñ Σ with the space of linear almost-complex

structures on T¨Σ as described above. Similarly we have linear endomorphisms

I,J,K : TpJ,σqT
˚J pΣq ÝÑ TpJ,σqT

˚J pΣq,

obtained by applying pointwisely the endomorphisms Î, Ĵ, K̂ to a smooth section p 9J, 9σq.
Their definition is formally identical to the ones in relations (3.5), (3.6), and (3.7), with

the only difference that now J , σ, gJ , 9J , 9σ are all tensors, and fp‖σ‖q is a smooth function

over Σ.

Remark 4.8. The expression of Mess homeomorphism introduced in Section 3.6 can be

formally applied to define a map

M : T ˚J pΣq ÝÑ J pΣq ˆ J pΣq
MpJ, σq :“

`
p1 ´ JBq´1Jp1 ´ JBq, p1 ` JBq´1Jp1 ` JBq

˘
,

which takes as input a almost complex structure J and a gJ -traceless symmetric 2-tensor

σ, and provides a pair of almost complex structures on Σ. In what follows, we will denote

by Jl and Jr the left and right components of M, and a tangent vector at

TpJl,JrqJ pΣq ˆ J pΣq – TJlJ pΣq ˆ TJrJ pΣq

will be given by a pair p 9Jl, 9Jrq.
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Remark 4.9. The notation introduced is intentionally abusive, to emphasize the similarities

between the toy model T ˚J pR2q and the infinite-dimensional manifold T ˚J pΣq. In what

follows, we will often make use of the relations proved in Section 3, which concern T ˚J pR2q,
in the context of T ˚J pΣq. These arguments are legitimate because identities at the level

of the toy model can be interpreted as pointwise identities at the level of smooth sections

inside T ˚J pΣq.

4.4. The para-hyperKähler structure of MS0pΣ, ρq

We will now give an explicit description of the tangent bundle of the space MS0pΣ, ρq
(introduced in Section 2.5), which is well suited to present its para-hyperKähler structure.

We recall from Section 2.5 that MS0pΣ, ρq is the quotient of the infinite-dimensional

manifold

ĆMS0pΣ, ρq :“

$
’&
’%

pJ, σq

ˇ̌
ˇ̌
ˇ̌
ˇ

g “ ρp¨, J ¨q is a Riemannian metric on Σ,

σ is the real part of a J-quadratic differential,

ph “ p1 ` fp‖σ‖gqq g,B “ h´1σq satisfy (GC)

,
/.
/-

by the action of Symp0pΣ, ρq, where as usual f “ fp}σ}gq “
b

1 ` }σ}2g. We will first

introduce a very specific distribution V “ tVpJ,σqupJ,σq tangent to ĆMS0pΣ, ρq, presenting

several characterizations of it in Proposition K. The proof of the equivalence of these

equivalent characterizations requires a certain amount of computations, and it will be

postponed to Section 4.6. Theorem L will then describe the identification between VpJ,σq

and the tangent space to MS0pΣ, ρq at the equivalence class of pJ, σq by the action of

Symp0pΣ, ρq. Its proof is fragmented into several lemmas, which will constitute the main

technical core of Section 4.6.

Remark 4.10. The references to the process of infinite-dimensional symplectic reduction

are limited to the case of the Teichmüller space, which has been described in Section 4.2.

However, it is right and proper to acknowledge the reader that the definition itself of the

vector space VpJ,σq, together with the ideas behind the proofs of its properties, are all

results of a deeper analysis developed in analogy to the hyperKähler symplectic reduction

process of Donaldson [Don03] in our context of interest (see Section 6).

Proposition K. Given pJ, σq P ĆMS0pΣ, ρq, and p 9J, 9σq P TpJ,σqT
˚J pΣq, the following

conditions are equivalent:

i) the pair p 9J, 9σq satisfies

#
divgpf´1g´1 9σ0q “ ´f´1x∇g

J‚σ | 9Jy,
divg 9J “ ´f´2x∇g

J‚σ, 9σ0y.
(V1)



PARA-HYPERKÄHLER GEOMETRY OF THE SPACE OF ADS STRUCTURES 49

ii) the endomorphisms Q˘ “ Q˘p 9J, 9σq :“ f´1g´1 9σ0 ˘ 9J satisfy
#
divgpQ`JJlq “ ´x∇g

J‚σ | Q`y,
divgpQ´JJrq “ x∇g

J‚σ | Q´y,
(V2)

where Jl and Jr denote the components of the Mess map M;

iii) the endomorphisms Q˘ satisfy
#
divgQ

` “ ´f´1 x∇g
J‚σ | Q`y,

divgQ
´ “ `f´1 x∇g

J‚σ | Q´y.
(V3)

Moreover, the 1-forms divhl
9Jl and divhr

9Jr are exact.

Definition 4.11. Given pJ, σq P ĆMS0pΣ, ρq, we define VpJ,σq to be the subspace of

TpJ,σqT
˚J pΣq of those elements p 9J, 9σq that satisfy one of (and therefore all) the condi-

tions in Proposition K.

Theorem L. For every pair pJ, σq lying in ĆMS0pΣ, ρq, the vector space VpJ,σq is con-

tained inside TpJ,σq
ĆMS0pΣ, ρq, it is invariant by the action of I, J and K, and it defines a

SymppΣ, ρq-invariant distribution V “ tVpJ,σqupJ,σq on ĆMS0pΣ, ρq. Moreover, the natural

projection π : ĆMS0pΣ, ρq Ñ MS0pΣ, ρq induces a linear isomorphism dπpJ,σq : VpJ,σq Ñ
TrJ,σsMS0pΣ, ρq.

The proof of Theorem L is postponed to Section 4.5. Lemma 4.17 shows that VpJ,σq

is tangent to the locus of those pJ, σq that satisfy the Gauss-Codazzi equations, which is

precisely the definition of the subset ĆMS0pΣ, ρq of T ˚J pΣq. The invariance of VpJ,σq by

the action of I, J and K is proved in Lemma 4.13 and the invariance of the distribution V

by SymppΣ, ρq follows from Lemma 4.12. We will show in Lemma 4.21 that the differential

of the projection map π is injective. Finally, in Lemma 4.18 we show that the dimension

of VpJ,σq is larger than or equal to the dimension of MS0pΣ, ρq, which is 6|χpΣq|, and

therefore we conclude that the differential of the projection π induces a linear isomorphism

between VpJ,σq and the tangent space to MS0pΣ, ρq.
We are now ready to summarize the proof of Theorem A in genus g ě 2, although some

of the steps of the proof will follow from the geometric interpretations that we provide in

Section 5.

Theorem A (genus ě 2). Let Σ be a closed oriented surface of genus ě 2. Then MGHpΣq
admits a MCGpΣq-invariant para-hyperKähler structure pg, I,J,Kq. Moreover the Fuch-

sian locus FpΣq is totally geodesic and pg, Iq restricts to (a multiple of) the Weil-Petersson

Kähler structure of Teichmüller space.

Proof. Identifying the tangent space TrJ,σsMS0pΣ, ρq with VpJ,σq (Theorem L), we can

define on MS0pΣ, ρq para-complex structures J and K, a complex structure I, and a

pseudo-Riemannian metric g by restriction from the infinite dimensional space T ˚J pΣq.
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The definition is well-posed, namely it does not depend on the representative in a given

Symp0pΣ, ρq-orbit, by the invariance statement in Theorem L and the invariance of g, I, J

and K (which is proved immediately, with the same tools as in the proof of Lemma 4.12).

It is clear that I, J and K are still compatible with g and satisfy the para-quaternionic

relations. We also have corresponding 2-forms ωI, ωJ and ωK. A priori the metric g, and

consequently the 2-forms ωI, ωJ and ωK may be degenerate when restricted to VpJ,σq and

thus on MS0pΣ, ρq. We rule out this possibility in Section 5 by identifying these forms

with well-known symplectic forms (therefore closed and non-degenerate) on T ˚T cpΣq and

on T pΣq ˆ T pΣq. From the results of Section 5, we also obtain that ωI, ωJ and ωK

are integrable. See Corollaries 5.1, 5.2, 5.3 and 5.5 for all these statements. We can

then conclude that the quadruple pg, I,J,Kq endows MS0pΣ, ρq with a para-hyperKähler

structure.

The mapping class group invariance of the para-hyperKähler structure follows from

the SymppΣ, ρq-invariance of Theorem L, since we have a natural isomorphism between

MCGpΣq and SymppΣ, ρq{Symp0pΣ, ρq, and again the SymppΣ, ρq-invariance of g, I, J

and K.

Observe that the Fuchsian locus of MGHpΣq corresponds to the pairs pJ, σq with σ “ 0.

By Proposition K, its tangent space consists of the pairs p 9J, 9σq with 9σ “ 0 and divg 9J “ 0,

hence it corresponds precisely to the model of the tangent space of Teichmüller space that

we described in Section 4.2 (see Lemma 4.5 and the preceding discussion). By comparing

the expression of the Weil-Petersson metric in Lemma 4.5 with the restriction of the metric

g (see (3.4)), we see immediately that g|FpΣq coincides with 4GWP . Finally, the Fuchsian

locus is the set of fixed points of the circle action, that is isometric for the metric g by

Theorem E, which is proved in Section 5. By a standard argument, this implies that the

Fuchsian locus is totally geodesic. �

4.5. The proof of Theorem L

This subsection is dedicated to the proof of Lemmas 4.12, 4.13, 4.17, 4.18 and 4.21.

Together, these results prove Theorem L to identify VpJ,σq with the tangent space to

MS0pΣ, ρq at rpJ, σqs. The last of them is definitely the most challenging, and it re-

quires some technical ingredients, which will be described along the way and which will be

useful for the part concerning the 8-dimensional symplectic reduction (Section 6).

4.5.1. Proof of Lemma 4.12: invariance under symplectomorphisms.

Lemma 4.12. The distribution V “ tVpJ,σqu
pJ,σqPČMS0pΣ,ρq

is invariant under the action

of SymppΣ, ρq. In other words, for every symplectomorphism ϕ of pΣ, ρq and for every

p 9J, 9σq P VpJ,σq, we have pϕ˚ 9J, ϕ˚ 9σq P Vpϕ˚J,ϕ˚σq.

Proof. The main point where the condition of symplectomorphism is essential concerns the

metric gJ “ ρp¨, J ¨q. The relation ϕ˚ρ “ ρ implies that gϕ˚J , the metric with area form
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equal to ρ and complex structure ϕ˚J , is equal to ϕ˚g, the pull-back of the Riemannian

metric g “ gJ by ϕ. This is clearly equivalent to say that ϕ : pΣ, gϕ˚Jq Ñ pΣ, gJ q is an

isometry. In particular, for every endomorphism of the tangent bundle A we have that

ϕ˚pdivg Aq “ divϕ˚gpϕ˚Aq.
Moreover, it is simple to check that the inner products and pairings of the tensors (see for

instance 3.2) are preserved by ϕ. The statement then follows from the naturality of the

action and the expressions defining the subspace VpJ,σq. �

4.5.2. Proof of Lemma 4.13: Invariance under I,J and K

Lemma 4.13. For every pJ, σq P ĆMS0pΣ, ρq, the subspace VpJ,σq is preserved by I, J and

K.

Proof. This is a simple consequence of the description of VpJ,σq provided by Proposition

K, part i). Since K “ IJ, it is enough to check that Ip 9J, 9σq and Jp 9J, 9σq belong to VpJ,σq,

whenever p 9J, 9σq is in VpJ,σq.

The first component of Jp 9J, 9σq is equal to f´1 g´1 9σ0, while the g-traceless part of the

second component is equal to f gp¨, 9J ¨q. If we replace 9J with f´1 g´1 9σ0, and 9σ0 with

f gp¨, 9J ¨q in the equations (V1), we obtain the invariance of VpJ,σq under the action of J.

For the invariance under I, we observe that, for every p 9J, 9σq in VpJ,σq we have

divgp´J 9Jq “ divgp 9JJq
“ pdivg 9Jq ˝ J (rel. (4.5))

“ ´f´2x∇g

J2‚
σ, 9σ0y

“ ´f´2x∇g
J‚σ | Jg´1 9σ0y (Lemma 2.3 part iv))

“ ´f´2x∇g
J‚σ,´ 9σ0p¨, J ¨qy.

This shows that Ip 9J, 9σq satisfies the first equation in (V1). Arguing simililarly for divgpf´1g´1 9σ0Jq,
we obtain the invariance of VpJ,σq by I. �

4.5.3. Proof of Lemma 4.17: VpJ,σq lies in the kernel of the linearized GC-equations

Lemma 4.14. Every element p 9J, 9σq of VpJ,σq lies in the kernel of the linearized Codazzi

equation d∇
h

B “ 0.

As observed in Lemma 2.3, the Codazzi equation is equivalent to the requirement that

g´1σ is a g-Codazzi tensor. In order to prove the statement above, we need to compute

the first order variation of the expression ∇g
Xpg´1σY q´∇g

Y pg´1σXq´g´1σrX,Y s, for any

pair of tangent vector fields X, Y , as we vary pJ, σq in the direction p 9J, 9σq. To simplify the

notation, we will denote by ∇ the Levi-Civita connection of g “ gJ and by 9∇ its variation

as we change the complex structure J .
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Lemma 4.15. Let 9J P TJJ pΣq be an infinitesimal variation of complex structures on Σ.

If 9∇ denotes the first order variation of the Levi-Civita connection of g :“ ρp¨, J ¨q along 9J ,

then the following relation holds:

9∇XY “ ´1

2
ppdiv 9JqpXq JY ` Jp∇X

9JqY q,

for every pair of tangent vector fields X, Y on Σ.

Proof. The statement follows from Koszul’s formula, which asserts that

2 gp∇XY,Zq “ XpgpY,Zqq`Y pgpX,Zqq´ZpgpX,Y qq`gprX,Y s, Zq´gprX,Zs, Y q´gprY,Zs,Xq,

for every tangent vector fields X,Y,Z. Its derivative leads to the equation

2 9gp∇XY,Zq ` 2 gp 9∇XY,Zq “ Xp 9gpY,Zqq ` Y p 9gpX,Zqq ´ Zp 9gpX,Y qq`
` 9gprX,Y s, Zq ´ 9gprX,Zs, Y q ´ 9gprY,Zs,Xq.

As seen in relation (3.3), a first order variation of complex structures 9J determines a

variation of the Riemannian metric g “ gJ of the form 9g “ ´gp¨, J 9J ¨q. By developing the

above expression in terms of the covariant derivatives of 9g, and by the fact that ∇ is a

torsion-free connection, we can express the term 2 gp 9∇XY,Zq as follows

2 gp 9∇XY,Zq “ p∇X 9gqpY,Zq ` p∇Y 9gqpX,Zq ´ p∇Z 9gqpX,Y q
“ ´gpY, Jp∇X

9JqZq ´ gpX,Jp∇Y
9JqZq ` gpX,Jp∇Z

9JqY q (J ∇-parallel)

“ ´gpJp∇X
9JqY ` Jp∇Y

9JqX,Zq ` gpJp∇Z
9JqX,Y q,

where in the last step we used the fact that Jp∇V
9Jq is g-symmetric for every tangent

vector field V . Let MX P EndpTΣq denote the endomorphism MXV :“ p∇V
9JqX, and let

M˚
X be its g-adjoint. Then the relation above can be rephrased in the following terms:

2 gp 9∇XY,Zq “ ´gpJp∇X
9JqY ` JMXY,Zq ` gpJMXZ, Y q

“ ´gpJp∇X
9JqY ` JMXY,Zq ´ gpZ,M˚

XJY q (J˚ “ ´J)

“ ´gppJp∇X
9Jq ` JMX `M˚

XJqY,Zq.

Since this holds for every vector field Z, we deduce that

9∇XY “ ´1

2
pJp∇X

9Jq ` JMX `M˚
XJqY. (4.11)

The endomorphism JMX `M˚
XJ satisfies

pJMX `M˚
XJq˚ “ M˚

XJ
˚ ` J˚MX “ ´pJMX `M˚

XJq,

since the adjoint of the complex structure coincides with ´J . In other words, JMX`M˚
XJ

is a g-skew-symmetric endomorphism of TΣ, and consequently it is of the form λJ , for
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some smooth function λ over Σ (the space of gp-skew-symmetric endomorphisms of TpΣ

has dimension 1). The function λ can be determined in the following way:

λ “ ´1

2
trppJMX `M˚

XJqJq

“ trpMXq (trpMXq “ trpM˚
Xq and J2 “ ´1)

“
ÿ

i

gpp∇ei
9JqX, eiq

“ pdiv 9JqX,

where peiqi is a local g-orthonormal frame. Replacing the expression JMX ` M˚
XJ “ λJ

in relation (4.11), we deduce the desired assertion. �

In the proof of Lemma 4.14 we will also need the following technical lemma:

Lemma 4.16. If A is a traceless endomorphism, then

p∇XAqY ´ p∇YAqX “ pdivAqpY qX ´ pdivAqpXqY.

Proof. It is enough to check the identity for X “ e1, Y “ e2, where e1, e2 is a local

orthonormal frame on Σ. To simplify the notation, we set p∇iAqkj :“ gpp∇eiAqej , ekq. In

particular we have that p∇iAq11 “ ´p∇iAq22 for every i. Since A is traceless, the same is

true for ∇XA. With this identity in mind, we proceed to check the desired relation:

p∇e1Aqe2 ´ p∇e2Aqe1 “ p∇1Aq12 e1 ` p∇1Aq22 e2 ´ p∇2Aq11 e1 ´ p∇2Aq21 e2
“ p∇1Aq12 e1 ´ p∇1Aq11 e2 ` p∇2Aq22 e1 ´ p∇2Aq21 e2
“ pp∇1Aq12 ` p∇2Aq22q e1 ´ pp∇1Aq11 ` p∇2Aq21q e2
“ pdivAqpe2q e1 ´ pdivAqpe1q e2.

�

We now have all the elements to prove the statement of Lemma 4.14:

Proof of Lemma 4.14. First we compute the first order variation of the tensor g´1σ along

p 9J, 9σq P TpJ,σqJ pΣq. As seen in Lemma 3.2, the variation of the metric g is equal to

9g “ ´gp¨, J 9J ¨q. In particular, we have

pg´1σq1 “ ´g´1 9gg´1σ ` g´1 9σ

“ ´g´1p´gJ 9Jqg´1σ ` g´1 9σ0 ´ xσ | J 9Jy1 (Lemma 3.2)

“ J 9Jg´1σ ` g´1 9σ0 ´ xσ | J 9Jy1.

As aforementioned, we need to compute the derivative of the expression pd∇g´1σqpX,Y q “
∇Xpg´1σY q ´ ∇Y pg´1σXq ´ g´1σrX,Y s as we vary pJ, σq along a direction p 9J, 9σq. The
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final goal will be to show that, if p 9J, 9σq belongs to our preferred space VpJ,σq, then such

variation is equal to 0. We observe that

ppd∇g´1σqpX,Y qq1 “ ∇Xppg´1σq1Y q ´ ∇Y ppg´1σq1Xq ´ pg´1σq1rX,Y s`
` 9∇Xpg´1σY q ´ 9∇Y pg´1σXq

“ p∇Xpg´1σq1qY ´ p∇Y pg´1σq1qX ` 9∇Xpg´1σY q ´ 9∇Y pg´1σXq
“ pdivpg´1σq1qpY qX ´ pdivpg´1σq1qpXqYloooooooooooooooooooooooooomoooooooooooooooooooooooooon

term 1

` (Lemma 4.16)

` 9∇Xpg´1σY q ´ 9∇Y pg´1σXqlooooooooooooooooomooooooooooooooooon
term 2

.

First we rephrase term 1 in the expression above. Applying the expression for pg´1σq1

derived at the beginning of the proof, we have

pdivpg´1σq1qpY qX ´ pdivpg´1σq1qpXqY “ divpJ 9Jg´1σ ` g´1 9σ0qpY qX`
´ divpJ 9Jg´1σ ` g´1 9σ0qpXqY `

´ Y pxσ | J 9JyqX `Xpxσ | J 9JyqY.

Assume now that p 9J, 9σq belongs to VpJ,σq. Taking the sum of the equations in (V2) (Propo-

sition K part ii)) and using the expressions of Jl and Jr from (3.17), we obtain the relation

divpJ 9J g´1σ ` g´1 9σ0q “ x∇g
J‚σ | 9Jy.

Together with Lemma 2.3 part iv), we see that

pdivpg´1σq1qpY qX ´ pdivpg´1σq1qpXqY “ x∇JY σ | 9JyX ´ x∇JXσ | 9JyY`
´ Y pxσ | J 9JyqX `Xpxσ | J 9JyqY
“ xσ | Jp∇X

9JqyY ´ xσ | Jp∇Y
9JqyX.

This is the expression for term 1 that we will use in the final computation. Now we focus

our attention on term 2. Applying the variation formula of the Levi-Civita connection

given by Lemma 4.15, we obtain that

9∇Xpg´1σY q ´ 9∇Y pg´1σXq “ 1

2

´
pdiv 9JqpY qJg´1σX ` Jp∇Y

9Jqg´1σX`

´pdiv 9JqpXqJg´1σY ´ Jp∇X
9Jq g´1σY

¯

“ 1

2
Jg´1σ

´
pdiv 9JqpY qX ´ pdiv 9JqpXqY

¯
`

` 1

2
J

´
p∇Y

9Jqg´1σX ´ p∇X
9Jq g´1σY

¯

“ 1

2
Jg´1σ

´
p∇X

9JqY ´ p∇Y
9JqX

¯
`
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` 1

2
J

´
p∇Y

9Jqg´1σX ´ p∇X
9Jq g´1σY

¯

where, in the last step, we applied Lemma 4.16 to A “ 9J . As a last remark, we apply

Lemma 3.9 to p∇‚
9Jq g´1σ and g´1σ p∇‚

9Jq, deriving:

g´1σ p∇‚
9Jq ´ p∇‚

9Jq g´1σ “ 2xσ | Jp∇‚
9JqyJ. (4.12)

We finally combine the expressions found above for terms 1 and 2 with this last relation.

