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Nuclearporecomplexes (NPCs)areproteinassemblies that formchannelsacross thenuclear
envelope to mediate communication between the nucleus and the cytoplasm. Additionally,
NPCs interact with chromatin and influence the position and expression of multiple genes.
Interestingly, the composition of NPCs can vary in different cell-types, tissues, and
developmental states. Here, we review recent findings suggesting that modifications of
NPCcomposition, includingpost-translationalmodifications,playan instructive role incell fate
establishment. In particular, we focus on the role of cell-specific NPC deacetylation in
asymmetrically dividing budding yeast, which modulates transport-dependent and
transport-independent NPC functions to determine the time of commitment to a new
division cycle in daughter cells. By modulating protein localization and gene expression,
NPCs are therefore emerging as central regulators of cell identity.
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INTRODUCTION

Complex organisms develop through the generation of cellular diversity from a single
undifferentiated cell. How are the main cellular components modulated to produce different
types of cells? Understanding the answer to this question is one of the fundamental problems in
biology. One way to generate different cell types after division is through the partitioning of
regulatory molecules to only one of the progeny cells. In the simplest scenario, the asymmetrically
partitioned molecule (or “cell fate determinant”) directs transcription of genes that are important
for differentiation of the receiving cell (Li, 2013). Much of the knowledge on this topic has come
from the study of simple organisms that exhibit basic forms of cell differentiation. One of the best
characterized is the budding yeast Saccharomyces cerevisiae. This organism divides asymmetrically,
giving rise to mother and daughter cells that differ in their identity and behavior. Indeed, newborn
daughter cells have different gene expression patterns than their mothers, which affect cell-type-
specific processes such as cell separation, mating-type switching, and cell cycle progression
(Colman-Lerner et al., 2001; Di Talia et al., 2009; Haber, 2012).

Recent work from our laboratory revealed that in budding yeast, an enzyme that deacetylates
nuclear pore complexes acts as a cell fate determinant in daughter cells (Kumar et al., 2018). Nuclear
pore complexes (NPCs) are multi-protein assemblies that forms channels in the nuclear envelope
thus connecting the nucleus and cytoplasm. We found that deacetylation of NPCs in daughter cells
modulates their gene expression program by multiple mechanisms. These findings established that
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NPCs are biochemically and functionally different in budding
yeast mother and daughter cells. Because NPCs are major
regulators of nuclear composition and gene expression in
eukaryotes, the discovery of cell-type-specific acetylation of
NPCs in yeast opens the possibility that similar mechanisms
may regulate cell differentiation in multicellular organisms. Here
we will briefly describe the structure and function of NPCs,
summarize the main mechanisms by which they regulate gene
expression and differentiation in yeast and animal cells, and
discuss how modulation of NPC acetylation may shape cell
identity in eukaryotes.
NUCLEAR PORE COMPLEXES: ROLES IN
NUCLEO-CYTOPLASMIC TRANSPORT

Since their initial description as components of the “porous
layer” in the nuclear envelope of amphibian oocytes (Callan
et al., 1949; Callan and Tomlin, 1950), NPCs were proposed to
facilitate the transport of molecules between the nucleus and
cytoplasm. Structural studies revealed that NPCs are
macromolecular assemblies composed of approximately 30–50
different nucleoporins (Nups) that form a channel across the
nuclear envelope (NE). The NPC structure is based on an
eightfold radial symmetry and contains specific sub-structures
(for recent reviews, see Knockenhauer and Schwartz, 2016; Beck
and Hurt, 2017; Lin and Hoelz, 2019). These include the central
ring, which lays across the NE; the cytoplasmic and nuclear
rings, which are anchored at opposite sides of the central ring;
and the cytoplasmic filaments and nuclear basket, associated
with the cytoplasmic and nuclear rings, respectively. Although
this general structure is highly conserved among eukaryotes,
NPCs display significant variability across biological species in
terms of size and composition, ranging in size from ~60 MDa in
yeast to ~90–120 MDa in humans (Maimon et al., 2012; Lin and
Hoelz, 2019). As discussed later, some variability in NPC
composition is also present between different cell types in
yeast and animal cells.

