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Abstract: This paper addresses the estimation of accurate extreme ground impact footprints and
probabilistic maps due to a total loss of control of fixed-wing unmanned aerial vehicles after a main
engine failure. In this paper, we focus on the ground impact footprints that contains 95%, 99% and
99.9% of the drone impacts. These regions are defined here with density minimum volume sets and
may be estimated by Monte Carlo methods. As Monte Carlo approaches lead to an underestimation
of extreme ground impact footprints, we consider in this article multiple importance sampling to
evaluate them. Then, we perform a reliability oriented sensitivity analysis, to estimate the most
influential uncertain parameters on the ground impact position. We show the results of these
estimations on a realistic drone flight scenario.

Keywords: UAV; probabilistic maps of impact; ground footprints; Monte Carlo; importance sampling;
sensitivity analysis

1. Introduction

Assessing the risks and feasibility of unmanned aerial vehicle (UAV) operations for
outdoor inspection or monitoring missions has become a major challenge for regulatory
authorities and drone operators. This evaluation relies on risk analysis methods that can
be helpful in the process of flight authorization, but also in the design and the preparation
of the mission. Two main types of methods are classically used. The first one relies on the
qualitative evaluation of risks by applying some predefined methodologies or guides [1].
This is, for example, the case of classical methods such as failure modes and effects analysis
(FMEA) or, more recently and more specifically developed for UAV operations, SORA
(specific operation risk assessment) [2]. The second type of methods relies on the quan-
titative evaluation of risks, based on the use of models developed to represent the UAV
behavior, its environment, etc. This is the case of model-based probabilistic risk assess-
ment (PRA) approaches that have recently gained a huge interest for UAVs, see e.g., [1–5].
With these approaches, the accuracy of models used for risk probabilities’ computations is
of paramount importance. Indeed, being too conservative may prevent or restrict some
operational uses of UAVs, while not being conservative enough may lead to uses with
uncontrolled risks. A fundamental keystone in these methods, when considering ground
risk evaluation, is the computation of probabilities of impact of the UAV at ground level.
Accurate models should be developed to be able to compute representative predictions
of impact points’ locations and probabilities. Works from the literature have focused on
computing impact point locations, enabling to obtain estimates of impact footprints on the
ground level. In [6], impact footprints are computed by reachability analysis, considering
a gliding descent model for a fixed-wing UAV, composed of a turning and a straight line
phase. Different modes of failure (engine, engine+rudder+ailerons) are considered, as well
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as the effect of the altitude of the vehicle at the failure instant. This type of impact footprints
has also been obtained in [3], considering a 6 degrees-of-freedom dynamic model of a
fixed-wing aircraft. The effect of wind on impact footprints has been investigated in [7].
Computation of impact locations and footprints has also been performed in [8], for both
fixed-wing and multi-rotor UAVs considering different modes of failure. Some level sets
are computed to provide some insights on the distribution of the impact points inside
the footprint.

The generation of probability maps has been investigated in other works to provide
more information on the impact distributions on the ground that could be useful and reduce
conservatism in risk analysis or decision making. In [9], a ballistic model with drag force is
considered to represent the descent of a fixed-wing UAV and generate probability density
functions of impact points. Uncertainties on drag, initial speed at the instant of failure
and external wind are accounted for. Full flight dynamics of a Cesna 182 aircraft are used
in [10] to compute ground impact probability maps by Monte Carlo simulations. Total loss
of power is assumed and uncertainties on the initial conditions of the UAV at failure instant
as well as on the deflection of unactuated control surfaces are considered. A 6 degrees-
of-freedom flight mechanics model is also used in [11] for a fixed wing UAV to estimate
ground impact probability maps, taking into account the influence of wind direction
and speed. Real flight data have been used to model uncertainties on the turn rate and
flight path angle of the vehicles for cruise-like mode at constant altitude and straight line.
These uncertainties along with the ones on the actuators deflections at the instant of failure
are used in the Monte Carlo process. Influence of initial altitude, speed and wind (speed
and direction) are analyzed, and a full data basis has been obtained containing impact
probability maps for a sampled set of values for these quantities. This data basis can be
useful for risk evaluation along a given UAV flight trajectory, e.g., for mission preparation.