If pJ, σq is a point of ĆMS0pΣ, ρq and p 9J, 9σq is an element of VpJ,σq, then the variation of

the differential d∇g´1σ can be expressed as follows:

ppd∇g´1σqpX,Y qq1 “ xσ | Jp∇X
9JqyY ´ xσ | Jp∇Y

9JqyX`

` 1

2
Jg´1σ

´
p∇X

9JqY ´ p∇Y
9JqX

¯
`

` 1

2
J

´
p∇Y

9Jqg´1σX ´ p∇X
9Jq g´1σY

¯

“ 1

2

´
2xσ | Jp∇X

9JqyY ` Jg´1σp∇X
9JqY ´ Jp∇X

9Jqg´1σY
¯

`

´ 1

2

´
2xσ | Jp∇Y

9JqyX ` Jg´1σp∇Y
9JqX ´ Jp∇Y

9Jqg´1σX
¯

“ 1

2

´
2xσ | Jp∇X

9JqyY ` 2xσ | Jp∇X
9JqyJ2Y

¯
`

´ 1

2

´
2xσ | Jp∇Y

9JqyX ` 2xσ | Jp∇Y
9JqyJ2X

¯

(rel. (4.12) for ‚ “ X,Y )

“ 0.

Therefore p 9J, 9σq lies in the kernel of the linearized Codazzi equation. �

Lemma 4.17. Every element p 9J, 9σq P VpJ,σq lies in the kernel of the linearized Gauss-

Codazzi equations (GC).

Proof. We start by relating the Riemannian metrics hl and hr associated to the complex

structures Jl and Jr with h and the endomorphism B:

hl,r “ ρp¨, p1 ¯ JBq´1Jp1 ¯ JBq¨q
“ ρpp1 ¯ JBq´1p1 ¯ JBq¨, p1 ¯ JBq´1Jp1 ¯ JBq¨q
“ detp1 ¯ JBq´1ρpp1 ¯ JBq¨, Jp1 ¯ JBq¨q

“ f ` 1

2
gpp1 ¯ JBq¨, p1 ¯ JBq¨q (rel. (3.16))

“ 1

2
hpp1 ¯ JBq¨, p1 ¯ JBq¨q.

We remark that the metrics hl,r differ by the left and right hyperbolic metrics given by

Mess’ homeomorphism by a factor 2. Indeed, since the tensor 1 ¯ JB is h-Codazzi, the
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curvature of the metric hl,r can be computed as follows

Khl,r “ 2Kh

detp1 ¯ JBq “ 2Kh

1 ` detB
.

A proof of this fact can be found in [KS07]. This shows that the Gauss-Codazzi equations

have the following equivalent descriptions:
#
d∇

h

B “ 0,

Kh “ ´1 ´ detB,
ô

#
d∇

g

g´1σ “ 0,

Khl “ ´2,
ô

#
d∇

g

g´1σ “ 0,

Khr “ ´2.

Assume now that p 9J, 9σq is an element of VpJ,σq. By Lemma 4.14, p 9J, 9σq lies in the kernel

of the linearized Codazzi equation. Therefore, by what previously observed, it is enough

to show that the first order variation of the curvature 2-form Khl dahl “ Khl ρ (or Khr ρ)

along the direction 9Jl “ dM p 9J, 9σq1 (or 9Jr “ dM p 9J, 9σq2, respectively) is equal to 0.

The first order variation of the 2-form Khl ρ coincides with 1
2
d pdivhl 9Jlq (see [Don03]),

and by the last statement of Proposition K, the divergence divhl
9Jl is an exact 1-form.

Since d2 “ 0, we deduce that the derivative of Khl dahl along 9Jl is 0, and therefore p 9J, 9σq
lies in the kernel of the linearized Gauss-Codazzi equations. �

4.5.4. Proof of Lemma 4.18: the dimension of VpJ,σq is ě 6|χpΣq|

Lemma 4.18. For every pJ, σq P ĆMS0pΣ, ρq,

dimVpJ,σq ě 6|χpΣq|.

Proof. We make use of the description provided by Proposition K part iii). Because the

equations are decoupled, it is sufficient to show that the space of solutions of the equation

divgQ
˘p 9J, 9σq “ ¯f´1 x∇J‚σ | Q˘p 9J, 9σqy

has dimension at least 3|χpΣq|. We give the details for the equation concerning Q`, the

other case being analogous. Consider the differential operator DJ : TJJ pΣq Ñ Λ1pΣq
defined by

DJpQq “ divgQ` f´1 x∇J‚σ | Qy .
Its principal symbol coincides with that of the divergence operator divg : TJJ pΣq Ñ
Λ1pΣq, hence DJ is Fredholm and indpDJq “ indpdivgq, where indp¨q denotes the index of

the differential operator, i.e. the difference between the dimension of its kernel and the

dimension of its co-kernel. It is well-known (see for instance [Tro92]) that dimpKerpdivgqq “
3|χpΣq|: the space of traceless, divergence-free tensors represents the tangent space to the

Teichmüller space of Σ. On the other hand, divg : TJJ pΣq Ñ Λ1pΣq is surjective. Indeed,

using the musical isomorphism # : Λ1pΣq Ñ ΓpTΣq induced by the metric g “ gJ , this

is equivalent to proving that div#g : TJJ pΣq Ñ ΓpTΣq is surjective. Let L : ΓpTΣq Ñ
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TJJ pΣq denote the Lie derivative operator. Its L2-adjoint is L˚p 9Jq “ ´Jpdivg 9Jq#. In

fact,

xLV, 9JyL2 “
ż

Σ

1

2
tr

´
9JLV J

¯
ρ

“
ż

Σ

pdivg 9JJqpV qρ (Equation (4.7))

“
ż

Σ

pdivg 9JqpJV qρ (Equation (4.5))

“ ´xJpdivg 9Jq#, V yL2 .

Therefore, the operator L˚L : ΓpTΣq Ñ ΓpTΣq is self-adjoint. Moreover, if V P KerpL˚Lq
then

0 “ xL˚LpV q, V yL2 “ }LV J}2L2 ,

which implies that V “ 0 because pΣ, Jq has no biholomorphisms isotopic to the identity.

A standard computation in local coordinates shows that the operator L˚L is elliptic, thus

by [Voi02, Theorem 5.1] we have an L2-orthogonal decomposition

ΓpTΣq “ KerpL˚Lq ‘ ImpL˚Lq “ ImpL˚Lq ,

which shows that every vector field is in the image of div#g .

Hence,

dimpKerpDJ qq ě indpDJq “ indpdivgq “ 3|χpΣq|
and this concludes the proof of the assertion. �

4.5.5. Proof of Lemma 4.21: transversality to the tangent space to the Symp0pΣ, ρq-orbit

Lemma 4.19. For every symplectic vector field X on pΣ, ρq and for every pJ, σq P T ˚J pΣq,
with σ that is the real part of a holomorphic quadratic differential on pΣ, Jq, we have

IpLXJ,LXσq “ p´LJXJ,´LJXσq.

Proof. We need to introduce some notation to prove the desired identity. Let AV be the

total derivative of a vector field V tangent to Σ, i. e. AV Y :“ ∇g
Y V , for any tangent

vector field Y (as usual g is the Riemannian metric ρp¨, J ¨q). Then we can write

pLV JqY “ rV, JY s ´ JrV, Y s
“ ∇g

V pJY q ´ ∇g
JY V ´ J∇g

V Y ` J∇g
Y V (∇g torsion-free)

“ J∇g
V Y ´AV pJY q ´ J∇g

V Y ` JAV Y (J ∇g-parallel)

“ pJAV ´AV JqY.

In other words, we have that

LV J “ JAV ´AV J (4.13)
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A similar computation shows that

LV σ “ ∇g
V σ ` σpAV ¨, ¨q ` σp¨, AV ¨q. (4.14)

Now we apply the definition of the almost-complex structure I to the pair pLXJ,LXσq,
with X symplectic vector field:

IpLXJ,LXσq “ p´JpLXJq, ´pLXσq0p¨, J ¨q ´ xσ | LXJy gq
Being J ∇g-parallel, we have that AJX “ JAX . Therefore

´JpLXJq “ ´JpJAX ´AXJq (rel. (4.13) for V “ X)

“ ´pJAJX ´AJXJq
“ ´LJXJ. (rel. (4.13) for V “ JX)

This shows that the first component of IpLXJ,LXσq coincides with ´LJXJ . To study the

second component we will need a few additional remarks. First we notice that it is enough

to show

´pLXσq0p¨, J ¨q “ ´pLJXσq0,
because the trace part of the second component of a pair p 9J, 9σq is uniquely determined

by 9J (compare with Lemma 3.2). Given V a vector field, the endomorphism AV can be

decomposed into a sum

AV “ trpAV q
2

1 ´ trpJAV q
2

J `AsV ,

where the first term is its trace part, the second is the g-skew-symmetric part, and the

third is the traceless and g-symmetric part.

If X is a ρ-symplectic vector field, then the trace part of AX vanishes. Since AJX “ JAX
(again because J is ∇g-parallel), the decomposition of AJX is

AJX “ JAX “ trpJAXq
2

1` 0 ` JAsX .

In particular, X symplectic implies that the g-skew-symmetric part of AJX vanishes, and

AsJX “ JAsX . Therefore

pLJXσq0 “ ∇g
JXσ ` σpAJX ¨, ¨q ` σp¨, AJX ¨q ´ tr

`
g´1σAJX `AJXg

´1σ
˘

2
g (rel. (4.14))

“ ∇g
JXσ ` trpJAXq σ ` σpJAsX ¨, ¨q ` σp¨, JAsX ¨q ´ tr

`
g´1σ JAsX

˘
g

Applying Lemma 3.9 to g´1σ JAsX and JAsXg
´1σ we obtain

σp¨, JAsX ¨q ` σpJAsX ¨, ¨q “ tr
`
g´1σ JAsX

˘
g,

which, combined with the expression found above, shows that

pLJXσq0 “ ∇g
JXσ ` trpJAXqσ

“ p∇g
Xσqp¨, J ¨q ` trpJAXq σ (Lemma 2.3 part iv))
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On the other hand, by the decomposition of AX , we have

pLXσq0 “ ∇g
Xσ ` σpAX ¨, ¨q ` σp¨, AX ¨q ´ tr

`
g´1σAX `AXg

´1σ
˘

2
g (rel (4.14))

“ ∇g
Xσ ´ trpJAXq

2
pσpJ ¨, ¨q ` σp¨, J ¨qq ` σpAsX ¨, ¨q ` σp¨, AsX ¨q ´ tr

`
g´1σAX

˘
g

“ ∇g
Xσ ´ trpJAXq σp¨, J ¨q ` σpAsX ¨, ¨q ` σp¨, AsX ¨q ´ tr

`
g´1σAsX

˘
g,

where in the last step we used that tr
`
g´1σAsX

˘
“ tr

`
g´1σAX

˘
. Now, applying Lemma

3.9 to g´1σAsX and AsXg
´1σ we obtain

σp¨, AsX ¨q ` σpAsX ¨, ¨q “ tr
`
g´1σAsX

˘
g,

which reduces the expression above to the equality

pLXσq0 “ ∇g
Xσ ´ trpJAXqσp¨, J ¨q.

The identity pLXσq0p¨, J ¨q “ pLJXσq0 is now immediate. �

Lemma 4.20. Let G be the operator GpJ, σq :“ Kh ` 1 ` detB, defined over the space

T ˚J pΣq and with values in C 8pΣq. Assume that pJ, σq satisfies the Gauss-Codazzi equa-

tions and let U be a vector field on Σ. Then

dGpJ,σq pLUJ,LUσq “ 1

2
∆hpf´1 divg Uq ´ p1 ´ detBqf´1 divg U.

In particular, if pLUJ,LUσq belongs to the kernel of the differential of G, then U is a ρ-

symplectic vector field, i. e. dpιUρq “ 0.

Proof. The final goal will be to compute d
dt
GpJt, σtq|t“0, where pJt, σtq “ pψ˚

t J, ψ
˚
t σq. We

first determine the Riemannian metric gt “ ρp¨, Jt¨q associated to the complex structure

Jt :“ dψ´1
t J dψt, where pψtqt represents the flow of U .

gt “ ρp¨, pdψ´1
t J dψtq¨q “ ρppdψ´1

t dψtq¨, pdψ´1
t J dψtq¨q

“ pdet
`
dψ´1

t

˘
˝ ψtq ρpdψt ¨, J dψt ¨q “ pdet

`
dψ´1

t

˘
˝ ψtq gpdψt ¨,dψt ¨q

“ pdet
`
dψ´1

t

˘
˝ ψtq ψ˚

t g,

where g “ g0 and det
`
dψ´1

t

˘
“ ppψ´1

t q˚ρq{ρ. In particular, gt is conformal to ψ˚
t g with

conformal factor given by ut :“ det
`
dψ´1

t

˘
˝ψt. We now determine the Riemannian metric

ht associated to the pair pJt, σtq as described at the beginning of Section 4:

ht “
ˆ
1 `

b
1 ` ‖ψ˚

t σ‖
2
gt

˙
gt “

ˆ
1 `

b
1 ` ‖ψ˚

t σ‖
2
gt

˙
ut ψ

˚
t g

“
1 `

b
1 ` ‖ψ˚

t σ‖
2
gt

1 `
b

1 ` ‖σ‖2g ˝ ψt
ut ψ

˚
t h “ vt ψ

˚
t h.
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Therefore, the metric ht also differs from ψ˚
t h by a conformal factor, here denoted by vt

and defined from the relation above (observe that v0 ” 1). Using the classical expression

for the curvature under conformal change of the metric, we deduce that

Kht “ Kvt ψ
˚
t h

“ v´1
t

ˆ
Kψ˚

t h
´ 1

2
∆ψ˚

t h
ln vt

˙

“ v´1
t

ˆ
Kh ˝ ψt ´ 1

2
p∆h ln

`
vt ˝ ψ´1

t

˘
q ˝ ψt

˙
.

The last term of the operator G that we need to analyze is the determinant of the endo-

morphism Bt associated to the pair pJt, σtq:
detBt “ det

`
h´1
t σt

˘

“ v´2
t det

`
pψ˚

t hq´1ψ˚
t σ

˘

“ v´2
t pdetBq ˝ ψt.

We can finally deduce an expression for the term

Kht ` detBt “ v´1
t

ˆ
Kh ˝ ψt ´ 1

2
p∆h ln

`
vt ˝ ψ´1

t

˘
q ˝ ψt ` v´1

t pdetBq ˝ ψt
˙
.

Combining the relations found above, we can compute the first order variation of oper-

ator G along the path t ÞÑ pψ˚
t J, ψ

˚
t σq, obtaining

pKht ` 1 ` detBtq1 “ ´ 9vpKh ` detBq ` UpKhq ´ 1

2
∆h 9v ´ 9v detB ` UpdetBq

“ 9vp1 ´ detBq ´ 1

2
∆h 9v,

where, in the last line, we used the fact that pJ, σq satisfies GpJ, σq “ 0. The final statement

will now follow by computing 9v:

9v “ dvt

dt

ˇ̌
ˇ̌
t“0

“ dpvt ˝ ψ´1
t q

dt

ˇ̌
ˇ̌
t“0

(v0 ” 1)

“ d

dt

1 `
b

1 ` ‖σt‖
2
gt

˝ ψ´1
t

1 `
b

1 ` ‖σ‖2g

ut

ˇ̌
ˇ̌
ˇ̌
t“0

“
p‖σt‖2gt ˝ ψ´1

t q1

2fp1 ` fq ` 9u.

We now observe that

‖σt‖
2
gt

“ 1

2
tr

`
g´1
t σt g

´1
t σt

˘
“ 1

2u2t
tr

`
pψ˚

t gq´1ψ˚
t σ pψ˚

t gq´1ψ˚
t σ

˘

“ u´2
t p‖σ‖2g ˝ ψtq,
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which implies the following:

p‖σt‖2gt ˝ ψ´1
t q1 “ pput ˝ ψ´1

t q´2q1‖σ‖2g “ ´2 9u ‖σ‖2g “ ´2 9upf2 ´ 1q

since u0 “ detpdpidqq ” 1. A simple computation now shows that 9u “ dut
dt

|t“0 “ ´ divg U .

To conclude, we have

9v “
ˆ

´ f2 ´ 1

fp1 ` fq ` 1

˙
9u “ ´f´1 divg U.

For the second part of the statement, observe that, being B traceless and h-self-adjoint,

its determinant is a non-positive function. In particular p1´detBq ě 1. Consequently the

linear operator

T : λ ÞÝÑ ´1

2
∆hλ` p1 ´ detBqλ

is self-adjoint and positive definite in L2pΣ,dahq, in particular injective. Therefore, if

pLUJ,LUσq lies in the kernel of the differential of G, then the function λ “ f´1 divg U is

sent to 0 by the operator T , and so divg U “ 0. By relation (4.6) this is equivalent to say

that U is a ρ-symplectic vector field. �

Lemma 4.21. For every pJ, σq P ĆMS0pΣ, ρq, we have

VpJ,σq X TpJ,σqpSymp0pΣ, ρq ¨ pJ, σqq “ t0u .
Proof. AssumeX to be a symplectic vector field such that pLXJ,LXσq belongs to VpJ,σq. By

equivariance of Mess homeomorphism, this is equivalent to the fact that pLXJl,LXJrq are

exact 1-forms. In particular we must have that the hl-divergence of LXJl is an exact 1-form.

By Proposition 4.3, this implies that LXJl is ΩJl-orthogonal to TJl Symp0pΣ, ρq¨Jl. There-

fore, for every ρ-symplectic vector field Y we have ΩJlpLXJl,LY Jlq “ 0. Consequently,

inside the quotient rT pΣq of J pΣq by the action of the Hamiltonian group HampΣ, ρq, the

class rLXJls is pΩrJls-orthogonal to the H-orbit of rJls (compare with Section 4.2, and in

particular with Equation (4.4)). As observed by Donaldson [Don03] (see also [Tra19]), the

H-orbits are symplectic submanifolds of rT pΣq, and the class of LXJl is tangent to the

orbit H ¨ rJls. By what previously observed, we deduce that the class of LXJl is equal

to zero inside TJlH ¨ rJls or, in other words, that LXJl is tangent to the orbit of Jl by

the Hamiltonian group inside J pΣq. Since the Lie derivative operator X ÞÑ LXJ is injec-

tive, because pΣ, Jq has no biholomorphisms isotopic to the identity, the vector field X is

actually ρ-Hamiltonian, i. e. ιXρ “ df for some f P C 8pΣq.
On the other hand, if pLXJ,LXσq belongs to VpJ,σq, the same has to hold for IpLXJ,LXσq “

´pLJXJ,LJXσq (see Lemma 4.19). In particular, the differential of the function G consid-

ered in Lemma 4.20 applied to pLJXJ,LJXσq must vanish, by what observed in Lemma

4.17. By the second part of Lemma 4.20, we deduce that JX is ρ-symplectic, i.e. dpιJXρq “
0. This implies that the 1-form ´ df ˝J “ ´pιXρq ˝J “ ιJXρ is closed, and therefore that

the function f is g-harmonic (since dpdf ˝ Jq “ ´∆gfρ). Being Σ compact, we deduce

that f is constant, and therefore that the vector field X is equal to 0, as desired. �
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4.6. The proof of Proposition K

This subsection is dedicated to the proof of Proposition K, which provides a series of

equivalent descriptions of the tangent space to MS0pΣ, ρq, the model for the deformation

space of MGHC AdS structures introduced in Section 2.5. The proof of the result is

technically involved, and none of the tools developed here will be used in the rest of the

exposition. In particular, the reader who is willing to trust the statement of Proposition

K can skip this part without losing necessary ingredients for the remainder of the paper.

We will first focus on the equivalence of the first three descriptions appearing in the

statement of Proposition K. This part is mainly algebraic and it follows from explicit

manipulations of the equations.

Proof of i) ô ii) ô iii). Recalling that Q˘ “ Q˘p 9J, 9σq :“ f´1g´1 9σ0 ˘ 9J (these terms

formally appeared already in the study of the differential of Mess’ map in Proposition C

(baby version)), one readily checks that i) ô ii), since taking the sum and difference of

the equations in (V1) one obtains the equations in (V3), and vice versa.

Let us now prove ii) ô iii). As a preliminary step, we claim that, for every 9J 1 P TJJ pΣq
and for every tangent vector field V , we have

df p 9J 1V q “ f´1 x∇g

pg´1σqV
σ | 9J 1y “ f´1 x∇g

‚σ | 9J 1yppg´1σqV q. (4.15)

Assuming temporarily this relation, and using that the components Jl and Jr of the map

M can be expressed as follows (see (3.17))

Jl “ fJ ` g´1σ, Jr “ fJ ´ g´1σ,

we obtain the following identities in local coordinates xi:

pdivgQ`qJJlV “ dxi pp∇g
Bi
Q`qJJlV q

“ dxi pp∇g
Bi
Q`JJlqV q ´ dxi pQ`Jp∇g

Bi
pfJ ` g´1σqqV q

“ divgpQ`JJlqV ´
´

Bif dxi pQ`J2V q ` dxi pQ`Jp∇g
Bi
g´1σqV q

¯

“ divgpQ`JJlqV ` df pQ`V q ´ dxi pQ`Jp∇g
V g

´1σqBiq (g´1σ Codazzi)

“ divgpQ`JJlqV ` df pQ`V q ´ 2 x∇g
V σ | Q`Jy (∇gg´1 “ 0)

“ divgpQ`JJlqV ` df pQ`V q ` 2 xp∇g
V σqp¨, J ¨q | Q`y (Q` P TJJ pΣq)

“ divgpQ`JJlqV ` df pQ`V q ` 2 x∇g
JV σ | Q`y (Lemma 2.3 part iv))

“ divgpQ`JJlqV ` f´1x∇g

pg´1σqV
σ | Q`y ` 2 x∇g

JV σ | Q`y, (rel. (4.15))

“ divgpQ`JJlqV ` f´1x∇g

pg´1σ`fJqV
σ | Q`y ` x∇g

JV σ | Q`y,

where in the second to last line we used relation (4.15). This can be rewritten as:

pdivgQ` ` f´1x∇g
J‚σ | Q`yq ˝ JJl “ divgpQ`JJlq ` x∇g

J‚σ | Q`y.
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This shows that the first equations in (V2) and (V3) are equivalent. Proceeding in an

analogous way for the term divg Q
´, we can deduce that the second equations are equivalent

too, and therefore conclude that ii) ô iii).