Functionally, NPCs operate as a selective barrier that allows
compartmentalization between nucleus and cytoplasm. Small
molecules (below approximately 30 KDa in mass, or 3 nm in
diameter) such as ions and metabolites can freely diffuse through
the NPC in human cells (Mohr et al., 2009). In contrast, transport
of larger molecules including most proteins and RNAs requires
assistance of specific transport receptors that translocate their
cargo through the NPC channel and deliver it to the other side.
Transport of most proteins and some RNA species such as tRNA,
rRNA, and micro-RNAs is assisted by proteins of the karyopherin
family (reviewed in Köhler and Hurt, 2007). Transport
directionality is established by cargo release from karyopherins
in either the nuclear or cytoplasmic side of the channel, achieved
by the Ran GTPase system (Görlich et al., 2003). In contrast,
export of messenger RNA (mRNA) is independent of
karyopherins and Ran, and involves a dedicated heterodimeric
transport receptor (Nxf1/Nxt1 in mammalian cells, and Mtr2/
Mex67 in yeast) (Natalizio and Wente, 2013).
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ROLE OF NUCLEAR PORE COMPLEXES
IN GENOME ORGANIZATION AND
GENE EXPRESSION

The function of NPCs in transport is linked to gene expression,
since thenuclear concentrationof transcriptional regulators and the
rate of mRNA export are dependent on nucleo-cytoplasmic
transport. In addition, NPCs directly impact gene expression by
interacting with chromatin. The nuclear periphery plays a key role
in the non-random distribution of chromatin inside the nucleus
(Akhtar and Gasser, 2007; Cremer and Cremer, 2010) and is
generally considered a repressive environment for transcription
in yeast and metazoans (Taddei and Gasser, 2012; Steglich et al.,
2013). Early visualization of the nuclear membrane showed
heterochromatin preferentially associated with the nuclear
periphery, with the exception of areas near nuclear pores
(Aaronson and Blobel, 1975). These observations led to the idea
that association of active genes with NPCs would facilitate the
nuclear export of their transcripts, and conversely, that increased
transcriptionmay lead to targeting of active genes to nuclear pores.
NPCswould therefore shape chromatin spatial organizationandact
as platforms to couple transcription andmRNA export—the “gene
gating” hypothesis (Blobel, 1985). Supporting this idea, yeast
genome-wide studies demonstrate that certain Nups and NPC-
associated transport factors (e.g., karyopherins) bind preferentially
highly transcribed genes (Casolari et al., 2004) and the existence of a
vast number of interactions between gene promoters and
components of the nuclear pore basket (Schmid et al., 2006).

In yeast, the best-characterized examples of transcriptionally
active genes that associate with NPCs are inducible genes, which
are highly expressed under specific environmental conditions.
Multiple genes, including GAL1, HXK1, INO1, HSP104, and
TSA2 localize in the nuclear interior when repressed, and are
recruited to the nuclear pores when induced (Brickner and
Walter, 2004; Casolari et al., 2004; Casolari et al., 2005;
Dieppois et al., 2006; Taddei et al., 2006; Brickner et al., 2007;
Ahmed et al., 2010). Specifically, nuclear pore basket nups, such
as Nup2, Nup1, Nup60, or Mlp2 are required for perinuclear
localization of the active GAL1 locus (Brickner et al., 2007;
Brickner et al., 2016). Other important factors for the
association of GAL1 to NPCs are components of the Spt-Ada-
Gcn5 acetyltransferase (SAGA) complex, and the transcription
and mRNA export complex 2 (TREX-2) (Casolari et al., 2004;
Cabal et al., 2006; Dieppois et al., 2006; Schmid et al., 2006;
Luthra et al., 2007; Dultz et al., 2016). Thus, targeting of active
genes to NPCs is promoted by basket nups and mRNA
elongation and export factors; interestingly, NPC tethering
may be mediated by RNA for some but not all active genes
(Casolari et al., 2005; Brickner et al., 2007). Additionally, NPC
recruitment of inducible yeast genes relies on specific gene
recruitment sequences (GRS) in their promoters, which are
necessary and sufficient to drive the gene to the NPCs and for
their optimal expression (Ahmed et al., 2010). Strikingly, at least
some of these genes remain associated with NPCs for several
hours after withdrawal of the stimulus and transcriptional
repression. This is linked to their faster reactivation upon a
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https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Gomar-Alba and Mendoza Modulation of Cell Identity by NPC Modification
second round of induction—a phenomenon known as
“transcriptional memory” that requires Nup100 and the
histone variant H2A.Z (Brickner et al., 2007; Light et al., 2010).