Since Monte Carlo simulations can be time-consuming, more recent works have
been dedicated to the development of surrogate models for the generation of ground
impact probability maps. K-Nearest neighbors models have been considered in [10] to
approximate impact probability distribution. Other techniques such as Krigging have been
investigated [7] regarding impact footprints or neural networks for both generation of
impact footprints [7] and probability maps [11].

In all these works, assumptions are made on the uncertainties on the variables used as
inputs of the computations. Uncertainty representations are mainly based on statistic mod-
els (probability distributions) and/or bounds (intervals with no statistical assumptions).
Accuracy of the resulting outputs (ground impact locations, footprints, probability maps)
strongly relies on the representativeness of these assumptions. Another important aspect in
these approaches is the computation method itself and the choice of its hyper-parameters.
For example, choice of simulation budgets in Monte Carlo approaches is crucial, as it may
strongly influence the probability density estimation and its confidence.

Moreover, Monte Carlo methods with a low number of samples lead to an under-
estimation of extreme ground impact footprints, which may be of interest to provide
more confidence in the risk assessment process for flight preparation and authorization.
Knowledge of UAV’s extreme fallout zones can also help defining safety levels at very low
thresholds, which can be critical for certain high-risk infrastructures.

This paper therefore addresses the estimation problem of accurate extreme ground
impact probability maps and footprints containing 95%, 99% and 99.9% of the impacts.
Multiple importance sampling (MIS) is considered to estimate density minimum volume
sets associated with these extreme quantiles.

In addition, a study of the sensitivity of hazard parameters is proposed to estimate
the most influential uncertain parameters on ground impact positions. This analysis may
enable both operators and drone constructors to better understand, design and anticipate
fallout zones in the event of a failure. All the results in this paper are obtained for the case
of a fixed wing UAV after main engine failure.
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This paper is organized as follows. The first section focuses on the simulation ap-
proach used to compute the ground impact points coordinates. The characterization of
uncertainties that are taken into account is discussed in Section 3. The estimation of
ground footprints by Multiple Importance Sampling is then presented in Section 4 and an
associated sensitivity analysis is proposed in Section 5.

2. Ground Impact Simulation

In this paper, we focus on impacts on the ground due to a loss of control of the UAV
(unmanned aerial vehicle) after a main engine failure. It is assumed that immediately after
the failure, the engine thrust becomes zero and the control surfaces remain stuck in their
equilibrium positions. The objective of this section is to present the models and approach
that are used to compute the impact points at ground by simulation, based on previous
studies by the authors in [7].

2.1. UAV Dynamics

The model used to simulate the trajectory of the UAV to the ground is a six de-
grees of freedom (6DOF) dynamic model, including full flight mechanics, and hence
enabling one to incorporate the influence of wind from a dynamical point of view (and not
kinematical compared to some approaches developed in the literature [12]). The model
considered here is a fixed wing aircraft such as the one presented in [13]. The control
input vector u =

[
δa δe δr δT

]> is composed of ailerons, elevators, rudder deflections,
and thrust command. The state of the dynamical system to be simulated is defined as

χ =
[
X> V> η> Ω>

]> where X =
[
x y z

]> is the position vector defined in a local
NED (north east down) frame, V and Ω are the translation and angular velocity vectors in
the aircraft body-frame, and η =

[
φ θ ψ

]> is the vector of Euler angles (roll-pitch-yaw)
describing the attitude of the UAV. The origin of the (inertial) local NED frame is chosen to
correspond to z=0 (ground) and is arbitrarily chosen for x and y-components, as we are
only interested in the description of the motion of UAV during its descent to the ground
with respect to the vehicle position at the instant of failure (considered to be x = y = 0).