It remains to prove relation (4.15). Since pg´1σq2 “ ‖σ‖2 1 by Cayley-Hamilton theorem,

we have

V p‖σ‖2q1 “ p∇g
V g

´1σqg´1σ ` g´1σp∇g
V g

´1σq. (4.16)

Now we observe that

2x∇g

pg´1σqV
σ | 9J 1y “ dxi p 9J 1p∇g

pg´1σqV
g´1σqBiq (∇gg´1 “ 0)

“ dxi p 9J 1p∇g
Bi
g´1σqpg´1σqV q (g´1σ Codazzi)

“ ´ dxi p 9J 1g´1σp∇g
Bi
g´1σqV q ` Bip‖σ‖2qdxi p 9J 1V q (relation (4.16))

“ ´ dxi p 9J 1g´1σp∇g
V g

´1σqBiq ` dp‖σ‖2q p 9J 1V q (g´1σ Codazzi)

“ ´ tr
´

9J 1g´1σp∇g
V g

´1σq
¯

` dp‖σ‖2q p 9J 1V q

“ dp‖σ‖2q p 9J 1V q,

where, in the last step, we applied Lemma 3.9 to the triple 9J 1, g´1σ, ∇g
V g

´1σ P TJJ pΣq.
Finally, we have

df p 9J 1V q “ 1

2

b
1 ` ‖σ‖2

dp‖σ‖2q 9J 1V “ f´1x∇g

pg´1σqV
σ | 9J 1y,

which concludes the proof of relation (4.15), and hence of the statement. �

The last statement of Proposition K is slightly more elaborated, because it requires a

"conversion" in the linear connection: while the first three characterizations are expressed

in terms of the Levi-Civita connection ∇g of g, the last one involves the Levi-Civita con-

nections ∇l and ∇r of the Riemannian metrics hl and hr, respectively. For this reason we

will need some additional ingredients, described in Lemmas 4.22, 4.23, 4.24. The transition

from ∇g to ∇l, ∇r is done passing through the Levi-Civita connection of the Riemannian

metric h: in Lemma 4.22 we express the derivative ∇h
‚B in terms of ∇g

‚σ, and in Lemma

4.23 we compute the h-divergence operator in terms of divg. With these tools, we will be

able to determine the expressions for the divergence with respect to hl and hr in terms of

divg and the derivative ∇g
‚σ, as described in Lemma 4.24, which will make the equivalence

iii) ô iv) simpler to handle.

Lemma 4.22. Let pJ, σq P T ˚J pΣq, where σ is the real part of a J-holomorphic quadratic

differential. Let h denote the Riemannian metric p1 ` fq g, with Levi-Civita connection

∇h, and let B “ h´1σ be the h-self-adjoint operator associated to σ. For every tangent

vector field X we have

∇h
XB “ p1 ` fq´1f´1∇g

Xpg´1σq,
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where f “ fp‖σ‖gq “
b

1 ` ‖σ‖2g, and ∇g is the Levi-Civita connection of g “ ρp¨, J ¨q.

Proof. First we observe that, if σ is zero, then the relation is obviously satisfied. In what

follows we will assume that σ is not identically zero.

The tensor ∇g
Xpg´1σq is a symmetric and traceless endomorphism of the tangent space

of Σ. For every p P Σ outside the set of zeros of σ (which is a finite set), the elements

pg´1σqp and pJg´1σqp form a basis of the space of traceless symmetric endomorphisms of

TpΣ. In particular, using the scalar product x¨, ¨y we can represent ∇g
Xpg´1σq in terms of

such basis, obtaining the following expression:

∇g
Xpg´1σqY “ 1

‖σ‖2g

`
xg´1σ,∇g

Xpg´1σqy g´1σ ` xJg´1σ,∇g
Xpg´1σqyJg´1σ

˘

“ 1

‖σ‖2g

ˆ
1

2
dp‖σ‖2gq pXq g´1σ ` xσ,∇g

JXσyJg´1σ

˙

“ 1

2‖σ‖2g

´
dp‖σ‖2gq pXq g´1σ ` dp‖σ‖2gq pJXqJg´1σ

¯
.

From the first to the second line, we are making use of the definitions of the scalar products

x¨, ¨y and Lemma 2.3 part iv). By definition of f , we have ‖σ‖2g “ f2 ´ 1, therefore

dp‖σ‖2gq “ 2f df . Combining this with the chain of equalities above, we obtain that

∇g
Xpg´1σqY “ pf2 ´ 1q´1f

`
df pXq g´1σ ` df pJXqJg´1σ

˘
.

The exact same observations made to express ∇g
Xpg´1σqY allow us to deduce that

p∇h
XBqY “ 1

2‖B‖2

´
dp‖B‖2q pXqB ` dp‖B‖2q pJXqJB

¯

(remember that B is Codazzi with respect to h by Lemma 2.3 part i)). Unraveling the

definitions of f and B, we see that ‖B‖2 “ p1 ` fq´1pf ´ 1q, and consequently dp‖B‖2q “
2p1 ` fq´2 df . In particular we obtain that

p∇h
XBqY “ p1 ` fq`1´2pf ´ 1q´1 pdf pXqB ` df pJXqJBq

“ pf2 ´ 1q´1p1 ` fq´1
`
df pXq g´1σ ` df pJXqJg´1σ

˘
,

where in the last step we used that B “ h´1σ “ p1 ` fq´1g´1σ. Outside the zero locus

of σ, the statement now follows by comparing the two expressions found for ∇g
Xpg´1σqY

and ∇h
XB, and the identity holds on the whole surface by continuity. �

Lemma 4.23. Let T be a smooth section of endomorphisms of TΣ. Then

divh T “ divg T ` p1 ` fq´1 df ˝ T s

0 ,

where T s
0 is the g-symmetric and traceless part of T .
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Proof. By Koszul’s formula we have

2hp∇h
XY,Zq “ XphpY,Zqq ` Y phpX,Zqq ´ ZphpX,Y qq ` hprX,Y s, Zq ´ hprX,Zs, Y q ´ hprY,Zs,Xq

“ df pXq gpY,Zq ` df pY q gpX,Zq ´ df pZq gpX,Y q ` 2hp∇g
XY,Zq,

where in the last step we used the relation h “ p1 ` fq g and the Koszul’s formula for g.

In particular, we deduce that

∇h
XY “ ∇g

XY ` 1

2
p1 ` fq´1pdf pXqY ` df pY qX ´ gpX,Y q gradg fq,

where gradg f “ g´1 df is the g-gradient of f . Then we have

pdivh T qX “ dxi
´

p∇h
BiT qX

¯
“ dxi

´
∇h

BipTXq ´ T p∇h
BiXq

¯

“ dxi
´
∇g

Bi
pTXq ´ T p∇g

Bi
Xq

¯
` 1

2
p1 ` fq´1 dxi pBif TX ` df pTXq Bi`

´ gpBi, TXq gradg f ´ T pBif X ` df pXq Bi ´ gpBi,Xq gradg fqq

“ pdivg T qX ` 1

2
p1 ` fq´1pdf pTXq ` 2 df pTXq ´ df pTXq ´ df pTXq`

´ df pXq tr T ` gpT gradg f,Xqq

“ pdivg T qX ` 1

2
p1 ` fq´1pdf pTXq ´ df pXq tr T ` df pT ˚Xqq

“ pdivg T qX ` p1 ` fq´1 df ˝
ˆ
T ` T ˚

2
´ trT

2
1

˙
pXq

“ pdivg T qX ` p1 ` fq´1 df ˝ T s

0 pXq.

From the first to the second line we used the relation found above between the Levi-Civita

connections of g and h; in the forth line T ˚ is denoting the g-adjoint of T ; in the last

line we observed that the endomorphism pT ` T ˚q{2 is the g-symmetric part of T , and

ptrT q{21 is its full-trace part. �

Let Al and Ar be the tensors

Al :“ 1 ´ JB, Ar :“ 1 ` JB.

Then the metrics hl and hr coincide with hpAl¨, Al¨q and hpAr¨, Ar¨q, respectively (see for

instance the proof of Lemma 4.17). If σ is the real part of a J-holomorphic quadratic

differential, then the tensors Al and Ar are h-Codazzi (B is h-Codazzi by Lemma 2.3, and

1 and J are ∇h-parallel) and h-symmetric. In particular, we can express the Levi-Civita

connection of hl and hr respectively as follows:

∇hl
XY “ A´1

l ∇h
XpAlY q, ∇hr

X Y “ A´1
r ∇h

XpArY q. (4.17)

These relations can be proved by checking that the connections defined on the right-hand

sides are torsion free (which follows from Al and Ar being h-Codazzi), and hl- and hr-
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symmetric, respectively (which follows from Al and Ar being h-symmetric and from the

description of hl and hr given above). See also [KS07].

Lemma 4.24. Let T be a smooth section of traceless endomorphisms of TΣ. Then

pdivhl T qX “ pdivg T qX ´ f´1x∇g
Xσ | JT sy

pdivhr T qX “ pdivg T qX ` f´1x∇g
Xσ | JT sy

where T s stands for the g-symmetric part of T .

Proof. Recalling relations (3.16) and (3.15), we have that

A´1
l,r “ 1 ` f

2
p1 ˘ JBq. (4.18)

In this expression and the ones that will follow, we consider the sign above in ˘ or ¯ to

be the one appearing for the expression of Al, and the one on the bottom for Ar. Being

1 and J ∇h-parallel, we have ∇h
XAl,r “ ¯J∇h

XB. Applying the expressions (4.17) for the

Levi-Civita connections of hl and hr, respectively, we find

pdivhl,r T qX “ dxi
´

p∇l,r
Bi
T qX

¯
“ dxi

´
∇l,r

Bi
pTXq ´ T p∇l,r

Bi
Xq

¯

“ dxi
´
A´1
l,r∇

h
BipAl,rTXq ´ TA´1

l,r∇
h
BipAl,rXq

¯

“ dxi
´
A´1
l,r p∇h

BiAl,rqTX `A´1
l,rAl,rp∇h

BiT qX `A´1
l,rAl,rT p∇h

BiXq`

´TA´1
l,r p∇h

BiAl,rqX ´ TA´1
l,r Al,rp∇h

BiXq
¯

“ dxi pA´1
l,r p∇h

BiAl,rqTXq ` pdivh T qX ´ dxi pTA´1
l,r p∇h

BiAl,rqXq

“ pdivh T qX ` tr
´
A´1
l,r p∇h

TXAl,rq ´ TA´1
l,r p∇h

XAl,rq
¯
. (Al,r hl,r-Codazzi)

Lemma 4.23 allows us to express the first term of the sum in terms of the divergence with

respect to g, so now we focus on the other two terms. For the first one, we express it as

follows:

tr
´
A´1
l,r p∇h

TXAl,rq
¯

“ 1 ` f

2
tr

´
p1 ˘ JBqp∇h

TXAl,rq
¯

(rel. (4.18))

“ ¯1 ` f

2
tr

´
p1 ˘ JBqJ∇h

TXB
¯

(∇h
XAl,r “ ¯J∇h

XB)

“ ´1 ` f

2
tr

´
JBJ∇h

TXB
¯

(J∇h
TXB traceless)

“ ´1 ` f

2
tr

´
B∇h

TXB
¯

(B P TJJ pΣq)

“ ´p1 ` fq´1 df pTXq. (dp‖B‖2q “ 2p1 ` fq´2 df)

We proceed similarly for the third term:

tr
´
TA´1

l,r p∇h
XAl,rq

¯
“ 1 ` f

2
tr

´
T p1˘ JBqp∇h

XAl,rq
¯

(rel. (4.18))
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“ ¯1 ` f

2
tr

´
T p1 ˘ JBqJ∇h

XB
¯

(∇h
XAl,r “ ¯J∇h

XB)

“ 1

2
f´1p¯ tr

`
TJ∇g

Xpg´1σq
˘

´ tr
`
TJBJ∇g

Xpg´1σq
˘
q (Lemma 4.22)

“ f´1p˘x∇g
Xσ | JT sy ´ p1 ` fq´1x∇g

Xσ | T ag´1σyq.

In the last step, we expressed B as p1 ` fq´1g´1σ, and we observed that, if T “ T a ` T s,

where T a and T s denote the g-anti-symmetric and g-symmetric parts of T , respectively,

then T a does not contribute to the term tr
`
TJ∇g

Xpg´1σq
˘

since ∇g
Xpg´1σq is traceless,

and similarly T s does not contribute to the term tr
`
TJBJ∇g

Xpg´1σq
˘

by Lemma 3.9, part

ii) (observe that T s is traceless since T is, by hypothesis).

Combining the relations obtained above with Lemma 4.23 we see that

pdivhl,r T qX “ pdivh T qX ` tr
´
A´1
l,r p∇h

TXAl,rq ´A´1
l,r T p∇h

XAl,rq
¯

“ pdivg T qX ` p1 ` fq´1 df pT sXq ´ p1 ` fq´1 df pTXq`
´ f´1p˘x∇g

Xσ | JT sy ´ p1 ` fq´1x∇g
Xσ | T ag´1σyq

“ pdivg T qX ´ p1 ` fq´1 df pT aXq ` p1 ` fq´1f´1x∇g
Xσ | T ag´1σy`

¯ f´1x∇g
Xσ | JT sy.

Since the space of g-anti-symmetric endomorphisms of TpΣ has real dimension 1, we can

write T a “ uJ for some smooth function u. Therefore

x∇g
Xσ | T ag´1σy “ u x∇g

Xσ | Jg´1σy
“ u x∇g

JXσ, σyg
“ u

2
dp‖σ‖2gq pJXq

“ u f df pJXq, (f2 ´ 1 “ ‖σ‖2g)

where, from the first to the second line, we used Lemma 2.3 part iv). Expressing again T a

as uJ in the relation we found above for pdivhl,r T qX, and combining it with what just

shown, we obtain the desired statement. �

We are finally ready to prove the last statement of Proposition K:

Proof of the last statement. We will apply the previous lemma to T “ 9Jl, 9Jr. To do so, we

express the g-symmetric and g-anti-symmetric parts of 9Jl, 9Jr. From the relation described

in the proof of Theorem C (baby version) for the differential of the Mess homeomorphism

M, we see that 9Jl and 9Jr can be expressed in terms of p 9J, 9σq as follows:

9Jl,r “ xσ | Q˘yJ ˘ fQ˘, (4.19)

where Q˘ “ Q˘p 9J, 9σq is defined as in Proposition K part iii) (we will not need the actual

definition of Q˘, but only the fact that Q˘ P TJJ pΣq and the expression (V3) for the
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equations of VpJ,σq). In particular we have that the g-symmetric parts of 9Jl, 9Jr are:

p 9Jl,rqs “ ˘fQ˘ (4.20)

The very last ingredient needed is the following convenient way to express the terms 9Jl
and 9Jr:

9Jl,r “ ¯Q˘JJl,r ´ xσ | JQ˘y1, (4.21)

whose proof goes as follows:

9Jl,r “ xσ | Q˘yJ ˘ fQ˘ (rel. (4.19))

“ ˘fQ˘ ` JQ˘g´1σ ´ xσ | JQ˘y1
“ ¯Q˘JpfJ ˘ g´1σq ´ xσ | JQ˘y1 (J2 “ ´1 and Q˘ P TJJ pΣq)
“ ¯Q˘JJl,r ´ xσ | JQ˘y1, (rel. (3.17))

where in the second line we applied Lemma 3.9 to JQ˘, g´1σ P TJJ pΣq. Now, applying

Lemma 4.24, we obtain

pdivhl,r 9Jl,rqX “ pdivg 9Jl,rqX ¯ x∇g
Xσ | Jp˘Q˘qy (rel. (4.20))

“ ¯ divgpQ˘JJl,rqX ´ dpxσ | JQ˘yqX ´ x∇g
Xσ | JQ˘y. (rel. (4.21))

Using once again Lemma 2.3 part iv), this identity can be rewritten as

divhl,r
9Jl,r ` dpxσ | JQ˘yq “ ¯ divgpQ˘JJl,rq ´ x∇g

J‚σ | Q˘y.

This finally concludes the proof of the last part of Proposition 3.4. By a straightforward

computation using relations (3.17) and (4.19), we can see that

xσ | JQ˘y “ ´ xrJl, Jrs, 9Jly
8p1 ´ xJl, Jryq “ xrJl, Jrs, 9Jry

8p1 ´ xJl, Jryq .

�

5. Geometric interpretations

In this section we conclude the study of the para-hyperKähler structure on the defor-

mation space MGHpΣq for Σ a closed surface of genus ě 2, giving interpretations in terms

of anti-de Sitter geometry to the elements that constitute the para-hyperKähler structure

pg, I,J,Kq. As a byproduct, we will deduce that the symplectic forms ωI, ωJ, ωK are non-

degenerate and closed, which will conclude the proof of Theorem A. Finally, we study the

relation between ωI, ωJ, ωK and Goldman symplectic form ΩB

Gol on the PSLp2,Bq-character

variety.
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5.1. The cotangent bundle parametrization

Recall from Section 2.2 that Krasnov and Schlenker introduced in [KS07] a way of parametriz-

ing the deformation space MGHpΣq – MSpΣq via the cotangent bundle T ˚T cpΣq to the

Teichmüller space of Σ. Precisely, they produced a mapping-class group invariant homeo-

morphism

F : MSpΣq Ñ T ˚T cpΣq ,
see Theorem 2.8. Using this map, we can identify, up to a multiplicative factor, the

natural symplectic structure on T ˚T cpΣq with the complex symplectic form ωC

I
, where

ωC
I

“ ωJ ` iωK.

Theorem B (genus ě 2). Let Σ be a closed oriented surface of genus ě 2. Then

F˚pIT˚T pΣq,Ω
C

T˚T pΣqq “
ˆ

´I,´ i

2
ωC

I

˙
,

where IT˚T pΣq denotes the complex structure of T ˚T pΣq and ΩC

T˚T pΣq its complex symplec-

tic form.

Proof. The proof is an adaptation of the arguments of the genus one version of Theorem

B, proved in Section 3.5. A computation identical to Remark 3.14 shows that if pJtqt is a

1-parameter family of complex structures on Σ, with J0 “ J , then the Beltrami differential

of the identity map id : pΣ, Jq Ñ pΣ, Jtq is

νt “ p1 ´ JtJq´1p1 ` JtJq
and that 9ν “ 1

2
9JJ . Hence given a pair p 9J, 9σq in our model of the tangent space TpJ,σqMS0pΣq

(see Proposition K and Theorem L), we have

dπ ˝ dF pJ,σq p 9J, 9σq “ 1

2
9JJ .

Now let gJ be the Riemannian metric ρp¨, J ¨q, let te1, e2 “ Je1u be a local gJ -orthonor-

mal frame and let φ “ σ ´ i σp¨, J ¨q as usual. The same computation as in the genus one

case, using the definition of the pairing in T ˚T cpΣq (see (3.12) and (3.13)), shows that

pφ ‚ 9νqpe1, e2q “ 1

2i
pφp 9νpe1q, e2q ´ φp 9νpe2q, e1qq

“ ´ i

2
λCpJ,σqp 9J, 9σq.

Hence we obtain

F˚ΩC

T˚T pΣq “ ´ i

2
pωJ ´ i ωKq “ ´ i

2
ωC
I ,

which proves one part of the statement. For the pull-back of the complex structure IT˚T pΣq,

one argues exactly as in the genus one case to conclude that F˚IT˚T pΣq “ ´I. �

As a consequence, we immediately obtain:
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Corollary 5.1. The almost complex structure I on MS0pΣq is integrable; the 2-forms ωJ

and ωK are symplectic forms.

Proof. Since IT˚T pΣq is an integrable almost-complex structure and ΩC

T˚T pΣq is a complex

symplectic form, the two statements follow immediately from Theorem B. �

5.2. The Mess homeomorphism

In Section 2.3 we explained that, under the identification between MSpΣq and MGHpΣq,
Mess homeomorphism

Mc : MSpΣq Ñ T cpΣq ˆ T cpΣq
is expressed by the formula of Lemma 2.10, which is formally the same expression as

the map M : T ˚J pR2q Ñ J pR2q ˆ J pR2q defined in Section 3.6. This implies that

Mc : MSpΣq Ñ T cpΣqˆT cpΣq is induced by the map (see Remark 4.8) that we introduced

in the finite dimensional context.

Recall also that T cpΣq ˆ T cpΣq is naturally endowed with a para-complex structure

PT cpΣqˆT cpΣq, which is the endomorphism of the cotangent bundle for which the integral

submanifolds of the distribution of 1-eigenspaces are the slices T cpΣq ˆ t˚u, and those for

the p´1q-eigenspaces are the slices t˚u ˆ T cpΣq. Plus, it has a para-complex symplectic

form

ΩB

T cpΣqˆT cpΣq :“
1

2
pπ˚
l ΩWP ` π˚

rΩWP q ` τ

2
pπ˚
l ΩWP ´ π˚

rΩWP q
where ΩWP is the Weil-Petersson symplectic form and πl, πr denote the projections on

the left and right factor. Here we show the relation of these structures with the para-

hyperKähler structure pg, I,J,Kq, via Mess’ diffeomorphism.

Theorem C (genus ě 2). Let Σ be a closed oriented surface of genus ě 2. Then

M˚pPT pΣqˆT pΣq, 4Ω
B

T pΣqˆT pΣqq “ pJ, ωB
Jq ,

where PT pΣqˆT pΣq denotes the para-complex structure of T pΣq ˆ T pΣq and ΩB

T pΣqˆT pΣq its

para-complex symplectic form.

Proof. Let WpJl,Jrq denote the image of VpJ,σq under dM. Because divhl
9Jl and divhr

9Jr
are exact 1-forms by the last statement in Proposition K, the vector space WpJl,Jrq is

pΩJl ‘ p˘ΩJrqq-orthogonal to the tangent space to the orbit of Symp0pΣ, ρq (see [Don03]

or Proposition 4.3). Moreover, by Lemma 4.21 and equivariance of the map M, the space

WpJl,Jrq is in direct sum with the tangent space to the orbit. Therefore, pWpJl,Jrq,
1
4

pΩJl ‘
p˘ΩJrqqq is symplectomorphic to pTrJlsT

cpΣq ˆ TrJrsT
cpΣq, π˚

l ΩWP ˘ π˚
rΩWPqq. Finally,

the computations in Section 3.6 (see the proof of the baby version of Theorem C) can be

carried out word-by-word in this context and show that

1

2
M˚ppΩJl ‘ ΩJrq ` τpΩJl ‘ p´ΩJrqqq “ ωI ` τωK “ ωB

J .
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The fact that M˚PT pΣqˆT pΣq “ J then follows by the usual argument, as in the conclusion

of the baby version of Theorem C, at the end of Section 3.6. �

As a consequence, we obtain:

Corollary 5.2. The almost para-complex structure J on MS0pΣq is integrable; the 2-forms

ωI and ωK are symplectic forms.