In animal cells, NPCs have been shown to modulate both
chromatin organization and gene expression. As examples of the
role of NPCs in chromatin organization, the nuclear basket protein
Tpr is required for the exclusion of perinuclear heterochromatin
from NPC-associated areas in HeLa cells infected with poliovirus
(Krull et al., 2010), influences HIV integration sites bymaintaining
an open chromatin architecture near the NPC (Lelek et al., 2015;
Wonget al., 2015), andpromotes the formation andmaintenanceof
senescence-associated heterochromatin foci in the nuclear interior
in Ras-induced senescent cells (Boumendil et al., 2019). NPCs
modulate gene expression by associating not only with gene
promoters, but also with enhancers and super-enhancers to
promote enhancer-promoter interactions through chromatin
loops (Ibarra et al., 2016; Pascual-Garcia et al., 2017). In animal
cells, Nup98 (homologue of yeast Nup100), Nup93, and Nup153
modulate gene expression through binding to chromatin either at
thenucleoplasmoratNPCs (Kalverdaet al., 2010; Ibarra et al., 2016;
Liu et al., 2017; Pascual-Garcia and Capelson, 2019).Moreover, the
role ofNPCs in transcriptionalmemory is also conserved in animal
cells.Nup98mediates enhancer-promoter loop formation toensure
faster and higher expression of hormone inducible genes upon
repeated activation in Drosophila (Pascual-Garcia et al., 2017), and
promotes transcriptional memory after treatment with interferon
gamma inhumancells (Light etal., 2013).Thus, the role ofNup98 in
transcriptional memory is conserved in yeast, flies, and humans
(Tan-Wong et al., 2009; Light and Brickner, 2013; D'Urso and
Brickner, 2017).

NPC-dependent mechanisms of gene expression involve their
interaction with transcription factors (TFs) and histone-modifying
enzymes including acetyl-transferases, deacetylases, and ubiquitin-
transferases. For example, in human cells exposed to proliferative
signals, MYC is recruited to the nuclear pore basket where it
interacts with the nups Tpr and Nup153, promoting the
formation of a complex that includes the SAGA acetyltransferase
component Gcn5, and regulating the expression of mitogen-
stimulated genes (Su et al., 2018). In mouse embryonic stem cells,
Nup153 represses developmental genes by recruiting the
polycomb-repressive complex 1 (PRC1) subunit RING1B, which
catalyzes ubiquitination of histone H2A (Jacinto et al., 2015).
Finally, in cardiomyocytes, the histone deacetylase HDAC4
interacts with Nup155 at NPCs, and prevents the association of
sarcomeric and calcium signaling genes to the NPCs to negatively
regulate their expression (Kehat et al., 2011; D'Angelo, 2018).
NUCLEAR PORE PLASTICITY DURING
CELLULAR DIFFERENTIATION

Although the overall structure ofNPCs is conserved across species and
within cell types, recent evidence indicates that NPCs display cell-type
specific variability in their protein composition, which in some cases
canaffect theirgeneregulatory functions.Earlyproteomicsstudieshave
revealed that the levels of nups including Nup50, Tpr, Nup214,
Nup210, Pom121, and Nup37 showed significant variability across
Frontiers in Genetics | www.frontiersin.org 3
cancer cell lines and human tissues (Guan et al., 2000; Cho et al., 2009;
Ori et al., 2013). This opened the possibility that tissue-specific
expression levels of certain nups could mediate protein transport
and/or gene expression changes during development. This may be
the case for murine Nup133, which is predominantly expressed in
embryonic progenitors and is required for efficient neural
differentiation in ESC and neuronal progenitors (Lupu et al., 2008).