The rigid-body dynamics of the UAV is described as
Ẋ = RηV
V̇ = −Ω×V + 1

m F
η̇ = TηΩ
Ω̇ = J−1(−Ω× JΩ + M)

(1)

where Rη is the orientation matrix parametrized in terms of Z-Y-X Euler angles given by

Rη =

 cθcψ sφsθcψ − sψcψ sφsψ + sθcφcψ

cθsψ cφcψ + sθsφsψ sθcφsψ − sφcψ

−sθ cθsφ cθcφ

 (2)

and Tη is the transformation matrix defined by

Tη =

 1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 (3)

whith the notations cα = cos(α), sα = sin(α) and tα = tan(α) for any given angle α.
The inertia matrix of the UAV is denoted by J and its mass by m. Values used for the UAV
parameters are given in Appendix A.

The resulting force F expressed in the aircraft body-frame

F = Feng(δT) + Fg(η) + Fa(V, Vw, η, Ω, δa, δe, δr) (4)
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is composed of the thrust, due to the engine (Feng(δT)) which is zero after engine failure,
the gravity force (Fg(η)) and the resulting aerodynamic force Fa, which depends on the
true air speed of the UAV and then on the wind speed vector Vw. To compute this force,
a full aerodynamic model is used, such as the one described in [13] and is presented in
Appendix A. Similarly, the resulting torque expressed in the aircraft body-frame

M = Meng(δT) + Ma(V, Vw, η, Ω, δa, δe, δr) (5)

is composed of the torque component Meng(δT), due to the thrust of the main engine
(equals to zero after engine failure) and the aerodynamic torque Ma, which also depends on
the wind speed vector Vw. To compute this torque, a full aerodynamic model of the aircraft
is also considered (see Appendix A). The dynamic model of the UAV can be summarized
with the following state-space representation

χ̇ = f (χ, u, Vw) (6)

The simulation of the UAV descent trajectory is performed from an initial condition
χ0, defined at the engine failure instant t0, to ground impact, that corresponds to instant t f
such that the altitude h(t f ) = −z(t f ) = 0.

During a steady flight (coordinated turn, straight flight, pull-up/pull-over etc.), the ac-
cessible space through the initial condition (χ0, u0) is considerably reduced. Defining the
initial condition then consists of zeroing numerically the dynamic part of Equation (6),
while simultaneously considering kinematic constraints related to flight mode [14]. In this
case, the control vectors and the dynamic part of the state vector are entirely defined by
these constraints. This method is called trim algorithm. A simple way to represent a
trajectory is to consider the two following parameters:

• the turn rate R = dψ/dt, where ψ is the heading angle
• the flight path angle γ = ż/Va , where Va is the aerodynamic speed of the aircraft.

Therefore, the trim algorithm can be run to determine the initial condition (χ0, u0),
by assigning values R0, γ0, Va0 and h0 to the turn rate, flight path angle, aerodynamic speed
and altitude, which are representative of the UAV flight conditions. A straight cruise flight
mode at constant altitude can, for example, be considered by choosing R0 = 0 and γ0 = 0.
Note that the wind is not considered in the trim algorithm.

From this initial condition (χ0, u0), the trajectory of the UAV is simulated until the
impact time t f , by considering zero thrust (main engine failure) and taking into account
the wind speed Vw. The complete simulation process is represented in Figure 1.

(h0, Va0, R0, γ0)
Trim

algorithm

χ0

(δe0, δa0, δr0, δT0 = 0)

+

+

(∆δe0, ∆δa0, ∆δr0, ∆δT0 = 0)

u0

Vw

Flight
dynamics

simulation

Impact
point
(x, y)

Figure 1. Simulation flowchart used to generate ground impact points.

Using this approach, one can simulate a single trajectory and compute the coordi-
nates of the ground impact point. An example of the trajectory is provided on Figure 2,
corresponding to γ0 = 0 deg, R0 = 0.15 rad/s, Va0 = 30 m/s, h0 = 150 m and no wind.
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Figure 2. Example of simulated descent trajectory to ground (initial point in green corresponding to
main engine failure instant, ground impact point in red) [7].