Proof. This follows immediately from Theorem C, the integrability of PT pΣqˆT pΣq and the

closedness and non-degeneracy of ΩB

T pΣqˆT pΣq. �

Corollary 5.3. The metric g on MS0pΣq is non-degenerate.

Proof. The proof follows by observing (for instance) that gp¨, ¨q “ ωJp¨,Jq, together with

the non-degeneracy of ωJ and the invertibility of J. �

5.3. The circle action on MSpΣq

We now consider a circle action on MSpΣq, which is simply defined, under the diffeomor-

phism

F : MSpΣq Ñ T ˚T cpΣq ,
by eiθ ¨ prJs, qq “ prJs, eiθqq, for q a holomorphic quadratic differential. As in Remark 2.5,

we see that the circle action is induced by the following expression in terms of pairs ph,Bq:

RθpJ, σq “ pJ, cospθqσ ` sinpθqσp¨, J ¨qq ,

and it is easily checked that Rθ descends to the quotient MSpΣq. As done in the intro-

duction, we denote by Cθ the composition C ˝ Rθ, for every θ P S1. We then prove the

following results:

Theorem E (genus ě 2). Let Σ be a closed oriented surface of genus ě 2. The circle

action on MGHpΣq is Hamiltonian with respect to ωI, and satisfies

R˚
θg “ g R˚

θωI “ ωI R˚
θω

C

I “ e´iθωC

I .

A Hamiltonian is given by the function

A : MSpΣq Ñ R AprJ, σsq “
ż

Σ

ˆ
1 `

b
1 ` }σ}2J

˙
ρ .

that gives the area of the maximal surface.

Remark 5.4. In [BMS13] and [BMS15], the authors studied the landslide flow on T cpΣq ˆ
T cpΣq that in our notations corresponds to the 1-parameter family of maps M˝Rθ{2˝M´1.

They showed that the landslide flow is Hamiltonian with respect to the symplectic form

π˚
l ΩWP ` π˚

rΩWP. Our Theorem E recovers this result, including it in a more general

context.
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Theorem F (genus ě 2). Let Σ be a closed oriented surface of genus ě 2. Then the

function ´4A is a para-Kähler potential for the para-Kähler structures pg,Jq and pg,Kq.

The proofs are straightforward adaptations of those provided in Section 3.7 for the genus

one case. We only remark that we modified the natural Hamiltonian that one obtains by

integrating the function H over Σ, namely the function

rJ, σs ÞÑ
ż

Σ

fp‖σ‖Jqρ “
ż

Σ

b
1 ` ‖σ‖2Jρ

by adding a constant, so that AprJ, σsq can be interpreted as the area of the maximal

surface in Anti-de Sitter space corresponding to the point rJ, σs under the identification

between MSpΣq and the space of equivariant maximal surfaces in Anti-de Sitter space.

Indeed, recalling that the first fundamental form of the maximal surface is given by the

metric h “ p1 ` fp‖σ‖JqqgJ where gJ “ ρp¨, J ¨q, the area form of h is

dAh “ p1 ` fp‖σ‖JqqdAgJ “
ˆ
1 `

b
1 ` ‖σ‖2J

˙
ρ .

Theorem C and Theorem E have other direct consequences. Recalling from Section 2.4

the definition of the map

Cθ “ C ˝Rθ : MSpΣq Ñ T pΣq ˆ T pΣq ,
we see that

C˚
θ pPT pΣqˆT pΣq, 4Ω

B

T pΣqˆT pΣqq “ pcospθqK ´ sinpθqJ, ωI ´ τpcospθqωJ ` sinpθqωKqq . (5.1)

As an immediate consequence, we conclude the proofs of Theorems D and G. For the for-

mer, it suffices to observe that for θ “ 0 the parameterization Cθ “ C ˝ Rθ : MSpΣq Ñ
T pΣq ˆ T pΣq, given by the induced metric on the two Cauchy surfaces of constant curva-

ture ´2, is simply C “ C0.

Theorem D (genus ě 2). Let Σ be a closed oriented surface of genus ě 2. Then

C˚pPT pΣqˆT pΣq, 4Ω
B

T pΣqˆT pΣqq “ pK, ωB
Kq ,

where PT pΣqˆT pΣq denotes the para-complex structure of T pΣq ˆ T pΣq and ΩB

T pΣqˆT pΣq its

para-complex symplectic form.

In particular, we deduce:

Corollary 5.5. The almost para-complex structure K on MS0pΣq is integrable.

Finally, we have the proof of Theorem G, which is expressed purely in terms of Teich-

müller theory. Namely, recalling that the map

Hθ : T
˚T pΣq Ñ T pΣq ˆ T pΣq

associates to a pair prJs, qq the pair phpJ,´eiθqq, hpJ,eiθqqq of hyperbolic metrics on Σ, where

hpJ,qq has the property that the (unique) harmonic map pΣ, Jq Ñ pΣ, hq isotopic to the
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identity has Hopf differential equal to q. By Lemma 2.14, this map is identified to Ch
θ ˝F´1.

Using (5.1) and Theorem B, we obtain Theorem G:

Theorem G (genus ě 2). Let Σ be a closed oriented surface of genus ě 2. Then

ImH˚
θ p2ΩB

T pΣqˆT pΣqq “ ´RepieiθΩC

T˚T pΣqq .

5.4. Para-complex geometry of the PSLp2,Bq-character variety

Let B be the algebra of para-complex numbers, i.e B “ R ‘ τR with τ2 “ 1. In this

section we study the para-complex geometry of MGHpΣq seen as a component of the

PSLp2,Bq-character variety. We show that multiplication by τ on B induces a para-complex

structure on the PSLp2,Bq-character variety that makes Goldman symplectic form ΩB

Gol

para-holomorphic, and that the Goldman form ΩB

Gol coincides with the para-complex sym-

plectic form ωB
J

up to a multiplicative factor (Corollary H). Moreover, we give a formula

for Goldman symplectic form based on anti-de Sitter geometry and show that the B-valued

Fenchel-Nielsen coordinates defined in [Tam20] are para-holomorphic Darboux coordinates

for ΩB
Gol.

5.4.1. Para-complex structure on the character variety

Let us recall the construction of the isometry group of Anti-de Sitter space in terms of

the para-complex numbers, following [Dan13]. We denote by SLp2,Bq the set of 2-by-2

matrices with coefficients in B and determinant 1. Any matrix A P SLp2,Bq can be written

uniquely as A “ A`e
` ` A´e

´, where A˘ P SLp2,Rq, e˘ “ 1˘τ
2

(see Appendix A). The

map

SLp2,Bq Ñ SLp2,Rq ˆ SLp2,Rq
A ÞÑ pA`, A´q

induces an isomorphism between PSLp2,Bq and PSLp2,RqˆPSLp2,Rq, where by PSLp2,Bq
we mean

PSLp2,Bq “ SLp2,Bq{t˘1,˘τu .
We define the PSLp2,Bq-character variety as follows:

χpΣ,PSLp2,Bqq “ tρ : π1pΣq Ñ PSLp2,Bqu{PSLp2,Bq ,
namely the set of conjugacy classes of representations ρ : π1pΣq Ñ PSLp2,Bq. The aformen-

tioned isomorphism between PSLp2,Bq and PSLp2,RqˆPSLp2,Rq identifies χpΣ,PSLp2,Bqq
with χpΣ,PSLp2,Rqq ˆ χpΣ,PSLp2,Rqq by associating to ρ the pair of representations

ρ˘ : π1pΣq Ñ PSLp2,Rq defined by the property ρpγq “ ρ`pγqe` ` ρ´pγqe´ for every

γ P π1pΣq.

By the work of Mess ([Mes07]), the moduli space MGHpΣq is diffeomorphic, under

the holonomy map, to a connected component of χpΣ,PSLp2,Bqq, corresponding to pairs



74 FILIPPO MAZZOLI, ANDREA SEPPI, AND ANDREA TAMBURELLI

of representations in PSLp2,Rq that are discrete and faithful, and that induce hyper-

bolic structures on Σ compatible with the fixed orientation of Σ. Let us denote by

χ0pΣ,PSLp2,Bqq this connected component. By the work of Goldman [Gol84], the tangent

space of χ0pΣ,PSLp2,Bqq at rρs P χ0pΣ,PSLp2,Bqq is isomorphic to the first cohomol-

ogy group H1pΣ, sl2pBqAd ρq. We recall that elements of H1pΣ, sl2pBqAd ρq are equivalence

classes of closed 1-forms on Σ with values in the flat bundle sl2pBqAd ρ defined by

sl2pBqAd ρ “ pΣ̃ ˆ sl2pBqq{ „ ,

where px̃, vq „ pγx̃,Adpρpγqqvq for every x̃ P Σ̃, γ P π1pΣq and v P sl2pBq. As usual,

two 1-forms are equivalent if their difference is exact. Here, the exterior differential is the

B-linear extension of the usual differential for sl2pRq-valued forms.

We can then endow χ0pΣ,PSLp2,Bqq with a natural para-complex structure T that

multiplies by τ an sl2pBqAd ρ-valued 1-form.

5.4.2. Goldman symplectic form

A general construction by Goldman endows every character variety of a semi-simple Lie

group with a symplectic form ΩGol ([Gol84]). In the setting of PSLp2,Bq this can be

obtained as follows. The pairing

B : sl2pBq b sl2pBq Ñ B

pX,Y q ÞÑ trpXY q
is a non-degenerate B-bi-linear form that is invariant under conjugation. Pre-composing

B with the standard cup-product in co-homology, we obtain a bi-linear pairing

H1pΣ, sl2pBqAd ρq ˆH1pΣ, sl2pBqAd ρq Ñ B

prσ b φs, rσ1 b φ1sq ÞÑ
ż

Σ

Bpφ, φ1qpσ ^ σ1q

which is non-degenerate by Poincaré duality and skew-symmetric. By general arguments of

Goldman ([Gol84]) and Atiyah-Bott ([AB83]) the resulting B-valued 2-form on χ0pΣ,PSLp2,Bqq,
which we denote by ΩB

Gol, is closed.

Lemma 5.6. The B-valued symplectic form ΩB
Gol is para-holomorphic with respect to T .

Proof. Recall that a B-valued 2-form ω in a para-complex manifold pM,Pq is para-complex

if ωpX,PY q “ ωpPX,Y q “ τωpX,Y q. In our setting, for every closed sl2pBqAd ρ-valued

1-forms σ b φ and σ1 b φ1, we have

ΩB
Golpσ b φ,T pσ1 b φ1qq “ ΩB

Golpσ b φ, σ1 b τφ1q “
ż

Σ

Bpφ, τφ1qpσ ^ σ1q

“ τ

ż

Σ

Bpφ, φ1qpσ ^ σ1q “ τΩB

Golpσ b φ, σ1 b φ1q .
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Skew-symmetry and bi-linearity of ΩB
Gol imply that ΩB

Gol is para-complex. Because ΩB
Gol

is para-complex and closed, and the exterior differential decomposes as d “ B̄T ` BT (see

Appendix A), we deduce that B̄TΩB

Gol “ 0, hence ΩB

Gol is para-holomorphic. �

Because ΩB

Gol is B-valued and symplectic, its real and imaginary parts are closed 2-forms

and thus define two symplectic structures on χ0pΣ,PSLp2,Bqq. The space χ0pΣ,PSLp2,Bqq
is identified with the product T reppΣq ˆ T reppΣq, where T reppΣq is meant as the space of

discrete and faithful representations with values in PSLp2,Rq, and is therefore endowed

with a real Goldman form ΩR
Gol, defined in the analogous way. It is known from the work

of Goldman that, if

hol : T hpΣq Ñ T reppΣq
is the holonomy map for hyperbolic structures on Σ, then

hol˚ΩR

Gol “ ΩWP , (5.2)

where ΩWP is the Weil-Petersson symplectic form on T hpΣq. We now express ΩB

Gol in

terms of the real Goldman forms on each component T reppΣq.

Proposition 5.7. Given a closed oriented surface of genus ě 2, we have the following

identity on χ0pΣ,PSLp2,Bqq – T reppΣq ˆ T reppΣq:

ΩB

Gol “ 1

2
pπ˚
l Ω

R

Gol ` π˚
rΩ

R

Golq ` τ

2
pπ˚
l Ω

R

Gol ´ π˚
rΩ

R

Golq.

Proof. The isomorphism PSLp2,Bq – PSLp2,Rq ˆPSLp2,Rq induces an isomophism of Lie

algebras sl2pBq – sl2pRqˆsl2pRq given by decomposing X P sl2pBq into X “ X`e
` `X´e

´

with X˘ P sl2pRq. Moreover, the adjoint action of ρ “ ρ´e
´ ` ρ`e

` on sl2pBq induces

the action of pρ`, ρ´q on sl2pRq ˆ sl2pRq given by the adjoint action on each factor. As a

consequence, an sl2pBqAd ρ-valued 1-form σ b φ can be uniquely written as pσ b φ`e
`q `

pσ b φ´e
´q, and σ b φ˘ are sl2pRqAd ρ˘-valued 1-forms. Finally, we observe that σ b φ is

closed (respectively exact) if and only if σb φ˘ are closed (respectively exact). Therefore,

by Lemma 5.6,

ΩB
Golpσ b φ, σ1 b φ1q “ ΩB

Gol

`
σ b pφ`e

` ` φ´e
´q, σ1 b pφ1

`e
` ` φ1

´e
´q

˘

“ 1

4
ΩB

Gol

`
σ b ppφ` ` φ´q ` τpφ` ´ φ´qq, σ1 b ppφ1

` ` φ1
´q ` τpφ1

` ´ φ1
´qq

˘

“ 1

4

´
ΩR

Gol

`
σ b pφ` ` φ´q, σ1 b pφ1

` ` φ1
´q

˘
` ΩR

Gol

`
σ b pφ` ´ φ´q, σ1 b pφ1

` ´ φ1
´q

˘¯

` τ

4

´
ΩR
Gol

`
σ b pφ` ` φ´q, σ1 b pφ1

` ´ φ1
´q

˘
` ΩR

Gol

`
σ b pφ` ´ φ´q, σ1 b pφ1

` ` φ1
´q

˘¯

“ 1

2

´
ΩR

Golpσ b φ`, σ
1 b φ1

`q ` ΩR

Golpσ b φ´, σ
1 b φ1

´q
¯

` τ

2

´
ΩR

Golpσ b φ`, σ
1 b φ1

`q ´ ΩR

Golpσ b φ´, σ
1 b φ1

´q
¯

and the result follows. �
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Now, recall that on MGHpΣq we have the holonomy map

Hol : MGHpΣq Ñ χ0pΣ,PSLp2,Bqq ,

and moreover Mess homeomorphism

Mh : MGHpΣq Ñ T hpΣq ˆ T hpΣq .

The work of Mess, combined with the expression of M that we gave in (2.2) (see Theorem

2.9) showed that the left and right components of M coincide with the holonomy of the

MGHC AdS manifold, under the identification T hpΣq – T reppΣq. In other words, we have

Hol “ phol,holq ˝ M. Combining Proposition 5.7 with Theorem C, and using Goldman’s

fundamental identity (5.2), we obtain that Hol˚pT , 4ΩB

Golq “ ωB
J
. Since ΩB

Gol is para-

complex with respect to T , and ωB
J

is para-complex with respect to J, the usual argument

shows that Hol˚T “ J. This concludes the proof of the following result.

Corollary H. Let Σ be a closed oriented surface of genus ě 2. Then

Hol˚pT , 4ΩB
Golq “ pJ, ωB

Jq .

5.4.3. The para-complex Fenchel-Nielsen coordinates

Goldman symplectic forms on Teichmüller space and on the space of quasi-Fuchsian rep-

resentations are intimately related to hyperbolic geometry because, for instance, the (real

or complex) length and twist parameters ([Wol83],[Pla01]) provide Darboux coordinates.

Here we show that an analogous result holds for ΩB

Gol using the B-valued Fenchel-Nielsen

coordinates introduced in [Tam20] to describe the deformation space of MGHC anti-de

Sitter structures.

We first introduce some facts on Anti-de Sitter geometry and recall the definition of

these coordinates. The model of Anti-de Sitter space that we will use is simply the Lie

group PSLp2,Rq endowed with the bi-invariant Lorentzian metric which is induced by

p1{8q the Killing form on the Lie algebra, where the factor p1{8q serves to normalize the

sectional curvature to be equal to ´1. The group of orientation-preserving, time-preserving

isometries is isomorphic to PSLp2,Rq ˆ PSLp2,Rq, acting by left and right multiplication,

and the boundary of AdS space identifies to RP
1 ˆ RP

1, in such a way that the action of

the isometry group extends to the obvious component-wise action of PSLp2,RqˆPSLp2,Rq
on RP

1 ˆ RP
1.

Now, consider an isometry of the form pγ`, γ´q P PSLp2,Rq ˆ PSLp2,Rq, where both

γ´ and γ` are loxodromic. Then pγ`, γ´q acts on the boundary RP
1 ˆ RP

1 by fixing four

points, of which one is attracting and one repelling. It turns out (see for instance the first

part of the proof of Lemma 5.9 below) that there exists a spacelike geodesic connecting

these two points (a priori the other possibility, that is however excluded by Lemma 5.9, is

that the segment connecting the two points is lightlike and contained in the boundary).

This spacelike geodesic is what we will call the principal axis. More formally:
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Definition 5.8. Given a pair of loxodromic elements pγ`, γ´q P PSLp2,RqˆPSLp2,Rq, we

call principal axis of pγ`, γ´q the unique spacelike geodesic Axispγ`, γ´q of Anti-de Sitter

space whose endpoints on RP
1 ˆ RP

1 are pγrep` , γ
rep
´ q and pγatt` , γatt´ q, where γrep˘ and γatt˘

denote the repelling and attracting fixed points on RP
1.

Now fix a pair of pants decomposition P “ tγ1, . . . , γnu of Σ, for n “ p3{2q|χpΣq|. If

ρ : π1pΣq Ñ PSLp2,Bq is the holonomy of a MGHC Anti-de Sitter manifold, then ρpγjq is

loxodromic, i.e. conjugated to a diagonal matrix, for every γj P P. The B-valued length is

defined as

ℓBρ pγjq “ 2 arccosh

ˆ
trpρpγjqq

2

˙
,

where the hyperbolic arccosine is computed using its power series expansion. This quantity

is related to how a loxodromic isometry acts on anti-de Sitter space. Indeed, the real part of

ℓBρ pγjq represents the translation length of ρpγjq on the principal axis under ρpγjq, whereas

the imaginary part is the rotation angle of ρpγjq acting on the orthogonal of such a geodesic.

The B-valued lengths completely determine a PSLp2,Bq-representation of a pair of pants.

The B-twist parameter twB
ρ pγjq indicates how the pair of pants are glued together along

the boundary curve γj : the real part describes the shear parameter and the imaginary part

the bending between the two pairs of pants in anti-de Sitter space.

It turns out that ℓBρ pγjq and twB
ρ pγjq are related to the classical Fenchel-Nielsen coordinates

ℓ‚ and tw‚ as follows. Under the isomorphism PSLp2,Bq – PSLp2,Rq ˆ PSLp2,Rq, the

holonomy ρ : π1pΣq Ñ PSLp2,Bq of a MGHC Anti-de Sitter structure corresponds to a

pair of faithful and discrete representations ρ˘ : π1pΣq Ñ PSLp2,Rq, which are thus the

holonomies of hyperbolic metrics on Σ. We have the following relations:

ℓBρ pγjq “ ℓρ`pγjqe` ` ℓρ´pγjqe´ “
ˆ
ℓρ`pγjq ` ℓρ´pγjq

2

˙
` τ

ˆ
ℓρ`pγjq ´ ℓρ´pγjq

2

˙

and

twB
ρ pγjq “ twρ`pγjqe``twρ´pγjqe´ “

ˆ
twρ`pγjq ` twρ´pγjq

2

˙
`τ

ˆ
twρ`pγjq ´ twρ´pγjq

2

˙
.

Theorem I. The B-valued Fenchel-Nielsen coordinates are para-holomorphic for T , and

are Darboux coordinates with respect to the para-complex symplectic form ΩB

Gol.

Proof. Let us show the first statement. As a consequence of the definition of T , T acts as

the identity on the first factor on the tangent space to T reppΣq ˆ T reppΣq, and as minus

the identity on the second factor. Hence for any curve γj P P, we have

T

˜
B

Bℓjρ˘

¸
“ ˘ B

Bℓjρ˘

and T

˜
B

Btwjρ˘

¸
“ ˘ B

Btwjρ˘

.

Therefore,

dℓBρ

˜
T

˜
B

Bℓjρ˘

¸¸
“ ˘1 ` τ

2
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and

τdℓBρ

˜
B

Bℓjρ˘

¸
“ τ

ˆ
1 ˘ τ

2

˙
“ ˘1 ` τ

2
.

On the other hand, it is clear that

dℓBρ

˜
T

˜
B

Btwjρ˘

¸¸
“ 0 “ τdℓBρ

˜
B

Btwjρ˘

¸
,

hence the B-lengths are para-holomorphic. A similar computation holds for the B-twist

parameters.

For the second statement, let ℓB,jρ and tw
B,j
ρ denote the B-length and B-twist parameters

along the curve γj P P. We use an analogous notation for the Fenchel-Nielsen coordinates

associated to the representations ρ˘ into PSLp2,Rq such that ρ “ ρ`e
` ` ρ´e

´. By

Proposition 5.7, and the fact that the classical Fenchel-Nielsen coordinates are Darboux

for ΩWP , we have

RepΩB
Golq

˜
B

BℓB,iρ
,

B
BℓB,jρ

¸
“ 1

2

˜
ΩWP

˜
B

Bℓiρ`

,
B

Bℓjρ`

¸
` ΩWP

˜
B

Bℓiρ´

,
B

Bℓjρ´

¸¸
“ 0,

and similarly

ImpΩB

Golq
˜

B
BℓB,iρ

,
B

BℓB,jρ

¸
“ 1

2

˜
ΩWP

˜
B

Bℓiρ`

,
B

Bℓjρ`

¸
´ ΩWP

˜
B

Bℓiρ´

,
B

Bℓjρ´

¸¸
“ 0 .

For the same reason

ΩB

Gol

˜
B

BtwB,i
ρ

,
B

BtwB,j
ρ

¸
“ 0 .