Changes in the levels of specific Nups can affect cellular
differentiation by regulating the transcription of developmental
genes in specific cell types. A well-characterized example is the
transmembrane ring NPC component Nup210. The expression of
Nup210 is cell-type specific during mouse organogenesis (Olsson
et al., 2004). In an in vitromyogenicmodel,Nup210 levels are low in
proliferative myoblasts, but increase during myogenic
differentiation (D'Angelo et al., 2012). Interestingly, Nup210
depletion inhibits myotube formation. While absence of Nup210
had no detectable defects in protein import or export, it resulted in
downregulation of genes involved in myogenesis and other
developmental genes (D'Angelo et al., 2012). Nup210 promotes
myoblast differentiation through the recruitment to NPCs of
Mef2C, a TF key for the regulation of skeletal and cardiac muscle
developmental genes at the nuclear periphery (Raices et al., 2017).

Whereas Nup210 levels increase during myogenic
differentiation, the levels of the nuclear basket component
Nup153 decrease during neural differentiation (Jacinto et al.,
2015; Toda et al., 2017). Thus, Nup153 levels correlate with the
degree of cellular plasticity, and evidence suggests that Nup153
promotes the maintenance of an undifferentiated cellular state.
In mESCs, Nup153 binds to silenced developmental genes at
NPCs and also in the nucleoplasm. Loss of Nup153 causes early
neuronal differentiation, probably by deficient recruitment of
polycomb repressive complexes to developmental genes (Jacinto
et al., 2015). Consistent with a role in repressing differentiation,
in rat neural progenitor cells, Nup153 is necessary for
maintaining the expression of genes distinctive of the neural
progenitor cells specific transcriptional program. Nup153
interacts with the neural progenitor TF Sox2 and together,
both factors regulate gene expression through their association
with promoters and with 3' gene regions, possibly to mediate
transcription and repression, respectively (Toda et al., 2017).

Two important conclusions emerge from these studies. First,
Nup levels and thus NPCs composition can vary in the different
developmental stages. Second, by modulating gene expression
through specific nucleoporins, NPCs can either promote or
prevent cell differentiation. This has led to the proposal that
specialized NPCs with different characteristics may ultimately
lead to cell-specific functions (Raices and D'Angelo, 2012). How
differences in NPC composition arise during development in
animal cells remains unclear.
NUCLEAR PORE DEACETYLATION
REGULATES GENE EXPRESSION IN
BUDDING YEAST DAUGHTER CELLS

A new link between changes in NPC composition and cell
differentiation was revealed by studies of asymmetric division
January 2020 | Volume 10 | Article 1301
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in budding yeast. Yeast cells proliferate by first growing a bud on
the surface of the mother cell; DNA replication is then followed
by transport of one of the newly generated nuclei across the
mother-bud neck and into the future daughter cell. Cytokinesis
produces mother and daughter cells that differ not only in size (at
the time of birth, buds are generally smaller than their mothers)
but also in their age and transcriptional activity (Li, 2013). This is
due to asymmetric partitioning of ageing and cell fate
determinants during cell division (Long et al., 1997; Sinclair
and Guarente, 1997). The lysine deacetylase Hos3 is a new cell
fate determinant that modifies NPCs in newborn daughter cells
(Figure 1A). Hos3 binds to the daughter-cell side of the septin
ring, a cytoskeletal structure that assembles at the bud neck
(Wang and Collins, 2014). Hos3 then transiently associates with
the periphery of the daughter cell nucleus during anaphase
chromosome segregation (Kumar et al., 2018). Since the yeast
NE does not disassemble during mitosis, NPCs destined to the
bud are in close proximity with the bud neck during anaphase.
This suggests that Hos3 transfers from the septin ring to NPCs as
they transit through the bud neck. Recruitment of Hos3 to the
nuclear periphery is associated with Hos3 association with the
nuclear pore basket, and deacetylation of nups at both the central
channel (including Nup49, Nup53, and Nup57) and nuclear
basket (Nup60). Thus, Hos3 establishes biochemical differences
in NPCs between mother and daughter cells: NPCs that are
retained in mother cells are acetylated, whereas NPCs
transmitted to daughter cells are hypo-acetylated (Kumar et al.,
2018). What are the physiological consequences of these
differences in NPC acetylation?