Nevertheless, impact point coordinates are not deterministic in the sense that their
computation will suffer from different sources of uncertainties on the parameters of the
problem. The next section covers the characterization of these uncertainties, as well as the
Monte Carlo approach to handle them.

3. Uncertainties and Monte Carlo approach

The computation of an impact point involves a simulation relying on several parame-
ters. Some of them will be considered as fixed values, such as the initial ground altitude h0
and aerodynamic speed Va0 . Note that these quantities are affected by some uncertainties,
since the reference altitude and velocities commanded for the UAV are not exactly flown in
practice. However, the influence of their respective incertitude levels on the impact point
location is negligible. Uncertainties on the parameters of the UAV model (aerodynamic
coefficients) are also not taken into account in this paper. A robustness analysis with regard
to them should be carried out, especially since the descent phase to ground may lead to
aerodynamic behaviors different from the ones that can be identified. This is beyond the
scope of this paper and will be considered in future work. Uncertainties taken into account
in this article are described in the following subsections.

3.1. Uncertainties on R0 and γ0

Experimental data have been recorded on flights realized by Altametris, the drone
subsidiary of SNCF Réseau (French Railway Network) (see [7]). These data correspond to
a cruise-like flight mode in a straight line and constant ground altitude. This is the flight
mode of interest for the study in this paper. For this flight mode, R and γ should be zero,
which is not the case in practice.

For simplicity reason, a bi-variate normal distribution has been fitted on these experi-
mental data, after rejection of the outliers (see [7]). Its mean is given by µ =

[
µR µγ

]T

with µR = 7.47e− 5 rad/s and µγ = 1.03e− 1 deg and its covariance matrix by:

Σ =

[
7.40e− 4 1.75e− 3
1.75e− 3 8.53e− 1

]
(7)

This distribution will be used to sample points for R0 and γ0
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3.2. Uncertainties on Control Surface Deflections

As previously mentioned, a main engine failure is considered in this paper. A constant
zero thrust command is therefore assumed for the descent trajectory simulation, that is
δT(t) = δT0 = 0, ∀t ∈ [t0, t f ].

For the deflection of the control surfaces (elevators, ailerons and rudder), it is also
assumed that they remain stuck in their trim position (δe0 , δa0 , δr0) during the descent
trajectory. Some noise ∆δi0 , i ∈ {e, a, r} , is nevertheless added to these trim values, since
in practice, a flapping behavior of these control surfaces has been observed on the UAV.
It is defined as a zero-mean Gaussian noise of variance σ2

i = ρi/30, where ρi stands for
the amplitude range of the control surface i. The coefficient 30 has been arbitrarily chosen,
but to define a variance small enough to make the new initial condition (χd0 , u0 + ∆u0)
not to deviate too much from the computed trim point (χd0 , u0), which is an equilib-
rium point for the UAV dynamics. The notation ∆u0 is used to define the noise vector[
∆δe0 ∆δa0 ∆δr0 0

]>.

3.3. Monte Carlo Simulations

Let us bring in the same vector U, the 5 uncertain variables R0, γ0 and ∆δi0 , i ∈ {e, a, r},
with joint density f : R5 → R+ with respect to Lebesgue measure. The computation of
the impact points is then done with the deterministic process described in Section 2.1
synthesized by a scalar continuous functionM : R5 → R2. The impact position vector
Z is such that Z = [x, y] =M(U). As U is a random vector, Z is also a random vector of
unknown density g : R2 → R+ with respect to the Lebesgue measure. If we consider N
independent and identically distributed (iid) samples Ui, i = 1..N, with density f , we can
generate N iid samples Zi of density g thanks toM. Figure 3 shows, for instance, 2000 iid
samples of Zi depending on the tuning of the wind in the functionM.

(a) (b)

Figure 3. (a) 2000 Monte Carlo ground impact points with no wind (b) 2000 Monte Carlo ground impact points with a wind
of 5 m.s −1 with angle −90◦.

4. Density Minimum Volume Set Estimation for the Analysis of Ground
Impact Footprints

A volume set is a mathematical tool that enables one to analyse the density of drone
ground impacts. In this section, we describe how to define a multidimensional density
minimum volume set and how to estimate them in practice, with multiple importance
sampling to focus on rare events.