On the other hand,

RepΩB
Golq

˜
B

BℓB,iρ
,

B
BtwB,j

ρ

¸
“ 1

2

˜
ΩWP

˜
B

Bℓiρ`

,
B

Btwj
ρ`

¸
` ΩWP

˜
B

Bℓiρ´

,
B

Btwj
ρ´

¸¸
“ δi,j

and

ImpΩB

Golq
˜

B
BtwB,i

ρ

,
B

BℓB,jρ

¸
“ 1

2

˜
ΩWP

˜
B

Btwi
ρ`

,
B

Bℓjρ`

¸
´ ΩWP

˜
B

Btwiρ´

,
B

Bℓjρ´

¸¸
“ 0

We conclude that

ΩB

Gol “
nÿ

j“1

dℓB,jρ ^ dtwB,j
ρ (5.3)

as claimed. �
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5.4.4. The para-complex cosine formula

Let us now move on to the proof of Theorem J, namely a B-valued version of the cosine

formula for the Weil-Petersson symplectic form. For this purpose, it will suffice to focus

on the case where there is at least a point of intersection. The fundamental geometric

computation is contained in the following lemma.

Lemma 5.9. Let pα`, α´q and pβ`, β´q be two pairs of loxodromic elements in PSLp2,Rqˆ
PSLp2,Rq. Suppose that the actions of pα`, β`q and pα´, β´q on RP

1 are topologically

conjugated (i.e. there exists an orientation-preserving diffeomorphism f of RP
1 such

that fα´f
´1 “ α` and fβ´f

´1 “ β`) and that the axes of α˘ and β˘ intersect in

H
2 with counterclockwise angle equal to ϕ˘ P r0, πq. Denote α̃ “ Axispα`, α´q and

β̃ “ Axispβ`, β´q the principal axes in Anti-de Sitter space. Then

(1) There is a unique complete timelike geodesic σ that intersects both α̃ and β̃ orthogo-

nally. Call the points of intersection qα̃ and qβ̃. Orient σ so that its tangent vector

is future-directed.

(2) The signed timelike distance along σ between qα̃ and q
β̃

equals pϕ` ´ ϕ´q{2 P
p´π{2, π{2q.

(3) The counterclockwise angle of intersection between α̃ and the parallel transport of

β̃ to qα̃ along the unique orthogonal timelike geodesic σ equals pϕ` ` ϕ´q{2.

Let us clarify the meaning of the second statement. Given two points p and q in AdS

space connected by a timelike geodesic, the timelike distance between p and q is the length

of the shortest geodesic segment from p and q. Recalling that timelike geodesics are closed

and have length π, there are two such geodesic segments, whose sum equals π. If the

points p and q are not antipodal (i.e. the timelike distance is not π{2), then we can define

the signed timelike distance dpp, qq, which is just the timelike distance introduced above

with positive sign if the realizing geodesic segment is oriented towards the future, and with

negative sign if it is oriented towards the past. We remark that dpp, qq “ ´dpq, pq.
Proof. Denote by rα˘ the axes of α˘ in H

2, and analogously β̃˘ are the axes of β˘. Applying

the action of the group PSLp2,RqˆPSLp2,Rq, we can assume that, in the upper half-space

model of H2, the repelling fixed point of α˘ is 0, and the attracting fixed point of α˘ is

8 (hence both axes α̃´ and α̃` coincide with the geodesic ℓ connecting 0 and 8), and

moreover the intersection point of the axes β̃´ and β̃` with ℓ is i. Then the set of order two

isometries in PSLp2,Rq having fixed point on ℓ is an Anti-de Sitter spacelike geodesic with

endpoints p0, 0q and p8,8q in RP
1ˆRP

1, and is therefore the principal axis α̃ of pα`, α´q.
Indeed, the Lie group and the Riemannian exponential maps coincide for a bi-invariant

metric on a Lie group, and this is a left translate of a one-parameter group of hyperbolic

transformations in PSLp2,Rq. To see that the endpoints are precisely p0, 0q and p8,8q,
one can apply the criterion in [BS20, Lemma 3.2.2]; anyway this follows from the more

general observation ([BS20, Lemma 3.5.1], that we will apply below) that the surface P
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of order two isometries is a totally geodesic spacelike plane in Anti-de Sitter space, whose

boundary at infinity is the diagonal in RP
1 ˆ RP

1, for which the map P Ñ H
2 sending an

order two element to its fixed point is an isometry, equivariant for the action of PSLp2,Rq
(by conjugation on P, and the obvious action on H

2). En passant, we have showed that

the principal axis in Definition 5.8 is well-defined.

Now, by our assumption the axis β̃˘ is obtained by applying to α̃˘ a rotation Rϕ˘

of angle ϕ˘ fixing i. Since the actions are topologically conjugated, the attracting and

repelling fixed points of α˘ and β˘ appear with the same cyclic order on RP
1. This

implies that either the rotations Rϕ` and Rϕ´ both map attracting (resp. repelling) fixed

points of α˘ to attracting (resp. repelling) fixed points of β˘, or they both map the

attracting fixed point to the repelling one and vice versa. This implies that the principal

axis β̃ equals pRϕ` , Rϕ´ qα̃. Now, set

d “ ϕ` ´ ϕ´

2
and θ “ ϕ` ` ϕ´

2
.

Observe that ϕ˘ P p0, πq, hence θ P p0, πq and d P p´π{2, π{2q. Then we have

pRϕ` , Rϕ´q “ pRd, R´dq ˝ pRθ, Rθq .

By the above considerations on the totally geodesic spacelike plane P (in particular the

equivariant isometry with H
2), pRθ, Rθq acts as a rotation of angle θ. Moreover, by a general

fact that we prove in Proposition 5.10 below for completeness, the parallel transport along

the geodesic t ÞÑ R2t (which is parameterized by arclength, future-directed, and orthogonal

to the totally geodesic plane P by a simple symmetry argument) equals the differential of

the isometry pRt, R´tq. In conclusion, we have qα̃ “ Rπ, qβ̃ “ pRd, R´dqqα̃, so their signed

timelike distance is d, and finally the angle at qα̃ between the parallel transport of β̃ at qα̃
and α̃ equals θ. This concludes the proof of the second and third items. �

Proposition 5.10. Given a bi-invariant metric on a Lie group G and X,Y P g, the parallel

transport of Y along the geodesic gt “ expptXq at the point gt is given by pLgt{2
q˚pRgt{2

q˚pY q.

Proof. The Levi-Civita connection of a bi-invariant metric on G is given by

∇VW “ 1

2
pDl

VW `Dr
VW q ,

where Dl and Dr are the left and right invariant connections, which are defined in the

following way: given a path γptq such that γp0q “ g and γ1p0q “ V P TgG, then Dl
VW

(resp. Dr
VW ) is the derivative at time 0 of the left (resp. right) translated of Wγptq at g,

namely pLgγptq´1q˚Wγptq (resp. pRgγptq´1q˚Wγptq).

Let us apply this to the geodesic γptq “ gt “ expptXq and the vector field along γ

defined by Wgt “ pLgt{2
q˚pRgt{2

q˚pY q. In order to check that W is parallel along gt, it

suffices to check it at t “ 0 (namely that ∇XW “ 0), because multiplication on the left
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and on the right by gt{2 is an isometry that preserves the vector field W and the geodesic

γ by definition. We have

Dl
XW “ d

dt

ˇ̌
ˇ̌
t“0

pLg´1

t
q˚pLgt{2

q˚pRgt{2
q˚pY q

“ d

dt

ˇ̌
ˇ̌
t“0

pLg´t{2
q˚pRgt{2

q˚pY q “ ´adXY .

A similar computation shows Dr
XW “ adXY . Hence ∇XW “ 0, which concludes the

claim. �

Motivated by Lemma 5.9 above, we give the following definition.

Definition 5.11. Given two spacelike geodesics α̃ and β̃ in AdS space that admit a com-

mon orthogonal timelike geodesic σ, let qα̃ and q
β̃

the intersection points of α̃ and β̃ with σ.

Then we define the B-valued angle dBpα̃, β̃q between α̃ and β̃ as the para-complex number

whose imaginary part equals dpqα̃, qβ̃q, and the real part equals the counterclockwise angle

between the parallel transport of α̃ at q
β̃

along σ, and β̃.

Remark 5.12. Let dBpα̃, β̃q “ θ ` τd be the B-valued angle introduced above. If we invert

the role of α̃ and β̃, clearly the real part of the B-valued angle becomes π´θ. The imaginary

part instead only changes sign, so

dBpβ̃, α̃q “ pπ ´ θq ´ τd .

Hence cos
´
dBpβ̃, α̃q

¯
“ ´ cos

´
dBpα̃, β̃q

¯
because

cospθ ` τdq “ cos
`
pθ ` dqe` ` pθ ´ dqe´

˘
“ cospθ ` dqe` ` cospθ ´ dqe´

where the last step is justified by the power series expansion of cosine. This is consistent

with the skew-symmetry in the generalized cosine formula of Theorem J.

Hence Lemma 5.9 can be restated by the following formula:

dBpα̃, β̃q “ ϕ` ` ϕ´

2
` τ

ˆ
ϕ` ´ ϕ´

2

˙
, (5.4)

We are finally ready to prove:

Theorem J. Let ρ “ pρ`, ρ´q : π1pΣq Ñ PSLp2,Rq ˆ PSLp2,Rq be the holonomy of a

MGHC AdS manifold, and let α, β be non-trivial simple closed curves. Then

ΩB

Gol

˜
B

BtwB,α
ρ

,
B

BtwB,β
ρ

¸
“

ÿ

pPαXβ

cos
´
dBpα̃ρ, β̃ρq

¯
,

where α̃ρ and β̃ρ are the principal axes of ρpαq and ρpβq on AdS space.
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Proof. If the closed curves α, β P π1pΣq are disjoint, then equality holds, as the LHS

vanishes as a consequence of the formula (5.3), and the RHS vanishes by definition. Let

us suppose α and β intersect, and let us evaluate Goldman symplectic form on the twist

deformations along α and β. As before, we write the representation ρ : π1pΣq Ñ PSLp2,Bq
as ρ “ ρ`e

` ` ρ´e
´ with ρ˘ : π1pΣq Ñ PSLp2,Rq. For any p P α X β, we denote by

ϕ˘ppq P p0.πq the angle between the geodesic representatives of α and β for the hyperbolic

metrics with holonomies ρ˘ measured from α. By the work of Wolpert ([Wol83]), we have

RepΩB
Golq

˜
B

BtwB,α
ρ

,
B

BtwB,β
ρ

¸
“ 1

2

˜
ΩWP

˜
B

Btwα
ρ`

,
B

Btwβρ`

¸
` ΩWP

˜
B

Btwα
ρ´

,
B

Btwβρ´

¸¸

“ 1

2

ÿ

pPαXβ

cospϕ`ppqq ` cospϕ´ppqq

and similarly,

ImpΩB

Golq “
˜

B
BtwB,α

ρ

,
B

BtwB,β
ρ

¸
“ 1

2

˜
ΩWP

˜
B

Btwαρ`

,
B

Btwβρ`

¸
´ ΩWP

˜
B

Btwαρ´

,
B

Btwβρ´

¸¸

“ 1

2

ÿ

pPαXβ

cospϕ`ppqq ´ cospϕ´ppqq .

Therefore,

ΩB
Gol

˜
B

BtwB,α
ρ

,
B

BtwB,β
ρ

¸
“ 1

2

ÿ

pPαXβ

pcospϕ`ppqq ` cospϕ´ppqq ` τpcospϕ`ppqq ´ cospϕ´ppqqq

“
ÿ

pPαXβ

cospϕ`ppqqe` ` cospϕ´ppqqe´

“
ÿ

pPαXβ

cos
`
ϕ`ppqe` ` ϕ´ppqe´

˘

“
ÿ

pPαXβ

cos

ˆ
ϕ` ` ϕ´

2
` τ

ϕ` ´ ϕ´

2

˙

“
ÿ

pPαXβ

cos
´
dBpα̃ρ, β̃ρq

¯
,

where the second to last step can be formally justified by considering the definition of

cosine as power series, and the last step is obtained by applying Equation (5.4). Indeed we

can apply Lemma 5.9, because the representations ρ´ and ρ` are both in the Teichmüller

component T reppΣq, hence their actions on RP
1 are topologically conjugated. The proof is

then concluded. �



PARA-HYPERKÄHLER GEOMETRY OF THE SPACE OF ADS STRUCTURES 83

6. Symplectic reduction

In this section we explain the process that led us to the definition of the para-hyperKähler

structure on MS0pΣ, ρq and to the explicit model of its tangent space described in Sec-

tion 4. The main tool we use is Donaldson’s construction of moment maps on infinite

dimensional spaces.

6.1. The moment maps on T ˚J pR2q

To apply Donaldson’s construction, which we recall in the next section, we first need

to provide moment maps for the action of PSLp2,Rq on T ˚J pR2q, with respect to the

symplectic forms that we introduced in Section 3.3.

Recalling that sl2pRq “ tX P EndpR2q | trX “ 0u, we define the maps ηI, ηJ, ηK :

T ˚J pR2q Ñ sl2pRq˚:

ηIpJ, σq “ fp‖σ‖Jq trpJ ¨q
ηJpJ, σq “ xσ | r¨, JsyJ “ ´ tr

`
g´1
J σJ ¨

˘

ηKpJ, σq “ xσ | Jr¨, JsyJ “ tr
`
g´1
J σ¨

˘

where rX,Y s “ XY ´Y X P sl2pRq. Observe that, for every X P sl2pRq, the element rX,Js
belongs to TJJ pR2q.

Theorem 6.1. The maps ηI, ηJ and ηK are moment maps for the action of PSLp2,Rq
over T ˚J pR2q with respect to the symplectic structures ωI, ωJ and ωK introduced in (3.8),

(3.9) and (3.10) respectively.

Proof. We start by noticing some properties of our action. If ϕA : T
˚J pR2q Ñ T ˚J pR2q

denotes the transformation pJ, σq ÞÑ A ¨ pJ, σq, then a simple computation shows that, for

every A P PSLp2,Rq and X P sl2pRq,

VXpϕApJ, σqq “ dpϕAqpJ,σq pVAdpA´1qXpJ, σqq, (6.1)

where VXpJ, σq :“ d
dt
expptXq ¨ pJ, σq|t“0 P TpJ,σqT

˚J pR2q. Actually, this relation is true

whenever a Lie group acts by diffeomorphisms on a smooth manifold. For future conve-

nience, we give also an explicit description of VX :

VXpJ, σq “ d

dt

`
expptXqJ expp´tXq, expp´tXq˚σ

˘ˇ̌
ˇ̌
t“0

“ prX,Js,´σpX¨, ¨q ´ σp¨,X¨qq.
(6.2)

We also notice that the action of PSLp2,Rq on J pR2q is by biholomorphisms with respect to

the complex structure I (defined in Section 3.1), and its extension on T ˚J pR2q is natural,

in the sense that it preserves the complex Liouville form λC of T ˚J pR2q (see Section 3.4

for the definition of λC). This in particular implies that LVXλ
C “ 0 for every X P sl2pRq.
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Property (i) from Definition 4.1. Using the relation ‖σ‖J “ ‖A ¨ σ‖A¨J (see Lemma

3.3) and the invariance of the trace by conjugation, it is straightforward to check that the

maps ηI, ηJ and ηK are Ad˚-equivariant.

Property (ii) from Definition 4.1. From relation (6.2) and the definition of λC, the

maps ηJ and ηK satisfy:

pηJ ` iηKqpJ,σqpXq “ pιVXλCqpJ,σq.

This relation and the observations above are enough to show that ηJ, ηK are moment maps

with respect to the symplectic structures ωJ, ωK, respectively. Indeed we have:

d
`
ηXJ ` iηXK

˘
“ d

´
ιVXλ

C

¯

“ LVXλ
C ´ ιVX dλC (Cartan’s formula)

“ ιVXω
C (def. of ωC and LVXλ

C “ 0)

“ ιVXωJ ` i ιVXωK. (ωC “ ωJ ` iωK)

It remains to check that, for every X P sl2pRq, we have ιVXωI “ dηX
I

. To see this, we

show that

p‖σ‖2Jq1 “ 2xσ, 9σ0yJ . (6.3)

Indeed,

p‖σ‖2Jq1 “ 1

2
tr

`
pg´1
J σq2

˘1 “ tr
`
g´1
J σpg´1

J σq1
˘

“ tr
`
g´1
J σp´g´1

J 9gJg
´1
J σ ` g´1

J 9σq
˘

“ tr
´

pg´1
J σq2J 9J

¯
` tr

`
g´1
J σg´1

J 9σ0
˘

(rel. (3.3) and trgJ σ “ 0)

“ ‖σ‖2J tr
´
J 9J

¯
` tr

`
g´1
J σg´1

J 9σ0
˘

(Lemma 3.9)

“ 2xσ, 9σ0yJ . (tr
´
J 9J

¯
“ 0)

Therefore we have:

dηXI p 9J, 9σq “ xσ, 9σ0yJ
fp‖σ‖Jq trpJXq ` fp‖σ‖Jq tr

´
9JX

¯
.

On the other side, we need to determine pιVXωIqp 9J, 9σq. Let X˚ denote the adjoint of

X with respect to the metric gJ . From the definition of ωI in equation (3.8) and the

expression (6.2), we see that:

pιVXωIqp 9J, 9σq “ ´fp‖σ‖JqxrX,Js, J 9JyJ ´ 1

fp‖σ‖JqxpσpX¨, ¨q ` σp¨,X¨qq0, 9σ0p¨, J ¨qyJ

“ ´fp‖σ‖Jq
2

tr
´

rX,JsJ 9J
¯

´ 1

2fp‖σ‖Jq tr
`
g´1
J 9σ0Jpg´1

J σX `X˚g´1
J σq0

˘
.

(6.4)
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In order to simplify the last term of the expression, we decompose the endomorphism X

as sum of its skew-symmetric part Xa “ ´ trpJXq
2

J and its symmetric and traceless part

Xs (recall that X is traceless, since it lies in sl2pRq). A simple application of Lemma 3.9

shows that

pg´1
J σXs `Xsg´1

J σq0 “ 0,

while the term in the skew-symmetric part contributes with

pg´1
J σXa ` pXaq˚g´1

J σq0 “ pg´1
J σXa ´Xag´1

J σq0 “ trpJXqJg´1
J σ.

As a result we obtain pg´1
J σX ` X˚g´1

J σq0 “ trpJXq Jg´1
J σ. Making use of this identity

in relation (6.4), we find that

pιVXωIqp 9J, 9σq “ ´fp‖σ‖Jq
2

tr
´

rX,JsJ 9J
¯

´ trpJXq
2fp‖σ‖Jq tr

`
g´1
J 9σ0J

2g´1
J σ

˘

“ fp‖σ‖Jq tr
´

9JX
¯

` xσ, 9σ0yJ
fp‖σ‖Jq trpJXq,

which proves the desired equality pιVXωIqp 9J, 9σq “ dηX
I

p 9J, 9σq. �

6.2. Donaldson’s construction

Let us now recall briefly the setting of Section 4. We defined T ˚J pΣq as the space of

smooth sections of the bundle

P pT ˚J pR2qq ÝÑ Σ,

and an element of T ˚J pΣq identifies with a pair pJ, σq, in which J is a complex structure

on Σ, and σ is a symmetric and gJ -traceless 2-tensor. Moreover, a tangent vector p 9J, 9σq at

pJ, σq can be considered as the data of:

‚ a section 9J of EndpTΣq satisfying 9JJ ` J 9J “ 0;

‚ a symmetric 2-tensor 9σ satisfying 9σ “ 9σ0 ´ xσ | J 9Jyg
We will often denote by s “ pJ, σq an element of T ˚J pΣq, and by 9s a tangent vector.

Now, given an SLp2,Rq-invariant symplectic form ω on T ˚J pR2q, every vertical space

of P pT ˚J pR2qq inherits a symplectic structure, which we denote by ω̂sppq. In particular,

given 9s, 9s1 P TsT ˚J pΣq two tangent vectors, we define

ωsp 9s, 9s1q :“
ż

Σ

ω̂sp 9s, 9s1q ρ. (6.5)

This gives a formal symplectic structure on T ˚J pΣq, which is preserved by the action

of Symp0pΣ, ρq. Suppose the natural SLp2,Rq-action on T ˚J pR2q is Hamiltonian, with

moment map η : T ˚J pR2q Ñ sl2pRq˚. Given any section s P T ˚J pΣq, the moment

map η induces a section ηs of the bundle End0pTΣq˚. Then the action of HampΣ, ρq ă
Symp0pΣ, ρq is Hamiltonian, according to the following result of Donaldson.
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Theorem 6.2 (Donaldson’s map, [Don03, Theorem 9]). Let ∇ be any torsion-free connec-

tion on Σ satisfying ∇ρ “ 0. Define the map µ : T ˚J pΣq Ñ Λ2pΣq as follows:

µpsq “ ω̂p∇‚s,∇‚sq ` xηs | R∇y ´ dpcp∇‚ηsqq .

Then

i) µpsq is closed for every s P T ˚J pΣq;
ii) µ is equivariant with respect to the action of HampΣ, ρq;
iii) Given V a vector field in HpΣ, ρq, and βV a primitive of ιV ρ, the differential of the

map

T ˚J pΣq Q s ÞÝÑ
ż

Σ

βV µpsq P R

equals

ωsp 9s,LV sq “
ż

Σ

ω̂p 9s,LV sq ρ.

Let us clarify the notation of the theorem above. We set ω̂p∇‚s,∇‚sq to be the 2-form

on Σ given by

ω̂p∇‚s,∇‚sqpu, vq :“ ω̂p∇us,∇vsq.
Moreover, we define

cp∇‚ηsqpvq :“
ÿ

j

x∇ejηs | pv b e˚
j q0y ,

where pejqj is a local orthonormal frame and pe˚
j qj is the associated dual frame in T ˚Σ. In

particular cp∇‚ηsq P ΓpT ˚Σq is a 1-form on Σ, because ∇‚ηs P ΓpT ˚Σ b End0pTΣq˚q.
Finally, the curvature tensor R∇ of the torsion free connection ∇ is defined as

R∇pU, V qW :“ ∇V∇UW ´ ∇U∇VW ´ ∇rV,U sW ,

for all tangent vector fields U, V,W on Σ. Since R∇pU, V qW “ ´R∇pV,UqW , the tensor

R∇ can be considered as a section of Λ2pΣq bEnd0pTΣq. In particular, for every U , V , we

can evaluate the tensor ηs on R∇pU, V q P End0pTΣq. This determines a 2-form on Σ, that

will be denoted by xηs | R∇y.