Commitment to a new division cycle is regulated asymmetrically
in S. cerevisiae: daughter cells have a longerG1phase, and thus start a
new cycle later thanmother cells. This is due to a cell size-dependent
delay that prolongs G1 until daughter cells reach the critical cell size
needed to enter in a new round of cell division (Hartwell and Unger,
1977; Turner et al., 2012) and to a size-independent daughter-
specific delay of the G1/S transition (Laabs et al., 2003; Di Talia
et al., 2009). We found that deacetylation of daughter nucleoporins
inhibits cell cycle entry in a manner that is independent of cell size,
through regulation of transport-dependent and transport-
independent NPC functions in daughter cells (Figure 1B). The
transport-dependent pathway may act by modulating the nuclear
concentration of cell cycle regulators, such as the transcriptional
repressorWhi5 (homologue of the retinoblastoma tumor suppressor
protein, pRb). The concentration ofWhi5 at the start of the cell cycle
is highly predictive of G1 duration, and is higher in daughter than in
mother cells (Schmoller et al., 2015). We found that higher nuclear
concentration of Whi5 in daughter cells requires Hos3-dependent
deacetylation of central pore channel nucleoporins (including
Nup49) and to a lesser extent, of the basket nup Nup60 in
daughter cells (Kumar et al., 2018). How NPC acetylation
modulates the nuclear concentration of Whi5 is unclear, but may
involve changes in its nuclear transport dynamics. Supporting this
possibility, NPC deacetylation reduces the nuclear levels of the
karyopherins responsible for Whi5 nuclear import and export
(Kap95 and Msn5), raising the possibly that deacetylation of nups
in the central channel inhibits their affinity for Whi5 transport
Frontiers in Genetics | www.frontiersin.org 4
receptors. Since Kap95 and Msn5 transport multiple cargoes in
addition to Whi5, NPC deacetylation may impact the asymmetric
distribution of a plethora of nuclear proteins.

Deacetylation of NPCs also modulates G1 duration
independently of nuclear transport. Indeed, deacetylation of the
nuclear basket promotes the perinuclear tethering and silencing of
at least one key cell cycle control gene, encoding the G1/S cyclin
Cln2 (homologue of mammalian Cyclin E). We found that in
daughter cells, theCLN2 locus localizes to thenuclear periphery and
associates with the nuclear basket component Nup60 (homologue
ofmammalianNup153) duringG1,when it is repressed.CLN2 then
moves away from NPCs during S phase, when it is expressed.
Artificial targeting ofCLN2 to the nuclear periphery leads to longer
G1 phase, suggesting that association with NPCs leads to CLN2
repression. The daughter-cell-specific recruitment of CLN2 to
NPCs is independent of Whi5 but depends on deacetylation of
Nup60 or Nup49 by Hos3 (Kumar et al., 2018). The molecular
mechanisms mediating CLN2 repression at NPCs remain to
be elucidated.