4.1. Definition of a Density Minimum Volume Set

The t-level set L(t) of the multivariate probability density g of Z is defined as follows:

L(t) =
{

z ∈ R2 : g(z) ≥ t
}

(8)
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for t ≥ 0. The level sets of the probability density function (PDF) g are defined as the
mapping ε:

ε : [0, sup g] → [0, 1]

t →
∫

L(t)
g(z)dz = P(Z ∈ L(t)) = P(g(Z) ≥ t) = α

The t-level set L(t) of density g is the minimum volume set of probability α under
regularity conditions [15]. A density level set can be viewed in fact as a multidimensional
α-quantile estimation.

V(t) = inf
A∈Rr
{λ(A) : P(A) ≥ α}, α ∈ [0, 1] (9)

where A is a subset of Rr and λ is a real-valued function defined on A. If λ is the Lebesgue
measure, V is a minimum volume set of probability α.

4.2. Statistical Estimation of a Density Minimum Volume Set with MIS

In this article, we want to estimate the t-level set L(t) of density g for a given probabil-
ity α. The estimation principle is based on the following steps:

1. Propose an estimate ĝ of g from a given set of samples (Z1 = M(U1),...,ZN =
M(UN).

2. Estimate the threshold t̂ = ε−1(α) with a simple binary search and determine the
level set

L(t̂) =
{

z ∈ R2 : ĝ(z) ≥ t̂
}

(10)

This estimator L(t̂) is a plug-in estimator of a minimum volume set [16]. To apply
this 2-step procedure, it is necessary first to estimate the unknown density g. This can
be done with classical Monte Carlo from samples Zi, i = 1, . . . , N, distributed with the
unknown density g, but also with importance sampling. The principle of importance
sampling is to modify the sampling distribution of Zi, in order to improve the accuracy of
the estimation of g on some part of its support. A comparison between Monte Carlo and
classical importance sampling estimates of g is indeed performed in [17]. Depending on
the value of α, a trade-off should be made. For this purpose, we consider in this article
multiple importance sampling [18] that behaves well in the heart of the distribution g,
because Monte Carlo and importance sampling samples can be taken into account in the
estimation of the density g. Moreover, the estimation of t̂ with binary search is often
intractable and cannot be applied in practice, since it requires the estimation of integrals
over a multidimensional domain. To avoid this difficulty, one also considers another
plug-in estimator of t described in [19], based on density quantile.

To estimate the density level set L(t̂) with multiple importance sampling, the following
computational steps are considered in this article:

1. Generate a set of N independent and identically (iid) distributed samples (U11, ..., U1N)
of density f , and apply the functionM on these samples to determine a set of samples
(Z11 =M(U11), ..., Z1N =M(U1N)).

2. Estimate the output density ĝ1 from the samples (Z11, ..., Z1N) with multivariate
kernel density estimate [20].

3. Estimate the density h of the samples {U1i|ĝ1(Z1i) < γ} for i = 1, . . . , N where γ is
set by the user.

4. Generate a set of N iid samples (U21, ..., U2N) from density h, and applies the function
M on these samples to determine a set of samples (Z21, ..., Z2N) [20].

5. Estimate the density ĝMIS from the samples (Z11, ..., Z1N) and (Z21, ..., Z2N) with

weighted multivariate kernel density estimate. The weight of each Zij is
f (Uij)

1
2 ( f (Uij+h(Uij))

.
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6. Estimate the threshold t̂MIS as the (1− α)-quantile of the weighted samples (Z11, ..., Z1N ,
Z21, ..., Z2N).

7. The level set with MIS is then estimated with

L̂MIS(t) =
{

x̃ ∈ R2 : ĝMIS(z) ≥ t̂MIS
}

(11)

The choice of γ can be made with a quantile of the samples ĝ1(Z1i), ..., ĝ1(Z1N). In this
article, γ is quantile of level 0.1 as, from our experience, it corresponds to a good trade-off
between Monte Carlo samples and extreme samples.