Remark 6.3. Donaldson’s construction is actually much more general. It can be applied

to the context of an n-dimensional manifold endowed with a volume form (which in our

case is Σ), and a symplectic manifold X, together with a moment map for an action of

SLpn,Rq on X (which in our case is T ˚J pR2qq. Then one constructs a bundle P pXq
similarly to our case, and one obtains a moment map for the action of the group of exact

diffeomorphisms (which in dimension two correspond to Hamiltonian diffeomorphisms) on

the space of sections of the bundle P pXq. The general statement of Donaldson’s theorem

can be found in [Don03, Theorem 9], see also [Tra19]. We decided to state the result only

in the situation of our paper, since this reduces remarkably the necessary preliminaries.
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We also recall the following fact, which of course can be stated in much larger generality

as explained in Remark 6.3 above:

Lemma 6.4 ([Don03, Lemma 13]). There exists a natural closed 2-form ω̂P pT˚J pR2qq on

P pT ˚J pR2qq such that, for every section s P ΓpΣ, P pT ˚J pR2qqq we have

s˚ω̂P pT˚J pR2qq “ ω̂p∇‚s,∇‚sq ` xηs | R∇y.
In particular, since T ˚J pR2q is contractible, the de Rham cohomology class of µpsq in

H2pΣq is independent of the chosen section.

6.3. The moment maps on T ˚J pΣq

In Section 4, we defined a formal para-hyperKähler structure pg, I,J,Kq on T ˚J pΣq. Note

that the corresponding symplectic forms

pωXqpJ,σqpp 9J, 9σq, p 9J 1, 9σ1qq :“
ż

Σ

ω̂Xpp 9J, 9σq, p 9J 1, 9σ1qq ρ, (6.6)

for X “ I,J,K (here ω̂X denotes the symplectic forms induced on each fiber by an area-

preserving identification of the tangent space of Σ with R
2), can be obtained from the

general theory of Donaldson, specifically from Equation (6.5) by integrating fiberwise the

three symplectic forms introduced in the toy model. Therefore, the group Symp0pΣ, ρq
acts on T ˚J pΣq preserving all symplectic forms ωX and the action of HampΣ, ρq is actually

Hamiltonian. In order to describe the moment map µX for the action of HampΣ, ρq with

respect to each of the symplectic form ωX it is convenient to introduce the following

operator:
r : ΓpT ˚

p1,0qΣ b pT ˚
p0,1qΣq2bq ÝÑ ΓpT ˚

p0,1qΣq
ψ ÞÝÑ ψpv,v,¨q

‖v‖2J

for some v ‰ 0. Since ψ is C-linear in the first component and anti-C-linear in the second

one, the 1-form ψpv,v,¨q

‖v‖2J
does not depend on the choice of v ‰ 0.

Theorem 6.5. Donaldson’s maps for the action of HampΣ, ρq over T ˚J pΣq can be ex-

pressed as:

µIpJ, σq “
∥

∥B̄φ
∥

∥

2 ´ ‖Bφ‖2

fp‖σ‖q ρ´ 2fp‖σ‖qKJ ρ´ 2iB̄Bfp‖σ‖q,

pµJ ` iµKqpJ, σq “ ´2i BrpBφ̄q,
where φ is the quadratic differential whose real part is equal to σ, and B “ BJ , B̄ “ B̄J .
Proof. In order to determine the expressions for Donaldson’s maps µI, µJ, µK, we apply

Theorem 6.2 starting from the moment maps ηI, ηJ, ηK introduced in Section 6.1. We

will focus on each term of Donaldson’s maps individually, and then combine the resulting

expressions to determine the evaluations of µI, µJ, µK at pJ, σq P T ˚J pΣq. As a torsion-

free connection we will use the Levi-Civita connection of the metric gJ , which satisfies

∇‚ρ ” 0, since ρ equals the Riemannnian volume form of gJ .
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The term ω̂Ip∇‚s,∇‚sq: Since ∇ is the Levi-Civita connection of gJ , we have ∇‚J ” 0.

In particular ∇‚s “ p0,∇‚σq. Then we have:

pω̂IqpJ,σqpp0,∇e1σq, p0,∇e2σqq “ 1

2fp‖σ‖q tr
`
g´1
J p∇e1σqg´1

J p∇e2σqJ
˘

“ 1

2fp‖σ‖q p∇1σ11∇2σ12 ´ ∇1σ22∇2σ21 ` ∇1σ12∇2σ22 ´ ∇1σ21∇2σ11q

“ 1

fp‖σ‖q p∇1σ11∇2σ12 ´ ∇1σ12∇2σ11q ,

where ∇iσjk “ p∇eiσqpej , ekq. In the last step we used the fact that ∇vσ is symmetric and

gJ -traceless for every v. The operators BJ and B̄J are defined as follows:

pBJφqpv, ¨, ¨q “ 1

2
p∇vφ ´ i∇Jvφq , pB̄Jφqpv, ¨, ¨q “ 1

2
p∇vφ` i∇Jvφq .

A simple but tedious computation shows that
∥

∥B̄Jφpe1, ¨, ¨q
∥

∥

2 ´ ‖BJφpe1, ¨, ¨q‖2 “ ∇1σ11∇2σ12 ´ ∇1σ12∇2σ11.

In the end, we get

ω̂Ip∇‚pJ, σq,∇‚pJ, σqq “
∥

∥B̄Jφ
∥

∥

2 ´ ‖BJφ‖2

fp‖σ‖q ρ

where ‖BJφ‖ :“ ‖BJφpv, ¨, ¨q‖,
∥

∥B̄Jφ
∥

∥ :“
∥

∥B̄Jφpv, ¨, ¨q
∥

∥ for some unit vector v (the norm is

independent of the choice of such v).

The term xηI | R∇y: Since we are considering the Levi-Civita connection of gJ , the tensor

R∇ coincides with the Riemann tensor of gJ . Then we have RJ “ KJ J b ρ, where KJ

denotes the Gaussian curvature of gJ . In particular xηIpJ, σq | RJy “ ´2fp‖σ‖qKJ ρ.

The term dpcp∇‚ηIqq: First we observe that

p∇vηIpJ,σqqpXq “ dpfp‖σ‖qq pvq trpJXq,
where X P slpT¨Σ, ρq “ End0pT¨Σq. Then we have

cp∇‚ηIpJ,σqqpwq :“ x∇e1ηIpJ,σq | pw b e˚
1q0y ` x∇e2ηIpJ,σq | pw b e˚

2q0y
“ dpfp‖σ‖qq pe1q trpJpw b e˚

1q0q ` dpfp‖σ‖qq pe2q trpJpw b e˚
2q0q

“ dpfp‖σ‖qq pe1q e˚
1 pJwq ` dpfp‖σ‖qq pe2q e˚

2pJwq
“ pdpfp‖σ‖qq ˝ Jqpwq.

Therefore cp∇‚ηIpJ,σqq “ dpfp‖σ‖qq ˝ J . It is immediate to check that, for every function

ϕ P C 8pΣq, we have dpdϕ ˝ Jq “ ´∆gJϕρ “ ´2iBJ B̄Jϕ “ 2iB̄JBJϕ.

The combination of the terms found above provides the desired description of the

Donaldson’s map µI. We now focus on the addends appearing in the expression of

pµJ ` iµKqpJ, σq.
The term pω̂J ` i ω̂Kqp∇‚s,∇‚sq: Since ∇‚J “ 0, we have

ω̂Cp∇‚pJ, σq,∇‚pJ, σqq “ pω̂J ` iω̂Kqpp0,∇‚σq, p0,∇‚σqq “ 0
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The term xηJ ` i ηK | R∇y: Observe that xpηJ ` i ηKqpJ,σq | KJ J b ρy “ 0 because

rJ, Js “ 0.

The term dpcp∇‚ηJ ` i ηKqq: From the definition of the moment maps ηJ and ηK, we

observe the following:

xpηJ ` i ηKqpJ,σq | Xy “ ´ tr
`
g´1
J σJX

˘
` i tr

`
g´1
J σX

˘

“ i tr
`
g´1
J pσ ` i σp¨, J ¨qqX

˘

“ i tr
`
g´1
J φ̄X

˘
, (rel. (3.1))

where we are denoting by φ the quadratic differential whose real part is equal to σ. Since ∇

is the Levi-Civita connection of gJ , we have ∇‚gJ ” 0 and, as already mentioned, ∇‚J ” 0.

In particular we deduce that:

cp∇‚pηJ ` i ηKqqpvq “
ÿ

j

x∇ejpηJ ` i ηKq | pv b e˚
j q0y

“ i
ÿ

j

tr
`
g´1
J p∇ej φ̄qpv b e˚

j q0
˘

“ i
ÿ

j

tr
`
g´1
J p∇ej φ̄qpv b e˚

j q
˘

“ i
ÿ

j

p∇ej φ̄qpv, ejq

“ i pdivgJ g´1
J φ̄qpvq.

On the other hand, we see that:

rpBJ φ̄qpvq “ pBJ φ̄qpe1, e1, vq

“ 1

2
pp∇e1 φ̄qpe1, vq ´ i p∇Je1 φ̄qpe1, vqq

“ 1

2
pp∇e1 φ̄qpe1, vq ` p∇Je1φ̄qpJe1, vqq

“ 1

2
pdivgJ g´1

J φ̄qpvq.

Therefore cp∇‚pηJ`i ηKqq “ 2i rpBJ φ̄q P ΓpT ˚
p0,1qΣq. Since d “ BJ`B̄J and B̄J prpBJ φ̄qq “ 0,

we obtain

dpcp∇‚pηJ ` i ηKqqq “ 2i BJrpBJ φ̄q,
which, combined with Theorem 6.2, proves the expression for Donaldson’s map µJ ` i µK.

�

Proposition 6.6. Let ρ be a fixed volume form on Σ, and let C :“ ´ 4πχpΣq
AreapΣ,ρq .

‚ The map

µ̃I : T ˚J pΣq ÝÑ HpΣ, ρq˚

pJ, σq ÞÝÑ µIpJ, σq ´ C ρ
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is a moment map for the action of HampΣ, ρq over the space of smooth sections

T ˚J pΣq, endowed with the symplectic form ωI.

‚ The map

µ̃J ` i µ̃K : T ˚J pΣq ÝÑ SpΣ, ρq˚ b C

pJ, σq ÞÝÑ r´2i rpBJ φ̄qs
is a moment map for the action of Symp0pΣ, ρq over the space of smooth sections

T ˚J pΣq, endowed with the symplectic form ωJ`i ωK (where φ denotes the quadratic

differential whose real part is equal to σ).

Proof. By Lemma 6.4, the integral of the 2-form µIpJ, σq does not depend on the choice of

the section pJ, σq P T ˚J pΣq. If σ ” 0, then by Gauss-Bonnet theorem we have
ż

Σ

µIpJ, 0q “ ´4πχpΣq.

Therefore, the integral of the 2-form µIpJ, σq ´ C ρ vanishes. By Poincaré’s duality, a 2-

form on Σ is exact if and only if its integral over Σ vanishes. This in particular proves that

µ̃I takes values in B2pΣq, which is contained in the dual of the Lie algebra of HampΣ, ρq,
as observed in Section 4.2. Following Definition 4.1, the analogous properties i) and ii)

for µ̃I are guaranteed by Theorem 6.2, since the term C ρ is independent of the section

pJ, σq P T ˚J pΣq.
Our moment map µJ ` i µK is exactly the same as the map µ2 ` i µ3 appearing in the

original process of symplectic reduction developed by [Don03] to describe the hyperKähler

structure on the space of almost-Fuchsian manifolds. In particular, the argument in [Don03,

Section 3.1] to µ2 ` i µ3 applies verbatim to our context, showing that µJ ` i µK can be

promoted to a moment map µ̃J ` i µ̃K for the action of Symp0pΣ, ρq on T ˚J pΣq. For a

more detailed exposition of this phenomenon, we refer to [Tra19, Theorem 4.10]. �

6.4. The symplectic quotient

We are interested in the symplectic quotient

µ̃´1
I

p0q X µ̃´1
J

p0q X µ̃´1
K

p0q{Symp0pΣ, ρq .
The aim of this section is to show that this quotient can be identified with MSpΣq so

that the para-hyperKähler structure on MSpΣq defined in Section 4 is inherited from

the infinite dimensional space T ˚J pΣq. Although the arguments are inspired by similar

constructions in hyperKähler geometry ([Don03], [Tra19], [Hod05]), substantial difficulties

arise when dealing with a pseudo-Riemannian metric, which we now explain.

In the more common setting of infinite dimensional hyperKähler quotients, one starts

with the data of an infinite dimensional manifold M endowed with three complex structures

I,J and K satisfying the relations of quaternionic numbers and a Riemannian metric

g compatible with each of the complex structures. This defines three symplectic forms

ωX “ gp¨,Xq for X “ I,J,K onM . Assume now that a group G acts onM by Hamiltonian
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symplectomorphisms with respect to each of the symplectic forms with moment map ζX
and let N be the submanifold

N “ ζ´1
I

p0q X ζ´1
J

p0q X ζ´1
K

p0q .

The properties of the moment maps and the Riemannian metric g allow to orthogonally

decompose the tangent space of M at every point p P N as

TpM “ TpN ‘ IpTppG ¨ pqq ‘ JpTppG ¨ pqq ‘ KpTppG ¨ pqq

and the g-orthogonal of TppG ¨ pq inside TpN furnishes a model for the tangent space of

the quotient N{G that is invariant under I,J and K. This is sufficient to conclude that

the quotient inherits a hyperKähler structure ([Hit87]).

In our pseudo-Riemannian setting, however, the absence of a Hilbert space structure

on the tangent space prevents us from obtaining a similar orthogonal decomposition using

only the properties of the moment maps. However, the hyperKähler construction suggests

that the tangent space at pJ, σq to the zero locus of the three moment maps is the largest

subspace VpJ,σq Ă TpJ,σqT
˚J pΣq that is g-orthogonal to TpJ,σqpSymp0pΣ, ρq ¨ pJ, σqq and

invariant under I, J and K, inside the kernel of the differential of the three moment maps.

These are the properties that led us to the equations defining VpJ,σq in Section 4. In

what follows we explain how to derive the equations in Proposition K starting from these

geometric conditions.

6.4.1. Identifying ĄMS0pΣ, ρq as the zero locus of the moment maps

Let us start by characterizing the pairs pJ, σq that lie in the zero locus of the three moment

maps.

Lemma 6.7. A pair pJ, σq P T ˚J pΣq satisfies pµ̃J ` i µ̃KqpJ, σq “ 0 if and only if σ is the

real part of a holomorphic quadratic differential φ on the Riemann surface pΣ, Jq.

Proof. Let us consider the subalgebra of SpΣ, ρq defined by

hJ “ tV P ΓpTΣq | dpιV ρq “ dpιJV ρq “ 0u .

Because pµ̃J ` i µ̃KqpJ, σq “ 0, by definition of moment map, we have

0 “ ´2i

ż

Σ

rpBJ φ̄q ^ ιV ρ

for every V P hJ . Note that the form rpBJ φ̄q is anti-holomorphic, being it in the zero

locus of µJ ` i µK. Since tιV ρ | V P hJu parameterizes harmonic 1-forms on pΣ, Jq, by

Poincaré duality the real and imaginary parts of rpBJ φ̄q are exact. Hence, rpBJ φ̄q is exact

and identically zero because the only anti-holomorphic functions on pΣ, Jq are constant.

This shows that BJ φ̄ “ 0, thus φ is a holomorphic quadratic differential on pΣ, Jq. �
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Lemma 6.8. Let pJ, σq P T ˚J pΣq. If σ is the real part of a holomorphic quadratic differ-

ential, then

µ̃IpJ, σq “ ´ 4Kh

1 ` detB
ρ´ Cρ,

where

h :“ p1 ` fp‖σ‖qq gJ , B :“ h´1σ C :“ ´ 4πχpΣq
AreapΣ, ρq .

Proof. If σ is the zero quadratic differential, then the statement is immediate. From now

on, we will assume σ to be non-zero. We make use of the computations developed by

Trautwein in [Tra19]. In particular, we will need the following relations: if λ denotes the

function ‖σ‖2, then, outside the zeros of σ,

´ i

2λ
B̄λ ^ Bλ “ ‖Bφ‖2 ρ, B̄Bpln λq “ 2iKJ ρ,

where B “ BJ and B̄ “ B̄J . In particular we can write µ̃I as follows:

µ̃IpJ, σq “ i

ˆ B̄λ ^ Bλ
2λ

?
1 ` λ

`
?
1 ` λ B̄Bpln λq ´ 2B̄Bp

?
1 ` λq

˙
´ Cρ

From here, the strategy is the same as the one in [Tra18, Proposition 4.5.16]. In partic-

ular, we can find the following sequence of identities:

µ̃IpJ, σq “ i

ˆ B̄λ ^ Bλ
2λ

?
1 ` λ

`
?
1 ` λ B̄Bpln λq ´ 2B̄Bp

?
1 ` λq

˙
´ Cρ

“ i
´

B̄p
?
1 ` λq ^ Bpln λq `

?
1 ` λ B̄Bpln λq ´ 2B̄Bp

?
1 ` λq

¯
´ Cρ

“ iB̄
´?

1 ` λ Bpln λq ´ 2Bp
?
1 ` λq

¯
´ Cρ

“ iB̄
´

´2B
´
ln

´
1 `

?
1 ` λ

¯¯
` Bpln λq

¯
´ Cρ

“
ˆ
∆gJ ln

ˆ
1 `

b
1 ` ‖σ‖2

˙
´ 2KJ ´ C

˙
ρ,

“
´
∆gJ lnp1 ` fp‖σ‖qq ´ 2KJ ´ C

¯
ρ,

where, in the second to last step, we used again the identity B̄Bpln λq “ 2iKJ ρ, and the

fact that ´2iB̄Bϕ “ ∆gJϕρ.

From the formula of the curvature under conformal change, we obtain that the Gaussian

curvature Kh of the metric h satisfies:

Kh “ 1

1 ` fp‖σ‖q

ˆ
KJ ´ 1

2
∆gJ ln p1 ` fp‖σ‖qq

˙

A computation exactly as in Lemma 2.15 shows the identity

2

1 ` fp‖σ‖q “ 1 ` detB.
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If we combine this relation with the expression for the Gaussian curvature of h and the

description we found above for µ̃I, we see that

µ̃IpJ, σq “ ´
ˆ

4Kh

1 ` detB
`C

˙
ρ.

This proves the desired relation outside of the zero locus of σ, which is a finite set. The

statement then follows by continuity of the expression.

�

Combining Lemma 6.7 and Lemma 6.8, we can then identify the zero locus of the three

moment maps with ĄMS0pΣ, ρq. Recall that the symplectic form ρ that we fixed in Section

2.5 has area ´πχpΣq.

Corollary 6.9. Let pJ, σq P T ˚J pΣq. Then µ̃IpJ, σq “ µ̃JpJ, σq “ µ̃KpJ, σq “ 0 if and

only if pJ, σq P ĄMS0pΣ, ρq.

Proof. Recall from Section 2.5 that ĄMS0pΣ, ρq is the space of pairs pJ, σq such that h “
p1 ` fp‖σ‖qqgJ and B “ h´1σ satisfy the Gauss-Codazzi equations. By Lemma 6.7, we

know that σ is the real part of a holomorphic quadratic differential, hence B is Codazzi

by Lemma 2.3. Now, from our choice of ρ, we see that

C “ ´ 4πχpΣq
AreapΣ, ρq “ 4

so by Lemma 6.8 we have that µ̃IpJ, σq “ 0 if and only if Kh “ ´1 ´ detpBq, which is

exactly the Gauss equation for space-like surfaces in Anti-de Sitter space. �

6.4.2. The differential of the map µI

One subtlety we have to take care of concerns the fact that the action of Symp0pΣ, ρq is

not Hamiltonian with respect to ωI. However, we can show by an explicit computation

that (up to a sign) property ii) in Definition 4.1

xdµ̃Ip 9J, 9σq | V yS “ ωIpp 9J, 9σq, pLV J,LV σqq
holds for every p 9J, 9σq P TpJ,σqT

˚J pΣq and for every V P SpΣ, ρq, not only for V P HpΣ, ρq.

Proposition 6.10. For every pJ, σq P T ˚J pΣq such that σ is the real part of a holomorphic

quadratic differential, and for every tangent vector p 9J, 9σq P TpJ,σqT
˚J pΣq we have

dµ̃Ip 9J, 9σq “ ´ d
´
f divgJ

9J ` d 9f ˝ J ` df ˝ 9J ´ f´1β
¯
,

where f “ fp}σ}Jq “
b

1 ` }σ}2J and β is the 1-form on Σ defined by βpV q :“ x 9σ0, p∇V σqp¨, J ¨qy.

Proof. The main bulge of the proof is to show that
˜
∥

∥B̄φ
∥

∥

2 ´ ‖Bφ‖2

fp‖σ‖q ρ

¸1

“ d
`
f´1β

˘
` 2 9fKJρ` divgJ

9J ^ df, (6.7)
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where we are taking the derivative of the expression with respect to pJ, σq in the direction

p 9J, 9σq. Assuming this relation for now, we see how to conclude. The variations of the other

two terms appearing in the expression for µ̃I (see Theorem 6.5) are simpler to handle. We

have that

p´2fKJρq1 “ ´2 9fKJρ´ 2fdKJp 9Jqρ

“ ´2 9fKJρ´ f d
´
divgJ

9J
¯
,

where in the last step we used the expression for the derivative of the curvature described

in Remark 4.4, and

p∆gJfq1ρ “ ´ d
`
pdf ˝ Jq1

˘
“ ´ d

´
d 9f ˝ J ` df ˝ 9J

¯
.

By combining these relations, we find

dµ̃Ip 9J, 9σq “ d
`
f´1β

˘
` 2 9fKJρ` divgJ

9J ^ df ´ 2 9fKJρ´ f d
´
divgJ

9J
¯

´ d
´
d 9f ˝ J ` df ˝ 9J

¯

“ ´ d
´
f divgJ

9J ` df ˝ 9J ` d 9f ˝ J ´ f´1β
¯
,

which proves the desired formula.