In summary, deacetylation ofNPCs in daughter cells establishes
a key aspectof their identity, inhibiting commitment toanew round
of cell division. It is interesting to note that in addition to the
putative Hos3 substrates studied so far, additional nups are
acetylated in yeast (Figure 2); the function of these modifications,
and the identity of the responsible acetylases and deacetylases, are
not known (Henriksen et al., 2012). Thus, deacetylation of NPCs in
yeast daughter cells may have other functions in addition to
inhibiting the G1/S transition.
FUTURE PERSPECTIVES

Yeast cells have devised an elaborate mechanism to ensure
deacetylation of NPCs in daughter cells and not in mother cells,
by coupling inheritance of a Nup deacetylase with passage of the
nucleus through the bud neck during mitosis (Kumar et al., 2018).
Although this inheritance mechanism may be unique to budding
yeast, it remains possible that modulation of NPC acetylation may
also impact proliferation and differentiation of animal cells.
Although evidence for this is currently lacking, several
observations suggest that this possibility warrants investigation.
Firstly, as is the case in yeast, human nucleoporins are acetylated,
including nups in the central channel (Nup98), nuclear basket
(Nup153, Nup50, and Tpr), cytoplasmic filaments (Nup214,
Nup358), and inner ring (Nup188, Nup205) (Choudhary et al.,
2009;Henriksenet al., 2012) (Figure2).Thephysiological relevance
of these modifications, if any, remains to be explored. Secondly,
nucleoporins associatewith acetylases anddeacetylases bothduring
normal development (Kehat et al., 2011; Su et al., 2018) and in
pathological contexts. Indeed,when fused toDNAbinding proteins
after cancer-induced translocations, nucleoporins such as Nup98
can act as potent transcriptional trans-activators or repressors by
recruiting acetylases and deacetylases (Kasper et al., 1999; Bai et al.,
2006; Wang et al., 2007).

As we have seen, NPC composition can change during cell
differentiation and the mechanisms mediating NPC compositional
January 2020 | Volume 10 | Article 1301
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variability remain unclear (Lupu et al., 2008; D'Angelo et al., 2012;
Toda et al., 2017). It is possible that acetylationof specificNupsmay
affect the ability of NPCs to incorporate additional subunits during
development. Nup acetylation may also regulate their ability to
interact with gene regulatory factors involved in transcription and/
Frontiers in Genetics | www.frontiersin.org 5
or RNA export. Notably, the ortholog of yeast Nup60 (which is
deacetylated to allow for repression of the CLN2 gene) is Nup153,
which as mentioned earlier is essential for repression of
developmental genes in rat neural progenitors (Jacinto et al.,
2015; Toda et al., 2017). It would be of interest to investigate if
FIGURE 1 | Daughter-cell-specific deacetylation of nuclear pore complexes (NPCs) modulates cell cycle identity in budding yeast. (A) During mitotic division, the
deacetylase Hos3 (in green) associates with the bud neck and with daughter-cell NPCs during nuclear migration into the bud. Deacetylated NPCs delay the G1/S transition in
daughter cells. The inset depicts the main architectural elements of NPCs. (B) NPC deacetylation (left) inhibits the G1/S transition in daughter cells through two major
mechanisms: nuclear transport of the transcriptional repressor Whi5 (middle) and NPC-mediated repression of the G1/S cyclin gene CLN2 (right). See text for details.
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Nup153 acetylation or deacetylation is important for its roles in cell
fate specification.

Notably, perinuclear deacetylation is important to maintain
spatial chromatin organization relative to NPCs, as observed after
inhibition of histone deacetylase (HDAC) activity in HeLa cells
(Brown et al., 2008). Perinuclear HDACs are thought to regulate
gene expression and possibly chromatin-NPC interactions through
their well-documented role in deacetylation of histones near
promoter regions (Seto and Yoshida, 2014). However, our
findings in yeast suggest that nucleoporins may represent a novel
category of HDAC substrates with important roles in gene
expression and nuclear organization. Interestingly, mammalian
deacetylases such as HDAC3 and HDAC4 are enriched in the
nuclear periphery and regulate gene expression through regulation
of chromatin interactionswith thenuclearperiphery and/ornuclear
pores (Kehat et al., 2011; Poleshko et al., 2017). Identification of the
molecularmechanisms bywhich perinuclearHDACs regulate gene
expression, whether by deacetylation of histone or non-histone
proteins such as nucleoporins, will be an important
future challenge.
Frontiers in Genetics | www.frontiersin.org 6
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