4.3. Application to Drone Ground Impact

An MIS algorithm for density minimum level set has been applied to the estimation of
drone ground impacts with N = 1000. In Figure 4, we present the estimation of minimum
density volume set for different probabilities α with MIS. Importance sampling with density
h has consequently increased the frequency of impacts with a high distance from the aim
without requiring a large number of simulations, and thus extreme level sets are more
accurate. A similar analysis is also performed in Figure 5, when a wind of 5 m.s −1 with
angle −90◦ is considered in the drone ground impact simulations.

(a) (b)

(c)

Figure 4. (a) 1000 Samples generated with the density f of MIS (b) 1000 Samples generated with the density h of MIS
(c) Minimum density volume set estimation for different probability values α (0.5; 0.8; 0.9; 0.95; 0.99; 0.999) with MIS.
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(a) (b)

(c)

Figure 5. (a) 1000 Samples generated with the density f of MIS (b) 1000 Samples generated with the density h of MIS (c)
Minimum density volume set estimation for different probability values α (0.5; 0.8; 0.9; 0.95; 0.99; 0.999) with MIS (wind of
5 m.s −1 with angle −90◦).

5. Reliability-Oriented Sensitivity Analysis
5.1. Definition of ROSA Sensitivity Indices

Reliability-oriented sensitivity analysis (ROSA) differs from classical sensitivity analy-
sis in the nature of the output quantity of interest under study. Indeed, sensitivity analysis
focuses on the model output, whereas ROSA analyses the impact of the input uncertainty
on a reliability measure. Two kinds of ROSA indices can be computed in practice [21]:

• first, target sensitivity analysis evaluates the impact of inputs over a function of the
output, typically the indicator function of a critical domain. In the drone impact
application, it answers the question: which uncertain inputs lead to extreme drone
impact?

• second, conditional sensitivity analysis, which aims at studying the impact of inputs
exclusively within the critical domain, namely, conditionally to the failure event. In the
drone application, this indice determines, conditionally to an extreme impact, which
uncertain inputs are the most influential.

In this article, we consider two recent target and conditional ROSA moment-independent
indices η̄i and δ

f
i [22] to analyse the influence of the ith component of U, U(i), on the scalar

output quantity Z̃ = ||Z||2 for a given failure event. We propose to define here the failure
event as Z 6∈ L(t), that is, the ground impact is outside a given volume set and is thus
an extreme impact. The two ROSA indices are defined by the following equations for the
proposed drone fallout test case with i = 1, . . . , 5 as there are 5 random inputs:

η̄i =
1
2

∥∥∥ fU(i) − fU(i) |Z 6∈L(t)

∥∥∥
L1(R)

. (12)
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and
δ

f
i =

1
2

∥∥∥ f(U(i),Z̃)|Z 6∈L(t) − fU(i) |Z 6∈L(t) fZ̃|Z 6∈L(t)

∥∥∥
L1(R2)

=
1
2
‖ci − 1‖L1(R2). (13)

where fU(i) is the density of U(i), fU(i) |Z 6∈L(t) is the density of U(i) conditionally to Z 6∈ L(t),
fZ̃|Z 6∈L(t) is the density of Z̃ conditionally to Z 6∈ L(t), f(U(i),Z̃)|Z 6∈L(t) is the density of

the couple (U(i), Z̃) conditionally to Z 6∈ L(t) and finally ci the copula density (U(i), Z̃)
conditionally to Z 6∈ L(t). The ROSA indices η̄i and δ

f
i take values in [0, 1] where the low

values of these indices mean this ith component of U is not influential on the failure event
analysis and conversely. The computation of these indices can be done with the samples
generated for density level set estimation (see Section 4) and thus requires no additional
calls toM. Moreover, this methodology can be applied even if the random inputs U are
dependent contrary to ROSA variance based indices [23].