Let us now focus on (6.7). As derived in the proof of Theorem 6.5, we have that
∥

∥B̄φ
∥

∥

2 ´ ‖Bφ‖2

fp‖σ‖q “ ω̂Ipp0,∇e1σq, p0,∇e2σqq, (6.8)

for any choice of a local frame e1, e2 satisfying ρpe1, e2q “ 1. We will determine relation

(6.7) by computing the derivative
˜
∥

∥B̄φ
∥

∥

2 ´ ‖Bφ‖2
fp‖σ‖q

¸1

“ pω̂Ipp0,∇e1σq, p0,∇e2σqqq1

“
`
f´1x∇e1σ, p∇e2σqp¨, J ¨qy

˘1

“
ˆ
1

2
f´1 tr

`
g´1
J p∇e1σqg´1

J p∇e2σqJ
˘
q
˙1

In order to simplify the development of this first order variation, we need a few preliminary

observations. Since equation (6.8) holds for any local frame e1, e2 with ρ-volume equal to 1,

we can assume e1, e2 to be a gJ -orthonormal frame and to not change under the variation
9J . Moreover, in light of Lemma 3.9 part ii) and relation (3.3), the traces of the terms

involving the derivatives of g´1
J and of J vanish. This allows us to reduce the number of

addends to study. In particular we have that
˜
∥

∥B̄φ
∥

∥

2 ´ ‖Bφ‖2

fp‖σ‖q

¸1

“ ´f´2 9fx∇e1σ, p∇e2σqp¨, J ¨qy ` f´1xp∇e1σq1, p∇e2σqp¨, J ¨qy`

` f´1x∇e1σ, p∇e2σq1p¨, J ¨qy.
(6.9)
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Now, using Lemma 4.15, we can obtain an expression for p∇eiσq1. In fact, observing

that

p∇V σq1 “ ∇V 9σ ` 9∇V σ , (6.10)

we compute

p 9∇V σqpX,Y q “ ´σp 9∇VX,Y q ´ σpX, 9∇V Y q

“ 1

2

´
pdivgJ 9JqV pσpJX, Y q ` σpX,JY qq ` σpJp∇V

9JqX,Y q ` σpX,Jp∇V
9JqY q

¯

“ pdivgJ 9JqV σpJX, Y q ` xσ | Jp∇V
9Jqy gJ pX,Y q ,

where, in the last line, we applied Lemma 3.9 to the products g´1
J σJp∇V

9Jq and Jp∇V
9Jqg´1

J σ.

Moreover we have

∇V 9σ “ ∇V p 9σ0 ´ xσ | J 9Jy gJq “ ∇V 9σ0 ´ V pxσ | J 9Jyq gJ
“ ∇V 9σ0 ´ px∇V σ | J 9Jy ` xσ | J∇V

9Jyq gJ .
Combining the previous two equations with (6.10), we get

p∇V σq1 “ ∇V 9σ0 ´ px∇V σ | J 9Jy ` xσ | J∇V
9JyqgJ ` pdivgJ 9JqV σp¨, J ¨q ` xσ | J∇V

9Jy gJ
“ ∇V 9σ0 ´ x∇V σ | J 9Jy gJ ` pdivgJ 9JqV σp¨, J ¨q .

(6.11)

In light of these observations, we can combine relations (6.11) and (6.9) to deduce that
˜
∥

∥B̄φ
∥

∥

2 ´ ‖Bφ‖2

fp‖σ‖q

¸1

“ ´f´1 9f ω̂Ipp0,∇e1σq, p0,∇e2σqq ` f´1x∇e1 9σ0, p∇e2σqp¨, J ¨qy`

` f´1x∇e1σ, p∇e2 9σ0qp¨, J ¨qy ` f´1pdivgJ 9Jqpe1q xσp¨, J ¨q, p∇e2σqp¨, J ¨qy
` f´1pdivgJ 9Jqpe2q x∇e1σ, σp¨, J2¨qy

“ ´f´1 9f ω̂Ipp0,∇e1σq, p0,∇e2σqq ` ω̂Ipp0,∇e1 9σ0q, p0,∇e2σqq
` ω̂Ipp0,∇e1σq, p0,∇e2 9σ0qq ` f´1pdivgJ 9Jqpe1q e2p}σ}2{2q`
´ f´1pdivgJ 9Jqpe2q e1p}σ}2{2q

“ ´f´1 9f ω̂Ipp0,∇e1σq, p0,∇e2σqq ` ω̂Ipp0,∇e1 9σ0q, p0,∇e2σqq
` ω̂Ipp0,∇e1σq, p0,∇e2 9σ0qq ` pdivgJ 9J ^ dfqpe1, e2q

(6.12)

where in the first step we used the fact that the trace part in the expression for p∇V σq1

does not give a contribution. Comparing relation (6.7) with (6.12), the proof is complete

if we show that

a) pdf ^ βqpe1, e2q “ f 9f ω̂Ipp0,∇e1σq, p0,∇e2σqq
b) dβpe1, e2q “ fω̂Ipp0,∇e1 9σ0q, p0,∇e2σqq ` ω̂Ipp0,∇e1σq, p0,∇e2 9σ0qqq ´ 2KJx 9σ0, σy.



96 FILIPPO MAZZOLI, ANDREA SEPPI, AND ANDREA TAMBURELLI

Proof of relation a). First we observe that, if σ is zero, then the relation is obviously

satisfied. In what follows we will assume that σ is not identically zero. By definition of β

and of wedge product

df ^ βpe1, e2q “ e1pfqx 9σ0, p∇e2σqp¨, J ¨qy ´ e2pfqx 9σ0, p∇e1σqp¨, J ¨qy
“ f´1 pxσ,∇e1σyx 9σ0, p∇e2σqp¨, J ¨qy ´ xσ,∇e2σyx 9σ0, p∇e1σqp¨, J ¨qyq .

As observed in the proof of Lemma 4.22, for every p P Σ outside the set of zeros of

σ, the elements pg´1σqp and pJg´1σqp form a basis of the space of traceless symmetric

endomorphisms of TpΣ. In particular, using the scalar product x¨, ¨y we can represent 9σ0
in terms of such basis, obtaining the expression 9σ0 “ 1

}σ}2
px 9σ0, σyσ ` x 9σ0, σp¨, J ¨qyσp¨, J ¨qq.

Replacing this identity in the previous equation, we get

df ^ βpe1, e2q “ f´1 pxσ,∇e1σyx 9σ0, p∇e2σqp¨, J ¨qy ´ xσ,∇e2σyx 9σ0, p∇e1σqp¨, J ¨qyq

“ 1

}σ}2f pxσ,∇e1σypx 9σ0, σyxσ, p∇e2σqp¨, J ¨qy ` x 9σ0, σp¨, J ¨qyxσp¨, J ¨q, p∇e2σqp¨, J ¨qyq`

´xσ,∇e2σypx 9σ0, σyxσ, p∇e1σqp¨, J ¨qy ` x 9σ0, σp¨, J ¨qyxσp¨, J ¨q, p∇e1σqp¨, J ¨qyqq

“ 1

}σ}2f pxσ,∇e1σypx 9σ0, σyxσ, p∇e2σqp¨, J ¨qy ` x 9σ0, σp¨, J ¨qyxσ,∇e2σyq`

´xσ,∇e2σypx 9σ0, σyxσ, p∇e1σqp¨, J ¨qy ` x 9σ0, σp¨, J ¨qyxσ,∇e1σyqq

“ x 9σ0, σy
}σ}2f pxσ,∇e1σyxσ, p∇e2σqp¨, J ¨qy ´ xσ,∇e2σyxσ, p∇e1σqp¨, J ¨qyq

“ x 9σ0, σy
}σ}2f xxσ,∇e1σyσ ` xσp¨, J ¨q,∇e1σyσp¨, J ¨q, p∇e2σqp¨, J ¨qy

At this point, we use once again the fact that g´1σ and Jg´1σ form a basis of the space

of traceless symmetric endomorphisms of TΣ (outside the zeros of σ) to express ∇e1σ as
1

}σ}2
px∇e1σ, σyσ ` x∇e1σ, σp¨, J ¨qyσp¨, J ¨qq. Combining this observation with the computa-

tions above, we deduce that

df ^ βpe1, e2q “ f´1x 9σ0, σyx∇e1σ, p∇e2σqp¨, J ¨qy
“ 9fx∇e1σ, p∇e2σqp¨, J ¨qy
“ f 9fω̂Ipp0,∇e1σq, p0,∇e2σqq ,

which finally proves the identity a) outside the zeros of σ. In fact, since both terms of the

equality extends continuously at the zeros of σ (which form a finite set), we conclude that

the identity df ^ β “ f 9fω̂Ipp0,∇‚σq, p0,∇‚σqq holds everywhere on Σ.

Proof of relation b). By definition of exterior differential we have

dβpe1, e2q “ e1 px 9σ0, p∇e2σqp¨, J ¨qyq ´ e2 px 9σ0, p∇e1σqp¨, J ¨qyq ´ x 9σ0, p∇re1,e2sσqp¨, J ¨qy
“ x∇e1 9σ0, p∇e2σqp¨, J ¨qy ´ x∇e2 9σ0, p∇e1σqp¨, J ¨qy ` x 9σ0, Rpe1, e2qσp¨, J ¨qy
“ f pω̂Ipp0,∇e1 9σ0q, p0,∇e2σqq ´ ω̂Ipp0,∇e2 9σ0q, p0,∇e1σqqq ` x 9σ0, Rpe1, e2qσp¨, J ¨qy
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where Rpe1, e2qσ “ ∇e1∇e2σ ´ ∇e2∇e1σ ´ ∇re1,e2sσ. The same proof that relates the

Riemann curvature tensor with the Gaussian curvature adapts to the operator Rpe1, e2qσ
and shows that

Rpe1, e2qσ “ 2KJσp¨, J ¨q .

Relation b) follows. �

Remark 6.11. In what follows, we will fix a primitive of the two form dµ̃I found in Propo-

sition 6.10, and define the linear map FpJ,σq : TpJ,σqT
˚J pΣq Ñ Λ1pΣq{B1pΣq Ă SpΣ, ρq˚

so that FpJ,σqp 9J, 9σq equals this primitive (modulo exact 1-forms). Note that KerpFpJ,σqq is

a subspace of TpJ,σqm̃u
´1
I

p0q, and a priori the inclusion might be strict. By an abuse of

notation, for the rest of the paper we will simply denote pdµ̃IqpJ,σq “ FpJ,σq.

We can finally show the connection between ωI and dµ̃I:

Proposition 6.12. Let pJ, σq P ĄMS0pΣ, ρq. For every p 9J, 9σq P TpJ,σqT
˚J pΣq and for

every V P SpΣ, ρq, we have

ωIppLV J,LV σq, p 9J, 9σqq “ ´xdµ̃Ip 9J, 9σq | V yS .

Proof. By definition of ωI, we have

ωIppLV J,LV σq, p 9J, 9σqq “
ż

Σ

´
´fxLV J, J 9Jy ` f´1xpLV σq0, 9σ0p¨, J ¨qy

¯
ρ . (6.13)

In order to simplify the second term inside the integral, we make use of the following

relation the proof of which will be postponed to the end:

x 9σ0p¨, J ¨q, pLV σq0y “ x 9σ0p¨, J ¨q,∇V σy ´ divgJ pJV qxσ, 9σ0y (6.14)

Using this fact and recalling that 9f “ f´1xσ, 9σ0y (by relation (6.3)), we have

f´1xpLV σq0, 9σ0p¨, J ¨qy “ f´1x 9σ0p¨, J ¨q,∇V σy ´ f´1 divgJ pJV qxσ, 9σ0y
“ f´1x 9σ0p¨, J ¨q,∇V σy ´ divgJ pf´1xσ, 9σ0yJV q ` d

`
f´1xσ, 9σ0y

˘
JV

“ f´1x 9σ0p¨, J ¨q,∇V σy ´ divgJ pf´1xσ, 9σ0yJV q ` d 9fpJV q

and integrating over Σ we find

ż

Σ

`
f´1xpLV σq0, 9σ0p¨, J ¨qy

˘
ρ “

ż

Σ

´
´f´1x 9σ0, p∇V σqp¨, J ¨qy ` d 9fpJV q

¯
ρ

“
ż

Σ

pd 9fpJV q ´ f´1βpV qqρ ,
(6.15)
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Using Equation (4.7), we can rewrite the first term in (6.13) as
ż

Σ

´fxLV J, J 9Jyρ “
ż

Σ

´
fpdivgJ 9JqV ´ f divgJ p 9JV q

¯
ρ

“
ż

Σ

´
fpdivgJ 9JqV ` dfp 9JV q ´ divgJ pf 9JV q

¯
ρ

“
ż

Σ

´
fpdivgJ 9JqV ` dfp 9JV q

¯
ρ .

Combining this last relation with (6.13) and (6.15), we find

ωIppLV J,LV σq, p 9J, 9σqq “
ż

Σ

´
fpdivgJ 9JqV ` df ˝ 9JV ´ f´1βpV q ` d 9fpJV q

¯
ρ

“
ż

Σ

ιV

´
f divgJ

9J ` df ˝ 9J ` d 9f ˝ J ´ f´1β
¯
ρ

“
ż

Σ

pf divgJ 9J ` df ˝ 9J ` d 9f ˝ J ´ f´1βq ^ ιV ρ (by (4.2))

“ ´xdµ̃Ip 9J, 9σq | V yS .

We are left to prove Equation (6.14). Let AV denote the endomorphism of TΣ given by

AV pXq “ ∇XV . It is easy to verify using the definition of Lie derivative that

LV σ “ ∇V σ `AtV σ ` σAV .

Because V P SpΣ, ρq, we know that trpAV q “ 0. In particular, AV P SpanpJ, 9J, J 9Jq and

we can write

AV “ ´1

2
trpJAV qJ ` 1

2 tr
´

9J2

¯
´
tr

´
9JAV

¯
9J ` tr

´
J 9JAV

¯
J 9J

¯

A˚
V “ 1

2
trpJAV qJ ` 1

2 tr
´

9J2
¯

´
tr

´
9JAV

¯
9J ` tr

´
J 9JAV

¯
J 9J

¯

9JA˚
V `AV 9J “ ´ trpJAV qJ 9J ` 1

2
tr

´
9JAV

¯
1

where A˚
V denotes the adjoint of AV with respect to gJ . Then for every 9J P TJJ pΣq, we

have

x 9J, pLV σq0y “ 1

2
tr

´
9Jg´1
J LV σ

¯

“ 1

2

´
tr

´
9Jg´1
J ∇V σ

¯
` tr

´
9Jg´1
J AtV σ

¯
` tr

´
9Jg´1
J σAV

¯¯

“ 1

2

´
tr

´
9Jg´1
J ∇V σ

¯
` tr

´
9JA˚

V g
´1
J σ

¯
` tr

´
AV 9Jg´1

J σ
¯¯

“ x 9J,∇V σy ` xσ | 9JA˚
V `AV 9Jy

“ x 9J,∇V σy ´ trpJAV qxσ | J 9Jy
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“ x 9J,∇V σy ´ divgJ pJV qxσ | J 9Jy

and Equation (6.14) follows by taking 9J “ 9σ0p¨, J ¨q. �

Remark 6.13. Note that, because µ̃I and µI differ by a constant, Proposition 6.12 holds

for µI as well.

6.4.3. The differential of the map µ̃J ` i µ̃K

With similar techniques, we can compute the differential of the other two moment maps:

Proposition 6.14. For every pJ, σq P T ˚J pΣq and for every p 9J, 9σq P TpJ,σqT
˚J pΣq we

have:

dpµ̃J ` i µ̃Kq p 9J, 9σq “ ´i
´
divgJ pg´1 9̄φ0q ` x∇J‚φ̄ | 9Jy

¯
´ xφ̄ | ∇‚

9J`i∇J‚
9Jy P SpΣ, ρq˚bC,

where φ is the quadratic differential whose real part is equal to σ, 9̄φ0 denotes the gJ -traceless

part of 9̄φ.

Proof. To simplify the notation, we set divpT q “ divgJ pg´1T q for any symmetric 2-tensor

T . In the proof of Theorem 6.5, we showed that rpBJ φ̄q “ 1
2
pdiv φ̄q. In particular we have

pµ̃J`i µ̃KqpJ, σq “ r´idiv φ̄s, where φ is the quadratic differential whose real part coincides

with σ. Therefore, in order to compute the differential of the moment map µ̃J ` i µ̃K, we

need to understand the variation of the quantity div φ̄ along p 9J, 9σq P TpJ,σqT
˚J pΣq.

Let CijS denote the contraction of the tensor S in its i-th covariant and j-th contravariant

entries. Then the gJ -divergence of a symmetric 2-tensor T can be expressed as

C1
1C

1
1pg˚ b ∇‚T q,

where g˚ denotes the metric induced by g “ gJ on T ˚Σ. As seen in relation (3.3), the first

order variation of g “ ρp¨, J ¨q along 9J can be expressed as 9g “ ´gp¨, J 9J ¨q. It is simple to

check that the corresponding variation of g˚ satisfies 9g˚ “ g˚p¨, pJ 9Jqt¨q, where pJ 9Jqt is the

transpose of J 9J . In particular, for every symmetric 2-tensor T we have

pdiv T q1 “ C1
1C

1
1p 9g˚ b ∇‚T ` g˚ b 9∇‚T ` g˚ b ∇‚

9T q
“

ÿ

i

p∇eiT qpJ 9Jei, ¨q
loooooooooomoooooooooon

term 1

`
ÿ

i

p 9∇eiT qpei, ¨q
loooooooomoooooooon

term 2

` div 9T

loomoon
term 3

,

where peiqi is a local g-orthonormal frame. In order to compute the differential of µ̃J`i µ̃K,

we will study each term of this expression for T “ φ̄.

Term 1. For every 9J P TJJ pΣq, for every J-quadratic differential φ and for every tangent

vector field V on Σ, we have

p∇X φ̄qpJ 9J ¨, ¨q “ x∇X φ̄ | J 9Jy g ` x∇X φ̄ | 9Jy gp¨, J ¨q.
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This relation is a simple application of Lemma 3.9, where the endomorphisms in TJJ pΣq
are the real (or imaginary) part of g´1∇X φ̄, and J 9J (we are implicitly extending the bilin-

ear pairing x¨ | ¨y to the complexified bundles by requiring the C-linearity in its arguments,

i. e. i x¨ | ¨y “ xi ¨ | ¨y “ x¨ | i ¨y). From this expression we deduce that

ÿ

i

p∇eiφ̄qpJ 9Jei, V q “
ÿ

i

px∇eiφ̄ | J 9Jy gpei, V q ` x∇eiφ̄ | 9Jy gpei, JV qq

“ x∇V φ̄ | J 9Jy ` x∇JV φ̄ | 9Jy
“ ´i x∇V φ̄ | 9Jy ` x∇JV φ̄ | 9Jy,

where in the last step we used the fact that ∇V φ̄ is J-antilinear in its arguments.

Term 2. Applying Lemma 4.15, we see that

p 9∇V φ̄qpX,Y q “ ´φ̄p 9∇VX,Y q ´ φ̄pX, 9∇V Y q

“ 1

2

´
pdiv 9JqV pφ̄pJX, Y q ` φ̄pX,JY qq ` φ̄pJp∇V

9JqX,Y q`

`φ̄pX,Jp∇V
9JqY q

¯

“ ´i pdiv 9JqV φ̄pX,Y q ´ i

2

´
φ̄pp∇V

9JqX,Y q ` φ̄pX, p∇V
9JqY q

¯
.

In the last line, we used the fact that φ̄ is J-antilinear. Applying Lemma 3.9 to the real

(and imaginary, separately) part of φ̄ and to ∇V
9J , we deduce the following relation:

φ̄pp∇V
9Jq¨, ¨q ` φ̄p¨, p∇V

9Jq¨q “ 2xφ̄ | ∇V
9Jy g,

This, combined with the previous computation leads us to the following expression:

p 9∇V φ̄qpX,Y q “ ´i pdiv 9JqV φ̄pX,Y q ´ i xφ̄ | ∇V
9Jy gpX,Y q. (6.16)

Moreover, the following equality holds:

ÿ

i

pdiv 9Jqei φ̄pei, V q “ xφ̄ | ∇V
9J ` i∇JV

9Jy. (6.17)

We will temporarily assume this fact, the proof is postponed to the end of the current

argument. We can now express the second term of our initial expression as follows:

ÿ

i

p 9∇eiφ̄qpei, V q “ ´i
ÿ

i

pdiv 9Jqei φ̄pei, V q ´ i
ÿ

i

xφ̄ | ∇ei
9Jy gpei, V q (relation (6.16))

“ ´i xφ̄ | ∇V
9J ` i∇JV

9Jy ´ i
ÿ

i

xφ̄ | ∇ei
9Jy gpei, V q (relation (6.17))

“ ´i xφ̄ | ∇V
9J ` i∇JV

9Jy ´ i xφ̄ | ∇V
9Jy.
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Term 3. Following the same argument of the proof of Lemma 3.2, we see that the first

order variation of a quadratic differential φ is of the form 9φ “ 9φ0 ´ xφ | J 9Jy g, where 9φ0
denotes the g-traceless part of 9φ. In particular, we deduce that

pdiv 9̄φqV “ divp 9̄φ0 ´ xφ̄ | J 9Jy gqV

“ pdiv 9̄φ0qV ´ d
´

xφ̄ | J 9Jy
¯
V

“ pdiv 9̄φ0qV ` i d
´

xφ̄ | 9Jy
¯
V (φ̄ J-antilinear)

“ pdiv 9̄φ0qV ` i x∇V φ̄ | 9Jy ` i xφ̄ | ∇V
9Jy.

Finally, we combine the expressions of the three terms involved in the derivative pdiv φ̄q1

that we developed above, obtaining:

dpµ̃J ` i µ̃Kq p 9J, 9σq “ ´i pdiv φ̄q1

“ ´i
˜

ÿ

i

p∇eiφ̄qpJ 9Jei, ¨q `
ÿ

i

p 9∇ei φ̄qpei, ¨q ` div 9̄φ

¸

“ ´i
´

´i x∇‚φ̄ | 9Jy ` x∇J‚φ̄ | 9Jy ´ i xφ̄ | ∇‚
9J ` i∇J‚

9Jy`

´i xφ̄ | ∇‚
9Jy ` div 9̄φ0 ` i x∇‚φ̄ | 9Jy ` i xφ̄ | ∇‚

9Jy
¯

“ ´i
´
div 9̄φ0 ` x∇J‚φ̄ | 9Jy ´ i xφ̄ | ∇‚

9J ` i∇J‚
9Jy

¯
,

which proves our statement.