5.2. Statistical Estimation of ROSA Sensitivity Indices

To practically estimate the ROSA indices η̄i and δ
f
i , the following steps are required [22]:

1. Obtain (V1, . . . , Vn) approximately i.i.d. from fU|Z 6∈L(t) and their corresponding
value Zk = M(Vk) byM. From Zk, the value of Z̃k is then easily computed with
Z̃k = ||Zk||2.

2. Use the sample ((V(i)
k , Z̃k), k = 1, . . . , n, i = 1, . . . 5) where V(i)

k is the ith component
of Vk, to get estimates f̂U(i) |Z 6∈L(t) and ĉi of the density fU(i) |Z 6∈L(t) and of the copula
density ci respectively. In this article, they are both estimated with the non-parametric
method [20,24], but any other efficient density and copula estimation techniques can
be chosen.

3. Use the estimates f̂U(i) |Z 6∈L(t) and ĉi to compute η̄i and δ
f
i as follows:

• for η̄i, estimate the one-dimensional integral ‖ fU(i) |Z 6∈L(t) − fU(i)‖L1(R) either by
direct numerical approximation, or if fU(i) can be sampled from, by Monte Carlo
method via

ˆ̄ηi =
1

N′
N′

∑
k=1

∣∣∣∣∣∣
f̂U(i) |Z 6∈L(t)(U

(i)
k )

fU(i)(U
(i)
k )

− 1

∣∣∣∣∣∣ (14)

where the U(i)
k are i.i.d. with common distribution fU(i) ;

• for δ
f
i , generate ((H1k, H2k), k = 1, . . . , N′) i.i.d. uniformly distributed on [0, 1]2

and estimate δ
f
i by

δ̂
f
i =

1
2N′

N′

∑
k=1
|ĉi(H1k, H2k)− 1| . (15)

The estimates ˆ̄ηi δ̂
f
i can be computed for different failure events Z 6∈ L(t) for differ-

ent values of t = tα that correspond to several minimum volume sets of probability α.
N′ can be taken as large as possible, as it does not imply any calls toM and thus we set to
N′ = 104.

5.3. Application to Drone Ground Impact Sensitivity Analysis

The algorithm proposed in the previous section has been applied with MIS samples
and thus without any supplementary calls toM to determine the influence on the reach-
ability of extreme drone impacts of the different components of the random vector U.
The ROSA indices are computed in Table 1 for three different level sets of probability
α = 0.5, 0.8, 0.99. The most influential variables are the third and fourth components of
U, that is, the noise uncertainty on the UAV elevators and ailerons. The positions of the
drone ground impact are less sensitive to the other uncertain simulation parameters in the
heart of the impact position distribution. Nevertheless, when we consider more extreme
impacts (t0.99), these observations have to be mitigated. A parameter alone does not explain
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an extreme fallout, as the ROSA indices decrease for U(3) and U(4). A combination of
parameters leads to an extreme fallout. The comparison between ˆ̄ηi δ̂

f
i here is not really

relevant and does not provide much information. The sensitivity analysis gives similar
results when wind is taken into account in the simulation.

Table 1. ROSA indices for ground impact analysis. Bold numbers correspond to values greater
than 0.1.

(a) No Wind

ROSA indices t0.5 t0.8 t0.99
ˆ̄η1 0.07 0.06 0.06
δ̂

f
1 0.04 0.04 0.03

ˆ̄η2 0.05 0.03 0.03
δ̂

f
2 0.04 0.03 0.03

ˆ̄η3 0.34 0.31 0.11
δ̂

f
3 0.07 0.07 0.15

ˆ̄η4 0.41 0.17 0.06
δ̂

f
4 0.16 0.18 0.16

ˆ̄η5 0.06 0.04 0.04
δ̂

f
5 0.06 0.04 0.04

(b) Wind of 5 m.s −1 with angle −90◦.