Finally, we provide a proof of Equation (6.17). Since 9J is symmetric with respect to g,

the same is true for ∇X
9J for any tangent vector field X. In particular, if p∇i

9Jqjk denotes

gpp∇ei
9Jqej , ekq, we must have p∇i

9Jqjk “ p∇i
9Jqkj for every i, j, k. Unraveling the definition

of the divergence of 9J , we see that

pdiv 9Jqpe1q e1 ` pdiv 9Jqpe2q e2 “ pp∇1
9Jq11 ` p∇2

9Jq12q e1 ` pp∇1
9Jq21 ` p∇2

9Jq22q e2
“ pp∇1

9Jq11 ` p∇2
9Jq21q e1 ` pp∇1

9Jq12 ` p∇2
9Jq22q e2

“ p∇e1
9Jqe1 ` p∇e2

9Jqe2.

Hence we have
ÿ

i

pdiv 9Jqei φ̄pei, V q “ φ̄pp∇e1
9Jqe1 ` p∇e2

9Jqe2, V q

“ V 1 φ̄pp∇e1
9Jqe1 ` p∇e2

9Jqe2, e1q ` V 2 φ̄pp∇e1
9Jqe1 ` p∇e2

9Jqe2, e2q,

where V i “ gpV, eiq. We will now make multiple use of the following elementary properties:

‚ e2 “ Je1, V
1 “ gpJV, e2q “ pJV q2, V 2 “ ´gpJV, e1q “ ´pJV q1;
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‚ p∇ei
9Jq is g-symmetric and traceless. In particular, it anticommutes with the com-

plex structure J ;

‚ the tensor φ̄ is anti-bilinear in its entries, therefore φ̄pJ ¨, ¨q “ φ̄p¨, J ¨q “ ´iφ̄p¨, ¨q.
From the previous expression we deduce

ÿ

i

pdiv 9Jqei φ̄pei, V q “ V 1φ̄pp∇e1
9Jqe1, e1q ` pJV q2φ̄pp∇e2

9JqJe1, e1q`

´ pJV q1φ̄pp∇e1
9Jqe1, Je1q ` V 2φ̄pp∇e2

9JqJe1, Je1q
“ V 1φ̄pp∇e1

9Jqe1, e1q ` iV 2φ̄pJp∇e2
9Jqe1, e1q`

´ pJV q2φ̄pJp∇e2
9Jqe1, e1q ` ipJV q1φ̄pp∇e1

9Jqe1, e1q
“ V 1φ̄pp∇e1

9Jqe1, e1q ` V 2φ̄pp∇e2
9Jqe1, e1q`

` ipJV q2φ̄pp∇e2
9Jqe1, e1q ` ipJV q1φ̄pp∇e1

9Jqe1, e1q
“ φ̄pp∇V

9Jqe1, e1q ` i φ̄pp∇JV
9Jqe1, e1q

(6.18)

In order to derive the desired relation, we are left to show that

φ̄pp∇V
9Jqe1, e1q ` i φ̄pp∇JV

9Jqe1, e1q “ xφ̄ | ∇V
9J ` i∇JV

9Jy

This equality can be deduced from the properties of φ̄ and ∇X
9J previously mentioned.

Indeed we have

xφ̄ | ∇V
9Jy “ 1

2
tr

´
g´1φ̄∇V

9J
¯

“ 1

2

´
φ̄pp∇V

9Jqe1, e1q ` φ̄pp∇V
9JqJe1, Je1q

¯

“ 1

2

´
φ̄pp∇V

9Jqe1, e1q ´ φ̄pJp∇V
9Jqe1, Je1q

¯

“ φ̄pp∇V
9Jqe1, e1q.

By replacing the role of V with JV , we obtain also that xφ̄ | ∇JV
9Jy “ φ̄pp∇JV

9Jqe1, e1q.
This cocludes the proof of relation (6.17). �

6.4.4. Model for the tangent space to MSpΣq

We finally come to the main statement of this section.

Theorem M. For every pJ, σq P ĄMS0pΣ, ρq, VpJ,σq is the largest subspace of TpJ,σq
ĄMS0pΣ, ρq

that is:

‚ invariant under I, J and K;

‚ g-orthogonal to TpJ,σqpSymp0pΣ, ρq ¨ pJ, σqq

The proof of Theorem M is completed in the rest of this section, by means of three

lemmas that simplify the statement in several steps.
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Lemma 6.15. Let pJ, σq P ĄMS0pΣ, ρq and p 9J, 9σq P TpJ,σqT
˚J pΣq. The following condi-

tions are equivalent:

a) p 9J, 9σq, Ip 9J, 9σq,Jp 9J, 9σq and Kp 9J, 9σq belong to Kerpdµ̃Iq X Kerpdµ̃Jq X Kerpdµ̃Kq;
b) p 9J, 9σq and Jp 9J, 9σq belong to Kerpdµ̃Jq X Kerpdµ̃Kq.

Proof. We only need to prove that b) implies a). By Proposition 6.12 (plus Remark 6.13)

and the quaternionic relations between I, J and K, we find

xdµ̃IpJp 9J, 9σqq | V yS “ ´ωIpJp 9J, 9σq, pLV J,LV σqq “ gpIJp 9J, 9σq, pLV J,LV σqq
“ gpKp 9J, 9σq, pLV J,LV σqq “ ´ωKpp 9J, 9σq, pLV J,LV σqq
“ xdµ̃Kp 9J, 9σq | V yS .

Therefore, p 9J, 9σq P Kerpdµ̃Kq if and only if Jp 9J, 9σq P Kerpdµ̃Iq. With a similar computation,

one can also show that p 9J, 9σq P Kerpdµ̃Kq if and only if Ip 9J, 9σq P Kerpdµ̃Jq. It follows that

if we start from a pair p 9J, 9σq satisfying b), then

‚ p 9J, 9σq P Kerpdµ̃Kq ñ Ip 9J, 9σq P Kerpdµ̃Jq and Jp 9J, 9σq P Kerpdµ̃Iq;
‚ p 9J, 9σq P Kerpdµ̃Jq ñ Ip 9J, 9σq P Kerpdµ̃Kq and Kp 9J, 9σq P Kerpdµ̃Iq;
‚ Jp 9J, 9σq P Kerpdµ̃Kq ñ Kp 9J, 9σq P Kerpdµ̃Jq and p 9J, 9σq P Kerpdµ̃Iq;
‚ Jp 9J, 9σq P Kerpdµ̃Jq ñ Kp 9J, 9σq P Kerpdµ̃Kq and Ip 9J, 9σq P Kerpdµ̃Iq

which implies a). �

Lemma 6.16. Let pJ, σq P ĄMS0pΣ, ρq and p 9J, 9σq P TpJ,σqT
˚J pΣq. The following condi-

tions are equivalent:

1) p 9J, 9σq is g-orthogonal to TpJ,σqpSymp0pΣ, ρq ¨ pJ, σqq;
2) for some L P tI,J,Ku, we have Lp 9J, 9σq P Kerpdµ̃Lq;
3) for all L P tI,J,Ku, we have Lp 9J, 9σq P Kerpdµ̃Lq.

Proof. We first show that 1) is equivalent to 2) for L “ J, the other cases being analogous.

The properties of the moment maps imply

gppLV J,LV σq, p 9J, 9σqq “ gppLV J,LV σq,J2p 9J, 9σqq (J2 “ 1)

“ ωJppLV J,LV σq,Jp 9J, 9σqq (ωJ “ gp¨,J¨q)
“ ´xdµ̃J pJp 9J, 9σqq | V yS .

so p 9J, 9σq is g-orthogonal to pLV J,LV σq for every V P S if and only if Jp 9J, 9σq P Kerpdµ̃Jq.
Note that the above relation proves that 1) and 3) are equivalent as well. �

Combining Lemma 6.15 and Lemma 6.16, we see that the subspace VpJ,σq Ă TpJ,σqT
˚J pΣq

we are interested in can be described as

VpJ,σq “ tp 9J, 9σq P TpJ,σqT
˚J pΣq | p 9J, 9σq,Jp 9J, 9σq P Kerpdµ̃Jq X Kerpdµ̃Kqu
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Finally, the following result allows to describe VpJ,σq as the solution of the system of partial

differential equations appearing in Proposition K part iiq.

Lemma 6.17. Let pJ, σq P T ˚J pΣq be such that σ is the real part of a holomorphic

quadratic differential φ on pΣ, Jq, and let p 9J, 9σq P TpJ,σqT
˚J pΣq. Then p 9J, 9σq and Jp 9J, 9σq

belong to ker dµ̃J X ker dµ̃K if and only if
#
divgpg´1 9σ0 ` J 9J g´1σq “ x∇g

J‚σ | 9Jy,
divgpf 9J ` f´1 J g´1 9σ0 g

´1σq “ x∇g
J‚σ | f´1g´1 9σ0y.

(6.19)

Proof. Applying Proposition 6.14 and dividing dpµ̃J ` i µ̃Kq into real and imaginary part,

respectively, we see that the following relations hold:

dµ̃J p 9J, 9σq “ rdivgpg´1 9σ0p¨, J ¨qq ` x∇J‚σ | J 9Jy ´ xσ | ∇‚
9J ´ J∇J‚

9Jys
“ rJ˚pdivg g´1 9σ0 ` x∇‚σ | J 9Jy ` xσ | Jp∇‚

9J ´ J∇J‚
9Jqyqs P Λ1pΣq{B1pΣq,

dµ̃K p 9J, 9σq “ ´rdivg g´1 9σ0 ` x∇J‚σ | 9Jy ` xσ | Jp∇‚
9J ´ J∇J‚

9Jqys P Λ1pΣq{B1pΣq.
Since φ is a holomorphic quadratic differential, it satisfies BJ φ̄ ” 0, which is equivalent

to require ∇J‚σ “ p∇‚σqp¨, J ¨q. In light of this relation, if we set α to be the 1-form

α :“ divg g
´1 9σ0 ` x∇‚σ | J 9Jy ` xσ | Jp∇‚

9J ´ J∇J‚
9Jqy,

then we can express dµ̃J p 9J, 9σq and dµ̃K p 9J, 9σq as follows:

dµ̃J p 9J, 9σq “ rα ˝ Js, dµ̃K p 9J, 9σq “ r´αs P Λ1pΣq{B1pΣq Ď SpΣ, ρq˚.

Assume now that p 9J, 9σq satisfies dµ̃J p 9J, 9σq “ dµ̃K p 9J, 9σq “ r0s P Λ1pΣq{B1pΣq or, equiv-

alently, that the forms α and α ˝ J are exact. In particular there exists a smooth function

over Σ such that α “ df . Since α ˝ J is exact, we also have

´p∆gJfq ρ “ dpdf ˝ Jq “ dpα ˝ Jq “ 0.

In other words, the function f has to be harmonic with respect to gJ and therefore constant,

since Σ is compact without boundary. This proves in particular that the 1-form α vanishes

identically if and only if p 9J, 9σq belongs to ker dµ̃J X ker dµ̃K. The form α can be expressed

as follows:

α “ divgpg´1 9σ0q ` x∇‚σ | J 9Jy ` xσ | Jp∇‚
9J ´ J∇J‚

9Jqy
“ divgpg´1 9σ0 ` xσ | J 9Jy1 ` xσ | 9JyJq ´ x∇J‚σ | 9Jy
“ divgpg´1 9σ0 ` J 9Jg´1σq ´ x∇J‚σ | 9Jy. (Lemma 3.9)

If we apply the same argument to Jp 9J, 9σq (see Section 3.3 for the definition of J), we

obtain that

p 9J, 9σq P ker dµ̃J X ker dµ̃K ô divgpg´1 9σ0 ` J 9Jg´1σq “ x∇J‚σ | 9Jy, (6.20)
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Jp 9J, 9σq P ker dµ̃J X ker dµ̃K ô divgpf 9J ` f´1Jg´1 9σ0g
´1σq “ x∇J‚σ | f´1g´1 9σ0y, (6.21)

where f “ fp‖σ‖q “
b
1 ` ‖σ‖2, thus obtaining the desired statement. �

Proof of Theorem M. By Corollary 6.9, the zero locus of the moment maps µ̃I, µ̃J and µ̃K
coincides precisely with ĄMS0pΣ, ρq. Observe, however, that TpJ,σq

ĄMS0pΣ, ρq is larger than

Kerpdµ̃Iq X Kerpdµ̃Jq X Kerpdµ̃Kq by Remark 6.11. Nonetheless, the largest subspace W

of TpJ,σq
ĄMS0pΣ, ρq that is g-orthogonal to TpJ,σqpSymp0pΣ, ρq ¨ pJ, σqq and invariant under

I, J and K is contained in Kerpdµ̃Iq X Kerpdµ̃Jq X Kerpdµ̃Kq. Indeed, if p 9J, 9σq is in W ,

then the same is true for Ip 9J, 9σq. Since Ip 9J, 9σq is g-orthogonal to the tangent of the orbit

by Symp0pΣ, ρq, Lemma 6.16 implies that I2p 9J, 9σq “ ´p 9J, 9σq lies in Kerpdµ̃Iq. Being p 9J, 9σq
arbitrary, we deduce that W is contained in Kerpdµ̃Iq X Kerpdµ̃Jq X Kerpdµ̃Kq.

Now, by Lemma 6.15, Lemma 6.16, and Lemma 6.17 the subspace W is described by the

Equation (6.19). Taking the sum and the difference of the two equations, and using that

Jl “ f J ` g´1
J σ, Jr “ f J ´ g´1

J σ, it is straightforward to verify that (6.19) is equivalent

to (V2) of Proposition K. �

Appendix A. Para-complex geometry

In this appendix we introduce the algebra B of para-complex numbers, para-complex

coordinates, and B-valued symplectic forms. These will allow us to give an equivalent

characterization of para-Kähler potential (Lemma A.4) and prove a criterion to show that

a manifold is para-hyperKähler (Lemma A.5) .

Para-complex numbers. Let B be the R-algebra generated by τ with τ2 “ 1. Elements

of B are called para-complex numbers. Notice that B is a two-dimensional real vector space

and we will often denote B “ R ‘ τR. Borrowing terminology from the complex numbers,

we talk about real and imaginary part of an element of B and we define a conjugation

a` τb “ a´ τb .

This induces a norm on B by taking

|a` τb|2 “ pa ` τbqpa ` τbq “ a2 ´ b2 .

Note that elements of B may have negative norm. In fact, the bi-linear extension of this

norm defines a Minkowski inner product on R
2 with orthonormal basis t1, τu. It is also

convenient to work with the basis of idempotents

e` “ 1 ` τ

2
and e´ “ 1 ´ τ

2
,

because the map

ae` ` be´ ÞÑ pa, bq
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gives an isomorphism of R-algebras between B and R ‘ R, where in the latter operations

are carried out component by component.

Para-complex structures. Let P : V Ñ V be a para-complex structure on a real vector

space V . We denote by V ` and V ´ the eigenspaces of P relative to the eigenvalues `1

and ´1 respectively.

Remark A.1. The multiplication by τ on B is a para-complex structure on B with eigenspaces

V ` “ Re` and V ´ “ Re´.

Given a para-complex structure P on V , we can define the para-complexification of V

as the B-module V B “ V bR B. We can then extend the para-complex structure P to V B

by B-linearity and define

V 1,0 “ tv P V B | Pv “ τvu “ tv ` τPv | v P V u
V 0,1 “ tv P V B | Pv “ ´τvu “ tv ´ τPv | v P V u

so that V B “ V 1,0 ‘ V 0,1.

A para-complex structure P induces a para-complex structure P˚ on the dual space

V ˚ by requiring pP˚αqpvq “ αpPvq for any α P V ˚ and any v P V . As before, we can

decompose V ˚B “ V1,0 ‘ V0,1 where

V1,0 “ tα P V ˚B | P˚α “ ταu “ tα ` τP˚α | α P V ˚u
V0,1 “ tα P V ˚B | P˚α “ ´ταu “ tα ´ τP˚α | α P V ˚u .

More in general, we have a decomposition of B-valued n-forms into types
nľ
V ˚B “

à
p`q“n

p,qľ
V ˚B ,

where
Źp,q V ˚B denotes the vector space spanned by α ^ β, with α P Źp V1,0 and β PŹq V0,1.

Para-complex coordinates. Recall that an almost para-complex structure P on M is a

bundle endomorphism P : TM Ñ TM such that P2 “ 1 and the eigenspaces T˘M of P

relative to the eigenvalues ˘1 have the same dimension.

Definition A.2. Let pM,Pq and pN,P1q be two almost para-complex manifolds. A smooth

map f : M Ñ N is para-holomorphic if P1 ˝ df “ df ˝ P. In particular, a function

f : pM,Pq Ñ B is para-holomorphic if for every vector field V P ΓpTMq we have dfpPV q “
τdfpV q.

An almost para-complex structure P onM is said to be integrable if the eigen-distributions

T˘M of P are involutive. This is equivalent to the existence of local charts φα : Uα Ă
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M Ñ B
n such that change of coordinates are para-holomorphic functions. If zi is a B-

valued coordinate, its real and imaginary part

Repziq “ xi “ 1

2
pzi ` z̄iq Impziq “ yi “ 1

2τ
pzi ´ z̄iq

define usual R-valued coordinates on M .

The para-complex tangent bundle of a para-complex manifold pM,Pq is TBM “ TMbR

B. Extending the endomorphism P on TBM by B-linearity, we have a decomposition

TBM “ T 1,0M ‘ T 0,1M where

T 1,0M “ tX P TBM | PX “ τXu “ tX ` τPX | X P TMu
T 0,1M “ tX P TBM | PX “ ´τXu “ tX ´ τPX | X P TMu .

In local B-valued coordinates zi “ xi`τyi, the vector spaces T 1,0M and T 0,1M are spanned

by the vector fields

B
Bzi “ 1

2

ˆ B
Bxi ` τ

B
Byi

˙ B
Bz̄i “ 1

2

ˆ B
Bxi ´ τ

B
Byi

˙
.

Similarly, the induced para-complex structure P˚ on T ˚M induces a decomposition T ˚BM “
Λ1,0pMq ‘ Λ0,1pMq where

Λ1,0pMq “ tα P T ˚BM | P˚α “ ταu “ tα ` τP˚α | α P T ˚Mu
Λ0,1pMq “ tα P T ˚BM | P˚α “ ´ταu “ tα ´ τP˚α | α P T ˚Mu .

In local B-valued coordinates zi “ xi ` τyi, the vector spaces Λ1,0pMq and Λ0,1pMq are

spanned by the B-valued forms

dzi “ dxi ` τdyi and dz̄i “ dxi ´ τdyi .

More in general, we have a decomposition of B-valued n-forms on M into types

ΛnpMq “
à

p`q“n

Λp,qpMq .

This induces a splitting of the B-linear exterior differential d : ΛnpMq Ñ Λn`1pMq as

d “ BP ` B̄P with

BP : Λp,qpMq Ñ Λp`1,qpMq and B̄P : Λp,qpMq Ñ Λp,q`1pMq .

Para-Kähler potential. Recall that a para-Kähler structure is the data of an almost

para-complex structure P and a (non-degenerate) pseudo-Riemannian metric g on M such

that

‚ gpPX,PY q “ ´gpX,Y q for every X,Y P ΓpTMq ,
‚ P is parallel for the Levi-Civita connection of g.
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This second condition is equivalent ([AMT09b]) to the simultaneous integrability of the

eigendistributions of P and the closedness of the 2-form ωP “ gp¨,P¨q. It is easy to see

that the eigendistributions of P are isotropic for g, thus g has signature pn, nq.

Definition A.3. We say that f : M Ñ R is a para-Kähler potential of the closed 2-form

ωP if pτ{2qB̄PBPf “ ωP.

Lemma A.4. For every smooth function f :M Ñ R we have 2τ B̄PBPf “ dpdf ˝ Pq.

Proof. In local para-holomorphic coordinates zi “ xi ` τyi we have

df ˝ P

ˆ B
Bxi

˙
“ df

ˆ B
Byi

˙
“ Bf

Byi and df ˝ P

ˆ B
Byi

˙
“ df

ˆ B
Bxi

˙
“ Bf

Bxi

thus

df ˝ P “
nÿ

i“1

Bf
Byidx

i ` Bf
Bxi dy

i

and

dpdf ˝ Pq “
nÿ

i“1

ˆB2f
Bxi ´ B2f

Byi
˙
dxi ^ dyi .

On the other hand

2τ B̄PBPf “ τ B̄P
nÿ

i“1

ˆ Bf
Bxi ` τ

Bf
Byi

˙
pdxi ` τdyiq

“ 1

2
τ

nÿ

i“1

ˆB2f
Bxi ´ B2f

Byi
˙

pdxi ´ τdyiq ^ pdxi ` τdyiq

“
nÿ

i“1

ˆB2f
Bxi ´ B2f

Byi
˙
dxi ^ dyi .

�

Criterion for a para-hyperKähler structure. Recall that a para-hyperKähler struc-

ture on M is a quadruple pg, I,J,Kq where pg,Kq and pg,Jq are para-Kähler structures

on M and I “ KJ is an almost complex structure on M that is compatible with g in the

sense that

gpIX, IY q “ gpX,Y q for all X,Y P ΓpTMq
and that is parallel for the Levi-Civita connection of g.

Lemma A.5. Let J,K be almost para-complex structures and let I “ KJ be an almost

complex structure on M . Assume that there is pseudo-Riemannian metric g compatible

with I,J and K. If the 2-forms ωL “ gp¨,L¨q are closed for every L “ I,J,K, then

pM, I,J,K,gq is para-hyperKähler.



PARA-HYPERKÄHLER GEOMETRY OF THE SPACE OF ADS STRUCTURES 109

Proof. We first extend the differential forms ωL to B-valued differential forms by B-linearity.

Because

ωIpX,Y q “ gpX, IY q “ ´gpX,JKY q “ gpJX,KY q “ ωKpJX,Y q

for any section X of TBM , we have JX “ τX if and only if ιXωI “ τιXωK. Suppose that

JX “ τX and JY “ τY , then

ιrX,Y sωI “ LXpιY ωIq ´ ιY LXωI

“ LXpτιY ωKq ´ ιY LXωI

“ LXpτιY ωKq ´ ιY dpιXωIq (Cartan’s formula with ωI closed)

“ LXpτιY ωKq ´ ιY dpτιXωKq
“ LXpτιY ωKq ´ τιY LXωK (Cartan’s formula with ωK closed)

“ τιrX,Y sωK .

Hence JrX,Y s “ τ rX,Y s and and the eigendistributions for J are involutive. The integra-

bility of J and the closedness of ωJ imply that J is parallel for the Levi-Civita connection

of g. Repeating a similar computation for I and K we obtain the result. �
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