ROSA indices t0.5 t0.8 t0.99
ˆ̄η1 0.06 0.07 0.07
δ̂

f
1 0.05 0.03 0.03

ˆ̄η2 0.13 0.08 0.06
δ̂

f
2 0.02 0.04 0.03

ˆ̄η3 0.40 0.24 0.05
δ̂

f
3 0.16 0.22 0.23

ˆ̄η4 0.34 0.13 0.06
δ̂

f
4 0.30 0.24 0.21

ˆ̄η5 0.10 0.06 0.05
δ̂

f
5 0.04 0.03 0.03

6. Conclusions

The generation of extreme ground impact footprints map has been addressed in this
paper for fixed-wing UAVs failure. In the proposed approach, the computation of impact
points is based on simulation of a full dynamic model, including aerodynamics of the UAV
and wind effect. Uncertainties accounted for in these simulations have been characterized,
based on some real flight data. Monte Carlo simulations have been performed to generate
footprints; however, it is not satisfying when we focus on extreme ground footprints.
For this purpose, we have presented a rare-event simulation technique called multiple
importance sampling to answer the issue of extreme drone ground impacts. We also show
that at low computational cost, it is also possible to derive sensitivity indices to interpret
the cause of extreme impacts.

Future work will include these characterizations of extreme drone impacts for the risk
analysis of UAV missions. Sensitivity and robustness analysis with regard to uncertainties
on some parameters of the UAV (aerodynamic coefficients) will also be considered.
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Appendix A. UAV Model

The aerodynamic force Fa in (4) and torque Ma in (5) can be expressed in the aerody-
namic reference frame (related to the aerodynamic speed of the drone) as:

F(w)
a = qdS

[
CX CY CZ

]> (A1)

M(w)
a = qdSL

[
Cl Cm Cn

]> (A2)

where qd = 1
2 ρV2

a is the dynamic pressure, ρ the air density, Va the airspeed, S the reference
surface and L = diag(La, Lo, La) a matrix with lateral and longitudinal reference lengths La
(wingspan) and Lo (mean aerodynamic chord).

In case of a non-zero wind speed vector Vw, the airspeed is Va = ‖V −Vw‖.
A linearized aerodynamic model is used in this paper, where the lift (CL), lateral (CY)

and drag (CD) coefficients are computed by

CL = CL0 + CLα α + CLα̇
α̇ + CLq

q
Va

+ CLδe
δe

CY = CYβ
+ CYP

p
Va

+ CYr

r
Va

+ CYδa
δa + CYδr

δr

CD = CD0 + CDCL
CL + CDCL2

C2
L + CDδe

δe

(A3)

with
[
CX CY CZ

]>
=
[
−CD CY −CL

]>.
Similarly, the aerodynamic coefficients regarding the torque are computed according to the
following linearized model

Cl = Clβ
β +

La

Va
(Clp p + Clr r) + Clδa

δa + Clδr
δr

Cm = Cm0 + Cmα α + Cmα̇ α̇ +
L0

Va
Cmq q + Cmδe

δe

Cn = Cnβ
β +

La

Va
(Cnp p + Cnr r) + Clδa

δa + Clδr
δr

(A4)

with α the angle of attack, β the slideslip angle, Ω = [p, q, r]T the angular velocity vector
between the NED and body frames and (δa, δe, δr) the ailerons, elevators and rudder
deflections.

Numerical values of the aerodynamic coefficients and other UAV model parameters
used in this paper are given in Tables A1 and A2 below.
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Table A1. Numerical values of aerodynamic coefficients.

CL0 0.3243 Clβ
−0.0113

CLα 6.0204 Clp −1.2217
CLα̇

1.93 Clr 0.015
CLq 6.0713 Clδa

0.3436
CLδe

0.9128 Clδr
0.0076

CYβ
−0.3928 Cm0 0.0272

CYp 0 Cmα −1.9554
CYr 0 Cmq −5.286
CYδr

0.1982 Cmδe
−2.4808

CD0 0.0251 Cnβ
0.0804

CDCL
−0.0241 Cnp −0.0557

CDCL2
0.0692 Cnr −0.1422

CDδe
0.1 Cnδa

−0.0165
Cnδr

−0.0598

Table A2. UAV model parameters.

La 0.264 m
Lo 2.410 m
S 0.6360 m2

m 10.0 kg
J diag[1.00, 0.87, 1.40] kg·m2
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